mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-11-07 08:34:37 +01:00
whisper : add support for large v3 (#1444)
* whisper : add support for large v3 * bench : fix build + fix go bindings * bench : fix n_mels * models : update readme
This commit is contained in:
parent
973111088b
commit
2cdfc4e025
3
Makefile
3
Makefile
@ -417,9 +417,10 @@ samples:
|
||||
.PHONY: medium.en
|
||||
.PHONY: medium
|
||||
.PHONY: large-v1
|
||||
.PHONY: large-v2
|
||||
.PHONY: large
|
||||
|
||||
tiny.en tiny base.en base small.en small medium.en medium large-v1 large: main
|
||||
tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large: main
|
||||
bash ./models/download-ggml-model.sh $@
|
||||
@echo ""
|
||||
@echo "==============================================="
|
||||
|
@ -234,6 +234,7 @@ make small
|
||||
make medium.en
|
||||
make medium
|
||||
make large-v1
|
||||
make large-v2
|
||||
make large
|
||||
```
|
||||
|
||||
@ -245,7 +246,7 @@ make large
|
||||
| base | 142 MB | ~210 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| small | 466 MB | ~600 MB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
| large | 2.9 GB | ~3.3 GB | `ad82bf6a9043ceed055076d0fd39f5f186ff8062` |
|
||||
|
||||
## Quantization
|
||||
|
||||
|
@ -24,7 +24,7 @@ const (
|
||||
|
||||
var (
|
||||
// The models which will be downloaded, if no model is specified as an argument
|
||||
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large"}
|
||||
modelNames = []string{"ggml-tiny.en", "ggml-tiny", "ggml-base.en", "ggml-base", "ggml-small.en", "ggml-small", "ggml-medium.en", "ggml-medium", "ggml-large-v1", "ggml-large-v2", "ggml-large"}
|
||||
)
|
||||
|
||||
var (
|
||||
|
@ -83,7 +83,6 @@ const (
|
||||
SampleRate = C.WHISPER_SAMPLE_RATE // Expected sample rate, samples per second
|
||||
SampleBits = uint16(unsafe.Sizeof(C.float(0))) * 8 // Sample size in bits
|
||||
NumFFT = C.WHISPER_N_FFT
|
||||
NumMEL = C.WHISPER_N_MEL
|
||||
HopLength = C.WHISPER_HOP_LENGTH
|
||||
ChunkSize = C.WHISPER_CHUNK_SIZE
|
||||
)
|
||||
|
@ -23,7 +23,9 @@ void bench_main(size_t index) {
|
||||
|
||||
fprintf(stderr, "%s: running benchmark with %d threads - please wait...\n", __func__, n_threads);
|
||||
|
||||
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
|
||||
const int n_mels = whisper_model_n_mels(ctx);
|
||||
|
||||
if (int ret = whisper_set_mel(ctx, nullptr, 0, n_mels)) {
|
||||
fprintf(stderr, "error: failed to set mel: %d\n", ret);
|
||||
return;
|
||||
}
|
||||
|
@ -73,7 +73,9 @@ int whisper_bench_full(const whisper_params & params) {
|
||||
return 2;
|
||||
}
|
||||
|
||||
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
|
||||
const int n_mels = whisper_model_n_mels(ctx);
|
||||
|
||||
if (int ret = whisper_set_mel(ctx, nullptr, 0, n_mels)) {
|
||||
fprintf(stderr, "error: failed to set mel: %d\n", ret);
|
||||
return 3;
|
||||
}
|
||||
|
@ -48,7 +48,7 @@ if [ -n "$3" ]; then
|
||||
fi
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
|
@ -21,7 +21,7 @@ help()
|
||||
echo "Usage: ./twitch.sh -s [step] -m [model] -t [threads] [url]"
|
||||
echo "options:"
|
||||
echo "-s Step in seconds (default is $step)."
|
||||
echo "-m Choose model, options are: 'tiny.en' 'tiny' 'base.en' 'base' 'small.en' 'small' 'medium.en' 'medium' 'large-v1' 'large' (default is '$model')."
|
||||
echo "-m Choose model, options are: 'tiny.en' 'tiny' 'base.en' 'base' 'small.en' 'small' 'medium.en' 'medium' 'large-v1' 'large-v2' 'large' (default is '$model')."
|
||||
echo "-t Number of threads to use."
|
||||
echo "-h Print this help page."
|
||||
echo
|
||||
|
@ -1,6 +1,6 @@
|
||||
#!/bin/bash
|
||||
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large" )
|
||||
|
||||
for model in "${models[@]}"; do
|
||||
python3 models/convert-pt-to-ggml.py ~/.cache/whisper/$model.pt ../whisper models/
|
||||
|
@ -50,7 +50,8 @@ https://huggingface.co/ggerganov/whisper.cpp/tree/main
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| medium.en | 1.5 GB | ~2.6 GB | `8c30f0e44ce9560643ebd10bbe50cd20eafd3723` |
|
||||
| large-v1 | 2.9 GB | ~4.7 GB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` |
|
||||
| large | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
| large-v2 | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
|
||||
| large | 2.9 GB | ~4.7 GB | `ad82bf6a9043ceed055076d0fd39f5f186ff8062` |
|
||||
|
||||
## Model files for testing purposes
|
||||
|
||||
|
@ -78,14 +78,14 @@ def convert_hf_whisper(hf_model_name_or_path: str, whisper_state_path: str):
|
||||
# Ported from models/convert-whisper-to-coreml.py
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, help="name of model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1)", required=True)
|
||||
parser.add_argument("--model-name", type=str, help="name of model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1, large-v2)", required=True)
|
||||
parser.add_argument("--model-path", type=str, help="path to the model (e.g. if published on HuggingFace: Oblivion208/whisper-tiny-cantonese)", required=True)
|
||||
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False)
|
||||
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False)
|
||||
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model_name not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1"]:
|
||||
if args.model_name not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1", "large-v2"]:
|
||||
raise ValueError("Invalid model name")
|
||||
|
||||
pt_target_path = f"models/hf-{args.model_name}.pt"
|
||||
|
@ -228,7 +228,7 @@ with np.load(dir_whisper / "whisper" / "assets" / "mel_filters.npz") as f:
|
||||
# for backwards compatibility, also check for older hf_transformers format tokenizer files
|
||||
# old format: dir_whisper/whisper/assets/[multilingual/gpt2]/vocab.json
|
||||
# new format: dir_whisper/whisper/assets/[multilingual/gpt2].tiktoken
|
||||
multilingual = hparams["n_vocab"] == 51865
|
||||
multilingual = hparams["n_vocab"] >= 51865
|
||||
tokenizer = dir_whisper / "whisper" / "assets" / (multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
|
||||
tokenizer_type = "tiktoken"
|
||||
if not tokenizer.is_file():
|
||||
|
@ -194,7 +194,7 @@ class TextDecoderANE(TextDecoder):
|
||||
x = x.permute(0,2,3,1).squeeze(0)
|
||||
|
||||
# ANE can only load tensors with dim size of at most 16,384 - whisper uses 51,864 (en) or 51,865 (multi-lang) tokens so we need to compute in chunks
|
||||
if self.token_embedding.weight.shape[0] == 51865:
|
||||
if self.token_embedding.weight.shape[0] >= 51865:
|
||||
# split in 11 chunks - 4715 each
|
||||
splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//11, dim=0)
|
||||
logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1)
|
||||
@ -296,13 +296,13 @@ def convert_decoder(hparams, model, quantize=False):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1)", required=True)
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1, large-v2)", required=True)
|
||||
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False)
|
||||
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False)
|
||||
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1"]:
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1", "large-v2"]:
|
||||
raise ValueError("Invalid model name")
|
||||
|
||||
whisper = load_model(args.model).cpu()
|
||||
|
@ -38,10 +38,10 @@ def convert_encoder(hparams, encoder, mname):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1)", required=True)
|
||||
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large, large-v1, large-v2)", required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1"]:
|
||||
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large", "large-v1", "large-v2"]:
|
||||
raise ValueError("Invalid model name")
|
||||
|
||||
whisper = load_model(args.model).cpu()
|
||||
|
@ -19,7 +19,7 @@ function get_script_path() {
|
||||
models_path="$(get_script_path)"
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
|
@ -8,7 +8,7 @@ popd
|
||||
set argc=0
|
||||
for %%x in (%*) do set /A argc+=1
|
||||
|
||||
set models=tiny.en tiny base.en base small.en small medium.en medium large-v1 large
|
||||
set models=tiny.en tiny base.en base small.en small medium.en medium large-v1 large-v2 large
|
||||
|
||||
if %argc% neq 1 (
|
||||
echo.
|
||||
|
@ -41,6 +41,7 @@ models=(
|
||||
"medium-q5_0"
|
||||
"medium.en-q5_0"
|
||||
"large-v1"
|
||||
"large-v2"
|
||||
"large"
|
||||
"large-q5_0"
|
||||
)
|
||||
|
@ -19,7 +19,7 @@
|
||||
cd `dirname $0`
|
||||
|
||||
# Whisper models
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
|
||||
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large-v2" "large" )
|
||||
|
||||
# list available models
|
||||
function list_models {
|
||||
|
54
whisper.cpp
54
whisper.cpp
@ -193,6 +193,15 @@ enum e_model {
|
||||
MODEL_LARGE,
|
||||
};
|
||||
|
||||
static const std::map<e_model, std::string> g_model_name = {
|
||||
{ MODEL_UNKNOWN, "unknown" },
|
||||
{ MODEL_TINY, "tiny" },
|
||||
{ MODEL_BASE, "base" },
|
||||
{ MODEL_SMALL, "small" },
|
||||
{ MODEL_MEDIUM, "medium" },
|
||||
{ MODEL_LARGE, "large" },
|
||||
};
|
||||
|
||||
static const std::map<std::string, std::pair<int, std::string>> g_lang = {
|
||||
{ "en", { 0, "english", } },
|
||||
{ "zh", { 1, "chinese", } },
|
||||
@ -293,6 +302,7 @@ static const std::map<std::string, std::pair<int, std::string>> g_lang = {
|
||||
{ "ba", { 96, "bashkir", } },
|
||||
{ "jw", { 97, "javanese", } },
|
||||
{ "su", { 98, "sundanese", } },
|
||||
{ "yue", { 99, "cantonese", } },
|
||||
};
|
||||
|
||||
static const size_t MB = 1ull*1024*1024;
|
||||
@ -402,7 +412,11 @@ struct whisper_vocab {
|
||||
id token_beg = 50363; // begin timestamps
|
||||
|
||||
bool is_multilingual() const {
|
||||
return n_vocab == 51865;
|
||||
return n_vocab >= 51865;
|
||||
}
|
||||
|
||||
int num_languages() const {
|
||||
return n_vocab - 51765 - (is_multilingual() ? 1 : 0);
|
||||
}
|
||||
};
|
||||
|
||||
@ -922,6 +936,8 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
|
||||
assert(hparams.n_text_state == hparams.n_audio_state);
|
||||
|
||||
std::string mver = "";
|
||||
|
||||
if (hparams.n_audio_layer == 4) {
|
||||
model.type = e_model::MODEL_TINY;
|
||||
}
|
||||
@ -940,6 +956,10 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
|
||||
if (hparams.n_audio_layer == 32) {
|
||||
model.type = e_model::MODEL_LARGE;
|
||||
|
||||
if (hparams.n_vocab == 51866) {
|
||||
mver = " v3";
|
||||
}
|
||||
}
|
||||
|
||||
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
|
||||
@ -968,7 +988,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
log("%s: n_mels = %d\n", __func__, hparams.n_mels);
|
||||
log("%s: ftype = %d\n", __func__, model.hparams.ftype);
|
||||
log("%s: qntvr = %d\n", __func__, qntvr);
|
||||
log("%s: type = %d\n", __func__, model.type);
|
||||
log("%s: type = %d (%s%s)\n", __func__, model.type, g_model_name.at(model.type).c_str(), mver.c_str());
|
||||
|
||||
// print memory requirements
|
||||
{
|
||||
@ -1039,13 +1059,17 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
if (vocab.is_multilingual()) {
|
||||
vocab.token_eot++;
|
||||
vocab.token_sot++;
|
||||
vocab.token_translate++;
|
||||
vocab.token_transcribe++;
|
||||
vocab.token_solm++;
|
||||
vocab.token_prev++;
|
||||
vocab.token_nosp++;
|
||||
vocab.token_not++;
|
||||
vocab.token_beg++;
|
||||
|
||||
// account for variable number of language tokens
|
||||
const int dt = vocab.num_languages() - 98;
|
||||
|
||||
vocab.token_translate += dt;
|
||||
vocab.token_transcribe += dt;
|
||||
vocab.token_solm += dt;
|
||||
vocab.token_prev += dt;
|
||||
vocab.token_nosp += dt;
|
||||
vocab.token_not += dt;
|
||||
vocab.token_beg += dt;
|
||||
}
|
||||
|
||||
if (n_vocab < model.hparams.n_vocab) {
|
||||
@ -1074,6 +1098,8 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
|
||||
vocab.id_to_token[i] = word;
|
||||
}
|
||||
}
|
||||
|
||||
log("%s: n_langs = %d\n", __func__, vocab.num_languages());
|
||||
}
|
||||
|
||||
size_t ctx_size = 0;
|
||||
@ -3281,7 +3307,7 @@ void whisper_free_params(struct whisper_full_params * params) {
|
||||
}
|
||||
|
||||
int whisper_pcm_to_mel_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) {
|
||||
if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, false, state->mel)) {
|
||||
if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, ctx->model.filters.n_mel, n_threads, ctx->model.filters, false, state->mel)) {
|
||||
log("%s: failed to compute mel spectrogram\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
@ -3295,7 +3321,7 @@ int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int
|
||||
|
||||
// same as whisper_pcm_to_mel, but applies a Phase Vocoder to speed up the audio x2 (PV without phase lock is not good)
|
||||
int whisper_pcm_to_mel_phase_vocoder_with_state(struct whisper_context * ctx, struct whisper_state * state, const float * samples, int n_samples, int n_threads) {
|
||||
if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, 2 * WHISPER_N_FFT, 2 * WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, false, state->mel)) {
|
||||
if (!log_mel_spectrogram(*state, samples, n_samples, WHISPER_SAMPLE_RATE, 2 * WHISPER_N_FFT, 2 * WHISPER_HOP_LENGTH, ctx->model.filters.n_mel, n_threads, ctx->model.filters, false, state->mel)) {
|
||||
log("%s: failed to compute mel spectrogram\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
@ -3318,13 +3344,13 @@ int whisper_pcm_to_mel_phase_vocoder(struct whisper_context * ctx, const float *
|
||||
// TODO
|
||||
|
||||
int whisper_set_mel_with_state(
|
||||
struct whisper_context * /*ctx*/,
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_state * state,
|
||||
const float * data,
|
||||
int n_len,
|
||||
int n_mel) {
|
||||
if (n_mel != WHISPER_N_MEL) {
|
||||
log("%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, WHISPER_N_MEL);
|
||||
if (n_mel != ctx->model.filters.n_mel) {
|
||||
log("%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, ctx->model.filters.n_mel);
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user