CUDA: fix crash on large batch size for quant. MoE (llama/13537)

This commit is contained in:
Johannes Gäßler 2025-05-14 16:41:02 +02:00 committed by Georgi Gerganov
parent ffa4720f25
commit 0dda27bc0b
2 changed files with 9 additions and 6 deletions

View File

@ -122,6 +122,7 @@ void ggml_cuda_mul_mat_q(
const int64_t s13 = src1->nb[3] / ts_src1;
quantize_mmq_q8_1_cuda(src1_d, nullptr, src1_q8_1.get(), src0->type,
ne10, s11, s12, s13, ne10_padded, ne11, ne12, ne13, stream);
CUDA_CHECK(cudaGetLastError());
}
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));
@ -205,6 +206,7 @@ void ggml_cuda_mul_mat_q(
const int64_t s13 = src1->nb[2] / ts_src1;
quantize_mmq_q8_1_cuda(src1_d, ids_src1_dev, src1_q8_1.get(), src0->type,
ne10, s11, s12, s13, ne10_padded, ne11_flat, ne12_flat, ne13_flat, stream);
CUDA_CHECK(cudaGetLastError());
}
const int64_t s12 = ne11*ne10_padded * sizeof(block_q8_1)/(QK8_1*sizeof(int));

View File

@ -56,13 +56,13 @@ static __global__ void quantize_mmq_q8_1(
constexpr int vals_per_scale = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 64 : 32;
constexpr int vals_per_sum = ds_layout == MMQ_Q8_1_DS_LAYOUT_D2S6 ? 16 : 32;
const int64_t i0 = ((int64_t)blockDim.x*blockIdx.x + threadIdx.x)*4;
const int64_t i0 = ((int64_t)blockDim.x*blockIdx.y + threadIdx.x)*4;
if (i0 >= ne0) {
return;
}
const int64_t i1 = blockIdx.y;
const int64_t i1 = blockIdx.x;
const int64_t i2 = blockIdx.z % ne2;
const int64_t i3 = blockIdx.z / ne2;
@ -75,8 +75,8 @@ static __global__ void quantize_mmq_q8_1(
block_q8_1_mmq * y = (block_q8_1_mmq *) vy;
const int64_t ib0 = blockIdx.z*((int64_t)gridDim.y*gridDim.x*blockDim.x/QK8_1); // first block of channel
const int64_t ib = ib0 + (i0 / (4*QK8_1))*ne1 + blockIdx.y; // block index in channel
const int64_t ib0 = blockIdx.z*((int64_t)gridDim.x*gridDim.y*blockDim.x/QK8_1); // first block of channel
const int64_t ib = ib0 + (i0 / (4*QK8_1))*ne1 + blockIdx.x; // block index in channel
const int64_t iqs = i0 % (4*QK8_1); // quant index in block
// Load 4 floats per thread and calculate max. abs. value between them:
@ -166,8 +166,9 @@ void quantize_mmq_q8_1_cuda(
GGML_ASSERT(ne00 % 4 == 0);
GGML_ASSERT(ne0 % (4*QK8_1) == 0);
const int64_t block_num_x = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
const dim3 num_blocks(block_num_x, ne1, ne2*ne3);
// ne1 tends to assume the highest values, therefore use it as the "x" dimension of the CUDA grid:
const int64_t block_num_y = (ne0 + 4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ - 1) / (4*CUDA_QUANTIZE_BLOCK_SIZE_MMQ);
const dim3 num_blocks(ne1, block_num_y, ne2*ne3);
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE_MMQ, 1, 1);
switch (mmq_get_q8_1_ds_layout(type_src0)) {
case MMQ_Q8_1_DS_LAYOUT_D4: