From 195fde88049053fe8f955aecd63e86859bf09596 Mon Sep 17 00:00:00 2001 From: Akarshan Biswas Date: Mon, 26 May 2025 21:10:36 +0530 Subject: [PATCH] SYCL: Add non contiguous support in RMS_NORM and NORM kernels (llama/13611) * SYCL: Add non contiguous input support to norm kernel * refactor and add RMS_NORM non contiguous input support ggml-ci * restore subgroup reduction for multi-subgroup thread blocks in norm kernels * Swap grid dims of nsamples and nrows ggml-ci * Revert "Swap grid dims of nsamples and nrows" This reverts commit 43be2d657fec7f7fba54e2cd154106bc0fc45adf. * restore not required changes ggml-ci * address review comments: change it to more like SYCL * Use a common function to calculate offset * remove wrap around logic for handling broadcasts * remove static from calculate_offset fn and use ceil_div --- ggml/src/ggml-sycl/common.hpp | 14 +++ ggml/src/ggml-sycl/ggml-sycl.cpp | 1 + ggml/src/ggml-sycl/norm.cpp | 161 ++++++++++++++++++------------- 3 files changed, 109 insertions(+), 67 deletions(-) diff --git a/ggml/src/ggml-sycl/common.hpp b/ggml/src/ggml-sycl/common.hpp index 03b6956d..15ee9dc6 100644 --- a/ggml/src/ggml-sycl/common.hpp +++ b/ggml/src/ggml-sycl/common.hpp @@ -13,6 +13,7 @@ #ifndef GGML_SYCL_COMMON_HPP #define GGML_SYCL_COMMON_HPP +#include #include #include #include @@ -481,6 +482,19 @@ static __dpct_inline__ float warp_reduce_max(float x, return x; } +/* Helper for Computing the linear offset of a ggml_tensor given +per-dimension sizes, strides, and indices */ +template +__dpct_inline__ size_t calculate_offset(const std::array & strides, const std::array & indices) { + size_t offset = 0; +#pragma unroll + for (int i = 0; i < N; i++) { + auto index_i = indices[i]; + offset += strides[i] * index_i; + } + return offset; +} + // Helper for vec loading aligned data template inline sycl::vec vec_aligned_load(const Tp* aligned_ptr) { diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp index 134ec78a..6a53bd12 100644 --- a/ggml/src/ggml-sycl/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl/ggml-sycl.cpp @@ -4241,6 +4241,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g #endif case GGML_OP_NORM: case GGML_OP_RMS_NORM: + return true; case GGML_OP_L2_NORM: case GGML_OP_GROUP_NORM: return ggml_is_contiguous(op->src[0]); diff --git a/ggml/src/ggml-sycl/norm.cpp b/ggml/src/ggml-sycl/norm.cpp index 4e9f438b..4ec14168 100644 --- a/ggml/src/ggml-sycl/norm.cpp +++ b/ggml/src/ggml-sycl/norm.cpp @@ -1,40 +1,50 @@ #include "norm.hpp" +#include "ggml-sycl/common.hpp" +#include "ggml-sycl/presets.hpp" -static void norm_f32(const float* x, float* dst, const int ncols, const float eps, - const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) { - const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + - item_ct1.get_local_id(1); - const int tid = item_ct1.get_local_id(2); +static void norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel, + const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) { + + const int nrows = item_ct1.get_group_range(2); + const int nchannels = item_ct1.get_group_range(1); const int nthreads = item_ct1.get_local_range(2); + const int sample = item_ct1.get_group(0); + const int channel = item_ct1.get_group(1); + const int row = item_ct1.get_group(2); + + const int tid = item_ct1.get_local_id(2); const int nwarps = nthreads / WARP_SIZE; + + const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row}); + const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row}); + + x += strided_offset; + dst += packed_offset; + sycl::float2 mean_var = sycl::float2(0.f, 0.f); for (int col = tid; col < ncols; col += block_size) { - const float xi = x[row * ncols + col]; + const float xi = x[col]; mean_var.x() += xi; mean_var.y() += xi * xi; } // sum up partial sums mean_var = warp_reduce_sum(mean_var, item_ct1); - if (block_size > WARP_SIZE) { - - int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; - int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = mean_var; + if (block_size > WARP_SIZE) { + const auto sub_group = item_ct1.get_sub_group(); + const auto sg_id = sub_group.get_group_linear_id(); + const auto wi_in_sg = sub_group.get_local_linear_id(); + if (wi_in_sg == 0) { + s_sum[sg_id] = mean_var; } - /* - DPCT1118:0: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ item_ct1.barrier(sycl::access::fence_space::local_space); mean_var = 0.f; - size_t nreduce = nwarps / WARP_SIZE; + const size_t nreduce = ceil_div(nwarps, WARP_SIZE); for (size_t i = 0; i < nreduce; i += 1) { - mean_var += s_sum[lane_id + i * WARP_SIZE]; + mean_var += s_sum[wi_in_sg + i * WARP_SIZE]; } mean_var = warp_reduce_sum(mean_var, item_ct1); } @@ -44,7 +54,7 @@ static void norm_f32(const float* x, float* dst, const int ncols, const float ep const float inv_std = sycl::rsqrt(var + eps); for (int col = tid; col < ncols; col += block_size) { - dst[row * ncols + col] = (x[row * ncols + col] - mean) * inv_std; + dst[col] = (x[col] - mean) * inv_std; } } @@ -135,39 +145,51 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con } } -static void rms_norm_f32(const float* x, float* dst, const int ncols, const float eps, - const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) { - const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + - item_ct1.get_local_id(1); - const int tid = item_ct1.get_local_id(2); +static void rms_norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel, + const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) { + + const int nrows = item_ct1.get_group_range(2); + const int nchannels = item_ct1.get_group_range(1); + + const int sample = item_ct1.get_group(0); + const int channel = item_ct1.get_group(1); + const int row = item_ct1.get_group(2); + const int nthreads = item_ct1.get_local_range(2); + + const int tid = item_ct1.get_local_id(2); const int nwarps = nthreads / WARP_SIZE; + + const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row}); + const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row}); + + x += strided_offset; + dst += packed_offset; + + float tmp = 0.0f; // partial sum for thread in warp for (int col = tid; col < ncols; col += block_size) { - const float xi = x[row * ncols + col]; + const float xi = x[col]; tmp += xi * xi; } // sum up partial sums tmp = warp_reduce_sum(tmp, item_ct1); if (block_size > WARP_SIZE) { - - int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; - int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; - if (lane_id == 0) { - s_sum[warp_id] = tmp; + const auto sub_group = item_ct1.get_sub_group(); + const auto sg_id = sub_group.get_group_linear_id(); + const auto wi_in_sg = sub_group.get_local_linear_id(); + if (wi_in_sg == 0) { + s_sum[sg_id] = tmp; } - /* - DPCT1118:3: SYCL group functions and algorithms must be encountered in - converged control flow. You may need to adjust the code. - */ + item_ct1.barrier(sycl::access::fence_space::local_space); - size_t nreduce = nwarps / WARP_SIZE; + const size_t nreduce = ceil_div(nwarps, WARP_SIZE); tmp = 0.f; for (size_t i = 0; i < nreduce; i += 1) { - tmp += s_sum[lane_id + i * WARP_SIZE]; + tmp += s_sum[wi_in_sg + i * WARP_SIZE]; } tmp = warp_reduce_sum(tmp, item_ct1); } @@ -176,7 +198,7 @@ static void rms_norm_f32(const float* x, float* dst, const int ncols, const floa const float scale = sycl::rsqrt(mean + eps); for (int col = tid; col < ncols; col += block_size) { - dst[row * ncols + col] = scale * x[row * ncols + col]; + dst[col] = scale * x[col]; } } @@ -224,20 +246,20 @@ static void l2_norm_f32(const float* x, float* dst, const int ncols, const float } } -static void norm_f32_sycl(const float* x, float* dst, const int ncols, - const int nrows, const float eps, - queue_ptr stream, int device) { +static void norm_f32_sycl(const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples, + const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, + const float eps, queue_ptr stream, int device) { + + const sycl::range<3> global_dims(nsamples, nchannels, nrows); GGML_ASSERT(ncols % WARP_SIZE == 0); if (ncols < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, - block_dims), + sycl::nd_range<3>(global_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { - norm_f32(x, dst, ncols, eps, item_ct1, - nullptr, WARP_SIZE); + norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE); }); }); } @@ -252,15 +274,12 @@ static void norm_f32_sycl(const float* x, float* dst, const int ncols, */ stream->submit([&](sycl::handler& cgh) { sycl::local_accessor s_sum_acc_ct1( - sycl::range<1>(work_group_size / WARP_SIZE), cgh); - + sycl::range<1>(work_group_size / WARP_SIZE), cgh); cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, - block_dims), + sycl::nd_range<3>(global_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { - norm_f32(x, dst, ncols, eps, item_ct1, - get_pointer(s_sum_acc_ct1), work_group_size); + norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size); }); }); } @@ -313,21 +332,20 @@ static void group_norm_f32_sycl(const float* x, float* dst, } } -static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, - const int nrows, const float eps, - queue_ptr stream, int device) { +static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, const int nrows, const int nchannels, const int nsamples, + const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, queue_ptr stream, int device) { GGML_ASSERT(ncols % WARP_SIZE == 0); // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE); + + const sycl::range<3> global_dims(nsamples, nchannels, nrows); if (ncols < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, - block_dims), + sycl::nd_range<3>(global_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { - rms_norm_f32(x, dst, ncols, eps, item_ct1, - nullptr, WARP_SIZE); + rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, nullptr, WARP_SIZE); }); }); } @@ -344,12 +362,10 @@ static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE), cgh); cgh.parallel_for( - sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, - block_dims), + sycl::nd_range<3>(global_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] { - rms_norm_f32(x, dst, ncols, eps, item_ct1, - get_pointer(s_sum_acc_ct1), work_group_size); + rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1, get_pointer(s_sum_acc_ct1), work_group_size); }); }); } @@ -398,12 +414,12 @@ static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols, } void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { + const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); - const int64_t ne00 = dst->src[0]->ne[0]; - const int64_t nrows = ggml_nrows(dst->src[0]); + GGML_TENSOR_UNARY_OP_LOCALS dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); const float * src0_dd = static_cast(dst->src[0]->data); @@ -411,8 +427,14 @@ void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { float eps; memcpy(&eps, dst->op_params, sizeof(float)); + GGML_ASSERT(eps >= 0.0f); + const size_t ts0 = ggml_type_size(src0->type); + GGML_ASSERT(nb00 == ts0); + const int64_t s01 = nb01 / ts0; + const int64_t s02 = nb02 / ts0; + const int64_t s03 = nb03 / ts0; - norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device); + norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device); } void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { @@ -436,11 +458,10 @@ void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); - const int64_t ne00 = dst->src[0]->ne[0]; - const int64_t nrows = ggml_nrows(dst->src[0]); dpct::queue_ptr main_stream = ctx.stream(); SYCL_CHECK(ggml_sycl_set_device(ctx.device)); @@ -450,7 +471,13 @@ void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) { float eps; memcpy(&eps, dst->op_params, sizeof(float)); - rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device); + GGML_TENSOR_UNARY_OP_LOCALS + const size_t ts0 = ggml_type_size(src0->type); + GGML_ASSERT(nb00 == ts0); + const int64_t s01 = nb01 / ts0; + const int64_t s02 = nb02 / ts0; + const int64_t s03 = nb03 / ts0; + rms_norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device); } void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {