mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-08-24 15:06:26 +02:00
CANN: GGML_OP_CPY optimization (llama/15070)
Signed-off-by: noemotiovon <757486878@qq.com>
This commit is contained in:
committed by
Georgi Gerganov
parent
8e2ddfec31
commit
0effaad964
@@ -753,69 +753,55 @@ static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
|||||||
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||||
ggml_tensor* src0 = dst->src[0];
|
ggml_tensor* src0 = dst->src[0];
|
||||||
|
|
||||||
aclTensor* acl_src = ggml_cann_create_tensor(src0);
|
|
||||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
|
||||||
if (ggml_are_same_shape(src0, dst)) {
|
if (ggml_are_same_shape(src0, dst)) {
|
||||||
|
aclTensor* acl_src = ggml_cann_create_tensor(src0);
|
||||||
|
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||||
if (dst->type == src0->type) {
|
if (dst->type == src0->type) {
|
||||||
cann_copy(ctx, acl_src, acl_dst);
|
cann_copy(ctx, acl_src, acl_dst);
|
||||||
} else {
|
} else {
|
||||||
aclnn_cast(ctx, acl_src, acl_dst, ggml_cann_type_mapping(dst->type));
|
aclnn_cast(ctx, acl_src, acl_dst, ggml_cann_type_mapping(dst->type));
|
||||||
}
|
}
|
||||||
|
ggml_cann_release_resources(ctx, acl_src, acl_dst);
|
||||||
} else {
|
} else {
|
||||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
|
void* src_trans_buffer = src0->data;
|
||||||
if (dst->type == src0->type) {
|
ggml_cann_pool_alloc src_buffer_allocator;
|
||||||
size_t cpy_size = ggml_nbytes(dst);
|
if (!ggml_is_contiguous(src0)) {
|
||||||
ggml_cann_async_memcpy(ctx, dst->data, src0->data, cpy_size,
|
aclTensor* acl_src = ggml_cann_create_tensor(src0);
|
||||||
ACL_MEMCPY_DEVICE_TO_DEVICE);
|
src_buffer_allocator.alloc(ctx.pool(),
|
||||||
return;
|
ggml_nelements(src0) * ggml_type_size(src0->type));
|
||||||
} else {
|
src_trans_buffer = src_buffer_allocator.get();
|
||||||
ggml_cann_pool_alloc src_buffer_allocator(
|
|
||||||
ctx.pool(),
|
|
||||||
ggml_nelements(dst) * ggml_type_size(dst->type));
|
|
||||||
void* src_trans_buffer = src_buffer_allocator.get();
|
|
||||||
size_t src_trans_nb[GGML_MAX_DIMS];
|
|
||||||
src_trans_nb[0] = ggml_type_size(dst->type);
|
|
||||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
|
||||||
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
|
|
||||||
}
|
|
||||||
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
|
|
||||||
src_trans_buffer, ggml_cann_type_mapping(dst->type),
|
|
||||||
ggml_type_size(dst->type), src0->ne, src_trans_nb,
|
|
||||||
GGML_MAX_DIMS);
|
|
||||||
|
|
||||||
aclnn_cast(ctx, acl_src, src_trans_tensor, ggml_cann_type_mapping(dst->type));
|
|
||||||
size_t cpy_size = ggml_nbytes(dst);
|
|
||||||
ggml_cann_async_memcpy(ctx, dst->data, src_trans_buffer, cpy_size,
|
|
||||||
ACL_MEMCPY_DEVICE_TO_DEVICE);
|
|
||||||
ggml_cann_release_resources(ctx, src_trans_tensor);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
} else if (ggml_is_contiguous(dst)) {
|
|
||||||
ggml_cann_pool_alloc src_buffer_allocator(
|
|
||||||
ctx.pool(), ggml_nelements(dst) * ggml_type_size(dst->type));
|
|
||||||
void* src_trans_buffer = src_buffer_allocator.get();
|
|
||||||
size_t src_trans_nb[GGML_MAX_DIMS];
|
size_t src_trans_nb[GGML_MAX_DIMS];
|
||||||
src_trans_nb[0] = ggml_type_size(dst->type);
|
src_trans_nb[0] = ggml_type_size(src0->type);
|
||||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||||
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
|
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
|
||||||
}
|
}
|
||||||
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
|
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
|
||||||
src_trans_buffer, ggml_cann_type_mapping(dst->type),
|
src_trans_buffer, ggml_cann_type_mapping(src0->type),
|
||||||
ggml_type_size(dst->type), src0->ne, src_trans_nb,
|
ggml_type_size(src0->type), src0->ne, src_trans_nb,
|
||||||
GGML_MAX_DIMS);
|
GGML_MAX_DIMS);
|
||||||
|
cann_copy(ctx, acl_src, src_trans_tensor);
|
||||||
aclnn_cast(ctx, acl_src, src_trans_tensor, ggml_cann_type_mapping(dst->type));
|
ggml_cann_release_resources(ctx, acl_src, src_trans_tensor);
|
||||||
|
|
||||||
size_t cpy_size = ggml_nbytes(dst);
|
|
||||||
ggml_cann_async_memcpy(ctx, dst->data, src_trans_buffer, cpy_size,
|
|
||||||
ACL_MEMCPY_DEVICE_TO_DEVICE);
|
|
||||||
ggml_cann_release_resources(ctx, src_trans_tensor);
|
|
||||||
return;
|
|
||||||
} else {
|
|
||||||
GGML_ABORT("Unsupport dst is not contiguous.");
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
size_t src_reshape_nb[GGML_MAX_DIMS];
|
||||||
|
src_reshape_nb[0] = ggml_type_size(src0->type);
|
||||||
|
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||||
|
src_reshape_nb[i] = src_reshape_nb[i - 1] * dst->ne[i - 1];
|
||||||
|
}
|
||||||
|
|
||||||
|
aclTensor* trans_acl_src = ggml_cann_create_tensor(src_trans_buffer,
|
||||||
|
ggml_cann_type_mapping(src0->type),ggml_type_size(src0->type),
|
||||||
|
dst->ne, src_reshape_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||||
|
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||||
|
|
||||||
|
if (dst->type == src0->type) {
|
||||||
|
cann_copy(ctx, trans_acl_src, acl_dst);
|
||||||
|
} else {
|
||||||
|
aclnn_cast(ctx, trans_acl_src, acl_dst, ggml_cann_type_mapping(dst->type));
|
||||||
|
}
|
||||||
|
ggml_cann_release_resources(ctx, trans_acl_src, acl_dst);
|
||||||
}
|
}
|
||||||
ggml_cann_release_resources(ctx, acl_src, acl_dst);
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@@ -2391,7 +2391,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
|||||||
// only support F32 and F16.
|
// only support F32 and F16.
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
return ggml_is_contiguous(op);
|
return true;
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_CONT: {
|
case GGML_OP_CONT: {
|
||||||
// TODO: support GGML_TYPE_BF16
|
// TODO: support GGML_TYPE_BF16
|
||||||
@@ -2457,7 +2457,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
|||||||
return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
|
return (p0 <= (k0 / 2)) && (p1 <= (k1 / 2));
|
||||||
}
|
}
|
||||||
case GGML_OP_DUP:
|
case GGML_OP_DUP:
|
||||||
return ggml_is_contiguous(op);
|
|
||||||
case GGML_OP_SUM:
|
case GGML_OP_SUM:
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
case GGML_OP_CONCAT:
|
case GGML_OP_CONCAT:
|
||||||
|
Reference in New Issue
Block a user