parallel : working

This commit is contained in:
Georgi Gerganov 2022-10-29 12:24:02 +03:00
parent a272f10b2e
commit 0b2dc3c82c
6 changed files with 207 additions and 73 deletions

View File

@ -22,6 +22,7 @@ if (EMSCRIPTEN)
add_subdirectory(whisper.wasm) add_subdirectory(whisper.wasm)
else() else()
add_subdirectory(main) add_subdirectory(main)
add_subdirectory(parallel)
add_subdirectory(stream) add_subdirectory(stream)
add_subdirectory(bench) add_subdirectory(bench)
endif() endif()

View File

@ -384,7 +384,6 @@ int main(int argc, char ** argv) {
wparams.translate = params.translate; wparams.translate = params.translate;
wparams.language = params.language.c_str(); wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads; wparams.n_threads = params.n_threads;
wparams.n_processors = 1;
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx; wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms; wparams.offset_ms = params.offset_t_ms;

View File

@ -38,10 +38,12 @@ std::string to_timestamp(int64_t t, bool comma = false) {
// command-line parameters // command-line parameters
struct whisper_params { struct whisper_params {
int32_t seed = -1; // RNG seed, not used currently int32_t seed = -1; // RNG seed, not used currently
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); int32_t n_threads = std::max(std::min(4, (int32_t) std::thread::hardware_concurrency()) / 2, 1);
int32_t offset_t_ms = 0; int32_t n_processors = 2;
int32_t offset_n = 0; int32_t offset_t_ms = 0;
int32_t offset_n = 0;
int32_t max_context = -1;
bool verbose = false; bool verbose = false;
bool translate = false; bool translate = false;
@ -73,10 +75,14 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
params.seed = std::stoi(argv[++i]); params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") { } else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]); params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-p" || arg == "--processors") {
params.n_processors = std::stoi(argv[++i]);
} else if (arg == "-ot" || arg == "--offset-t") { } else if (arg == "-ot" || arg == "--offset-t") {
params.offset_t_ms = std::stoi(argv[++i]); params.offset_t_ms = std::stoi(argv[++i]);
} else if (arg == "-on" || arg == "--offset-n") { } else if (arg == "-on" || arg == "--offset-n") {
params.offset_n = std::stoi(argv[++i]); params.offset_n = std::stoi(argv[++i]);
} else if (arg == "-mc" || arg == "--max-context") {
params.max_context = std::stoi(argv[++i]);
} else if (arg == "-v" || arg == "--verbose") { } else if (arg == "-v" || arg == "--verbose") {
params.verbose = true; params.verbose = true;
} else if (arg == "--translate") { } else if (arg == "--translate") {
@ -125,8 +131,10 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
fprintf(stderr, " -h, --help show this help message and exit\n"); fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n"); fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads); fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -p N, --processors N number of processors to use during computation (default: %d)\n", params.n_processors);
fprintf(stderr, " -ot N, --offset-t N time offset in milliseconds (default: %d)\n", params.offset_t_ms); fprintf(stderr, " -ot N, --offset-t N time offset in milliseconds (default: %d)\n", params.offset_t_ms);
fprintf(stderr, " -on N, --offset-n N segment index offset (default: %d)\n", params.offset_n); fprintf(stderr, " -on N, --offset-n N segment index offset (default: %d)\n", params.offset_n);
fprintf(stderr, " -mc N, --max-context N maximum number of text context tokens to store (default: max)\n");
fprintf(stderr, " -v, --verbose verbose output\n"); fprintf(stderr, " -v, --verbose verbose output\n");
fprintf(stderr, " --translate translate from source language to english\n"); fprintf(stderr, " --translate translate from source language to english\n");
fprintf(stderr, " -otxt, --output-txt output result in a text file\n"); fprintf(stderr, " -otxt, --output-txt output result in a text file\n");
@ -359,8 +367,9 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
} }
} }
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n", fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE, params.n_threads, __func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
params.language.c_str(), params.language.c_str(),
params.translate ? "translate" : "transcribe", params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1); params.no_timestamps ? 0 : 1);
@ -380,6 +389,7 @@ int main(int argc, char ** argv) {
wparams.translate = params.translate; wparams.translate = params.translate;
wparams.language = params.language.c_str(); wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads; wparams.n_threads = params.n_threads;
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms; wparams.offset_ms = params.offset_t_ms;
// this callback is called on each new segment // this callback is called on each new segment
@ -388,7 +398,7 @@ int main(int argc, char ** argv) {
wparams.new_segment_callback_user_data = &params; wparams.new_segment_callback_user_data = &params;
} }
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { if (whisper_full_parallel(ctx, wparams, pcmf32.data(), pcmf32.size(), params.n_processors) != 0) {
fprintf(stderr, "%s: failed to process audio\n", argv[0]); fprintf(stderr, "%s: failed to process audio\n", argv[0]);
return 8; return 8;
} }

2
ggml.h
View File

@ -11,7 +11,7 @@ extern "C" {
#define GGML_MAX_DIMS 4 #define GGML_MAX_DIMS 4
#define GGML_MAX_NODES 4096 #define GGML_MAX_NODES 4096
#define GGML_MAX_PARAMS 16 #define GGML_MAX_PARAMS 16
#define GGML_MAX_CONTEXTS 16 #define GGML_MAX_CONTEXTS 64
#define GGML_MAX_OPT 4 #define GGML_MAX_OPT 4
#ifdef __ARM_NEON #ifdef __ARM_NEON

View File

@ -379,6 +379,7 @@ struct whisper_model {
// context // context
struct ggml_context * ctx; struct ggml_context * ctx;
struct ggml_context * ctx_mem;
// tensors // tensors
int n_loaded; int n_loaded;
@ -393,9 +394,10 @@ struct whisper_context {
int64_t t_decode_us = 0; int64_t t_decode_us = 0;
int64_t t_start_us = 0; int64_t t_start_us = 0;
std::vector<uint8_t> buf_model; std::vector<uint8_t> * buf_model; // the model buffer is read-only and can be shared between processors
std::vector<uint8_t> buf_compute; std::vector<uint8_t> buf_memory;
std::vector<uint8_t> buf_compute_layer; std::vector<uint8_t> buf_compute;
std::vector<uint8_t> buf_compute_layer;
whisper_model model; whisper_model model;
whisper_vocab vocab; whisper_vocab vocab;
@ -421,7 +423,7 @@ struct whisper_context {
// //
// see the convert-pt-to-ggml.py script for details // see the convert-pt-to-ggml.py script for details
// //
bool whisper_model_load(const std::string & fname, const int n_processors, whisper_context & wctx) { bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str()); fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
auto & model = wctx.model; auto & model = wctx.model;
@ -494,13 +496,16 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16); fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
fprintf(stderr, "%s: type = %d\n", __func__, model.type); fprintf(stderr, "%s: type = %d\n", __func__, model.type);
wctx.buf_model.resize(MEM_REQ_MODEL.at(model.type)); wctx.buf_model = new std::vector<uint8_t>();
wctx.buf_model->resize(MEM_REQ_MODEL.at(model.type));
wctx.buf_memory.resize(std::max(MEM_REQ_MODEL.at(model.type), MEM_REQ_MODEL.at(model.type))); // TODO: TMP !!!
wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
// this is the total memory required to run the inference // this is the total memory required to run the inference
const size_t mem_required = const size_t mem_required =
wctx.buf_model.size() + wctx.buf_model->size() +
wctx.buf_memory.size() +
wctx.buf_compute.size() + wctx.buf_compute.size() +
wctx.buf_compute_layer.size(); wctx.buf_compute_layer.size();
@ -583,6 +588,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
size_t ctx_size = 0; size_t ctx_size = 0;
size_t ctx_mem_size = 0;
{ {
const auto & hparams = model.hparams; const auto & hparams = model.hparams;
@ -691,11 +697,11 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
} }
ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
ctx_size += n_processors*n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
ctx_size += n_processors*n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
@ -705,8 +711,8 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
// create the ggml context // create the ggml context
{ {
struct ggml_init_params params = { struct ggml_init_params params = {
.mem_size = wctx.buf_model.size(), .mem_size = wctx.buf_model->size(),
.mem_buffer = wctx.buf_model.data(), .mem_buffer = wctx.buf_model->data(),
}; };
model.ctx = ggml_init(params); model.ctx = ggml_init(params);
@ -716,6 +722,20 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
} }
} }
// create the ggml memory context
{
struct ggml_init_params params = {
.mem_size = wctx.buf_memory.size(),
.mem_buffer = wctx.buf_memory.data(),
};
model.ctx_mem = ggml_init(params);
if (!model.ctx_mem) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// prepare memory for the weights // prepare memory for the weights
{ {
auto & ctx = model.ctx; auto & ctx = model.ctx;
@ -914,7 +934,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
// key + value memory // key + value memory
{ {
auto & ctx = model.ctx; auto & ctx = model.ctx_mem;
const auto & hparams = model.hparams; const auto & hparams = model.hparams;
@ -925,7 +945,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
// key/value memory for the self-attention layer // key/value memory for the self-attention layer
{ {
const int n_mem = n_text_layer*n_text_ctx; const int n_mem = n_text_layer*n_text_ctx;
const int n_elements = n_text_state*n_mem*n_processors; const int n_elements = n_text_state*n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
@ -936,7 +956,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
const int n_audio_ctx = hparams.n_audio_ctx; const int n_audio_ctx = hparams.n_audio_ctx;
const int n_mem = n_text_layer*n_audio_ctx; const int n_mem = n_text_layer*n_audio_ctx;
const int n_elements = n_text_state*n_mem*n_processors; const int n_elements = n_text_state*n_mem;
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
@ -946,7 +966,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
fprintf(stderr, "%s: memory size = %8.2f MB (%d processors)\n", __func__, memory_size/1024.0/1024.0, n_processors); fprintf(stderr, "%s: memory size = %8.2f MB\n", __func__, memory_size/1024.0/1024.0);
} }
// load weights // load weights
@ -1037,8 +1057,7 @@ bool whisper_model_load(const std::string & fname, const int n_processors, whisp
bool whisper_encode( bool whisper_encode(
whisper_context & wctx, whisper_context & wctx,
const int n_threads, const int n_threads,
const int mel_offset, const int mel_offset) {
const int processor_id) {
const auto & model = wctx.model; const auto & model = wctx.model;
const auto & mel_inp = wctx.mel; const auto & mel_inp = wctx.mel;
const auto & hparams = model.hparams; const auto & hparams = model.hparams;
@ -1392,11 +1411,8 @@ bool whisper_encode(
Vcross), Vcross),
Vcross); Vcross);
const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(model.hparams.n_text_layer*n_ctx); struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(model.hparams.n_text_layer*n_ctx); struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, offset_k + (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, offset_v + (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
@ -1429,8 +1445,7 @@ bool whisper_decode(
const int n_threads, const int n_threads,
const whisper_token * tokens, const whisper_token * tokens,
const int n_tokens, const int n_tokens,
const int n_past, const int n_past) {
const int processor_id) {
const auto & model = wctx.model; const auto & model = wctx.model;
const auto & hparams = model.hparams; const auto & hparams = model.hparams;
@ -1525,13 +1540,10 @@ bool whisper_decode(
Vcur), Vcur),
Vcur); Vcur);
const size_t offset_k = processor_id*(ggml_element_size(model.memory_k)*n_state)*(n_layer*n_ctx);
const size_t offset_v = processor_id*(ggml_element_size(model.memory_v)*n_state)*(n_layer*n_ctx);
// store key and value to memory // store key and value to memory
{ {
struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, offset_k + (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, offset_v + (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v));
@ -1549,7 +1561,7 @@ bool whisper_decode(
struct ggml_tensor * K = struct ggml_tensor * K =
ggml_permute(ctxL, ggml_permute(ctxL,
ggml_reshape_3d(ctxL, ggml_reshape_3d(ctxL,
ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, offset_k + il*n_ctx*ggml_element_size(model.memory_k)*n_state), ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state),
n_state/n_head, n_head, n_past + N), n_state/n_head, n_head, n_past + N),
0, 2, 1, 3); 0, 2, 1, 3);
@ -1569,7 +1581,7 @@ bool whisper_decode(
struct ggml_tensor * V_trans = struct ggml_tensor * V_trans =
ggml_permute(ctxL, ggml_permute(ctxL,
ggml_reshape_3d(ctxL, ggml_reshape_3d(ctxL,
ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, offset_v + il*n_ctx*ggml_element_size(model.memory_v)*n_state), ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state),
n_state/n_head, n_head, n_past + N), n_state/n_head, n_head, n_past + N),
1, 2, 0, 3); 1, 2, 0, 3);
@ -1621,18 +1633,15 @@ bool whisper_decode(
Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
const size_t offset_k = processor_id*(ggml_element_size(model.memory_cross_k)*n_state)*(n_layer*M);
const size_t offset_v = processor_id*(ggml_element_size(model.memory_cross_v)*n_state)*(n_layer*M);
// Kcross is already scaled // Kcross is already scaled
struct ggml_tensor * Kcross = struct ggml_tensor * Kcross =
ggml_reshape_3d(ctxL, ggml_reshape_3d(ctxL,
ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, offset_k + il*M*ggml_element_size(model.memory_cross_k)*n_state), ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state),
n_state/n_head, n_head, M); n_state/n_head, n_head, M);
struct ggml_tensor * Vcross = struct ggml_tensor * Vcross =
ggml_reshape_3d(ctxL, ggml_reshape_3d(ctxL,
ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, offset_v + il*M*ggml_element_size(model.memory_cross_v)*n_state), ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state),
n_state/n_head, n_head, M); n_state/n_head, n_head, M);
// ------ // ------
@ -2118,26 +2127,7 @@ struct whisper_context * whisper_init(const char * path_model) {
ctx->t_start_us = t_start_us; ctx->t_start_us = t_start_us;
if (!whisper_model_load(path_model, 1, *ctx)) { if (!whisper_model_load(path_model, *ctx)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
return NULL;
}
ctx->t_load_us = ggml_time_us() - t_start_us;
return ctx;
}
struct whisper_context * whisper_init_parallel(const char * path_model, int n_processors) {
ggml_time_init();
whisper_context * ctx = new whisper_context;
const int64_t t_start_us = ggml_time_us();
ctx->t_start_us = t_start_us;
if (!whisper_model_load(path_model, n_processors, *ctx)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model); fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
return NULL; return NULL;
} }
@ -2149,6 +2139,9 @@ struct whisper_context * whisper_init_parallel(const char * path_model, int n_pr
void whisper_free(struct whisper_context * ctx) { void whisper_free(struct whisper_context * ctx) {
if (ctx) { if (ctx) {
if (ctx->buf_model) {
delete ctx->buf_model;
}
delete ctx; delete ctx;
} }
} }
@ -2188,7 +2181,7 @@ int whisper_set_mel(
int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) { int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
const int64_t t_start_us = ggml_time_us(); const int64_t t_start_us = ggml_time_us();
if (!whisper_encode(*ctx, n_threads, offset, 0)) { if (!whisper_encode(*ctx, n_threads, offset)) {
fprintf(stderr, "%s: failed to eval\n", __func__); fprintf(stderr, "%s: failed to eval\n", __func__);
return -1; return -1;
} }
@ -2201,7 +2194,7 @@ int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) {
int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) {
const int64_t t_start_us = ggml_time_us(); const int64_t t_start_us = ggml_time_us();
if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past, 0)) { if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) {
fprintf(stderr, "%s: failed to eval\n", __func__); fprintf(stderr, "%s: failed to eval\n", __func__);
return 1; return 1;
} }
@ -2322,7 +2315,6 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
/*.strategy =*/ WHISPER_SAMPLING_GREEDY, /*.strategy =*/ WHISPER_SAMPLING_GREEDY,
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
/*.n_processors =*/ 1,
/*.n_max_text_ctx =*/ 16384, /*.n_max_text_ctx =*/ 16384,
/*.offset_ms =*/ 0, /*.offset_ms =*/ 0,
@ -2355,7 +2347,6 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
/*.strategy =*/ WHISPER_SAMPLING_BEAM_SEARCH, /*.strategy =*/ WHISPER_SAMPLING_BEAM_SEARCH,
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
/*.n_processors =*/ 1,
/*.n_max_text_ctx =*/ 16384, /*.n_max_text_ctx =*/ 16384,
/*.offset_ms =*/ 0, /*.offset_ms =*/ 0,
@ -2629,6 +2620,135 @@ int whisper_full(
return 0; return 0;
} }
int whisper_full_parallel(
struct whisper_context * ctx,
struct whisper_full_params params,
const float * samples,
int n_samples,
const int n_processors) {
if (n_processors == 1) {
return whisper_full(ctx, params, samples, n_samples);
}
int ret = 0;
// prepare separate contexts for each thread
std::vector<struct whisper_context> ctxs(n_processors - 1);
for (int i = 0; i < n_processors - 1; ++i) {
ctxs[i] = *ctx;
auto & model = ctxs[i].model;
// create the ggml memory context
{
struct ggml_init_params params = {
.mem_size = ctxs[i].buf_memory.size(),
.mem_buffer = ctxs[i].buf_memory.data(),
};
model.ctx_mem = ggml_init(params);
if (!model.ctx_mem) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// separate key + value memory for each processor
{
auto & ctx = model.ctx_mem;
const auto & hparams = model.hparams;
const int n_text_state = hparams.n_text_state;
const int n_text_layer = hparams.n_text_layer;
const int n_text_ctx = hparams.n_text_ctx;
// key/value memory for the self-attention layer
{
const int n_mem = n_text_layer*n_text_ctx;
const int n_elements = n_text_state*n_mem;
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
}
// key/value memory for the cross-attention layer
{
const int n_audio_ctx = hparams.n_audio_ctx;
const int n_mem = n_text_layer*n_audio_ctx;
const int n_elements = n_text_state*n_mem;
model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
}
const size_t memory_size =
ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) +
ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v);
}
}
const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000;
const int n_samples_per_processor = (n_samples - offset_samples)/n_processors;
// the calling thread will process the first chunk
// while the other threads will process the remaining chunks
std::vector<std::thread> workers(n_processors - 1);
for (int i = 0; i < n_processors - 1; ++i) {
const int start_samples = offset_samples + (i + 1)*n_samples_per_processor;
const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor;
auto params_cur = params;
params_cur.offset_ms = 0;
params_cur.print_progress = false;
params_cur.print_realtime = false;
params_cur.new_segment_callback = nullptr;
params_cur.new_segment_callback_user_data = nullptr;
workers[i] = std::thread(whisper_full, &ctxs[i], std::move(params_cur), samples + start_samples, n_samples_cur);
}
{
auto params_cur = params;
ret = whisper_full(ctx, std::move(params_cur), samples, offset_samples + n_samples_per_processor);
}
for (int i = 0; i < n_processors - 1; ++i) {
workers[i].join();
}
const int64_t offset_t = (int64_t) params.offset_ms/10.0;
// combine results into ctx->result_all
for (int i = 0; i < n_processors - 1; ++i) {
auto & result_all = ctxs[i].result_all;
for (int j = 0; j < (int) result_all.size(); ++j) {
result_all[j].t0 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t;
result_all[j].t1 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t;
if (ctx->result_all.size() > 0) {
result_all[j].t0 = std::max(result_all[j].t0, ctx->result_all.back().t1);
}
ctx->result_all.push_back(std::move(result_all[j]));
// call the new_segment_callback for each segment
if (params.new_segment_callback) {
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
}
}
}
return ret;
}
int whisper_full_n_segments(struct whisper_context * ctx) { int whisper_full_n_segments(struct whisper_context * ctx) {
return ctx->result_all.size(); return ctx->result_all.size();
} }

View File

@ -80,8 +80,6 @@ extern "C" {
// Returns NULL on failure. // Returns NULL on failure.
WHISPER_API struct whisper_context * whisper_init(const char * path_model); WHISPER_API struct whisper_context * whisper_init(const char * path_model);
WHISPER_API struct whisper_context * whisper_init_parallel(const char * path_model, int n_processors);
// Frees all memory allocated by the model. // Frees all memory allocated by the model.
WHISPER_API void whisper_free(struct whisper_context * ctx); WHISPER_API void whisper_free(struct whisper_context * ctx);
@ -179,7 +177,6 @@ extern "C" {
enum whisper_sampling_strategy strategy; enum whisper_sampling_strategy strategy;
int n_threads; int n_threads;
int n_processors;
int n_max_text_ctx; int n_max_text_ctx;
int offset_ms; int offset_ms;
@ -216,6 +213,13 @@ extern "C" {
const float * samples, const float * samples,
int n_samples); int n_samples);
WHISPER_API int whisper_full_parallel(
struct whisper_context * ctx,
struct whisper_full_params params,
const float * samples,
int n_samples,
const int n_processors);
// Number of generated text segments. // Number of generated text segments.
// A segment can be a few words, a sentence, or even a paragraph. // A segment can be a few words, a sentence, or even a paragraph.
WHISPER_API int whisper_full_n_segments(struct whisper_context * ctx); WHISPER_API int whisper_full_n_segments(struct whisper_context * ctx);