diff --git a/extra/sync-ggml.sh b/extra/sync-ggml.sh index 2fa392ff..8629860d 100755 --- a/extra/sync-ggml.sh +++ b/extra/sync-ggml.sh @@ -1,8 +1,10 @@ #!/bin/bash cp -rpv ../ggml/src/ggml.c ./ggml.c -cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h +cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu +cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h +cp -rpv ../ggml/src/ggml-opencl.c ./ggml-opencl.c cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h cp -rpv ../ggml/examples/common.h ./examples/common.h cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 5a2701cf..e8a1e77c 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1,11 +1,38 @@ +#include +#include #include #include -#include #include -#include "ggml-cuda.h" -typedef uint16_t ggml_fp16_t; -static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size"); +#include +#include +#include + +#include "ggml-cuda.h" +#include "ggml.h" + +static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); + +#define CUDA_CHECK(err) \ + do { \ + cudaError_t err_ = (err); \ + if (err_ != cudaSuccess) { \ + fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ + cudaGetErrorString(err_)); \ + exit(1); \ + } \ + } while (0) + +#define CUBLAS_CHECK(err) \ + do { \ + cublasStatus_t err_ = (err); \ + if (err_ != CUBLAS_STATUS_SUCCESS) { \ + fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ + exit(1); \ + } \ + } while (0) + +typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); #define QK4_0 32 typedef struct { @@ -24,14 +51,14 @@ static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 b #define QK4_2 16 typedef struct { - __half d; // delta + half d; // delta uint8_t qs[QK4_2 / 2]; // nibbles / quants } block_q4_2; static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding"); #define QK5_0 32 typedef struct { - __half d; // delta + half d; // delta uint8_t qh[4]; // 5-th bit of quants uint8_t qs[QK5_0 / 2]; // nibbles / quants } block_q5_0; @@ -39,9 +66,9 @@ static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5 #define QK5_1 32 typedef struct { - __half d; // delta - __half m; // min - uint32_t qh; // 5-th bit of quants + half d; // delta + half m; // min + uint8_t qh[4]; // 5-th bit of quants uint8_t qs[QK5_1 / 2]; // nibbles / quants } block_q5_1; static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); @@ -162,7 +189,8 @@ static __global__ void dequantize_block_q5_1(const void * vx, float * y) { const uint8_t * pp = x[i].qs; - const uint32_t qh = x[i].qh; + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); for (int l = 0; l < QK5_1; l += 2) { const uint8_t vi = pp[l/2]; @@ -197,37 +225,50 @@ static __global__ void dequantize_block_q8_0(const void * vx, float * y) { } } -void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { +static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK4_0; dequantize_block_q4_0<<>>(vx, y); } -void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { +static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK4_1; dequantize_block_q4_1<<>>(vx, y); } -void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) { +static void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK4_2; dequantize_block_q4_2<<>>(vx, y); } -void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { +static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK5_0; dequantize_block_q5_0<<>>(vx, y); } -void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { +static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK5_1; dequantize_block_q5_1<<>>(vx, y); } -void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { +static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) { const int nb = k / QK8_0; dequantize_block_q8_0<<>>(vx, y); } -dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) { +// TODO: optimize +static __global__ void convert_fp16_to_fp32(const void * vx, float * y) { + const half * x = (const half *) vx; + + const int i = blockIdx.x; + + y[i] = __half2float(x[i]); +} + +static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) { + convert_fp16_to_fp32<<>>(x, y); +} + +static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: return dequantize_row_q4_0_cuda; @@ -241,6 +282,8 @@ dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) { return dequantize_row_q5_1_cuda; case GGML_TYPE_Q8_0: return dequantize_row_q8_0_cuda; + case GGML_TYPE_F16: + return convert_fp16_to_fp32_cuda; default: return nullptr; } @@ -271,7 +314,7 @@ struct cuda_buffer { static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS]; static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT; -void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { +static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { scoped_spin_lock lock(g_cuda_pool_lock); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { @@ -290,7 +333,7 @@ void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) { return ptr; } -void ggml_cuda_pool_free(void * ptr, size_t size) { +static void ggml_cuda_pool_free(void * ptr, size_t size) { scoped_spin_lock lock(g_cuda_pool_lock); for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) { @@ -305,28 +348,55 @@ void ggml_cuda_pool_free(void * ptr, size_t size) { CUDA_CHECK(cudaFree(ptr)); } -cublasHandle_t g_cublasH = nullptr; -cudaStream_t g_cudaStream = nullptr; -cudaStream_t g_cudaStream2 = nullptr; -cudaEvent_t g_cudaEvent = nullptr; +#define GGML_CUDA_MAX_STREAMS 8 +#define GGML_CUDA_MAX_EVENTS 64 +static cublasHandle_t g_cublasH = nullptr; +static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr }; +static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr }; +static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr }; void ggml_init_cublas() { if (g_cublasH == nullptr) { - // create cublas handle, bind a stream - CUBLAS_CHECK(cublasCreate(&g_cublasH)); - CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking)); - CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream)); + // create streams + for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) { + CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking)); + CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking)); + } + // create events + for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) { + CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming)); + } - // create additional stream and event for synchronization - CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking)); - CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming)); + // create cublas handle + CUBLAS_CHECK(cublasCreate(&g_cublasH)); + CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH)); // configure logging to stdout - // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL)); + // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); } } -cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { +void * ggml_cuda_host_malloc(size_t size) { + if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { + return nullptr; + } + + void * ptr = nullptr; + cudaError_t err = cudaMallocHost((void **) &ptr, size); + if (err != cudaSuccess) { + fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n", + size/1024.0/1024.0, cudaGetErrorString(err)); + return nullptr; + } + + return ptr; +} + +void ggml_cuda_host_free(void * ptr) { + CUDA_CHECK(cudaFreeHost(ptr)); +} + +static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) { const uint64_t ne0 = src->ne[0]; const uint64_t ne1 = src->ne[1]; const uint64_t nb0 = src->nb[0]; @@ -354,12 +424,293 @@ cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, } } -void * ggml_cuda_host_malloc(size_t size) { - void * ptr; - CUDA_CHECK(cudaMallocHost((void **) &ptr, size)); - return ptr; +static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const float alpha = 1.0f; + const float beta = 0.0f; + const int x_ne = ne01 * ne00; + const int y_ne = ne11 * ne10; + const int d_ne = ne11 * ne01; + const int n_mm = ne03 * ne02; + + size_t x_size, y_size, d_size; + float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); + float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); + float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + int i = i03*ne02 + i02; + cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; + + float * c_X = d_X + i * x_ne; + float * c_Y = d_Y + i * y_ne; + float * c_D = d_D + i * d_ne; + + // copy data to device + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); + + // compute + CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); + CUBLAS_CHECK( + cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + &alpha, c_X, ne00, + c_Y, ne10, + &beta, c_D, ne01)); + + // copy dst to host + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); + } + } + + CUDA_CHECK(cudaDeviceSynchronize()); + ggml_cuda_pool_free(d_X, x_size); + ggml_cuda_pool_free(d_Y, y_size); + ggml_cuda_pool_free(d_D, d_size); } -void ggml_cuda_host_free(void * ptr) { - CUDA_CHECK(cudaFreeHost(ptr)); +static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) { + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + const int nb13 = src1->nb[3]; + + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const float alpha = 1.0f; + const float beta = 0.0f; + const int x_ne = ne01 * ne00; + const int y_ne = ne11 * ne10; + const int d_ne = ne11 * ne01; + const int n_mm = ne03 * ne02; + + size_t x_size, y_size, d_size; + half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size); + half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size); + float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); + + bool src1_cont_rows = nb10 == sizeof(float); + bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + int i = i03*ne02 + i02; + cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; + + half * c_X = d_X + i * x_ne; + half * c_Y = d_Y + i * y_ne; + float * c_D = d_D + i * d_ne; + + // copy src0 to device + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream)); + + // convert src1 to fp16 + // TODO: use multiple threads + ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); + char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; + if (src1_cont_rows) { + if (src1_cont_cols) { + ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); + } + else { + for (int64_t i01 = 0; i01 < ne11; i01++) { + ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); + } + } + } + else { + for (int64_t i01 = 0; i01 < ne11; i01++) { + for (int64_t i00 = 0; i00 < ne10; i00++) { + // very slow due to no inlining + tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); + } + } + } + + // copy src1 to device + CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream)); + + // compute + CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); + CUBLAS_CHECK( + cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + &alpha, c_X, CUDA_R_16F, ne00, + c_Y, CUDA_R_16F, ne10, + &beta, c_D, CUDA_R_32F, ne01, + CUBLAS_COMPUTE_32F_FAST_16F, + CUBLAS_GEMM_DEFAULT)); + + // copy dst to host + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); + } + } + + CUDA_CHECK(cudaDeviceSynchronize()); + ggml_cuda_pool_free(d_X, x_size); + ggml_cuda_pool_free(d_Y, y_size); + ggml_cuda_pool_free(d_D, d_size); +} + +static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + const ggml_type type = src0->type; + + const float alpha = 1.0f; + const float beta = 0.0f; + const int x_ne = ne01 * ne00; + const int y_ne = ne11 * ne10; + const int d_ne = ne11 * ne01; + const int n_mm = ne03 * ne02; + const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type); + + size_t x_size, y_size, d_size, q_size; + float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size); + float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size); + float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size); + char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size); + + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type); + GGML_ASSERT(to_fp32_cuda != nullptr); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + int i = i03*ne02 + i02; + cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS]; + cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS]; + cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS]; + + float * c_X = d_X + i * x_ne; + float * c_Y = d_Y + i * y_ne; + float * c_D = d_D + i * d_ne; + char * c_Q = d_Q + i * q_sz; + + // copy src0 and convert to fp32 on device + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2)); + to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2); + CUDA_CHECK(cudaGetLastError()); + CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2)); + + // copy src1 to device + CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream)); + + // wait for conversion + CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); + + // compute + CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream)); + CUBLAS_CHECK( + cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + &alpha, c_X, ne00, + c_Y, ne10, + &beta, c_D, ne01)); + + // copy dst to host + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream)); + } + } + + CUDA_CHECK(cudaDeviceSynchronize()); + ggml_cuda_pool_free(d_X, x_size); + ggml_cuda_pool_free(d_Y, y_size); + ggml_cuda_pool_free(d_D, d_size); + ggml_cuda_pool_free(d_Q, q_size); +} + +bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const int64_t ne10 = src1->ne[0]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + + // TODO: find the optimal values for these + if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && + src1->type == GGML_TYPE_F32 && + dst->type == GGML_TYPE_F32 && + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { + + return true; + } + + return false; +} + +bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { + size_t src0_sz = ggml_nbytes(src0); + size_t src1_sz = ggml_nbytes(src1); + + // mul_mat_q: src0 is converted to fp32 on device + size_t mul_mat_q_transfer = src0_sz + src1_sz; + + // mul_mat_f16: src1 is converted to fp16 on cpu + size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1); + + // choose the smaller one to transfer to the device + // TODO: this is not always the best choice due to the overhead of converting to fp16 + return mul_mat_f16_transfer < mul_mat_q_transfer; +} + +void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) { + GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst)); + + if (src0->type == GGML_TYPE_F32) { + ggml_cuda_mul_mat_f32(src0, src1, dst); + } + else if (src0->type == GGML_TYPE_F16) { + if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) { + ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize); + } + else { + ggml_cuda_mul_mat_q_f32(src0, src1, dst); + } + } + else if (ggml_is_quantized(src0->type)) { + ggml_cuda_mul_mat_q_f32(src0, src1, dst); + } + else { + GGML_ASSERT(false); + } +} + +size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) { + return ggml_nelements(src1) * sizeof(ggml_fp16_t); + } + else { + return 0; + } } diff --git a/ggml-cuda.h b/ggml-cuda.h index 36782d9e..f7d6a8bc 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -1,54 +1,19 @@ -#include -#include #include "ggml.h" #ifdef __cplusplus extern "C" { #endif -#define CUDA_CHECK(err) \ - do { \ - cudaError_t err_ = (err); \ - if (err_ != cudaSuccess) { \ - fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \ - cudaGetErrorString(err_)); \ - exit(1); \ - } \ - } while (0) - -#define CUBLAS_CHECK(err) \ - do { \ - cublasStatus_t err_ = (err); \ - if (err_ != CUBLAS_STATUS_SUCCESS) { \ - fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \ - exit(1); \ - } \ - } while (0) - -extern cublasHandle_t g_cublasH; -extern cudaStream_t g_cudaStream; -extern cudaStream_t g_cudaStream2; -extern cudaEvent_t g_cudaEvent; - void ggml_init_cublas(void); + +bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); +size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); +void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); + +// TODO: export these with GGML_API void * ggml_cuda_host_malloc(size_t size); void ggml_cuda_host_free(void * ptr); -void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size); -void ggml_cuda_pool_free(void * ptr, size_t size); - -void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream); -void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream); -void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream); -void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream); -void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream); -void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream); - -cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream); - -typedef void (*dequantize_row_q_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); -dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(enum ggml_type type); - #ifdef __cplusplus } #endif diff --git a/ggml-opencl.c b/ggml-opencl.c new file mode 100644 index 00000000..4389eca3 --- /dev/null +++ b/ggml-opencl.c @@ -0,0 +1,398 @@ +#include "ggml-opencl.h" + +#define CL_TARGET_OPENCL_VERSION 110 +#include + +#include +#include +#include + +#include "ggml.h" + +#define MULTILINE_QUOTE(...) #__VA_ARGS__ +const char * clblast_dequant = MULTILINE_QUOTE( + +struct block_q4_0 +{ + float d; + uchar qs[16]; +}; + +__kernel void dequantize_row_q4_0(__global struct block_q4_0* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + const float d = blocks[i].d; + + const uchar vi = blocks[i].qs[l]; + + const uint index = i*32 + l*2; + result[index + 0] = ((vi & 0xf) - 8)*d; + result[index + 1] = ((vi >> 4) - 8)*d; +} + +struct block_q4_1 +{ + float d; + float m; + uchar qs[16]; +}; + +__kernel void dequantize_row_q4_1(__global struct block_q4_1* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + const float d = blocks[i].d; + const float m = blocks[i].m; + + const uchar vi = blocks[i].qs[l]; + + const uint index = i*32 + l*2; + result[index + 0] = (vi & 0xf) * d + m; + result[index + 1] = (vi >> 4) * d + m; +} + +struct block_q4_2 +{ + ushort d; + uchar qs[8]; +}; + +__kernel void dequantize_row_q4_2(__global struct block_q4_2* blocks, __global float* result) { + const uint i = get_global_id(0) / 16; + const uint l = get_local_id(0); + + const float d = vload_half(0, (__global half*) &blocks[i].d); + + const uchar vi = blocks[i].qs[l]; + + const uint index = i*16 + l*2; + result[index + 0] = ((vi & 0xf) - 8)*d; + result[index + 1] = ((vi >> 4) - 8)*d; +} + + +struct block_q5_0 +{ + float d; + uint qh; + uchar qs[16]; +}; + +__kernel void dequantize_row_q5_0(__global struct block_q5_0* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + const float d = blocks[i].d; + + const uchar vi = blocks[i].qs[l]; + + const uint l2 = l * 2; + + const uchar vh0 = ((blocks[i].qh & (1 << (l2 + 0))) >> (l2 + 0)) << 4; + const uchar vh1 = ((blocks[i].qh & (1 << (l2 + 1))) >> (l2 + 1)) << 4; + + const uint index = i*32 + l2; + result[index + 0] = (((vi & 0xf) | vh0) - 16)*d; + result[index + 1] = (((vi >> 4) | vh1) - 16)*d; +} + +struct block_q5_1 +{ + ushort d; + ushort m; + uint qh; + uchar qs[16]; +}; + +__kernel void dequantize_row_q5_1(__global struct block_q5_1* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + const float d = vload_half(0, (__global half*) &blocks[i].d); + const float m = vload_half(0, (__global half*) &blocks[i].m); + + const uchar vi = blocks[i].qs[l]; + + const uint l2 = l * 2; + + const uchar vh0 = ((blocks[i].qh & (1 << (l2 + 0))) >> (l2 + 0)) << 4; + const uchar vh1 = ((blocks[i].qh & (1 << (l2 + 1))) >> (l2 + 1)) << 4; + + const uint index = i*32 + l2; + result[index + 0] = ((vi & 0xf) | vh0)*d + m; + result[index + 1] = ((vi >> 4) | vh1)*d + m; +} + +struct block_q8_0 +{ + float d; + char qs[32]; +}; + +__kernel void dequantize_row_q8_0(__global struct block_q8_0* blocks, __global float* result) { + const uint i = get_global_id(0) / 32; + const uint l = get_local_id(0); + + result[i*32 + l] = blocks[i].qs[l] * blocks[i].d; +} + +); + +#define CL_CHECK(err, name) \ + do { \ + cl_int err_ = (err); \ + if (err_ != CL_SUCCESS) { \ + fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \ + exit(1); \ + } \ + } while (0) + +#define QK5_0 32 +typedef struct { + ggml_fp16_t d; // delta + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} block_q5_0; + + +typedef struct { + float d; // delta + uint32_t qh; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} cl_block_q5_0; + +static cl_platform_id platform; +static cl_device_id device; +static cl_context context; +static cl_command_queue queue; +static cl_program program; +static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q4_2, kernel_q5_0, kernel_q5_1, kernel_q8_0; +static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c; +static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0; + +static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { + cl_program p; + char *program_log; + size_t program_size, log_size; + int err; + + program_size = strlen(program_buffer); + + p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); + if(err < 0) { + fprintf(stderr, "OpenCL error creating program"); + exit(1); + } + + err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL); + if(err < 0) { + + clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); + program_log = (char*) malloc(log_size + 1); + program_log[log_size] = '\0'; + clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); + printf("%s\n", program_log); + free(program_log); + exit(1); + } + + return p; +} + +void ggml_cl_init(void) { + cl_int err = 0; + char * GGML_CLBLAST_PLATFORM = getenv("GGML_CLBLAST_PLATFORM"); + char * GGML_CLBLAST_DEVICE = getenv("GGML_CLBLAST_DEVICE"); + int plat_num = (GGML_CLBLAST_PLATFORM == NULL ? 0 : atoi(GGML_CLBLAST_PLATFORM)); + int dev_num = (GGML_CLBLAST_DEVICE == NULL ? 0 : atoi(GGML_CLBLAST_DEVICE)); + printf("\nInitializing CLBlast (First Run)..."); + printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num); + cl_uint num_platforms; + clGetPlatformIDs(0, NULL, &num_platforms); + cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id)); + clGetPlatformIDs(num_platforms, platforms, NULL); + platform = platforms[plat_num]; + char platform_buffer[1024]; + clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL); + cl_uint num_devices; + clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices); + cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id)); + clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL); + device = devices[dev_num]; + char device_buffer[1024]; + clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL); + printf("Using Platform: %s Device: %s\n", platform_buffer, device_buffer); + context = clCreateContext(NULL, 1, &device, NULL, NULL, &err); + CL_CHECK(err, "clCreateContext"); + queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err); + CL_CHECK(err, "clCreateCommandQueue"); + + free(platforms); + free(devices); + + program = build_program_from_source(context, device, clblast_dequant); + + // Prepare dequantize kernels + kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q4_2 = clCreateKernel(program, "dequantize_row_q4_2", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q5_0 = clCreateKernel(program, "dequantize_row_q5_0", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q5_1 = clCreateKernel(program, "dequantize_row_q5_1", &err); + CL_CHECK(err, "clCreateKernel"); + kernel_q8_0 = clCreateKernel(program, "dequantize_row_q8_0", &err); + CL_CHECK(err, "clCreateKernel"); +} + +static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) { + if (req_size <= *cur_size) { + return; + } + + // Reallocate buffer with enough space + if (*cur_size > 0) { + clReleaseMemObject(*buf); + } + cl_int err; + *buf = clCreateBuffer(context, flags, req_size, NULL, &err); + *cur_size = req_size; + CL_CHECK(err, "clCreateBuffer"); +} + +void ggml_cl_sgemm_wrapper( + const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b, + const int m, const int n, const int k, + const float alpha, const void *host_a, const int lda, + const float *host_b, const int ldb, const float beta, + float *host_c, const int ldc, const int btype) { + cl_int err = 0; + + cl_kernel kernel; + size_t global = n * k, local, size_qb; + bool dequant; + cl_block_q5_0* cl_host_b; + + switch (btype) { + case GGML_TYPE_F32: + dequant = false; + break; + case GGML_TYPE_Q4_0: + dequant = true; + kernel = kernel_q4_0; + local = 16; + size_qb = global * (sizeof(float) + local) / 32; + break; + case GGML_TYPE_Q4_1: + dequant = true; + kernel = kernel_q4_1; + local = 16; + size_qb = global * (sizeof(float) * 2 + local) / 32; + break; + case GGML_TYPE_Q4_2: + dequant = true; + kernel = kernel_q4_2; + local = 8; + size_qb = global * (sizeof(ggml_fp16_t) + local) / 16; + break; + case GGML_TYPE_Q5_0: + dequant = true; + kernel = kernel_q5_0; + local = 16; + // For some reason OpenCL seems to be incapable of working with structs of size 22. + // 20 and 24 bytes are fine. Workaround to do the fp16 to fp32 step on CPU... + // TODO Find the reason, fix and remove workaround. + const block_q5_0* b = (const block_q5_0*) host_b; + cl_host_b = (cl_block_q5_0*) malloc(sizeof(cl_block_q5_0) * global / 32); + for (size_t i = 0; i < global / 32; i++) { + cl_host_b[i].d = ggml_fp16_to_fp32(b[i].d); + memcpy(&cl_host_b[i].qh, b[i].qh, sizeof(uint32_t)); + memcpy(&cl_host_b[i].qs, b[i].qs, QK5_0 / 2); + } + host_b = (const float*) cl_host_b; + size_qb = global * (sizeof(float) + sizeof(uint32_t) + local) / 32; + break; + case GGML_TYPE_Q5_1: + dequant = true; + kernel = kernel_q5_1; + local = 16; + size_qb = global * (sizeof(ggml_fp16_t) * 2 + sizeof(uint32_t) + local) / 32; + break; + case GGML_TYPE_Q8_0: + dequant = true; + kernel = kernel_q8_0; + local = 32; + size_qb = global * (sizeof(float) + local) / 32; + break; + default: + fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype); + abort(); + } + + const size_t size_a = m * k * sizeof(float); + const size_t size_b = n * k * sizeof(float); + const size_t size_c = m * n * sizeof(float); + + // Prepare buffers + ggml_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a); + if (dequant) { + ggml_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb); + } + ggml_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b); + ggml_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c); + + cl_event ev_a, ev_qb, ev_b; + + if (dequant) { + err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb); + err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b); + CL_CHECK(err, "clSetKernelArg"); + err = clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb); + CL_CHECK(err, "clEnqueueWriteBuffer qb"); + } else { + err = clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b); + CL_CHECK(err, "clEnqueueWriteBuffer b"); + } + + err = clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a); + CL_CHECK(err, "clEnqueueWriteBuffer a"); + if (dequant) { + err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b); + CL_CHECK(err, "clEnqueueNDRangeKernel"); + clReleaseEvent(ev_qb); + } + clWaitForEvents(1, &ev_a); + clWaitForEvents(1, &ev_b); + clReleaseEvent(ev_a); + clReleaseEvent(ev_b); + + cl_event ev_sgemm; + CLBlastStatusCode status = CLBlastSgemm((CLBlastLayout)order, + (CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b, + m, n, k, + alpha, + cl_buffer_a, 0, lda, + cl_buffer_b, 0, ldb, + beta, + cl_buffer_c, 0, ldc, + &queue, &ev_sgemm); + + if (status != CLBlastSuccess) { + fprintf(stderr, "Error: CLBlast SGEMM %d\n", status); + abort(); + } + + cl_event ev_c; + clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c); + + // Wait for completion + clWaitForEvents(1, &ev_c); + clReleaseEvent(ev_sgemm); + clReleaseEvent(ev_c); + if (btype == GGML_TYPE_Q5_0) { + free((void*) cl_host_b); + } +} diff --git a/ggml-opencl.h b/ggml-opencl.h new file mode 100644 index 00000000..7bcc603e --- /dev/null +++ b/ggml-opencl.h @@ -0,0 +1,24 @@ +#pragma once + +#ifdef __cplusplus +extern "C" { +#endif + +void ggml_cl_init(void); + +enum ggml_blas_order { + GGML_BLAS_ORDER_ROW_MAJOR = 101, + GGML_BLAS_ORDER_COLUMN_MAJOR = 102, +}; + +enum ggml_blas_op { + GGML_BLAS_OP_N = 111, + GGML_BLAS_OP_T = 112, + GGML_BLAS_OP_C = 113, +}; + +void ggml_cl_sgemm_wrapper(const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype); + +#ifdef __cplusplus +} +#endif diff --git a/ggml.c b/ggml.c index 8cc48344..91b3053d 100644 --- a/ggml.c +++ b/ggml.c @@ -135,14 +135,6 @@ inline static void* ggml_aligned_malloc(size_t size) { #define UNUSED(x) (void)(x) #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) -#define GGML_ASSERT(x) \ - do { \ - if (!(x)) { \ - fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ - abort(); \ - } \ - } while (0) - #if defined(GGML_USE_ACCELERATE) #include #elif defined(GGML_USE_OPENBLAS) @@ -370,6 +362,32 @@ ggml_fp16_t ggml_fp32_to_fp16(float x) { return GGML_FP32_TO_FP16(x); } +void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) { + for (size_t i = 0; i < n; i++) { + y[i] = GGML_FP16_TO_FP32(x[i]); + } +} + +void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) { + size_t i = 0; +#if defined(__F16C__) + for (; i + 7 < n; i += 8) { + __m256 x_vec = _mm256_loadu_ps(x + i); + __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); + _mm_storeu_si128((__m128i *)(y + i), y_vec); + } + for(; i + 3 < n; i += 4) { + __m128 x_vec = _mm_loadu_ps(x + i); + __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); + _mm_storel_epi64((__m128i *)(y + i), y_vec); + } +#endif + for (; i < n; i++) { + y[i] = GGML_FP32_TO_FP16(x[i]); + } +} + + // // timing // @@ -808,6 +826,7 @@ static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int float max = 0.0f; float min = 0.0f; + vector float asrcv [8]; vector float srcv [8]; vector float maxv[8]; vector float minv[8]; @@ -4325,12 +4344,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); } - // initialize cuBLAS - #if defined(GGML_USE_CUBLAS) +#if defined(GGML_USE_CUBLAS) ggml_init_cublas(); - #elif defined(GGML_USE_CLBLAST) +#elif defined(GGML_USE_CLBLAST) ggml_cl_init(); - #endif +#endif is_first_call = false; } @@ -4411,7 +4429,7 @@ void ggml_free(struct ggml_context * ctx) { } size_t ggml_used_mem(const struct ggml_context * ctx) { - return ctx->objects_end->offs + ctx->objects_end->size; + return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size; } size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) { @@ -4524,6 +4542,7 @@ struct ggml_tensor * ggml_new_tensor_impl( /*.perf_cycles =*/ 0, /*.perf_time_us =*/ 0, /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data, + /*.name =*/ { 0 }, /*.pad =*/ { 0 }, }; @@ -4878,6 +4897,15 @@ float * ggml_get_data_f32(const struct ggml_tensor * tensor) { return (float *)(tensor->data); } +const char * ggml_get_name(const struct ggml_tensor * tensor) { + return tensor->name; +} + +void ggml_set_name(struct ggml_tensor * tensor, const char * name) { + strncpy(tensor->name, name, sizeof(tensor->name)); + tensor->name[sizeof(tensor->name) - 1] = '\0'; +} + struct ggml_tensor * ggml_view_tensor( struct ggml_context * ctx, const struct ggml_tensor * src) { @@ -5977,6 +6005,7 @@ struct ggml_tensor * ggml_diag_mask_inf( //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); struct ggml_tensor * result = ggml_view_tensor(ctx, a); struct ggml_tensor * b = ggml_new_i32(ctx, n_past); + ggml_set_name(b, "n_past"); result->op = GGML_OP_DIAG_MASK_INF; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6034,6 +6063,7 @@ struct ggml_tensor * ggml_rope( ((int32_t *) b->data)[0] = n_past; ((int32_t *) b->data)[1] = n_dims; ((int32_t *) b->data)[2] = mode; + ggml_set_name(b, "n_past, n_dims, mode"); result->op = GGML_OP_ROPE; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -8101,7 +8131,7 @@ static void ggml_compute_forward_rms_norm( // ggml_compute_forward_mul_mat -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) // helper function to determine if it is better to use BLAS or not // for large matrices, BLAS is faster static bool ggml_compute_forward_mul_mat_use_blas( @@ -8117,12 +8147,9 @@ static bool ggml_compute_forward_mul_mat_use_blas( const int64_t ne1 = dst->ne[1]; // TODO: find the optimal values for these - if ( -#if !defined(GGML_USE_CUBLAS) - ggml_is_contiguous(src0) && + if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && -#endif - ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) { + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ return true; @@ -8130,7 +8157,6 @@ static bool ggml_compute_forward_mul_mat_use_blas( return false; } - #endif static void ggml_compute_forward_mul_mat_f32( @@ -8146,7 +8172,7 @@ static void ggml_compute_forward_mul_mat_f32( const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) const int64_t ne10 = src1->ne[0]; #endif const int64_t ne11 = src1->ne[1]; @@ -8203,7 +8229,16 @@ static void ggml_compute_forward_mul_mat_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (params->ith != 0) { return; @@ -8217,43 +8252,13 @@ static void ggml_compute_forward_mul_mat_f32( return; } -#if defined(GGML_USE_CUBLAS) - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne00; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - - size_t x_size, y_size, d_size; - float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size); - float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size); - float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size); -#endif - for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { -#if !defined(GGML_USE_CUBLAS) const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03); const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); -#endif float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); -#if defined(GGML_USE_CUBLAS) - // copy data to device - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream)); - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream)); - - // compute - CUBLAS_CHECK( - cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha, d_X, ne00, - d_Y, ne10, - &beta, d_D, ne01)); - - // copy data to host - CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream)); -#elif defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CLBLAST) // zT = y * xT ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, ne11, ne01, ne10, @@ -8270,12 +8275,6 @@ static void ggml_compute_forward_mul_mat_f32( #endif } } -#if defined(GGML_USE_CUBLAS) - CUDA_CHECK(cudaStreamSynchronize(g_cudaStream)); - ggml_cuda_pool_free(d_X, x_size); - ggml_cuda_pool_free(d_Y, y_size); - ggml_cuda_pool_free(d_D, d_size); -#endif //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); return; @@ -8405,7 +8404,16 @@ static void ggml_compute_forward_mul_mat_f16_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { GGML_ASSERT(nb10 == sizeof(float)); @@ -8421,37 +8429,8 @@ static void ggml_compute_forward_mul_mat_f16_f32( return; } -#if defined(GGML_USE_CUBLAS) - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne00; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - - size_t x_size, y_size, d_size; - ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size); - ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size); - float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size); -#endif for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { -#if defined(GGML_USE_CUBLAS) - // copy src0 while converting src1 - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream)); - - // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16 - ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02); - { - size_t id = 0; - for (int64_t i01 = 0; i01 < ne11; ++i01) { - for (int64_t i00 = 0; i00 < ne10; ++i00) { - wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10)); - } - } - - assert(id*sizeof(ggml_fp16_t) <= params->wsize); - } -#else float * const wdata = params->wdata; { size_t id = 0; @@ -8463,28 +8442,8 @@ static void ggml_compute_forward_mul_mat_f16_f32( assert(id*sizeof(float) <= params->wsize); } -#endif -#if defined(GGML_USE_CUBLAS) - const ggml_fp16_t * y = (ggml_fp16_t *) wdata; - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - - // copy data to device - CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream)); - - // compute - CUBLAS_CHECK( - cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha, d_X, CUDA_R_16F, ne00, - d_Y, CUDA_R_16F, ne10, - &beta, d_D, CUDA_R_32F, ne01, - CUBLAS_COMPUTE_32F, - CUBLAS_GEMM_DEFAULT)); - - // copy data to host - CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream)); -#elif defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CLBLAST) const float * x = wdata; const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); @@ -8513,12 +8472,6 @@ static void ggml_compute_forward_mul_mat_f16_f32( } } -#if defined(GGML_USE_CUBLAS) - CUDA_CHECK(cudaStreamSynchronize(g_cudaStream)); - ggml_cuda_pool_free(d_X, x_size); - ggml_cuda_pool_free(d_Y, y_size); - ggml_cuda_pool_free(d_D, d_size); -#endif /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/ return; @@ -8671,7 +8624,16 @@ static void ggml_compute_forward_mul_mat_q_f32( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (params->ith != 0) { return; @@ -8685,25 +8647,8 @@ static void ggml_compute_forward_mul_mat_q_f32( return; } -#if defined(GGML_USE_CUBLAS) - const float alpha = 1.0f; - const float beta = 0.0f; - const int x_ne = ne01 * ne00; - const int y_ne = ne11 * ne10; - const int d_ne = ne11 * ne01; - - size_t x_size, y_size, d_size, q_size; - float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size); - float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size); - float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size); - void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size); - - const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type); - GGML_ASSERT(dequantize_row_q_cuda != NULL); -#else float * const wdata = params->wdata; dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; -#endif for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { @@ -8711,14 +8656,7 @@ static void ggml_compute_forward_mul_mat_q_f32( float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); -#if defined(GGML_USE_CUBLAS) - // copy and dequantize on device - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2)); - - dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2); - CUDA_CHECK(cudaGetLastError()); - CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2)); -#elif defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CLBLAST) const void* x = (char *) src0->data + i03*nb03 + i02*nb02; #else { @@ -8734,24 +8672,7 @@ static void ggml_compute_forward_mul_mat_q_f32( const float * x = wdata; #endif -#if defined(GGML_USE_CUBLAS) - // copy data to device - CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream)); - - // wait for dequantization - CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0)); - - // compute - CUBLAS_CHECK( - cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N, - ne01, ne11, ne10, - &alpha, d_X, ne00, - d_Y, ne10, - &beta, d_D, ne01)); - - // copy data to host - CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream)); -#elif defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_CLBLAST) // zT = y * xT ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, ne11, ne01, ne10, @@ -8769,13 +8690,6 @@ static void ggml_compute_forward_mul_mat_q_f32( } } -#if defined(GGML_USE_CUBLAS) - CUDA_CHECK(cudaStreamSynchronize(g_cudaStream)); - ggml_cuda_pool_free(d_X, x_size); - ggml_cuda_pool_free(d_Y, y_size); - ggml_cuda_pool_free(d_D, d_size); - ggml_cuda_pool_free(d_Q, q_size); -#endif //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); return; @@ -11759,18 +11673,21 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) size_t cur = 0; +#if defined(GGML_USE_CUBLAS) + if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) { + node->n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node); + } + else +#endif if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; // TODO: this actually is doing nothing // the threads are still spinning -#if defined(GGML_USE_CUBLAS) - // with cuBLAS, we need memory for the full 3D / 4D data of src1 - cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); -#else // here we need memory just for single 2D matrix from src0 cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); -#endif } else { cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1); } @@ -11779,13 +11696,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) #endif } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) { cur = 0; -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; } #endif } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); @@ -12214,10 +12131,16 @@ void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph snprintf(color, sizeof(color), "white"); } - fprintf(fp, " \"%p\" [ \ -style = filled; fillcolor = %s; shape = record; \ -label=\"%d [%" PRId64 ", %" PRId64 "] | %s", - (void *) node, color, + fprintf(fp, " \"%p\" [ " + "style = filled; fillcolor = %s; shape = record; " + "label=\"", + (void *) node, color); + + if (strlen(node->name) > 0) { + fprintf(fp, "%s |", node->name); + } + + fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | %s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]); @@ -12233,18 +12156,26 @@ label=\"%d [%" PRId64 ", %" PRId64 "] | %s", snprintf(color, sizeof(color), "pink"); - if (ggml_nelements(node) == 1) { - fprintf(fp, " \"%p\" [ \ -style = filled; fillcolor = %s; shape = record; \ -label=\"%.1e\"; ]\n", - (void *) node, color, (double)ggml_get_f32_1d(node, 0)); - } else { - fprintf(fp, " \"%p\" [ \ -style = filled; fillcolor = %s; shape = record; \ -label=\"CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n", - (void *) node, color, - i, node->ne[0], node->ne[1]); + fprintf(fp, " \"%p\" [ " + "style = filled; fillcolor = %s; shape = record; " + "label=\"", + (void *) node, color); + + if (strlen(node->name) > 0) { + fprintf(fp, "%s | ", node->name); } + if (ggml_nelements(node) == 1) { + if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) { + fprintf(fp, "%d", ggml_get_i32_1d(node, 0)); + } + else { + fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0)); + } + } + else { + fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]); + } + fprintf(fp, "\"; ]\n"); } for (int i = 0; i < gb->n_nodes; i++) { diff --git a/ggml.h b/ggml.h index cbaea3ed..508dd69b 100644 --- a/ggml.h +++ b/ggml.h @@ -197,6 +197,14 @@ #define GGML_MAX_OPT 4 #define GGML_DEFAULT_N_THREADS 4 +#define GGML_ASSERT(x) \ + do { \ + if (!(x)) { \ + fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ + abort(); \ + } \ + } while (0) + #ifdef __cplusplus extern "C" { #endif @@ -212,6 +220,9 @@ extern "C" { GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x); GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x); + GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n); + GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n); + struct ggml_object; struct ggml_context; @@ -339,7 +350,10 @@ extern "C" { int64_t perf_time_us; void * data; - char padding[8]; + + char name[32]; + + char padding[8]; // TODO: remove and add padding to name? }; // computation graph @@ -399,6 +413,7 @@ extern "C" { GGML_API bool ggml_is_quantized(enum ggml_type type); + // TODO: temporary until model loading of ggml examples is refactored GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype); // main @@ -461,6 +476,9 @@ extern "C" { GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); + GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor); + GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name); + // // operations on tensors with backpropagation //