sycl: simplify bin_bcast_kernel (llama/13383)

This commit is contained in:
Atharva Dubey 2025-05-15 16:39:52 +01:00 committed by Georgi Gerganov
parent 8081e7a23d
commit 27964db1be

View File

@ -1,93 +1,74 @@
#include "binbcast.hpp"
#include <array>
#include <cstddef>
#include <cstdint>
#include <sycl/sycl.hpp>
#include "dpct/helper.hpp"
#include "ggml.h"
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) /
ne3;
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) %
ne3;
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0;
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static __dpct_inline__ void k_bin_bcast_contiguous(const src0_t * __restrict__ src0, const src1_t * __restrict__ src1,
dst_t * dst, std::size_t num_elements, const sycl::nd_item<1> & it) {
auto element_id = it.get_global_id(0);
auto global_range = it.get_global_range(0);
for (; element_id < num_elements; element_id += global_range) {
auto src0_float_val = sycl::vec(src0[element_id]).template convert<float, sycl::rounding_mode::rte>();
auto src1_float_val = sycl::vec(src1[element_id]).template convert<float, sycl::rounding_mode::rte>();
float dst_val = bin_op(src0_float_val[0], src1_float_val[0]);
auto val_to_store = sycl::vec(dst_val).template convert<dst_t, sycl::rounding_mode::rte>();
dst[element_id] = val_to_store;
}
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s00,*/ int s01, int s02, int s03,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static __dpct_inline__ void k_bin_bcast(const src0_t * __restrict__ src0, const src1_t * __restrict__ src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3, int ne10, int ne11, int ne12, int ne13,
int s0, int s1, int s2, int s3, int s00, int s01, int s02, int s03, int s10,
int s11, int s12, int s13, std::size_t num_dst_elements,
const sycl::nd_item<1> & item_ct1) {
auto calculate_logical_index =
[](const std::array<int, 4> & dims, std::size_t element_id) __attribute__((always_inline))->std::array<int, 4> {
std::array<int, 4> logical_index;
#pragma unroll(4)
for (int i = 3; i >= 0; i--) {
logical_index[i] = element_id % dims[i];
element_id /= dims[i];
}
return logical_index;
};
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
auto calculate_index = [](const std::array<int, 4> & dims, const std::array<int, 4> & strides,
const std::array<int, 4> & indices) __attribute__((always_inline))
->std::size_t {
std::size_t index = 0;
#pragma unroll(4)
for (int i = 0; i < 4; i++) {
auto index_i = indices[i];
if (indices[i] >= dims[i]) {
index_i = indices[i] % dims[i];
}
index += strides[i] * index_i;
}
return index;
};
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
auto element_id = item_ct1.get_global_id(0);
for (; element_id < num_dst_elements; element_id += item_ct1.get_global_range(0)) {
auto logical_index = calculate_logical_index({ ne3, ne2, ne1, ne0 }, element_id);
auto src_0_index = calculate_index({ ne3, ne2, ne1, ne0 }, { s03, s02, s01, s00 }, logical_index);
auto src_1_index = calculate_index({ ne13, ne12, ne11, ne10 }, { s13, s12, s11, s10 }, logical_index);
auto dst_index = calculate_index({ ne3, ne2, ne1, ne0 }, { s3, s2, s1, s0 }, logical_index);
auto src0_float_val = sycl::vec(src0[src_0_index]).template convert<float, sycl::rounding_mode::rte>();
auto src1_float_val = sycl::vec(src1[src_1_index]).template convert<float, sycl::rounding_mode::rte>();
float dst_val = bin_op(src0_float_val[0], src1_float_val[0]);
auto val_to_store = sycl::vec(dst_val).template convert<dst_t, sycl::rounding_mode::rte>();
dst[dst_index] = val_to_store;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template<float (*bin_op)(const float, const float)>
struct bin_bcast_sycl {
template <float (*bin_op)(const float, const float)> struct bin_bcast_sycl {
template <typename src0_t, typename src1_t, typename dst_t>
void operator()(const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, const int64_t ne00,
const int64_t ne01, const int64_t ne02, const int64_t ne03, const int64_t ne10, const int64_t ne11,
@ -96,165 +77,73 @@ struct bin_bcast_sycl {
const size_t nb10, const size_t nb11, const size_t nb12, const size_t nb13, const size_t nb0,
const size_t nb1, const size_t nb2, const size_t nb3, const bool src0_is_contiguous,
const bool src1_is_contiguous, const bool dst_is_contiguous, queue_ptr stream) {
int nr0 = ne10 / ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne[] = {ne0, ne1, ne2, ne3};
int64_t cne0[] = {ne00, ne01, ne02, ne03};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb[] = {nb0, nb1, nb2, nb3};
size_t cnb0[] = {nb00, nb01, nb02, nb03};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
if (src0_is_contiguous && src1_is_contiguous && dst_is_contiguous) {
auto check_bcast_required = [](const std::array<int64_t, 4> & src_dims,
const std::array<int64_t, 4> & dst_dims) -> bool {
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb, cne);
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne);
collapse(cne0);
collapse(cne1);
if (dst_dims[i] > src_dims[i]) {
return true;
}
}
}
{
int64_t ne0 = cne[0];
int64_t ne1 = cne[1];
int64_t ne2 = cne[2];
int64_t ne3 = cne[3];
return false;
};
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
size_t nb0 = cnb[0];
size_t nb1 = cnb[1];
size_t nb2 = cnb[2];
size_t nb3 = cnb[3];
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
size_t nb00 = cnb0[0];
size_t nb01 = cnb0[1];
size_t nb02 = cnb0[2];
size_t nb03 = cnb0[3];
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
// dst strides in number of elements
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
// src1 strides in number of elements
size_t s10 = nb10 / sizeof(src0_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
// src0 strides in number of elements
size_t s00 = nb00 / sizeof(src0_t);
size_t s01 = nb01 / sizeof(src0_t);
size_t s02 = nb02 / sizeof(src0_t);
size_t s03 = nb03 / sizeof(src0_t);
GGML_UNUSED(s00);
std::size_t num_dst_elements = static_cast<std::size_t>(ne0) * static_cast<std::size_t>(ne1) *
static_cast<std::size_t>(ne2) * static_cast<std::size_t>(ne3);
std::size_t local_range = 256;
std::size_t global_range = ceil_div(num_dst_elements, local_range) * local_range;
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
bool needs_broadcasting = check_bcast_required({ ne00, ne01, ne02, ne03 }, { ne0, ne1, ne2, ne3 }) ||
check_bcast_required({ ne10, ne11, ne12, ne13 }, { ne0, ne1, ne2, ne3 });
bool all_contiguous = src0_is_contiguous && src1_is_contiguous && dst_is_contiguous;
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
sycl::range<3> block_dims(1, 1, 1);
block_dims[2] = std::min<unsigned int>(hne0, block_size);
block_dims[1] = std::min<unsigned int>(
ne1, block_size / (unsigned int)block_dims[2]);
block_dims[0] = std::min(
std::min<unsigned int>(
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
(unsigned int)block_dims[1]),
64U);
sycl::range<3> block_nums(
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
(ne1 + block_dims[1] - 1) / block_dims[1],
(hne0 + block_dims[2] - 1) / block_dims[2]);
if (block_nums[0] > 65535) {
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
sycl::range<3>(1, 1, block_size),
sycl::range<3>(1, 1, block_size)),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast_unravel<bin_op>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, s1, s2, s3, s01, s02,
s03, s11, s12, s13, item_ct1);
});
}
} else {
/*
DPCT1049:16: The work-group size passed to the SYCL kernel may
exceed the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if
needed.
*/
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
ne2, ne3, ne10, ne11, ne12, ne13,
s1, s2, s3, s01, s02, s03, s11, s12, s13,
item_ct1);
});
}
if (! needs_broadcasting && all_contiguous) {
stream->submit([&](sycl::handler & cgh) {
cgh.parallel_for(sycl::nd_range<1>({ global_range }, { local_range }), [=](sycl::nd_item<1> it) {
k_bin_bcast_contiguous<bin_op>(src0_dd, src1_dd, dst_dd, num_dst_elements, it);
});
});
} else {
stream->submit([&](sycl::handler & cgh) {
cgh.parallel_for(sycl::nd_range<1>({ global_range }, { local_range }), [=](sycl::nd_item<1> it) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3, ne10, ne11, ne12, ne13, s0, s1,
s2, s3, s00, s01, s02, s03, s10, s11, s12, s13, num_dst_elements, it);
});
});
}
}
};