diff --git a/ggml/src/ggml-cuda/cpy.cu b/ggml/src/ggml-cuda/cpy.cu index d027271f..2c55d214 100644 --- a/ggml/src/ggml-cuda/cpy.cu +++ b/ggml/src/ggml-cuda/cpy.cu @@ -1,5 +1,8 @@ #include "cpy.cuh" #include "dequantize.cuh" +#ifdef GGML_USE_MUSA +#include "ggml-musa/mudnn.cuh" +#endif // GGML_USE_MUSA typedef void (*cpy_kernel_t)(const char * cx, char * cdst); @@ -597,7 +600,14 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg #endif if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) { GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1)); - CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream)); +#ifdef GGML_USE_MUSA + if (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) { + CUDA_CHECK(mudnnMemcpyAsync(ctx, src1, src0)); + } else +#endif // GGML_USE_MUSA + { + CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream)); + } } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index); } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) { diff --git a/ggml/src/ggml-cuda/fattn-mma-f16.cuh b/ggml/src/ggml-cuda/fattn-mma-f16.cuh index be0329d0..7120053b 100644 --- a/ggml/src/ggml-cuda/fattn-mma-f16.cuh +++ b/ggml/src/ggml-cuda/fattn-mma-f16.cuh @@ -772,7 +772,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter( GGML_UNUSED(stride_mask); GGML_UNUSED(jt); GGML_UNUSED(tile_K); GGML_UNUSED(tile_V); GGML_UNUSED(tile_mask); GGML_UNUSED(Q_B); GGML_UNUSED(VKQ_C); GGML_UNUSED(KQ_max); GGML_UNUSED(KQ_rowsum); - GGML_UNUSED(kb0); + GGML_UNUSED(kb0); GGML_UNUSED(tile_Q); NO_DEVICE_CODE; #endif // NEW_MMA_AVAILABLE } diff --git a/ggml/src/ggml-musa/CMakeLists.txt b/ggml/src/ggml-musa/CMakeLists.txt index 92f05d55..971314de 100644 --- a/ggml/src/ggml-musa/CMakeLists.txt +++ b/ggml/src/ggml-musa/CMakeLists.txt @@ -27,12 +27,15 @@ if (MUSAToolkit_FOUND) file(GLOB GGML_HEADERS_MUSA "../ggml-cuda/*.cuh") list(APPEND GGML_HEADERS_MUSA "../../include/ggml-cuda.h") + list(APPEND GGML_HEADERS_MUSA "../ggml-musa/mudnn.cuh") file(GLOB GGML_SOURCES_MUSA "../ggml-cuda/*.cu") file(GLOB SRCS "../ggml-cuda/template-instances/fattn-mma*.cu") list(APPEND GGML_SOURCES_MUSA ${SRCS}) file(GLOB SRCS "../ggml-cuda/template-instances/mmq*.cu") list(APPEND GGML_SOURCES_MUSA ${SRCS}) + file(GLOB SRCS "../ggml-musa/*.cu") + list(APPEND GGML_SOURCES_MUSA ${SRCS}) if (GGML_CUDA_FA_ALL_QUANTS) file(GLOB SRCS "../ggml-cuda/template-instances/fattn-vec*.cu") @@ -62,7 +65,9 @@ if (MUSAToolkit_FOUND) ) # TODO: do not use CUDA definitions for MUSA - target_compile_definitions(ggml PUBLIC GGML_USE_CUDA) + if (NOT GGML_BACKEND_DL) + target_compile_definitions(ggml PUBLIC GGML_USE_CUDA) + endif() add_compile_definitions(GGML_USE_MUSA) add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE}) @@ -92,9 +97,10 @@ if (MUSAToolkit_FOUND) endif() if (GGML_STATIC) + # TODO: mudnn has not provided static libraries yet target_link_libraries(ggml-musa PRIVATE MUSA::musart_static MUSA::mublas_static) else() - target_link_libraries(ggml-musa PRIVATE MUSA::musart MUSA::mublas) + target_link_libraries(ggml-musa PRIVATE MUSA::musart MUSA::mublas mudnn) endif() if (GGML_CUDA_NO_VMM) diff --git a/ggml/src/ggml-musa/mudnn.cu b/ggml/src/ggml-musa/mudnn.cu new file mode 100644 index 00000000..020c1702 --- /dev/null +++ b/ggml/src/ggml-musa/mudnn.cu @@ -0,0 +1,112 @@ +#include +#include + +#include "mudnn.cuh" + +namespace mudnn = musa::dnn; + +// Returns a human-readable error string for mudnn::Status +const char* mudnnGetErrorString(mudnn::Status err) { + switch (err) { + case mudnn::Status::SUCCESS: + return "Success"; + case mudnn::Status::INVALID_PARAMETER: + return "Invalid parameter"; + case mudnn::Status::NOT_INITIALIZED: + return "Not initialized"; + case mudnn::Status::ALLOC_FAILED: + return "Allocation failed"; + case mudnn::Status::NOT_SUPPORTED: + return "Not supported"; + case mudnn::Status::INTERNAL_ERROR: + return "Internal error"; + case mudnn::Status::ARCH_MISMATCH: + return "Architecture mismatch"; + case mudnn::Status::EXECUTION_FAILED: + return "Execution failed"; + default: + return "Unknown mudnn status"; + } +} + +// Error checking macro for MUDNN calls +#define MUDNN_CHECK(err) CUDA_CHECK_GEN(err, mudnn::Status::SUCCESS, mudnnGetErrorString) + +namespace { + // Thread-safe cache for mudnn::Handle objects per device + std::unordered_map> handle_cache; + std::mutex handle_cache_mutex; + + mudnn::Handle* get_cached_handle(int device_id) { + std::lock_guard lock(handle_cache_mutex); + auto it = handle_cache.find(device_id); + if (it != handle_cache.end()) { + return it->second.get(); + } + auto handle = std::make_unique(device_id); + mudnn::Handle* handle_ptr = handle.get(); + handle_cache[device_id] = std::move(handle); + return handle_ptr; + } +} + +// Extracts dimensions and strides from a ggml_tensor +int get_ggml_dims_and_strides(const ggml_tensor* tensor, + std::vector& dims, + std::vector& strides) { + const int ndims = ggml_n_dims(tensor); + const size_t element_size = ggml_element_size(tensor); + + dims.resize(ndims); + strides.resize(ndims); + + for (int i = 0; i < ndims; ++i) { + dims[i] = tensor->ne[i]; + strides[i] = tensor->nb[i] / static_cast(element_size); + } + return ndims; +} + +// Converts ggml_type to mudnn::Tensor::Type +mudnn::Tensor::Type ggml_type_to_mudnn_type(ggml_type type) { + switch (type) { + case GGML_TYPE_F32: + return mudnn::Tensor::Type::FLOAT; + case GGML_TYPE_F16: + return mudnn::Tensor::Type::HALF; + + // TODO: Add support for other types + + default: + MUDNN_CHECK(mudnn::Status::NOT_SUPPORTED); + } + + return mudnn::Tensor::Type::FLOAT; // Default fallback +} + +// Asynchronous memory copy using mudnn::Unary::IDENTITY +musaError_t mudnnMemcpyAsync(ggml_backend_cuda_context& ctx, const ggml_tensor* dst, const ggml_tensor* src) { + mudnn::Tensor tensor_dst, tensor_src; + + MUDNN_CHECK(tensor_dst.SetType(ggml_type_to_mudnn_type(dst->type))); + MUDNN_CHECK(tensor_src.SetType(ggml_type_to_mudnn_type(src->type))); + + std::vector dims, strides; + const int ndims = get_ggml_dims_and_strides(src, dims, strides); + + MUDNN_CHECK(tensor_dst.SetNdInfo(ndims, dims.data(), strides.data())); + MUDNN_CHECK(tensor_src.SetNdInfo(ndims, dims.data(), strides.data())); + MUDNN_CHECK(tensor_dst.SetAddr(dst->data)); + MUDNN_CHECK(tensor_src.SetAddr(src->data)); + + mudnn::Unary op; + MUDNN_CHECK(op.SetMode(mudnn::Unary::Mode::IDENTITY)); + MUDNN_CHECK(op.SetAlpha(0.0f)); + MUDNN_CHECK(op.SetBeta(0.0f)); + + mudnn::Handle* handle = get_cached_handle(ctx.device); + MUDNN_CHECK(handle->SetStream(ctx.stream())); + MUDNN_CHECK(op.Run(*handle, tensor_dst, tensor_src)); + + return musaSuccess; +} diff --git a/ggml/src/ggml-musa/mudnn.cuh b/ggml/src/ggml-musa/mudnn.cuh new file mode 100644 index 00000000..a63be575 --- /dev/null +++ b/ggml/src/ggml-musa/mudnn.cuh @@ -0,0 +1,12 @@ +#pragma once + +#include "../include/ggml.h" +#include "../ggml-cuda/common.cuh" + +// Asynchronously copies data from src tensor to dst tensor using the provided context. +// Returns a musaError_t indicating success or failure. +musaError_t mudnnMemcpyAsync( + ggml_backend_cuda_context &ctx, + const ggml_tensor *dst, + const ggml_tensor *src +);