diff --git a/examples/talk-llama/llama-sampling.cpp b/examples/talk-llama/llama-sampling.cpp index 25536eb6..fd8ca8a9 100644 --- a/examples/talk-llama/llama-sampling.cpp +++ b/examples/talk-llama/llama-sampling.cpp @@ -113,7 +113,7 @@ static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) { } static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) { - // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast + // TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast // if (k >= (int32_t)cur_p->size) { // return; // } @@ -733,101 +733,6 @@ struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) { }; } -// tail-free - -struct llama_sampler_tail_free { - const float z; - const size_t min_keep; -}; - -static const char * llama_sampler_tail_free_name(const struct llama_sampler * /*smpl*/) { - return "tail-free"; -} - -static void llama_sampler_tail_free_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { - const auto * ctx = (llama_sampler_tail_free *) smpl->ctx; - - if (ctx->z >= 1.0f || cur_p->size <= 2) { - return; - } - - llama_sampler_softmax_impl(cur_p); - - // Compute the first and second derivatives - std::vector first_derivatives(cur_p->size - 1); - std::vector second_derivatives(cur_p->size - 2); - - for (size_t i = 0; i < first_derivatives.size(); ++i) { - first_derivatives[i] = cur_p->data[i].p - cur_p->data[i + 1].p; - } - for (size_t i = 0; i < second_derivatives.size(); ++i) { - second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; - } - - // Calculate absolute value of second derivatives - for (size_t i = 0; i < second_derivatives.size(); ++i) { - second_derivatives[i] = std::abs(second_derivatives[i]); - } - - // Normalize the second derivatives - { - const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); - - if (second_derivatives_sum > 1e-6f) { - for (float & value : second_derivatives) { - value /= second_derivatives_sum; - } - } else { - for (float & value : second_derivatives) { - value = 1.0f / second_derivatives.size(); - } - } - } - - float cum_sum = 0.0f; - size_t last_idx = cur_p->size; - for (size_t i = 0; i < second_derivatives.size(); ++i) { - cum_sum += second_derivatives[i]; - - // Check if the running sum is greater than z or if we have kept at least min_keep tokens - if (cum_sum > ctx->z && i >= ctx->min_keep) { - last_idx = i; - break; - } - } - - // Resize the output vector to keep only the tokens above the tail location - cur_p->size = last_idx; -} - -static struct llama_sampler * llama_sampler_tail_free_clone(const struct llama_sampler * smpl) { - const auto * ctx = (const llama_sampler_tail_free *) smpl->ctx; - return llama_sampler_init_tail_free(ctx->z, ctx->min_keep); -} - -static void llama_sampler_tail_free_free(struct llama_sampler * smpl) { - delete (llama_sampler_tail_free *) smpl->ctx; -} - -static struct llama_sampler_i llama_sampler_tail_free_i = { - /* .name = */ llama_sampler_tail_free_name, - /* .accept = */ nullptr, - /* .apply = */ llama_sampler_tail_free_apply, - /* .reset = */ nullptr, - /* .clone = */ llama_sampler_tail_free_clone, - /* .free = */ llama_sampler_tail_free_free, -}; - -struct llama_sampler * llama_sampler_init_tail_free(float z, size_t min_keep) { - return new llama_sampler { - /* .iface = */ &llama_sampler_tail_free_i, - /* .ctx = */ new llama_sampler_tail_free { - /* .z = */ z, - /*. min_keep = */ min_keep, - }, - }; -} - // typical struct llama_sampler_typical { @@ -1971,8 +1876,11 @@ static void llama_sampler_dry_reset(struct llama_sampler * smpl) { static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) { const auto * ctx = (llama_sampler_dry *) smpl->ctx; - // nullptr is passed as vocab because it is only needed for raw sequence breaker processing, which we have already done and will be copying - auto * result = llama_sampler_init_dry(nullptr, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0); + llama_vocab dummy_vocab; + + // dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying + auto * result = llama_sampler_init_dry_impl(dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0); + // Copy the state, including the processed breakers { auto * result_ctx = (llama_sampler_dry *) result->ctx; diff --git a/examples/talk-llama/llama.cpp b/examples/talk-llama/llama.cpp index 53979e83..97eee26a 100644 --- a/examples/talk-llama/llama.cpp +++ b/examples/talk-llama/llama.cpp @@ -7,18 +7,7 @@ #include "ggml.h" #include "ggml-alloc.h" #include "ggml-backend.h" - -#if defined(GGML_USE_KOMPUTE) -# include "ggml-kompute.h" -#endif - -#ifndef __AMX_INT8__ -#undef GGML_USE_AMX -#endif - -#ifdef GGML_USE_AMX -# include "ggml-amx.h" -#endif +#include "ggml-cpp.h" // TODO: replace with ggml API call #define QK_K 256 @@ -1558,44 +1547,52 @@ static llm_arch llm_arch_from_string(const std::string & name) { // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias" // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight" // +struct LLM_TN_IMPL { + const llm_arch arch; + const llm_tensor tensor; + const char * const suffix; + const int bid; + const int xid; + + std::string str() const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + + std::string name = ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid, xid); + + if (suffix != nullptr) { + name += "."; + name += suffix; + } + + return name; + } + + operator std::string() const { + return str(); + } + + friend bool operator==(const std::string & str, const LLM_TN_IMPL & tn) { + return str == tn.str(); + } + + friend bool operator!=(const std::string & str, const LLM_TN_IMPL & tn) { + return str != tn.str(); + } +}; + struct LLM_TN { LLM_TN(llm_arch arch) : arch(arch) {} llm_arch arch; - std::string operator()(llm_tensor tensor) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return LLM_TENSOR_NAMES.at(arch).at(tensor); + LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const { + return { arch, tensor, suffix, bid, xid }; } - std::string operator()(llm_tensor tensor, const char * suffix) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return std::string(LLM_TENSOR_NAMES.at(arch).at(tensor)) + "." + suffix; - } - - std::string operator()(llm_tensor tensor, int bid) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid); - } - - std::string operator()(llm_tensor tensor, const char * suffix, int bid) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid) + "." + suffix; - } - - std::string operator()(llm_tensor tensor, const char * suffix, int bid, int xid) const { - if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { - return "__missing__"; - } - return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid, xid) + "." + suffix; + LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const { + return { arch, tensor, nullptr, bid, xid }; } }; @@ -2304,6 +2301,7 @@ enum e_model { MODEL_1B, MODEL_1_3B, MODEL_1_4B, + MODEL_1_5B, MODEL_1_6B, MODEL_2B, MODEL_2_8B, @@ -2587,6 +2585,11 @@ struct llama_cparams { // TODO: separate into "llama_layer_enc" and "llama_layer_dec" struct llama_layer { + llama_layer() { + // initialize all pointers to NULL + std::memset(this, 0, sizeof(*this)); + } + // normalization struct ggml_tensor * attn_norm; struct ggml_tensor * attn_norm_b; @@ -2667,9 +2670,9 @@ struct llama_layer { struct ggml_tensor * ffn_up_shexp; // ff bias - struct ggml_tensor * ffn_gate_b = nullptr; - struct ggml_tensor * ffn_down_b = nullptr; // b2 - struct ggml_tensor * ffn_up_b = nullptr; // b3 + struct ggml_tensor * ffn_gate_b; + struct ggml_tensor * ffn_down_b; // b2 + struct ggml_tensor * ffn_up_b; // b3 struct ggml_tensor * ffn_act; // mamba proj @@ -2796,31 +2799,22 @@ struct llama_kv_cache { std::vector k_l; // per layer std::vector v_l; - std::vector ctxs; - std::vector bufs; + std::vector ctxs; + std::vector bufs; - size_t total_size() const { + size_t total_size() { size_t size = 0; - for (ggml_backend_buffer_t buf : bufs) { - size += ggml_backend_buffer_get_size(buf); + for (auto & buf : bufs) { + size += ggml_backend_buffer_get_size(buf.get()); } return size; } - - ~llama_kv_cache() { - for (struct ggml_context * ctx : ctxs) { - ggml_free(ctx); - } - for (ggml_backend_buffer_t buf : bufs) { - ggml_backend_buffer_free(buf); - } - } }; struct llama_control_vector { std::vector tensors; // per layer - std::vector ctxs; - std::vector bufs; + std::vector ctxs; + std::vector bufs; int32_t layer_start = -1; int32_t layer_end = -1; @@ -2839,15 +2833,6 @@ struct llama_control_vector { } return cur; } - - ~llama_control_vector() { - for (struct ggml_context * ctx : ctxs) { - ggml_free(ctx); - } - for (ggml_backend_buffer_t buf : bufs) { - ggml_backend_buffer_free(buf); - } - } }; struct llama_model { @@ -2860,22 +2845,21 @@ struct llama_model { llama_hparams hparams = {}; llama_vocab vocab; - // TODO: should init all tensors to nullptr - struct ggml_tensor * tok_embd; - struct ggml_tensor * type_embd; - struct ggml_tensor * pos_embd; - struct ggml_tensor * tok_norm; - struct ggml_tensor * tok_norm_b; + struct ggml_tensor * tok_embd = nullptr; + struct ggml_tensor * type_embd = nullptr; + struct ggml_tensor * pos_embd = nullptr; + struct ggml_tensor * tok_norm = nullptr; + struct ggml_tensor * tok_norm_b = nullptr; - struct ggml_tensor * output_norm; - struct ggml_tensor * output_norm_b; - struct ggml_tensor * output; - struct ggml_tensor * output_b; - struct ggml_tensor * output_norm_enc; + struct ggml_tensor * output_norm = nullptr; + struct ggml_tensor * output_norm_b = nullptr; + struct ggml_tensor * output = nullptr; + struct ggml_tensor * output_b = nullptr; + struct ggml_tensor * output_norm_enc = nullptr; // classifier - struct ggml_tensor * cls; - struct ggml_tensor * cls_b; + struct ggml_tensor * cls = nullptr; + struct ggml_tensor * cls_b = nullptr; struct ggml_tensor * cls_out = nullptr; struct ggml_tensor * cls_out_b = nullptr; @@ -2888,30 +2872,30 @@ struct llama_model { int main_gpu; int n_gpu_layers; + std::vector rpc_servers; + // list of devices used in this model std::vector devices; - std::vector rpc_servers; - // layer -> buffer type mapping - struct layer_buft { - layer_buft() : buft_matrix(nullptr), buft(nullptr) {} - layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {} - layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {} + // lists of buffer types used for each layer + using buft_list_t = std::vector>; + buft_list_t cpu_buft_list; + std::map gpu_buft_list; - ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication - ggml_backend_buffer_type_t buft; // everything else + struct layer_dev { + ggml_backend_dev_t dev; + buft_list_t * buft_list; }; - - layer_buft buft_input; - layer_buft buft_output; - std::vector buft_layer; + layer_dev dev_input = {}; + layer_dev dev_output = {}; + std::vector dev_layer; // contexts where the model tensors metadata is stored - std::vector ctxs; + std::vector ctxs; // the model memory buffers for the tensor data - std::vector bufs; + std::vector bufs; // model memory mapped files llama_mmaps mappings; @@ -2930,13 +2914,7 @@ struct llama_model { std::set lora_adapters; ~llama_model() { - for (struct ggml_context * ctx : ctxs) { - ggml_free(ctx); - } - for (ggml_backend_buffer_t buf : bufs) { - ggml_backend_buffer_free(buf); - } - while (!lora_adapters.empty()) { + while (!lora_adapters.empty()) { llama_lora_adapter_free(*lora_adapters.begin()); } } @@ -3253,16 +3231,6 @@ struct llama_context { , t_start_us(model.t_start_us) , t_load_us(model.t_load_us) {} - ~llama_context() { - ggml_backend_sched_free(sched); - - for (ggml_backend_t backend : backends) { - ggml_backend_free(backend); - } - - ggml_backend_buffer_free(buf_output); - } - const struct llama_model & model; struct llama_cparams cparams; @@ -3272,7 +3240,7 @@ struct llama_context { std::unordered_map lora_adapters; - std::vector backends; + std::vector backends; std::vector> set_n_threads_fns; ggml_backend_t backend_cpu = nullptr; @@ -3294,7 +3262,7 @@ struct llama_context { mutable int32_t n_eval = 0; // number of eval calls // host buffer for the model output (logits and embeddings) - ggml_backend_buffer_t buf_output = nullptr; + ggml_backend_buffer_ptr buf_output; // decode output (2-dimensional array: [n_outputs][n_vocab]) size_t logits_size = 0; // capacity (of floats) for logits @@ -3324,7 +3292,7 @@ struct llama_context { // memory buffers used to evaluate the model std::vector buf_compute_meta; - ggml_backend_sched_t sched = nullptr; + ggml_backend_sched_ptr sched; ggml_abort_callback abort_callback = nullptr; void * abort_callback_data = nullptr; @@ -3358,8 +3326,8 @@ struct llama_lora_adapter { struct llama_model * base_model; // map tensor name to lora_a_b std::unordered_map ab_map; - std::vector ctxs; - std::vector bufs; + std::vector ctxs; + std::vector bufs; float alpha; @@ -3377,12 +3345,6 @@ struct llama_lora_adapter { } ~llama_lora_adapter() { - for (struct ggml_context * ctx : ctxs) { - ggml_free(ctx); - } - for (ggml_backend_buffer_t buf : bufs) { - ggml_backend_buffer_free(buf); - } auto pos = base_model->lora_adapters.find(this); if (pos != base_model->lora_adapters.end()) { base_model->lora_adapters.erase(pos); @@ -3391,104 +3353,44 @@ struct llama_lora_adapter { }; static int llama_get_device_count(const llama_model & model) { - int count = (int) model.devices.size(); - -#if defined(GGML_USE_RPC) - count += (int) model.rpc_servers.size(); -#endif - - return count; - - GGML_UNUSED(model); + return (int) model.devices.size(); } -static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(const llama_model & model, bool host_buffer) { - ggml_backend_buffer_type_t buft = nullptr; +template +static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) { + ggml_init_params params = { + /*.mem_size =*/ ggml_tensor_overhead()*8, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context_ptr ctx { ggml_init(params) }; + if (!ctx) { + throw std::runtime_error(format("failed to create ggml context")); + } - if (host_buffer) { - for (auto * dev : model.devices) { - buft = ggml_backend_dev_host_buffer_type(dev); - if (buft != nullptr) { - break; - } + ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) }; + ggml_tensor * op_tensor = fn(ctx.get()); + for (int i = 0; i < GGML_MAX_SRC; i++) { + if (op_tensor->src[i] != nullptr) { + assert(op_tensor->src[i]->buffer == nullptr); + op_tensor->src[i]->buffer = buf.get(); } } + bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor); -#if defined(GGML_USE_CPU_HBM) - buft = ggml_backend_cpu_hbm_buffer_type(); -#endif - - if (buft == nullptr) { - buft = ggml_backend_cpu_buffer_type(); - } - return buft; - - GGML_UNUSED(host_buffer); + return op_supported; } -static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int device) { - ggml_backend_buffer_type_t buft = nullptr; - - if (device < (int)model.devices.size()) { - return ggml_backend_dev_buffer_type(model.devices[device]); - } - device -= (int)model.devices.size(); - -#if defined(GGML_USE_KOMPUTE) - buft = ggml_backend_kompute_buffer_type(device); -#endif - - if (buft == nullptr) { - buft = llama_default_buffer_type_cpu(model, true); - } - return buft; - - GGML_UNUSED(model); -} - -static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) { - ggml_backend_buffer_type_t buft = nullptr; - - // find a backend that supports split buffers - for (size_t i = 0; i < ggml_backend_reg_count(); ++i) { - ggml_backend_reg_t reg = ggml_backend_reg_get(i); - - auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type"); - if (ggml_backend_split_buffer_type_fn) { - buft = ggml_backend_split_buffer_type_fn(tensor_split); - if (buft != nullptr) { - break; - } +template +static ggml_backend_buffer_type_t select_buft(const llama_model::buft_list_t & buft_list, const F & fn) { + for (const auto & cur : buft_list) { + ggml_backend_dev_t cur_dev = cur.first; + ggml_backend_buffer_type_t cur_buft = cur.second; + if (buft_supported(cur_buft, cur_dev, fn)) { + return cur_buft; } } - - if (buft == nullptr) { - buft = llama_default_buffer_type_offload(model, fallback_gpu); - } - return buft; - - GGML_UNUSED(tensor_split); -} - -static size_t llama_get_device_memory(const llama_model & model, int device) { - if (device < (int)model.devices.size()) { - ggml_backend_dev_t dev = model.devices[device]; - size_t total; - size_t free; - ggml_backend_dev_memory(dev, &free, &total); - return free; - } - - if (model.devices.size() > 0) { - ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(model.devices[0]); - LLAMA_LOG_WARN("%s: failed to get free memmory of device:%d of backend:%s, for device id is out of range.\n", __func__, device, ggml_backend_reg_name(reg)); - } else { - LLAMA_LOG_WARN("%s: failed to get free memmory of device, no devices in inputted model.\n", __func__); - } - return 1; - - GGML_UNUSED(model); - GGML_UNUSED(device); + throw std::runtime_error(format("no suitable buffer type found")); } // @@ -3524,33 +3426,26 @@ static bool llama_kv_cache_init( cache.cells.clear(); cache.cells.resize(kv_size); - // count used buffer types - std::map buft_layer_count; - if (offload) { - for (int64_t i = 0; i < n_layer; ++i) { - buft_layer_count[model.buft_layer[i].buft]++; - } - } else { - buft_layer_count[llama_default_buffer_type_cpu(model, true)] = n_layer; - } - // create a context for each buffer type std::map ctx_map; - for (auto & it : buft_layer_count) { - int n_layers = it.second; - struct ggml_init_params params = { - /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(), - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ true, - }; - ggml_context * ctx = ggml_init(params); - if (!ctx) { - LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__); - return false; + auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { + auto it = ctx_map.find(buft); + if (it == ctx_map.end()) { + struct ggml_init_params params = { + /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context * ctx = ggml_init(params); + if (!ctx) { + return nullptr; + } + ctx_map[buft] = ctx; + cache.ctxs.emplace_back(ctx); + return ctx; } - ctx_map[it.first] = ctx; - cache.ctxs.push_back(ctx); - } + return it->second; + }; cache.k_l.reserve(n_layer); cache.v_l.reserve(n_layer); @@ -3559,7 +3454,28 @@ static bool llama_kv_cache_init( const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s(); - struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); + const llama_model::buft_list_t * buft_list; + if (offload) { + buft_list = model.dev_layer.at(i).buft_list; + } else { + buft_list = &model.cpu_buft_list; + } + ggml_backend_buffer_type_t buft = select_buft(*buft_list, + [&](ggml_context * ctx) { + ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); + if (hparams.rope_type == LLAMA_ROPE_TYPE_NONE) { + return k; + } + ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1); + return ggml_rope(ctx, k, p, hparams.n_rot, hparams.rope_type); + }); + ggml_context * ctx = ctx_for_buft(buft); + + if (!ctx) { + LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__); + return false; + } + ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); ggml_format_name(k, "cache_k_l%d", i); @@ -3570,8 +3486,9 @@ static bool llama_kv_cache_init( // allocate tensors and initialize the buffers to avoid NaNs in the padding for (auto it : ctx_map) { - ggml_backend_buffer_type_t buft = it.first; - ggml_context * ctx = it.second; + auto * buft = it.first; + auto * ctx = it.second; + ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (!buf) { LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__); @@ -3579,17 +3496,30 @@ static bool llama_kv_cache_init( } ggml_backend_buffer_clear(buf, 0); LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); - cache.bufs.push_back(buf); + cache.bufs.emplace_back(buf); } return true; } +// a structure holds information about the slot found in llama_kv_cache_find_slot +struct llama_kv_cache_slot_info { + std::pair boundaries; // slot boundaries [begin, end) + bool found = false; // the slot was found + + explicit llama_kv_cache_slot_info(bool found_) : found{found_} {} + llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {} + + operator bool() const { return found; } +}; +static const llama_kv_cache_slot_info llama_kv_cache_slot_info_failed{false}; + // find an empty slot of size "n_tokens" in the cache // updates the cache head +// returns a structure holding information about the slot found // Note: On success, it's important that cache.head points // to the first cell of the slot. -static bool llama_kv_cache_find_slot( +static struct llama_kv_cache_slot_info llama_kv_cache_find_slot( struct llama_kv_cache & cache, const struct llama_ubatch & batch) { const uint32_t n_tokens = batch.n_tokens; @@ -3617,7 +3547,7 @@ static bool llama_kv_cache_find_slot( // too big seq_id // TODO: would it be possible to resize the cache instead? LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size); - return false; + return llama_kv_cache_slot_info_failed; } if (j > 0) { llama_kv_cell & seq = cache.cells[seq_id]; @@ -3752,15 +3682,17 @@ static bool llama_kv_cache_find_slot( // allow getting the range of used cells, from head to head + n cache.head = min; cache.n = max - min + 1; + cache.used = std::count_if(cache.cells.begin(), cache.cells.end(), + [](const llama_kv_cell& cell){ return !cell.is_empty(); }); // sanity check - return cache.n >= n_seqs; + return llama_kv_cache_slot_info(cache.n >= n_seqs); } // otherwise, one cell per token. if (n_tokens > cache.size) { LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size); - return false; + return llama_kv_cache_slot_info_failed; } uint32_t n_tested = 0; @@ -3788,7 +3720,7 @@ static bool llama_kv_cache_find_slot( if (n_tested >= cache.size) { //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); - return false; + return llama_kv_cache_slot_info_failed; } } @@ -3805,7 +3737,7 @@ static bool llama_kv_cache_find_slot( cache.used += n_tokens; - return true; + return llama_kv_cache_slot_info(cache.head, cache.head + n_tokens); } // find how many cells are currently in use @@ -3832,7 +3764,7 @@ static void llama_kv_cache_clear(struct llama_kv_cache & cache) { cache.used = 0; for (auto & buf : cache.bufs) { - ggml_backend_buffer_clear(buf, 0); + ggml_backend_buffer_clear(buf.get(), 0); } } @@ -4081,6 +4013,53 @@ static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) return cparams.flash_attn ? 256u : 32u; } +// saves the kv_cache state for future recovery. +// used to rollback llama_kv_cache_find_slot changes. +struct llama_kv_slot_restorer { + struct llama_kv_cache_state { + uint32_t head = 0; + uint32_t n = 0; + } old_state; + + // for non-recurrent models only + // list of slots to restore + std::vector> slot_boundaries; + + bool do_restore = false; + + explicit llama_kv_slot_restorer(const struct llama_kv_cache & cache) { + old_state.head = cache.head; + old_state.n = cache.n; + } + + // saves a slot information for future restoration + void save(const struct llama_kv_cache_slot_info & slot) { + if (slot) { + do_restore = true; + if (slot.boundaries.first != slot.boundaries.second) { + slot_boundaries.push_back(slot.boundaries); + } + } + } + + // must be explicitly called to restore the kv_cache state + // and rollback changes from all llama_kv_cache_find_slot calls + void restore(struct llama_kv_cache & cache) { + if (do_restore) { + cache.head = old_state.head; + cache.n = old_state.n; + + if (cache.recurrent) { // recurrent models like Mamba or RWKV can't have a state partially erased + llama_kv_cache_seq_rm(cache, -1, -1, -1); + } else { + for (auto & slot : slot_boundaries) { + llama_kv_cache_seq_rm(cache, -1, slot.first, slot.second); + } + } + } + } +}; + // // model loading and saving // @@ -4315,21 +4294,38 @@ struct llama_model_loader { ggml_tensor * tensor; - llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { - const int tensor_idx = gguf_find_tensor(gguf_ctx, name); - offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); + llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { + const int tensor_idx = gguf_find_tensor(gguf_ctx, ggml_get_name(tensor)); + if (tensor_idx < 0) { + throw std::runtime_error(format("tensor '%s' not found in the model", ggml_get_name(tensor))); + } + offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) { - throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name)); + throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor))); } } }; - std::vector weights; + // custom comparator to sort weights more nicely by layer + struct weight_name_comparer { + bool operator()(const std::string & a, const std::string & b) const { + int a_layer = -1; + int b_layer = -1; + sscanf(a.c_str(), "blk.%d.", &a_layer); + sscanf(b.c_str(), "blk.%d.", &b_layer); + if (a_layer != b_layer) { + return a_layer < b_layer; + } + return a < b; + } + }; + + std::map weights_map; std::unordered_map kv_overrides; - struct gguf_context * meta = NULL; - std::vector contexts; + gguf_context_ptr meta; + std::vector contexts; std::string arch_name; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); @@ -4352,7 +4348,7 @@ struct llama_model_loader { /*.ctx = */ &ctx, }; - meta = gguf_init_from_file(fname.c_str(), params); + meta.reset(gguf_init_from_file(fname.c_str(), params)); if (!meta) { throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); } @@ -4367,7 +4363,14 @@ struct llama_model_loader { // For subsidiary files, `meta` tensor data offset must not be used, // so we build a unified tensors index for weights. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(files.back().get(), 0, cur->name, meta, cur); + std::string tensor_name = std::string(cur->name); + // make sure there is no duplicated tensor names + if (weights_map.find(tensor_name) != weights_map.end()) { + throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur))); + } + n_elements += ggml_nelements(cur); + n_bytes += ggml_nbytes(cur); + weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), 0, meta.get(), cur)); } uint16_t n_split = 0; get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); @@ -4397,7 +4400,7 @@ struct llama_model_loader { /*.no_alloc = */ true, /*.ctx = */ &ctx, }; - struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params); + gguf_context_ptr ctx_gguf { gguf_init_from_file(split_path, split_params) }; if (!ctx_gguf) { throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path)); } @@ -4407,17 +4410,22 @@ struct llama_model_loader { // Save tensors data offset info of the shard. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { - weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur); + std::string tensor_name = std::string(cur->name); + // make sure there is no duplicated tensor names + if (weights_map.find(tensor_name) != weights_map.end()) { + throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur))); + } + n_elements += ggml_nelements(cur); + n_bytes += ggml_nbytes(cur); + weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), idx, ctx_gguf.get(), cur)); } - - gguf_free(ctx_gguf); } get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors); // sanity check { - const int n_tensors_loaded = (int) weights.size(); + const int n_tensors_loaded = (int) weights_map.size(); if (n_tensors != n_tensors_loaded) { throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded)); } @@ -4426,23 +4434,10 @@ struct llama_model_loader { LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1); } - n_kv = gguf_get_n_kv(meta); - n_tensors = weights.size(); + n_kv = gguf_get_n_kv(meta.get()); + n_tensors = weights_map.size(); - fver = (enum llama_fver) gguf_get_version(meta); - - std::set tensor_names; - for (auto & w : weights) { - n_elements += ggml_nelements(w.tensor); - n_bytes += ggml_nbytes(w.tensor); - // make sure there is no duplicated tensor names - const std::string name(w.tensor->name); - auto found = tensor_names.find(name); - if (found != tensor_names.end()) { - throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name)); - } - tensor_names.insert(name); - } + fver = (enum llama_fver) gguf_get_version(meta.get()); LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); @@ -4455,8 +4450,10 @@ struct llama_model_loader { uint32_t n_type_max = 0; enum ggml_type type_max = GGML_TYPE_F32; - for (int i = 0; i < n_tensors; i++) { - const ggml_tensor * tensor = weights.at(i).tensor; + for (const auto & it : weights_map) { + const llama_tensor_weight & w = it.second; + const ggml_tensor * tensor = w.tensor; + enum ggml_type type = tensor->type; n_type[type]++; @@ -4467,8 +4464,8 @@ struct llama_model_loader { } if (trace > 0) { - const uint16_t sid = weights.at(i).idx; - LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); + const uint16_t sid = w.idx; + LLAMA_LOG_INFO("%s: - tensor split %2d: %32s %-8s [ %s ]\n", __func__, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); } } @@ -4511,23 +4508,23 @@ struct llama_model_loader { ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); { - const int kid = gguf_find_key(meta, "general.file_type"); // TODO: use LLM_KV + const int kid = gguf_find_key(meta.get(), "general.file_type"); // TODO: use LLM_KV if (kid >= 0) { - ftype = (llama_ftype) gguf_get_val_u32(meta, kid); + ftype = (llama_ftype) gguf_get_val_u32(meta.get(), kid); } } LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); for (int i = 0; i < n_kv; i++) { - const char * name = gguf_get_key(meta, i); - const enum gguf_type type = gguf_get_kv_type(meta, i); + const char * name = gguf_get_key(meta.get(), i); + const enum gguf_type type = gguf_get_kv_type(meta.get(), i); const std::string type_name = type == GGUF_TYPE_ARRAY - ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i)) + ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i)) : gguf_type_name(type); - std::string value = gguf_kv_to_str(meta, i); + std::string value = gguf_kv_to_str(meta.get(), i); const size_t MAX_VALUE_LEN = 40; if (value.size() > MAX_VALUE_LEN) { value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); @@ -4556,19 +4553,10 @@ struct llama_model_loader { this->check_tensors = check_tensors; } - ~llama_model_loader() { - if (meta) { - gguf_free(meta); - } - for (auto * ctx : contexts) { - ggml_free(ctx); - } - } - template typename std::enable_if::value, bool>::type get_arr_n(const std::string & key, T & result, const bool required = true) { - const int kid = gguf_find_key(meta, key.c_str()); + const int kid = gguf_find_key(meta.get(), key.c_str()); if (kid < 0) { if (required) { @@ -4578,7 +4566,7 @@ struct llama_model_loader { } struct GGUFMeta::ArrayInfo arr_info = - GGUFMeta::GKV::get_kv(meta, kid); + GGUFMeta::GKV::get_kv(meta.get(), kid); result = arr_info.length; @@ -4593,9 +4581,9 @@ struct llama_model_loader { template bool get_arr(const std::string & key, std::vector & result, const bool required = true) { - const int kid = gguf_find_key(meta, key.c_str()); + const int kid = gguf_find_key(meta.get(), key.c_str()); - if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) { + if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) { if (required) { throw std::runtime_error(format("array key not found in model: %s", key.c_str())); } @@ -4603,7 +4591,7 @@ struct llama_model_loader { } struct GGUFMeta::ArrayInfo arr_info = - GGUFMeta::GKV::get_kv(meta, kid); + GGUFMeta::GKV::get_kv(meta.get(), kid); switch (arr_info.gt) { case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; @@ -4622,9 +4610,9 @@ struct llama_model_loader { template bool get_arr(const std::string & key, std::array & result, const bool required = true) { - const int kid = gguf_find_key(meta, key.c_str()); + const int kid = gguf_find_key(meta.get(), key.c_str()); - if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) { + if (kid < 0 || gguf_get_kv_type(meta.get(), kid) != GGUF_TYPE_ARRAY) { if (required) { throw std::runtime_error(format("array key not found in model: %s", key.c_str())); } @@ -4632,7 +4620,7 @@ struct llama_model_loader { } struct GGUFMeta::ArrayInfo arr_info = - GGUFMeta::GKV::get_kv(meta, kid); + GGUFMeta::GKV::get_kv(meta.get(), kid); switch (arr_info.gt) { case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same::value)); break; @@ -4664,7 +4652,7 @@ struct llama_model_loader { const struct llama_model_kv_override * override = it != kv_overrides.end() ? &it->second : nullptr; - const bool found = GGUFMeta::GKV::set(meta, key, result, override); + const bool found = GGUFMeta::GKV::set(meta.get(), key, result, override); if (required && !found) { throw std::runtime_error(format("key not found in model: %s", key.c_str())); @@ -4681,7 +4669,7 @@ struct llama_model_loader { // get array of n <= N_MAX elements, or a single element repeated n times template bool get_key_or_arr(const std::string & key, std::array & result, uint32_t n, const bool required = true) { - const int kid = gguf_find_key(meta, key.c_str()); + const int kid = gguf_find_key(meta.get(), key.c_str()); if (kid < 0) { if (required) { @@ -4694,9 +4682,9 @@ struct llama_model_loader { throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str())); } - if (gguf_get_kv_type(meta, kid) == GGUF_TYPE_ARRAY) { + if (gguf_get_kv_type(meta.get(), kid) == GGUF_TYPE_ARRAY) { struct GGUFMeta::ArrayInfo arr_info = - GGUFMeta::GKV::get_kv(meta, kid); + GGUFMeta::GKV::get_kv(meta.get(), kid); if (n != arr_info.length) { throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length)); @@ -4732,21 +4720,13 @@ struct llama_model_loader { return llm_kv.arch; } - const char * get_tensor_name(int i) const { - return weights.at(i).tensor->name; - } - const llama_tensor_weight * get_weight(const char * name) const { - for (const auto & weight : weights) { - if (strcmp(name, weight.tensor->name) == 0) { - return &weight; - } + auto pos = weights_map.find(name); + if (pos != weights_map.end()) { + return &pos->second; } - return nullptr; - } - const llama_tensor_weight * get_weight(int i) const { - return get_weight(get_tensor_name(i)); + return nullptr; } const llama_tensor_weight & require_weight(const char * name) const { @@ -4765,31 +4745,14 @@ struct llama_model_loader { return weight->tensor; } - struct ggml_tensor * require_tensor_meta(const char * name) const { - struct ggml_tensor * tensor = get_tensor_meta(name); + struct ggml_tensor * require_tensor_meta(const std::string & name) const { + struct ggml_tensor * tensor = get_tensor_meta(name.c_str()); if (!tensor) { - throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); } return tensor; } - struct ggml_tensor * get_tensor_meta(int i) const { - return get_tensor_meta(get_tensor_name(i)); - } - - struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) { - struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); - ggml_set_name(tensor, ggml_get_name(cur)); - - if (duplicated) { - size_data += ggml_nbytes(cur); - } else { - n_created++; - } - - return tensor; - } - const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector & ne, bool required) const { const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); @@ -4830,7 +4793,19 @@ struct llama_model_loader { return NULL; } - return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED); + bool duplicated = flags & TENSOR_DUPLICATED; + + struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); + ggml_set_name(tensor, ggml_get_name(cur)); + + if (duplicated) { + size_data += ggml_nbytes(cur); + } else { + n_created++; + } + + return tensor; + } struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list & ne, size_t offset, bool required = true) { @@ -4884,8 +4859,8 @@ struct llama_model_loader { } // compute the total size of all tensors for progress reporting - for (auto & w : weights) { - size_data += ggml_nbytes(w.tensor); + for (const auto & it : weights_map) { + size_data += ggml_nbytes(it.second.tensor); } } @@ -4897,19 +4872,12 @@ struct llama_model_loader { *last = 0; *addr = mapping->addr; for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { - try { - const auto * weight = get_weight(ggml_get_name(tensor)); - if (!weight) { - continue; - } - if (weight->idx != idx) { - continue; - } - *first = std::min(*first, weight->offs); - *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); - } catch(...) { - // the tensor is not in the model + const auto * weight = get_weight(ggml_get_name(tensor)); + if (!weight || weight->idx != idx) { + continue; } + *first = std::min(*first, weight->offs); + *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); } } @@ -4962,7 +4930,7 @@ struct llama_model_loader { std::vector events; std::vector host_ptrs; size_t buffer_idx = 0; // buffer to use for async loads - ggml_backend_t upload_backend = [&](const char * fn) -> ggml_backend_t { + ggml_backend_t upload_backend = [&](const char * func) -> ggml_backend_t { if (use_mmap || check_tensors) { return nullptr; } @@ -4970,20 +4938,20 @@ struct llama_model_loader { // First determine if the backend supports the necessary features for async uploads. auto * buf = bufs.count(0) ? bufs.at(0) : nullptr; if (!buf) { - LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", fn); + LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", func); return nullptr; } auto * buft = ggml_backend_buffer_get_type(buf); auto * dev = ggml_backend_buft_get_device(buft); if (!dev) { - LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", fn, + LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", func, ggml_backend_buft_name(buft)); return nullptr; } if (buft != ggml_backend_dev_buffer_type(dev)) { - LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", fn, + LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", func, ggml_backend_buft_name(buft), ggml_backend_dev_name(dev)); return nullptr; } @@ -4991,14 +4959,14 @@ struct llama_model_loader { ggml_backend_dev_props props; ggml_backend_dev_get_props(dev, &props); if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) { - LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", fn, + LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", func, ggml_backend_dev_name(dev)); return nullptr; } auto * host_buft = ggml_backend_dev_host_buffer_type(dev); if (!host_buft) { - LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", fn, + LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", func, ggml_backend_dev_name(dev)); return nullptr; } @@ -5007,7 +4975,7 @@ struct llama_model_loader { for (size_t idx = 0; idx < n_buffers; ++idx) { auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size); if (!buf) { - LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", fn, + LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", func, ggml_backend_dev_name(dev)); return nullptr; } @@ -5017,7 +4985,7 @@ struct llama_model_loader { auto * event = ggml_backend_event_new(dev); if (!event) { - LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", fn, + LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", func, ggml_backend_dev_name(dev)); return nullptr; } @@ -5027,7 +4995,7 @@ struct llama_model_loader { ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (!backend) { - LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", fn, + LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", func, ggml_backend_dev_name(dev)); return nullptr; } @@ -5086,7 +5054,6 @@ struct llama_model_loader { ggml_backend_tensor_set(cur, data, 0, n_size); } } else { - GGML_ASSERT(weight->idx < files.size()); const auto & file = files.at(weight->idx); if (ggml_backend_buffer_is_host(cur->buffer)) { file->seek(weight->offs, SEEK_SET); @@ -5323,6 +5290,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_1B: return "1B"; case MODEL_1_3B: return "1.3B"; case MODEL_1_4B: return "1.4B"; + case MODEL_1_5B: return "1.5B"; case MODEL_1_6B: return "1.6B"; case MODEL_2B: return "2B"; case MODEL_2_8B: return "2.8B"; @@ -5387,7 +5355,7 @@ static void llm_load_hparams( llama_model_loader & ml, llama_model & model) { auto & hparams = model.hparams; - const gguf_context * ctx = ml.meta; + const gguf_context * ctx = ml.meta.get(); // get metadata as string for (int i = 0; i < gguf_get_n_kv(ctx); i++) { @@ -5694,6 +5662,7 @@ static void llm_load_hparams( ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break; + case 28: model.type = hparams.n_embd == 1536 ? e_model::MODEL_1_5B : e_model::MODEL_7B; break; case 32: model.type = e_model::MODEL_7B; break; case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break; case 80: model.type = e_model::MODEL_70B; break; @@ -6154,7 +6123,7 @@ static void llm_load_vocab( llama_model & model) { auto & vocab = model.vocab; - struct gguf_context * ctx = ml.meta; + struct gguf_context * ctx = ml.meta.get(); const auto kv = LLM_KV(model.arch); @@ -7000,6 +6969,357 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { } } +enum llm_tensor_layer { + LLM_TENSOR_LAYER_INPUT, + LLM_TENSOR_LAYER_REPEATING, + LLM_TENSOR_LAYER_OUTPUT, +}; + +struct llm_tensor_info { + llm_tensor_layer layer; + ggml_op op; +}; + +static const std::map llm_tensor_info_mapping = { + {LLM_TENSOR_TOKEN_EMBD, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_POS_EMBD, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_TOKEN_EMBD_NORM, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_TOKEN_TYPES, {LLM_TENSOR_LAYER_INPUT, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_OUTPUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CLS, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CLS_OUT, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_OUTPUT_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_OUTPUT_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, + {LLM_TENSOR_ENC_OUTPUT_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, + {LLM_TENSOR_ROPE_FREQS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ROPE}}, + {LLM_TENSOR_ROPE_FACTORS_LONG, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ROPE}}, + {LLM_TENSOR_ROPE_FACTORS_SHORT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ROPE}}, + {LLM_TENSOR_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_DOWN_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_UP_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_Q_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_Q_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_KV_A_MQA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_KV_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_DOWN_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_UP_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_Q_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_Q_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_KV_A_MQA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ATTN_KV_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_CROSS_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_CROSS_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_CROSS_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_CROSS_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_DEC_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_ENC_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE_INP_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_GATE_INP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_IN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_DT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_SSM_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_W1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_W2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_DECAY_W1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_DECAY_W2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_KEY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_VALUE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_RECEPTANCE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_TIME_MIX_OUTPUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CHANNEL_MIX_KEY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_CHANNEL_MIX_VALUE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, + {LLM_TENSOR_FFN_ACT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_DIV}}, + {LLM_TENSOR_SSM_CONV1D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}}, + {LLM_TENSOR_SSM_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_SCAN}}, + {LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_TIME_MIX_LN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_CHANNEL_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_CHANNEL_MIX_LERP_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_TIME_MIX_LERP_W, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_LERP_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_LERP_R, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_LERP_G, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_DECAY, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}}, + {LLM_TENSOR_TIME_MIX_FIRST, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_RWKV_WKV6}}, + {LLM_TENSOR_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_NORM_2, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_OUT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_FFN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_FFN_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_FFN_NORM_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_Q_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_LAYER_OUT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_Q_A_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_KV_A_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ATTN_SUB_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_FFN_SUB_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_CROSS_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_FFN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ENC_ATTN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_ENC_FFN_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, + {LLM_TENSOR_DEC_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_ENC_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_GET_ROWS}}, + {LLM_TENSOR_FFN_DOWN_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, + {LLM_TENSOR_FFN_GATE_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, + {LLM_TENSOR_FFN_UP_EXPS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT_ID}}, + // this tensor is loaded for T5, but never used + {LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}}, +}; + +// checks if the weight tensor can be used with the specified buffer type and device +static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) { + GGML_ASSERT(w != nullptr); + + if (op == GGML_OP_NONE) { + return true; + } + + ggml_init_params params = { + /*.mem_size =*/ ggml_tensor_overhead()*8, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context_ptr ctx_ptr { ggml_init(params) }; + if (!ctx_ptr) { + throw std::runtime_error(format("failed to create ggml context")); + } + ggml_context * ctx = ctx_ptr.get(); + + ggml_tensor * op_tensor = nullptr; + + switch (op) { + case GGML_OP_GET_ROWS: + { + ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512); + op_tensor = ggml_get_rows(ctx, w, b); + } break; + case GGML_OP_MUL_MAT: + { + ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]); + op_tensor = ggml_mul_mat(ctx, w, b); + } break; + case GGML_OP_MUL_MAT_ID: + { + int n_expert_used = hparams.n_expert_used; + ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512); + ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512); + op_tensor = ggml_mul_mat_id(ctx, w, b, ids); + } break; + case GGML_OP_ADD: + { + ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, w->ne[0], 512); + op_tensor = ggml_add(ctx, a, w); + } break; + case GGML_OP_MUL: + { + ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, w->ne[0], 512); + op_tensor = ggml_mul(ctx, a, w); + } break; + case GGML_OP_DIV: + { + ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]); + op_tensor = ggml_div(ctx, a, w); + } break; + case GGML_OP_ROPE: + { + int n_embd_head = hparams.n_embd_head_v; + int n_head = hparams.n_head(); + ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512); + ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512); + op_tensor = ggml_rope_ext( + ctx, a, b, w, + 0, 0, 0, 0, 0, + 0, 0, 0, 0 + ); + + } break; + case GGML_OP_SSM_CONV: + { + // FIXME + ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789); + op_tensor = ggml_ssm_conv(ctx, conv_x, w); + } break; + case GGML_OP_SSM_SCAN: + { + // FIXME + const int64_t d_state = w->ne[0]; + const int64_t d_inner = w->ne[1]; + const int64_t n_seq_tokens = 512; + const int64_t n_seqs = 1; + ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs); + ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs); + ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs); + ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs); + ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs); + op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C); + } break; + case GGML_OP_RWKV_WKV6: + { + // FIXME + const int64_t S = 123; + const int64_t H = 123; + const int64_t n_tokens = 123; + const int64_t n_seqs = 123; + ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, 1, H, n_tokens); + ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens); + ggml_tensor * r = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens); + ggml_tensor * tf = w; + ggml_tensor * td = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, 1, S, H, n_tokens); + ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H); + op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state); + } break; + default: + GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name); + } + + // create a temporary dummy buffer for the weight so that supports_op can check the buffer type + GGML_ASSERT(w->buffer == nullptr); + w->buffer = ggml_backend_buft_alloc_buffer(buft, 0); + bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor); + ggml_backend_buffer_free(w->buffer); + w->buffer = nullptr; + + return op_supported; +} + +// find the first buffer type in the list that can use the tensor +static ggml_backend_buffer_type_t select_weight_buft(const llama_model & model, ggml_tensor * tensor, ggml_op op, const llama_model::buft_list_t & buft_list) { + GGML_ASSERT(!buft_list.empty()); + for (const auto & cur : buft_list) { + ggml_backend_dev_t cur_dev = cur.first; + ggml_backend_buffer_type_t cur_buft = cur.second; + if (weight_buft_supported(model.hparams, tensor, op, cur_buft, cur_dev)) { + return cur_buft; + } + } + return nullptr; +} + +// CPU: ACCEL -> CPU extra -> GPU host -> CPU +static llama_model::buft_list_t make_cpu_buft_list(llama_model & model) { + llama_model::buft_list_t buft_list; + + // add ACCEL buffer types + for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { + ggml_backend_dev_t dev = ggml_backend_dev_get(i); + if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) { + auto * buft = ggml_backend_dev_buffer_type(dev); + // skip + if (buft != ggml_backend_cpu_buffer_type()) { + buft_list.emplace_back(dev, buft); + } + } + } + + // add extra buffer types + auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); + auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev); + auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t) + ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_cpu_get_extra_bufts"); + if (ggml_backend_dev_get_extra_bufts_fn) { + ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev); + while (extra_bufts && *extra_bufts) { + buft_list.emplace_back(cpu_dev, *extra_bufts); + ++extra_bufts; + } + } + + // add a host buffer type + // storing the tensors in a host buffer is useful when the processing of large batches + // is offloaded to a GPU device, since it reduces the time spent on data transfers + // generally, this will be done using the first device in the list + // a better approach would be to handle this on a weight-by-weight basis using the offload_op + // function of the device to determine if it would benefit from being stored in a host buffer + for (auto * dev : model.devices) { + ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev); + if (buft) { + buft_list.emplace_back(dev, buft); + break; + } + } + + // add the CPU buffer type + for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { + ggml_backend_dev_t dev = ggml_backend_dev_get(i); + if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) { + buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev)); + } + } + + return buft_list; +} + +// GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU +static llama_model::buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, enum llama_split_mode split_mode, const float * tensor_split) { + llama_model::buft_list_t buft_list; + + // add the device split buffer type if requested and available + if (split_mode == LLAMA_SPLIT_MODE_ROW) { + ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev); + auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t) + ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type"); + if (ggml_backend_split_buffer_type_fn) { + size_t dev_index = [&]() { + auto * reg = ggml_backend_dev_backend_reg(dev); + for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) { + if (ggml_backend_reg_dev_get(reg, i) == dev) { + return i; + } + } + throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev))); + }(); + auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split); + if (buft != nullptr) { + buft_list.emplace_back(dev, buft); + } + } + } + + // add the device default buffer type + buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev)); + + return buft_list; +} + // Returns false if cancelled by progress_callback static bool llm_load_tensors( llama_model_loader & ml, @@ -7013,135 +7333,98 @@ static bool llm_load_tensors( void * progress_callback_user_data) { auto & hparams = model.hparams; - // check if the value of main_gpu is valid - if (llama_get_device_count(model) > 0 && - split_mode != LLAMA_SPLIT_MODE_LAYER && - (main_gpu < 0 || main_gpu >= llama_get_device_count(model))) { - throw std::runtime_error(format("invalid value for main_gpu: %d (available devices: %d)", main_gpu, llama_get_device_count(model))); - } - model.split_mode = split_mode; model.main_gpu = main_gpu; model.n_gpu_layers = n_gpu_layers; const int n_layer = hparams.n_layer; - const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0); bool use_mmap_buffer = true; - // there is very little benefit to offloading the input layer, so always keep it on the CPU - model.buft_input = llama_default_buffer_type_cpu(model, true); - //model.buft_input = llama_default_buffer_type_offload(main_gpu); - - model.buft_layer.resize(n_layer); - - // assign cpu layers - for (int i = 0; i < i_gpu_start; ++i) { -#ifdef GGML_USE_AMX - model.buft_layer[i] = { - ggml_backend_amx_buffer_type(), - llama_default_buffer_type_cpu(model, true) - }; -#else - model.buft_layer[i] = llama_default_buffer_type_cpu(model, true); -#endif + // build a list of buffer types for the CPU and GPU devices + model.cpu_buft_list = make_cpu_buft_list(model); + for (auto * dev : model.devices) { + llama_model::buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split); + // add CPU buffer types as a fallback + buft_list.insert(buft_list.end(), model.cpu_buft_list.begin(), model.cpu_buft_list.end()); + model.gpu_buft_list.emplace(dev, std::move(buft_list)); } - if (split_mode == LLAMA_SPLIT_MODE_LAYER) { - // calculate the split points - int device_count = llama_get_device_count(model); - bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; }); - std::vector splits(device_count); - if (all_zero) { - // default split, by free memory - for (int i = 0; i < device_count; ++i) { - splits[i] = llama_get_device_memory(model, i); - } - } else { - std::copy(tensor_split, tensor_split + device_count, splits.begin()); - } - - // sum and normalize the splits to get the split points - float split_sum = 0.0f; + // calculate the split points + int device_count = llama_get_device_count(model); + bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; }); + std::vector splits(device_count); + if (all_zero) { + // default split, by free memory for (int i = 0; i < device_count; ++i) { - split_sum += splits[i]; - splits[i] = split_sum; - } - for (int i = 0; i < device_count; ++i) { - splits[i] /= split_sum; - } - - // assign the repeating layers to the devices according to the splits - int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1); - for (int i = i_gpu_start; i < n_layer; ++i) { - int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin(); - model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu); - } - // assign the output layer - if (n_gpu_layers > n_layer) { - int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin(); - model.buft_output = llama_default_buffer_type_offload(model, layer_gpu); - } else { - model.buft_output = llama_default_buffer_type_cpu(model, true); + ggml_backend_dev_t dev = model.devices[i]; + size_t total; + size_t free; + ggml_backend_dev_memory(dev, &free, &total); + splits[i] = free; } } else { - ggml_backend_buffer_type_t split_buft; - if (split_mode == LLAMA_SPLIT_MODE_ROW) { - split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split); - } else { - // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported - split_buft = llama_default_buffer_type_offload(model, main_gpu); - } - // assign the repeating layers - for (int i = i_gpu_start; i < n_layer; ++i) { - model.buft_layer[i] = { - split_buft, - llama_default_buffer_type_offload(model, main_gpu) - }; - } - // assign the output layer - if (n_gpu_layers > n_layer) { - model.buft_output = { - split_buft, - llama_default_buffer_type_offload(model, main_gpu) - }; - } else { - model.buft_output = llama_default_buffer_type_cpu(model, true); - } + std::copy(tensor_split, tensor_split + device_count, splits.begin()); } - // count used buffer types - std::map buft_layer_count; - buft_layer_count[model.buft_input.buft]++; - buft_layer_count[model.buft_input.buft_matrix]++; - buft_layer_count[model.buft_output.buft]++; - buft_layer_count[model.buft_output.buft_matrix]++; - for (int i = 0; i < n_layer; ++i) { - buft_layer_count[model.buft_layer[i].buft]++; - buft_layer_count[model.buft_layer[i].buft_matrix]++; + // sum and normalize the splits to get the split points + float split_sum = 0.0f; + for (int i = 0; i < device_count; ++i) { + split_sum += splits[i]; + splits[i] = split_sum; + } + for (int i = 0; i < device_count; ++i) { + splits[i] /= split_sum; } - // create one context per buffer type - size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output + ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); + const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0); + const int act_gpu_layers = model.devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1); + auto get_layer_buft_list = [&](int il) -> llama_model::layer_dev { + if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) { + return {cpu_dev, &model.cpu_buft_list}; + } + int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(il - i_gpu_start)/act_gpu_layers) - splits.begin(); + auto * dev = model.devices.at(layer_gpu); + return {dev, &model.gpu_buft_list.at(dev)}; + }; - // for moe merged tensors - ctx_size += ggml_tensor_overhead()*n_layer*3; + // assign the input layer + // there is very little benefit to offloading the input layer, so always keep it on the CPU + model.dev_input = { cpu_dev, &model.cpu_buft_list }; + + // assign the repeating layers to the devices according to the splits + model.dev_layer.resize(n_layer); + for (int il = 0; il < n_layer; ++il) { + model.dev_layer[il] = get_layer_buft_list(il); + } + // assign the output layer + model.dev_output = get_layer_buft_list(n_layer); + + // one ggml context per buffer type + int max_n_tensors = ml.n_tensors; + max_n_tensors += 1; // duplicated output tensor + max_n_tensors += n_layer*2; // duplicated rope freq tensors + const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors; std::map ctx_map; - for (auto & it : buft_layer_count) { - struct ggml_init_params params = { - /*.mem_size =*/ ctx_size, - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ true, - }; - ggml_context * ctx = ggml_init(params); - if (!ctx) { - throw std::runtime_error(format("failed to create context")); + auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { + auto it = ctx_map.find(buft); + if (it == ctx_map.end()) { + ggml_init_params params = { + /*.mem_size =*/ ctx_size, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context * ctx = ggml_init(params); + if (!ctx) { + throw std::runtime_error(format("failed to create ggml context")); + } + ctx_map[buft] = ctx; + model.ctxs.emplace_back(ctx); + return ctx; } - ctx_map[it.first] = ctx; - model.ctxs.push_back(ctx); - } - - LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0); + return it->second; + }; // create tensors for the weights { @@ -7166,15 +7449,107 @@ static bool llm_load_tensors( throw std::runtime_error("model has expert layers but no expert layers are used"); } - ggml_context * ctx_input = ctx_map.at(model.buft_input.buft); - ggml_context * ctx_output = ctx_map.at(model.buft_output.buft); - ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix); + int n_moved_tensors = 0; + ggml_tensor * first_moved_tensor = nullptr; + ggml_backend_buffer_type_t first_moved_from_buft = nullptr; + ggml_backend_buffer_type_t first_moved_to_buft = nullptr; - auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); }; - auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); }; + auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list & ne, int flags) -> ggml_tensor * { + ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str()); + + if (!t_meta) { + if (flags & llama_model_loader::TENSOR_NOT_REQUIRED) { + return nullptr; + } + throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str())); + } + + // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops + // the tensor is duplicated + // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor + llm_tensor tn_tensor = tn.tensor; + if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & llama_model_loader::TENSOR_DUPLICATED) { + tn_tensor = LLM_TENSOR_OUTPUT; + } + + auto it = llm_tensor_info_mapping.find(tn_tensor); + if (it == llm_tensor_info_mapping.end()) { + throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str())); + } + const auto & info = it->second; + + // tensors with "bias" suffix are always used with GGML_OP_ADD + ggml_op op; + bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0; + if (bias) { + op = GGML_OP_ADD; + } else { + op = info.op; + } + + // sanity checks + if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) { + if (tn.bid != -1) { + GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str()); + } + } else { + if (tn.bid == -1) { + GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str()); + } + } + + // select the buffer type for this tensor + llama_model::buft_list_t * buft_list; + switch (info.layer) { + case LLM_TENSOR_LAYER_INPUT: + buft_list = model.dev_input.buft_list; + break; + case LLM_TENSOR_LAYER_OUTPUT: + buft_list = model.dev_output.buft_list; + break; + case LLM_TENSOR_LAYER_REPEATING: + buft_list = model.dev_layer.at(tn.bid).buft_list; + break; + default: + GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str()); + } + + ggml_backend_buffer_type_t buft = select_weight_buft(model, t_meta, op, *buft_list); + if (!buft) { + throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str())); + } + + // avoid using a host buffer when using mmap + auto * buft_dev = ggml_backend_buft_get_device(buft); + if (ml.use_mmap && buft == ggml_backend_dev_host_buffer_type(buft_dev)) { + auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU); + buft = ggml_backend_dev_buffer_type(cpu_dev); + } + + if (buft != buft_list->front().second) { + n_moved_tensors++; + if (!first_moved_tensor) { + first_moved_tensor = t_meta; + first_moved_from_buft = buft_list->front().second; + first_moved_to_buft = buft; + } + } + + ggml_context * ctx = ctx_for_buft(buft); + + // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one + if (flags & llama_model_loader::TENSOR_DUPLICATED) { + ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str()); + if (t) { + return t; + } + } + return ml.create_tensor(ctx, tn, ne, flags); + }; model.layers.resize(n_layer); + // TODO: move to a separate function const auto tn = LLM_TN(model.arch); switch (model.arch) { case LLM_ARCH_LLAMA: @@ -7183,82 +7558,51 @@ static bool llm_load_tensors( case LLM_ARCH_GRANITE: case LLM_ARCH_GRANITE_MOE: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); if (n_expert == 0) { - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional MLP bias - layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); } else { - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED); - if (layer.ffn_gate_exps) { - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - } else { - // merge split expert into a single tensor for compatibility with older models - // requires disabling mmap - use_mmap_buffer = false; - - ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; - ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; - ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; - - layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); - layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); - layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); - - ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); - ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); - ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); - - for (uint32_t x = 0; x < n_expert; ++x) { - // the individual experts are loaded into a view of the merged tensor - ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); - ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); - ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); - } - } + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } } break; @@ -7269,45 +7613,40 @@ static bool llm_load_tensors( const int64_t q_lora_rank = hparams.n_lora_q; const int64_t kv_lora_rank = hparams.n_lora_kv; - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0); - layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}); + layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); - layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}); - layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}); + layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0); + layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0); - layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}); - layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}); + layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0); + layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); - layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); - layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); } } break; case LLM_ARCH_GROK: @@ -7316,904 +7655,782 @@ static bool llm_load_tensors( throw std::runtime_error("Grok model cannot have zero experts"); } - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); + layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); - if (layer.ffn_gate_exps) { - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - } else { - // merge split expert into a single tensor for compatibility with older models - // requires disabling mmap - use_mmap_buffer = false; - - ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; - ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; - ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; - - layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); - layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); - layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); - - ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); - ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); - ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); - - for (uint32_t x = 0; x < n_expert; ++x) { - // the individual experts are loaded into a view of the merged tensor - ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); - ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); - ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); - } - } - - layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); + layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_DBRX: - { - if (n_expert == 0) { - throw std::runtime_error("DBRX model cannot have zero experts"); - } - - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - // output { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + if (n_expert == 0) { + throw std::runtime_error("DBRX model cannot have zero experts"); + } - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); - auto & layer = model.layers[i]; + // output + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + for (int i = 0; i < n_layer; ++i) { + auto & layer = model.layers[i]; - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - } - } break; + layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); + + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); + } + } break; case LLM_ARCH_BAICHUAN: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_FALCON: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); if (!model.output) { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU } } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_STARCODER: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + model.pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); // output { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); if (!model.output) { // needs to be on GPU - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + model.type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}, 0); if (model.arch == LLM_ARCH_BERT) { - model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}); + model.pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); - model.cls = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - model.cls_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - model.cls_out = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, llama_model_loader::TENSOR_NOT_REQUIRED); - model.cls_out_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); } - model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); - model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); + model.tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); + model.tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; if (model.arch == LLM_ARCH_BERT) { - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); } else { - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); } - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); - layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}); + layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); + layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); if (model.arch == LLM_ARCH_BERT) { - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); } else { - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); } - layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); - layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}); + layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0); + layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0); } } break; case LLM_ARCH_JINA_BERT_V2: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings - model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); // token_type_embeddings + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings + model.type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}, 0); // token_type_embeddings - model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm - model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias + model.tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm + model.tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias - model.cls = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, llama_model_loader::TENSOR_NOT_REQUIRED); - model.cls_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "bias"), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; // JinaBertLayer - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens - layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm - layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}); + layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm + layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0); - layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); - layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); - layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}); + layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0); + layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0); } } break; case LLM_ARCH_BLOOM: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); - model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + model.tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); + model.tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_MPT: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + model.pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - if (!model.output) { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU - } + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + if (!model.output) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); // AWQ ScaleActivation layer - layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_STABLELM: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors, present in Stable LM 2 1.6B - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); // optional q and k layernorms, present in StableLM 2 12B - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED); // optional FFN norm, not present in StableLM 2 12B which uses parallel residual - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_QWEN: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0); } } break; case LLM_ARCH_QWEN2: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_QWEN2MOE: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); - GGML_ASSERT(n_expert > 0); - GGML_ASSERT(n_expert_used > 0); + if (n_expert == 0) { + throw std::runtime_error("n_expert must be > 0 for QWEN2MOE"); + } + if (n_expert_used == 0) { + throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE"); + } // MoE branch const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used; - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // Shared expert branch const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff; - layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}); - layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}); - layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}); - layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}); + layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0); + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0); } } break; case LLM_ARCH_PHI2: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + model.output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); if (layer.wqkv == nullptr) { - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); } - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_PHI3: { const int64_t n_embd_head = n_embd / n_head; - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0); - layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); - layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); } } break; case LLM_ARCH_PLAMO: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_GPT2: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + model.pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_CODESHELL: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_ORION: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); + + for (int i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_INTERNLM2: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_GEMMA: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); } } break; case LLM_ARCH_GEMMA2: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}); - layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); + layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0); } } break; case LLM_ARCH_STARCODER2: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional bias tensors - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0); } } break; case LLM_ARCH_MAMBA: @@ -8224,284 +8441,252 @@ static bool llm_load_tensors( const int64_t dt_rank = hparams.ssm_dt_rank; // only an expansion factor of 2 is supported for now - GGML_ASSERT(2 * n_embd == d_inner); + if (2 * n_embd != d_inner) { + throw std::runtime_error("only an expansion factor of 2 is supported for now"); + } - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed, duplicated to allow offloading - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed, duplicated to allow offloading + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; // norm - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}); + layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0); - layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}); - layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}); + layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0); + layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0); - layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}); + layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0); - layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}); - layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}); + layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0); + layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0); // no "weight" suffix for these - layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}); - layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner}); + layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0); + layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0); // out_proj - layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}); + layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0); } } break; case LLM_ARCH_XVERSE: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); + + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_COMMAND_R: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - // init output from the input tok embed - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + // init output from the input tok embed + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (n_layer >= 64){ - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0); } - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_OLMOE: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); - GGML_ASSERT(n_expert > 0); - GGML_ASSERT(n_expert_used > 0); + if (n_expert == 0) { + throw std::runtime_error("n_expert must be > 0"); + } + if (n_expert_used == 0) { + throw std::runtime_error("n_expert_used must be > 0"); + } // MoE branch - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}); - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } break; case LLM_ARCH_OPENELM: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - // init output from the input tok embed - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + // init output from the input tok embed + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); for (int i = 0; i < n_layer; ++i) { const int64_t n_head = hparams.n_head(i); const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head; const int64_t n_ff = hparams.n_ff(i); - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}); - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_GPTNEOX: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_ARCTIC: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); - layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}); - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); + layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0); } } break; case LLM_ARCH_DEEPSEEK2: @@ -8517,349 +8702,313 @@ static bool llm_load_tensors( const int64_t n_ff_exp = hparams.n_ff_exp; const int64_t n_expert_shared = hparams.n_expert_shared; - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); if (!is_lite) { - layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}); + layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0); } - layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}); + layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0); if (!is_lite) { - layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}); - layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}); + layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0); + layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0); } else { - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); } - layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}); - layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}); + layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0); + layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); if (i < (int) hparams.n_layer_dense_lead) { - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } else { - layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0); - GGML_ASSERT(n_expert > 0); - GGML_ASSERT(n_expert_used > 0); + if (n_expert == 0) { + throw std::runtime_error("n_expert must be > 0"); + } + if (n_expert_used == 0) { + throw std::runtime_error("n_expert_used must be > 0"); + } // MoE branch - layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); - layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}); - layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); + layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); + layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0); + layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0); // Shared expert branch - layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}); - layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}); - layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}); + layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); + layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0); + layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0); } } } break; case LLM_ARCH_BITNET: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_T5: { const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts; - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); - layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}); + layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); - layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0); - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); - layer.attn_norm_cross = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0); // this tensor seems to be unused in HF transformers implementation - layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wv_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); - layer.wo_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}); + layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_T5ENCODER: { const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts; - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); - layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}); + layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0); - layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_JAIS: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); - // Output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + // output + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0); } } break; case LLM_ARCH_CHATGLM: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0); + layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0); } } break; case LLM_ARCH_NEMOTRON: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); // optional bias tensors - layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); // optional MLP bias - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED); } } break; case LLM_ARCH_EXAONE: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); + layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0)); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; case LLM_ARCH_RWKV6: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // Block 0, LN0 - model.tok_norm = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); - model.tok_norm_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); + model.tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); + model.tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); // output - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0); const int time_mix_extra_dim = hparams.time_mix_extra_dim; const int time_decay_extra_dim = hparams.time_decay_extra_dim; @@ -8868,90 +9017,88 @@ static bool llm_load_tensors( const int ffn_size = hparams.n_ff_arr[0]; for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0); - layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}); - layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}); + layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0); + layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0); - layer.time_mix_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}); - layer.time_mix_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}); + layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0); + layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0); - layer.time_mix_lerp_x = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}); - layer.time_mix_lerp_w = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}); - layer.time_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}); - layer.time_mix_lerp_v = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}); - layer.time_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}); - layer.time_mix_lerp_g = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}); + layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0); + layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, 0); + layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0); + layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, 0); + layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0); + layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, 0); - layer.time_mix_first = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}); - layer.time_mix_decay = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}); - layer.time_mix_decay_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}); - layer.time_mix_decay_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}); - layer.time_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}); - layer.time_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}); - layer.time_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}); - layer.time_mix_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}); + layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0); + layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0); + layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0); + layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0); + layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0); + layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0); + layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0); + layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0); - layer.time_mix_ln = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}); - layer.time_mix_ln_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}); - layer.time_mix_output = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}); + layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0); + layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0); + layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0); - layer.channel_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}); - layer.channel_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}); + layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0); + layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0); - layer.channel_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}); - layer.channel_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}); - layer.channel_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}); + layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0); + layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0); + layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0); } } break; case LLM_ARCH_CHAMELEON: { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // output - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); - - // if output is NULL, init from the input tok embed - if (model.output == NULL) { - model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); - } + model.output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0); + model.output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); } for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}); - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}); - layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0); + layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0); + layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0); + layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED); + layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED); - layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); - layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); - layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0); + layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0); + layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0); - layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0); + layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0); + layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0); } } break; default: throw std::runtime_error("unknown architecture"); } + + if (n_moved_tensors > 0) { + LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n", + __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1, + ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft)); + } } ml.done_getting_tensors(); @@ -8964,27 +9111,29 @@ static bool llm_load_tensors( ctx_bufs.reserve(ctx_map.size()); // Ensure we have enough capacity for the maximum backend buffer we will potentially create - size_t n_max_backend_buffer = ctx_map.size() * ml.files.size(); + const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size(); model.bufs.reserve(n_max_backend_buffer); for (auto & it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx = it.second; + // skip contexts without tensors + if (ggml_get_first_tensor(ctx) == nullptr) { + continue; + } + llama_buf_map bufs; bufs.reserve(n_max_backend_buffer); - // check if this backend device supports buffer_from_host_ptr - // when using a host buffer as the CPU bakcend buffer, use the CPU device to prioritize using buffer_from_host_ptr over the host buffer - ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft == llama_default_buffer_type_cpu(model, true) ? ggml_backend_cpu_buffer_type() : buft); - bool buffer_from_host_ptr_supported = false; - if (dev) { - ggml_backend_dev_props props; - ggml_backend_dev_get_props(dev, &props); - buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr; - } + // check if it is possible to use buffer_from_host_ptr with this buffer type + ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft); + ggml_backend_dev_props props; + ggml_backend_dev_get_props(dev, &props); + bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr; + bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev); - if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported) { + if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) { for (uint32_t idx = 0; idx < ml.files.size(); idx++) { // only the mmap region containing the tensors in the model is mapped to the backend buffer // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers @@ -9000,7 +9149,7 @@ static bool llm_load_tensors( if (buf == nullptr) { throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft))); } - model.bufs.push_back(buf); + model.bufs.emplace_back(buf); bufs.emplace(idx, buf); } } @@ -9009,7 +9158,7 @@ static bool llm_load_tensors( if (buf == nullptr) { throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft))); } - model.bufs.push_back(buf); + model.bufs.emplace_back(buf); if (use_mlock && ggml_backend_buffer_is_host(buf)) { model.mlock_bufs.emplace_back(new llama_mlock); auto & mlock_buf = model.mlock_bufs.back(); @@ -9027,7 +9176,7 @@ static bool llm_load_tensors( for (auto & buf : bufs) { // indicate that this buffer contains weights - // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight + // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); } @@ -9039,7 +9188,7 @@ static bool llm_load_tensors( LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { - LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__); + LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__); } const int max_backend_supported_layers = hparams.n_layer + 1; @@ -9048,14 +9197,14 @@ static bool llm_load_tensors( LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); } - // print memory requirements - for (ggml_backend_buffer_t buf : model.bufs) { - LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0); + // print memory requirements per buffer type + for (auto & buf : model.bufs) { + LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0); } // populate tensors_by_name - for (ggml_context * ctx : model.ctxs) { - for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { + for (auto & ctx : model.ctxs) { + for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) { model.tensors_by_name.emplace_back(ggml_get_name(cur), cur); } } @@ -9115,23 +9264,6 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam return 0; } -#ifdef GGML_USE_KOMPUTE - if (params.n_gpu_layers > 0 && ( - !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) - || !( - model.ftype == LLAMA_FTYPE_ALL_F32 || - model.ftype == LLAMA_FTYPE_MOSTLY_F16 || - model.ftype == LLAMA_FTYPE_MOSTLY_BF16 || - model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || - model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 - ) - )) { - // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file - LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__); - params.n_gpu_layers = 0; - } -#endif - if (!llm_load_tensors( ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock, params.progress_callback, params.progress_callback_user_data @@ -10016,7 +10148,7 @@ static struct ggml_tensor * llm_build_rwkv6_time_mix( v = ggml_transpose(ctx, v); r = ggml_transpose(ctx, r); - struct ggml_tensor * wkv_output = ggml_rwkv_wkv(ctx, k, v, r, layer->time_mix_first, w, *wkv_state); + struct ggml_tensor * wkv_output = ggml_rwkv_wkv6(ctx, k, v, r, layer->time_mix_first, w, *wkv_state); cur = ggml_view_1d(ctx, wkv_output, n_embd * n_tokens, 0); *wkv_state = ggml_view_1d(ctx, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float)); @@ -10177,10 +10309,8 @@ struct llm_build_context { } void free() { - if (ctx0) { - ggml_free(ctx0); - ctx0 = nullptr; - } + ggml_free(ctx0); + ctx0 = nullptr; } struct ggml_cgraph * build_k_shift() { @@ -10208,10 +10338,10 @@ struct llm_build_context { // dequantize to f32 -> RoPE -> quantize back tmp = ggml_cast(ctx0, k, GGML_TYPE_F32); cb(tmp, "K_f32", il); - for (auto * backend : lctx.backends) { + for (auto & backend : lctx.backends) { // Figure out which backend KV cache belongs to - if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft)) { - ggml_backend_sched_set_tensor_backend(lctx.sched, tmp, backend); + if (ggml_backend_supports_buft(backend.get(), ggml_backend_buffer_get_type(kv_self.k_l[il]->buffer))) { + ggml_backend_sched_set_tensor_backend(lctx.sched.get(), tmp, backend.get()); break; } } @@ -15184,6 +15314,7 @@ struct llm_build_context { cb(cur, "result_norm", -1); // lm_head + // FIXME: do not use model.tok_embd directly, duplicate as model.output cur = llm_build_lora_mm(lctx, ctx0, model.tok_embd, cur); cb(cur, "result_output", -1); @@ -16325,7 +16456,7 @@ static struct ggml_cgraph * llama_build_graph( if (!lctx.cparams.offload_kqv) { if (strcmp(name, "kqv_merged_cont") == 0) { // all nodes between the KV store and the attention output are run on the CPU - ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu); + ggml_backend_sched_set_tensor_backend(lctx.sched.get(), cur, lctx.backend_cpu); } } @@ -16334,11 +16465,12 @@ static struct ggml_cgraph * llama_build_graph( const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer; if (ubatch.n_tokens < 32 || full_offload) { if (il != -1 && strcmp(name, "norm") == 0) { - for (auto * backend : lctx.backends) { - if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) && - (ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) { - ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend); - break; + const auto & dev_layer = lctx.model.dev_layer.at(il); + for (auto & backend : lctx.backends) { + if (ggml_backend_get_device(backend.get()) == dev_layer.dev) { + if (ggml_backend_supports_op(backend.get(), cur)) { + ggml_backend_sched_set_tensor_backend(lctx.sched.get(), cur, backend.get()); + } } } } @@ -17024,7 +17156,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { lctx.output_ids.resize(n_batch); } - const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0; + const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output.get()) : 0; const size_t new_size = (logits_size + embd_size) * sizeof(float); // alloc only when more than the current capacity is required @@ -17035,20 +17167,26 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark) LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); #endif - ggml_backend_buffer_free(lctx.buf_output); lctx.buf_output = nullptr; lctx.logits = nullptr; lctx.embd = nullptr; } - lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(lctx.model, true), new_size); + auto * buft = ggml_backend_cpu_buffer_type(); + // try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory + auto * output_dev = lctx.model.dev_output.dev; + auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr; + if (output_dev_host_buft) { + buft = output_dev_host_buft; + } + lctx.buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size)); if (lctx.buf_output == nullptr) { LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); return 0; } } - float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output); + float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output.get()); lctx.logits = has_logits ? output_base : nullptr; lctx.embd = has_embd ? output_base + logits_size : nullptr; @@ -17060,7 +17198,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { // set all ids as invalid (negative) std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1); - ggml_backend_buffer_clear(lctx.buf_output, 0); + ggml_backend_buffer_clear(lctx.buf_output.get(), 0); lctx.n_outputs = 0; @@ -17105,7 +17243,8 @@ static void llama_output_reorder(struct llama_context * ctx) { } } -static void llama_graph_compute( +// returns the result of ggml_backend_sched_graph_compute_async execution +static enum ggml_status llama_graph_compute( llama_context & lctx, ggml_cgraph * gf, int n_threads, @@ -17120,15 +17259,20 @@ static void llama_graph_compute( set_n_threads_fn.second(set_n_threads_fn.first, n_threads); } - auto err = ggml_backend_sched_graph_compute_async(lctx.sched, gf); - if (err != GGML_STATUS_SUCCESS) { - LLAMA_LOG_ERROR("%s: ggml_backend_sched_graph_compute_async failed with error %d\n", __func__, err); + auto status = ggml_backend_sched_graph_compute_async(lctx.sched.get(), gf); + if (status != GGML_STATUS_SUCCESS) { + LLAMA_LOG_ERROR("%s: ggml_backend_sched_graph_compute_async failed with error %d\n", __func__, status); } // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); + + return status; } // decode a batch of tokens by evaluating the transformer +// in case of unsuccessful decoding (error or warning), +// the kv_cache state will be returned to its original state +// (for non-recurrent models) or cleaned (for recurrent models) // // - lctx: llama context // - batch: batch to evaluate @@ -17178,6 +17322,7 @@ static int llama_decode_internal( lctx.n_queued_tokens += n_tokens_all; auto & kv_self = lctx.kv_self; + llama_kv_slot_restorer kv_slot_restorer(kv_self); const int64_t n_embd = hparams.n_embd; const int64_t n_vocab = hparams.n_vocab; @@ -17262,9 +17407,11 @@ static int llama_decode_internal( kv_self.head = 0; } - if (!llama_kv_cache_find_slot(kv_self, ubatch)) { + const auto slot = llama_kv_cache_find_slot(kv_self, ubatch); + if (!slot) { return 1; } + kv_slot_restorer.save(slot); if (!kv_self.recurrent) { // a heuristic, to avoid attending the full cache if it is not yet utilized @@ -17278,8 +17425,8 @@ static int llama_decode_internal( //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); - ggml_backend_sched_reset(lctx.sched); - ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); + ggml_backend_sched_reset(lctx.sched.get()); + ggml_backend_sched_set_eval_callback(lctx.sched.get(), lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false); @@ -17307,11 +17454,23 @@ static int llama_decode_internal( } // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); - ggml_backend_sched_alloc_graph(lctx.sched, gf); + ggml_backend_sched_alloc_graph(lctx.sched.get(), gf); llama_set_inputs(lctx, ubatch); - llama_graph_compute(lctx, gf, n_threads, threadpool); + const auto compute_status = llama_graph_compute(lctx, gf, n_threads, threadpool); + if (compute_status != GGML_STATUS_SUCCESS) { + kv_slot_restorer.restore(kv_self); + switch (compute_status) { + case GGML_STATUS_ABORTED: + return 2; + case GGML_STATUS_ALLOC_FAILED: + return -2; + case GGML_STATUS_FAILED: + default: + return -3; + } + } // update the kv ring buffer { @@ -17330,7 +17489,7 @@ static int llama_decode_internal( // extract logits if (res) { - ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res); + ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched.get(), res); GGML_ASSERT(backend_res != nullptr); GGML_ASSERT(lctx.logits != nullptr); @@ -17346,7 +17505,7 @@ static int llama_decode_internal( // extract embeddings if (embd) { - ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd); + ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched.get(), embd); GGML_ASSERT(backend_embd != nullptr); switch (cparams.pooling_type) { @@ -17441,7 +17600,7 @@ static int llama_decode_internal( // Reset state for the next token before backend sync, to allow the CPU activities in the reset to // overlap with device computation. - ggml_backend_sched_reset(lctx.sched); + ggml_backend_sched_reset(lctx.sched.get()); return 0; } @@ -17519,8 +17678,8 @@ static int llama_encode_internal( GGML_ASSERT(n_threads > 0); - ggml_backend_sched_reset(lctx.sched); - ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); + ggml_backend_sched_reset(lctx.sched.get()); + ggml_backend_sched_set_eval_callback(lctx.sched.get(), lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false); @@ -17544,15 +17703,26 @@ static int llama_encode_internal( } } - ggml_backend_sched_alloc_graph(lctx.sched, gf); + ggml_backend_sched_alloc_graph(lctx.sched.get(), gf); llama_set_inputs(lctx, ubatch); - llama_graph_compute(lctx, gf, n_threads, threadpool); + const auto compute_status = llama_graph_compute(lctx, gf, n_threads, threadpool); + switch (compute_status) { + case GGML_STATUS_SUCCESS: + break; + case GGML_STATUS_ABORTED: + return 2; + case GGML_STATUS_ALLOC_FAILED: + return -2; + case GGML_STATUS_FAILED: + default: + return -3; + } // extract embeddings if (embd) { - ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd); + ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched.get(), embd); GGML_ASSERT(backend_embd != nullptr); if (llama_model_has_decoder(&lctx.model)) { @@ -17619,7 +17789,7 @@ static int llama_encode_internal( // Reset state for the next token before backend sync, to allow the CPU activities in the reset to // overlap with device computation. - ggml_backend_sched_reset(lctx.sched); + ggml_backend_sched_reset(lctx.sched.get()); return 0; } @@ -17833,7 +18003,7 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { #else // ggml_graph defrag - ggml_backend_sched_reset(lctx.sched); + ggml_backend_sched_reset(lctx.sched.get()); ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids); @@ -17855,11 +18025,11 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) { } { - ggml_backend_sched_reset(lctx.sched); + ggml_backend_sched_reset(lctx.sched.get()); ggml_cgraph * gf = llama_build_graph_k_shift(lctx); - ggml_backend_sched_alloc_graph(lctx.sched, gf); + ggml_backend_sched_alloc_graph(lctx.sched.get(), gf); llama_set_k_shift(lctx); @@ -17899,8 +18069,8 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) { ggml_cgraph * gf = llama_build_graph(lctx, ubatch, true); // initialize scheduler with the worst-case graph - ggml_backend_sched_reset(lctx.sched); - if (!ggml_backend_sched_reserve(lctx.sched, gf)) { + ggml_backend_sched_reset(lctx.sched.get()); + if (!ggml_backend_sched_reserve(lctx.sched.get(), gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); } } @@ -18451,40 +18621,57 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } const size_t align = GGUF_DEFAULT_ALIGNMENT; - struct gguf_context * ctx_out = gguf_init_empty(); + gguf_context_ptr ctx_out { gguf_init_empty() }; // copy the KV pairs from the input file - gguf_set_kv (ctx_out, ml.meta); - gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV - gguf_set_val_u32(ctx_out, "general.file_type", ftype); // TODO: use LLM_KV + gguf_set_kv (ctx_out.get(), ml.meta.get()); + gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV + gguf_set_val_u32(ctx_out.get(), "general.file_type", ftype); // TODO: use LLM_KV // Remove split metadata - gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str()); - gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str()); - gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str()); + gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str()); + gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str()); + gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str()); if (params->kv_overrides) { const std::vector & overrides = *(const std::vector *)params->kv_overrides; - for (auto & o : overrides) { + for (const auto & o : overrides) { if (o.key[0] == 0) break; if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) { - gguf_set_val_f32(ctx_out, o.key, o.val_f64); + gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) { - gguf_set_val_i32(ctx_out, o.key, o.val_i64); + gguf_set_val_i32(ctx_out.get(), o.key, o.val_i64); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) { - gguf_set_val_bool(ctx_out, o.key, o.val_bool); + gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) { - gguf_set_val_str(ctx_out, o.key, o.val_str); + gguf_set_val_str(ctx_out.get(), o.key, o.val_str); } else { LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key); } } } - for (int i = 0; i < ml.n_tensors; ++i) { - const struct ggml_tensor * meta = ml.get_tensor_meta(i); + // make a list of weights + std::vector tensors; + tensors.reserve(ml.weights_map.size()); + for (const auto & it : ml.weights_map) { + tensors.push_back(&it.second); + } - const std::string name = ggml_get_name(meta); + // keep_split requires that the weights are sorted by split index + if (params->keep_split) { + std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) { + if (a->idx == b->idx) { + return a->offs < b->offs; + } + return a->idx < b->idx; + }); + } + + for (const auto * it : tensors) { + const struct ggml_tensor * tensor = it->tensor; + + const std::string name = ggml_get_name(tensor); // TODO: avoid hardcoded tensor names - use the TN_* constants if (name.find("attn_v.weight") != std::string::npos || @@ -18522,32 +18709,32 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s std::vector> f32_conv_buf; uint16_t n_split = 1; + // Assume split index is continuous if (params->keep_split) { - for (int i = 0; i < ml.n_tensors; ++i) { - n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split); + for (const auto * it : tensors) { + n_split = std::max(uint16_t(it->idx + 1), n_split); } } - std::vector ctx_outs(n_split, NULL); - ctx_outs[0] = ctx_out; + std::vector ctx_outs(n_split); + ctx_outs[0] = std::move(ctx_out); // populate the original tensors so we get an initial meta data - for (int i = 0; i < ml.n_tensors; ++i) { - auto weight = ml.get_weight(i); - uint16_t i_split = params->keep_split ? weight->idx : 0; - struct ggml_tensor * tensor = weight->tensor; - if (ctx_outs[i_split] == NULL) { - ctx_outs[i_split] = gguf_init_empty(); + for (const auto * it : tensors) { + uint16_t i_split = params->keep_split ? it->idx : 0; + struct ggml_tensor * tensor = it->tensor; + if (!ctx_outs[i_split]) { + ctx_outs[i_split].reset(gguf_init_empty()); } - gguf_add_tensor(ctx_outs[i_split], tensor); + gguf_add_tensor(ctx_outs[i_split].get(), tensor); } // Set split info if needed if (n_split > 1) { for (size_t i = 0; i < ctx_outs.size(); ++i) { - gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i); - gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split); - gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors); + gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i); + gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split); + gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors); } } @@ -18557,8 +18744,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // Write metadata and close file handler if (fout.is_open()) { fout.seekp(0); - std::vector data(gguf_get_meta_size(ctx_outs[cur_split])); - gguf_get_meta_data(ctx_outs[cur_split], data.data()); + std::vector data(gguf_get_meta_size(ctx_outs[cur_split].get())); + gguf_get_meta_data(ctx_outs[cur_split].get(), data.data()); fout.write((const char *) data.data(), data.size()); fout.close(); } @@ -18575,19 +18762,19 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s fout = std::ofstream(fname, std::ios::binary); fout.exceptions(std::ofstream::failbit); // fail fast on write errors - const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]); + const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split].get()); // placeholder for the meta data ::zeros(fout, meta_size); }; const auto tn = LLM_TN(model.arch); new_ofstream(0); - for (int i = 0; i < ml.n_tensors; ++i) { - auto weight = ml.get_weight(i); - struct ggml_tensor * tensor = weight->tensor; - if (weight->idx != cur_split && params->keep_split) { + for (const auto * it : tensors) { + const auto & weight = *it; + struct ggml_tensor * tensor = weight.tensor; + if (weight.idx != cur_split && params->keep_split) { close_ofstream(); - new_ofstream(weight->idx); + new_ofstream(weight.idx); } const std::string name = ggml_get_name(tensor); @@ -18760,17 +18947,14 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s total_size_new += new_size; // update the gguf meta data as we go - gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type); - gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size); + gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type); + gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data, new_size); // write tensor data + padding fout.write((const char *) new_data, new_size); zeros(fout, GGML_PAD(new_size, align) - new_size); } close_ofstream(); - for (auto & c:ctx_outs) { - gguf_free(c); - } LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); @@ -18784,55 +18968,55 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s static void llama_lora_adapter_init_internal(struct llama_model * model, const char * path_lora, struct llama_lora_adapter & adapter) { LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora); - ggml_context * ctx = nullptr; + ggml_context * ctx_init; struct gguf_init_params meta_gguf_params = { /* .no_alloc = */ true, - /* .ctx = */ &ctx, + /* .ctx = */ &ctx_init, }; - struct gguf_context * ctx_gguf = gguf_init_from_file(path_lora, meta_gguf_params); + + gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) }; if (!ctx_gguf) { throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora)); } + ggml_context_ptr ctx { ctx_init }; + // check metadata { auto get_kv_str = [&](const std::string & key) -> std::string { - int id = gguf_find_key(ctx_gguf, key.c_str()); - return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id)); + int id = gguf_find_key(ctx_gguf.get(), key.c_str()); + return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id)); }; auto get_kv_f32 = [&](const std::string & key) -> float { - int id = gguf_find_key(ctx_gguf, key.c_str()); - return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id); + int id = gguf_find_key(ctx_gguf.get(), key.c_str()); + return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id); }; LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE)); if (general_type != "adapter") { - gguf_free(ctx_gguf); throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type); } auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE)); auto general_arch = llm_arch_from_string(general_arch_str); if (general_arch != model->arch) { - gguf_free(ctx_gguf); throw std::runtime_error("model arch and LoRA arch mismatch"); } auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE)); if (adapter_type != "lora") { - gguf_free(ctx_gguf); throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type); } adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA)); } - int n_tensors = gguf_get_n_tensors(ctx_gguf); + int n_tensors = gguf_get_n_tensors(ctx_gguf.get()); // contexts for each buffer type std::map ctx_map; - auto get_ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { + auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { auto it = ctx_map.find(buft); if (it == ctx_map.end()) { // add a new context @@ -18842,7 +19026,11 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c /*.no_alloc =*/ true, }; ggml_context * buft_ctx = ggml_init(params); + if (!buft_ctx) { + return nullptr; + } ctx_map[buft] = buft_ctx; + adapter.ctxs.emplace_back(buft_ctx); return buft_ctx; }; return it->second; @@ -18853,7 +19041,7 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c auto str_endswith = [](const std::string & str, const std::string & suffix) { return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0; }; - for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { + for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) { std::string name(cur->name); if (str_endswith(name, ".lora_a")) { replace_all(name, ".lora_a", ""); @@ -18870,8 +19058,6 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c ab_map[name].b = cur; } } else { - gguf_free(ctx_gguf); - ggml_free(ctx); throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix"); } } @@ -18882,28 +19068,20 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c llama_lora_weight & w = it.second; if (!w.a || !w.b) { - gguf_free(ctx_gguf); - ggml_free(ctx); throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component"); } // device buft and device ctx auto * model_tensor = llama_get_model_tensor(model, name.c_str()); if (!model_tensor) { - gguf_free(ctx_gguf); - ggml_free(ctx); throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model"); } - struct ggml_context * dev_ctx = get_ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer)); + struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer)); // validate tensor shape if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) { - gguf_free(ctx_gguf); - ggml_free(ctx); throw std::runtime_error("tensor '" + name + "' has incorrect shape"); } if (w.a->ne[1] != w.b->ne[0]) { - gguf_free(ctx_gguf); - ggml_free(ctx); throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)"); } // save tensor to adapter @@ -18918,18 +19096,15 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c { adapter.ctxs.reserve(ctx_map.size()); adapter.bufs.reserve(ctx_map.size()); - for (auto it : ctx_map) { + for (auto & it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx_dev = it.second; - ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft); + ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) }; if (!buf) { - gguf_free(ctx_gguf); - ggml_free(ctx); throw std::runtime_error("failed to allocate buffer for lora adapter\n"); } - LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); - adapter.ctxs.push_back(ctx_dev); - adapter.bufs.push_back(buf); + LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0); + adapter.bufs.emplace_back(std::move(buf)); } } @@ -18938,7 +19113,7 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c llama_file gguf_file(path_lora, "rb"); std::vector read_buf; auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) { - size_t offs = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, gguf_find_tensor(ctx_gguf, orig->name)); + size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name)); size_t size = ggml_nbytes(orig); read_buf.resize(size); gguf_file.seek(offs, SEEK_SET); @@ -18953,11 +19128,7 @@ static void llama_lora_adapter_init_internal(struct llama_model * model, const c } } - LLAMA_LOG_INFO("%s: loaded %ld tensors from lora file\n", __func__, adapter.ab_map.size()*2); - - // free ctx for reading gguf - gguf_free(ctx_gguf); - ggml_free(ctx); + LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2); } int32_t llama_lora_adapter_set( @@ -19092,14 +19263,8 @@ bool llama_supports_mlock(void) { } bool llama_supports_gpu_offload(void) { -#if defined(GGML_USE_KOMPUTE) - // Defined when llama.cpp is compiled with support for offloading model layers to GPU. - return true; -#else return ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU) != nullptr || - ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU_FULL) != nullptr || llama_supports_rpc(); -#endif } bool llama_supports_rpc(void) { @@ -19189,8 +19354,7 @@ struct llama_model * llama_load_model_from_file( return nullptr; } - // ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint); - using ggml_backend_rpc_add_device_t = ggml_backend_dev_t (*)(const char *); + typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint); ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device"); if (!ggml_backend_rpc_add_device_fn) { LLAMA_LOG_ERROR("%s: failed to find RPC device add function\n", __func__); @@ -19217,22 +19381,34 @@ struct llama_model * llama_load_model_from_file( ggml_backend_dev_t dev = ggml_backend_dev_get(i); switch (ggml_backend_dev_type(dev)) { case GGML_BACKEND_DEVICE_TYPE_CPU: - case GGML_BACKEND_DEVICE_TYPE_CPU_FULL: - // skip CPU backends since they are `handled separately + case GGML_BACKEND_DEVICE_TYPE_ACCEL: + // skip CPU backends since they are handled separately break; case GGML_BACKEND_DEVICE_TYPE_GPU: - case GGML_BACKEND_DEVICE_TYPE_GPU_FULL: - { - size_t free, total; // NOLINT - ggml_backend_dev_memory(dev, &free, &total); - LLAMA_LOG_INFO("%s: using device %s (%s) - %zu MiB free\n", __func__, ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), free/1024/1024); model->devices.push_back(dev); break; - } } } + // if using single GPU mode, remove all except the main GPU + if (params.split_mode == LLAMA_SPLIT_MODE_NONE) { + if (params.main_gpu < 0 || params.main_gpu >= (int)model->devices.size()) { + LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %d)\n", __func__, params.main_gpu, (int)model->devices.size()); + llama_free_model(model); + return nullptr; + } + ggml_backend_dev_t main_gpu = model->devices[params.main_gpu]; + model->devices.clear(); + model->devices.push_back(main_gpu); + } + + for (auto * dev : model->devices) { + size_t free, total; // NOLINT + ggml_backend_dev_memory(dev, &free, &total); + LLAMA_LOG_INFO("%s: using device %s (%s) - %zu MiB free\n", __func__, ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), free/1024/1024); + } + int status = llama_model_load(path_model, *model, params); GGML_ASSERT(status <= 0); if (status < 0) { @@ -19361,12 +19537,26 @@ struct llama_context * llama_new_context_with_model( cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL; } - LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); - LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); - LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); - LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn); - LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); - LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); + const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max; + + LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max); + LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); + LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n", __func__, n_ctx_per_seq); + LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); + LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); + LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn); + LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); + LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); + + if (n_ctx_per_seq < hparams.n_ctx_train) { + LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n", + __func__, n_ctx_per_seq, hparams.n_ctx_train); + } + + if (n_ctx_per_seq > hparams.n_ctx_train) { + LLAMA_LOG_WARN("%s: n_ctx_pre_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n", + __func__, n_ctx_per_seq, hparams.n_ctx_train); + } ctx->abort_callback = params.abort_callback; ctx->abort_callback_data = params.abort_callback_data; @@ -19393,79 +19583,48 @@ struct llama_context * llama_new_context_with_model( GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0); if (!hparams.vocab_only) { - // initialize backends - int main_gpu = model->main_gpu; - - // with registry - if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { - if (main_gpu >= 0 && main_gpu < (int)model->devices.size()) { - ggml_backend_dev_t main_dev = model->devices[main_gpu]; - ggml_backend_t backend = ggml_backend_dev_init(main_dev, nullptr); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(main_dev)); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } - } else { - // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU - for (auto * dev : model->devices) { - ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); - if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev)); - llama_free(ctx); - return nullptr; - } - ctx->backends.push_back(backend); - } - } - if (main_gpu >= (int)model->devices.size()) { - main_gpu -= (int)model->devices.size(); - } - -#if defined(GGML_USE_KOMPUTE) - if (model->n_gpu_layers > 0) { - auto * backend = ggml_backend_kompute_init(main_gpu); + // GPU backends + for (auto * dev : model->devices) { + ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__); + LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev)); llama_free(ctx); return nullptr; } - ctx->backends.push_back(backend); + ctx->backends.emplace_back(backend); } -#endif - // add other backends (such as BLAS) + // add ACCEL backends (such as BLAS) for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { ggml_backend_dev_t dev = ggml_backend_dev_get(i); - if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) { + if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) { ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev)); llama_free(ctx); return nullptr; } - ctx->backends.push_back(backend); + ctx->backends.emplace_back(backend); } } + // add CPU backend ctx->backend_cpu = ggml_backend_cpu_init(); if (ctx->backend_cpu == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__); llama_free(ctx); return nullptr; } - ctx->backends.push_back(ctx->backend_cpu); + ctx->backends.emplace_back(ctx->backend_cpu); // create a list of the set_n_threads functions in the backends - for (auto * backend : ctx->backends) { - ggml_backend_dev_t dev = ggml_backend_get_device(backend); + for (auto & backend : ctx->backends) { + ggml_backend_dev_t dev = ggml_backend_get_device(backend.get()); ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr; if (reg) { auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads"); if (ggml_backend_set_n_threads_fn) { - ctx->set_n_threads_fns.emplace_back(backend, ggml_backend_set_n_threads_fn); + ctx->set_n_threads_fns.emplace_back(backend.get(), ggml_backend_set_n_threads_fn); } } } @@ -19504,21 +19663,27 @@ struct llama_context * llama_new_context_with_model( } LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, - ggml_backend_buffer_name(ctx->buf_output), - ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0); + ggml_backend_buffer_name(ctx->buf_output.get()), + ggml_backend_buffer_get_size(ctx->buf_output.get()) / 1024.0 / 1024.0); } // scheduler and compute buffers { // buffer types used for the compute buffer of each backend std::vector backend_buft; - for (auto * backend : ctx->backends) { - if (ggml_backend_is_cpu(backend)) { - // use host buffers for the CPU backend compute buffer - backend_buft.push_back(llama_default_buffer_type_cpu(*model, true)); - } else { - backend_buft.push_back(ggml_backend_get_default_buffer_type(backend)); + std::vector backend_ptrs; + for (auto & backend : ctx->backends) { + auto * buft = ggml_backend_get_default_buffer_type(backend.get()); + if (ggml_backend_is_cpu(backend.get()) && !model->devices.empty()) { + // use the host buffer of the first device CPU for faster transfer of the intermediate state + auto * dev = model->devices[0]; + auto * host_buft = ggml_backend_dev_host_buffer_type(dev); + if (host_buft) { + buft = host_buft; + } } + backend_buft.push_back(buft); + backend_ptrs.push_back(backend.get()); } const size_t max_nodes = llama_model_max_nodes(*model); @@ -19536,17 +19701,12 @@ struct llama_context * llama_new_context_with_model( // pipeline parallelism requires support for async compute and events in all devices if (pipeline_parallel) { - for (auto * backend : ctx->backends) { - if (ggml_backend_is_cpu(backend)) { + for (auto & backend : ctx->backends) { + if (ggml_backend_is_cpu(backend.get())) { // ignore CPU backend continue; } - auto * dev = ggml_backend_get_device(backend); - if (!dev) { - // backend is using old interface, not supported - pipeline_parallel = false; - break; - } + auto * dev = ggml_backend_get_device(backend.get()); ggml_backend_dev_props props; ggml_backend_dev_get_props(dev, &props); if (!props.caps.async || !props.caps.events) { @@ -19557,30 +19717,44 @@ struct llama_context * llama_new_context_with_model( } } - ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel); + ctx->sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel)); if (pipeline_parallel) { - LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched)); + LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched.get())); } - // build worst-case graph + // initialize scheduler with the worst-case graph uint32_t n_seqs = 1; // TODO: worst-case number of sequences uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph - llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; - ggml_cgraph * gf = llama_build_graph(*ctx, ubatch, true); - // initialize scheduler with the worst-case graph - if (!ggml_backend_sched_reserve(ctx->sched, gf)) { + llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; + ggml_cgraph * gf_pp = llama_build_graph(*ctx, ubatch_pp, true); + + // reserve pp graph first so that buffers are only allocated once + ggml_backend_sched_reserve(ctx->sched.get(), gf_pp); + int n_splits_pp = ggml_backend_sched_get_n_splits(ctx->sched.get()); + int n_nodes_pp = ggml_graph_n_nodes(gf_pp); + + // reserve with tg graph to get the number of splits and nodes + llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; + ggml_cgraph * gf_tg = llama_build_graph(*ctx, ubatch_tg, true); + ggml_backend_sched_reserve(ctx->sched.get(), gf_tg); + int n_splits_tg = ggml_backend_sched_get_n_splits(ctx->sched.get()); + int n_nodes_tg = ggml_graph_n_nodes(gf_tg); + + // reserve again with pp graph to avoid ggml-alloc reallocations during inference + gf_pp = llama_build_graph(*ctx, ubatch_pp, true); + if (!ggml_backend_sched_reserve(ctx->sched.get(), gf_pp)) { LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); llama_free(ctx); return nullptr; } - for (size_t i = 0; i < ctx->backends.size(); i++) { - ggml_backend_t backend = ctx->backends[i]; + for (size_t i = 0; i < backend_ptrs.size(); ++i) { + ggml_backend_t backend = backend_ptrs[i]; ggml_backend_buffer_type_t buft = backend_buft[i]; - size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend); + size_t size = ggml_backend_sched_get_buffer_size(ctx->sched.get(), backend); if (size > 1) { LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, ggml_backend_buft_name(buft), @@ -19588,10 +19762,16 @@ struct llama_context * llama_new_context_with_model( } } - // note: the number of splits during measure is higher than during inference due to the kv shift - int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); - LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, ggml_graph_n_nodes(gf)); - LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits); + if (n_nodes_pp == n_nodes_tg) { + LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, n_nodes_pp); + } else { + LLAMA_LOG_INFO("%s: graph nodes = %d (with bs=%d), %d (with bs=1)\n", __func__, n_nodes_pp, n_tokens, n_nodes_tg); + } + if (n_splits_pp == n_splits_tg) { + LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits_pp); + } else { + LLAMA_LOG_INFO("%s: graph splits = %d (with bs=%d), %d (with bs=1)\n", __func__, n_splits_pp, n_tokens, n_splits_tg); + } } } @@ -19851,40 +20031,47 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const GGML_ASSERT(cvec.ctxs.empty()); GGML_ASSERT(cvec.bufs.empty()); - // count layer buffer types - std::map buft_layer_count; - for (int64_t i = 0; i < model.hparams.n_layer; i++) { - buft_layer_count[model.buft_layer[i].buft]++; - } - - // allocate contexts + // create a context for each buffer type std::map ctx_map; - for (auto & it : buft_layer_count) { - int n_layers = it.second; - struct ggml_init_params params = { - /*.mem_size =*/ n_layers * ggml_tensor_overhead(), - /*.mem_buffer =*/ NULL, - /*.no_alloc =*/ true, - }; - ggml_context * ctx = ggml_init(params); - if (!ctx) { - LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__); - return 1; + auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { + auto it = ctx_map.find(buft); + if (it == ctx_map.end()) { + struct ggml_init_params params = { + /*.mem_size =*/ model.hparams.n_layer*ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context * ctx = ggml_init(params); + if (!ctx) { + return nullptr; + } + ctx_map[buft] = ctx; + cvec.ctxs.emplace_back(ctx); + return ctx; } - ctx_map[it.first] = ctx; - } + return it->second; + }; // make tensors cvec.tensors.reserve(model.hparams.n_layer); cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0 for (size_t il = 1; il < model.hparams.n_layer; il++) { - struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft); + ggml_backend_buffer_type_t buft = select_buft(*model.dev_layer.at(il).buft_list, + [&](ggml_context * ctx) { + ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd); + ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd); + return ggml_add(ctx, cur, layer_dir); + }); + ggml_context * ctx = ctx_for_buft(buft); + if (!ctx) { + LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__); + return false; + } ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd); cvec.tensors.push_back(tensor); } // allocate tensors / buffers and zero - cvec.ctxs.reserve(ctx_map.size()); cvec.bufs.reserve(ctx_map.size()); for (auto it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; @@ -19895,8 +20082,7 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const return false; } ggml_backend_buffer_clear(buf, 0); - cvec.ctxs.push_back(ctx); - cvec.bufs.push_back(buf); + cvec.bufs.emplace_back(buf); } return true; @@ -21164,7 +21350,7 @@ int32_t llama_decode( } void llama_synchronize(struct llama_context * ctx) { - ggml_backend_sched_synchronize(ctx->sched); + ggml_backend_sched_synchronize(ctx->sched.get()); // FIXME: if multiple single tokens are evaluated without a synchronization, // the stats will be added to the prompt evaluation stats @@ -21218,7 +21404,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs)); } } else if ((size_t) i >= ctx->output_ids.size()) { - throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size())); + throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size())); } else { j = ctx->output_ids[i]; } @@ -21706,6 +21892,19 @@ static int32_t llama_chat_apply_template_internal( ss << message->content << "\n\n"; } } + } else if (tmpl == "granite" || tmpl_contains("<|start_of_role|>")) { + // IBM Granite template + for (const auto & message : chat) { + std::string role(message->role); + ss << "<|start_of_role|>" << role << "<|end_of_role|>"; + if (role == "assistant_tool_call") { + ss << "<|tool_call|>"; + } + ss << message->content << "<|end_of_text|>\n"; + } + if (add_ass) { + ss << "<|start_of_role|>assistant<|end_of_role|>\n"; + } } else { // template not supported return -1; @@ -21801,6 +22000,8 @@ int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int } const char * llama_print_system_info(void) { + ggml_cpu_init(); // some ARM features are detected at runtime + static std::string s; s = ""; diff --git a/examples/talk-llama/llama.h b/examples/talk-llama/llama.h index b2d1e7d5..5e742642 100644 --- a/examples/talk-llama/llama.h +++ b/examples/talk-llama/llama.h @@ -2,6 +2,7 @@ #define LLAMA_H #include "ggml.h" +#include "ggml-cpu.h" #include "ggml-backend.h" #include @@ -205,7 +206,7 @@ extern "C" { enum llama_split_mode { LLAMA_SPLIT_MODE_NONE = 0, // single GPU LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs - LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs + LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported }; // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979) @@ -274,10 +275,7 @@ extern "C" { int32_t n_gpu_layers; // number of layers to store in VRAM enum llama_split_mode split_mode; // how to split the model across multiple GPUs - // main_gpu interpretation depends on split_mode: - // LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model - // LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results - // LLAMA_SPLIT_MODE_LAYER: ignored + // the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE int32_t main_gpu; // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices() @@ -799,7 +797,7 @@ extern "C" { // Processes a batch of tokens with the ecoder part of the encoder-decoder model. // Stores the encoder output internally for later use by the decoder cross-attention layers. // 0 - success - // < 0 - error + // < 0 - error. the KV cache state is restored to the state before this call LLAMA_API int32_t llama_encode( struct llama_context * ctx, struct llama_batch batch); @@ -807,7 +805,7 @@ extern "C" { // Positive return values does not mean a fatal error, but rather a warning. // 0 - success // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context) - // < 0 - error + // < 0 - error. the KV cache state is restored to the state before this call LLAMA_API int32_t llama_decode( struct llama_context * ctx, struct llama_batch batch); @@ -1087,9 +1085,6 @@ extern "C" { /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841 LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep); - /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. - LLAMA_API struct llama_sampler * llama_sampler_init_tail_free (float z, size_t min_keep); - /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);