talk-llama : sync llama.cpp

ggml-ci
This commit is contained in:
Georgi Gerganov
2025-06-18 10:22:47 +03:00
parent 69061e356f
commit 2f60ebc3c2
26 changed files with 1454 additions and 504 deletions

View File

@ -95,36 +95,69 @@ llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const {
return kv_swa->seq_pos_max(seq_id);
}
llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled, bool logits_all) {
GGML_UNUSED(embd_pooled);
llama_memory_state_ptr llama_kv_cache_unified_iswa::init_batch(const llama_batch & batch, uint32_t n_ubatch, bool embd_all) {
GGML_UNUSED(embd_all);
// TODO: if we fail with split_simple, we should attempt different splitting strategies
// first try simple split
do {
auto sbatch = llama_sbatch(batch, hparams.n_embd, true);
std::vector<llama_ubatch> ubatches;
while (sbatch.n_tokens > 0) {
auto ubatch = sbatch.split_simple(n_ubatch);
ubatches.push_back(ubatch);
}
auto heads_base = kv_base->prepare(ubatches);
if (heads_base.empty()) {
break;
}
auto heads_swa = kv_swa->prepare(ubatches);
if (heads_swa.empty()) {
break;
}
assert(heads_base.size() == heads_swa.size());
return std::make_unique<llama_kv_cache_unified_iswa_state>(
this, std::move(sbatch), std::move(heads_base), std::move(heads_swa), std::move(ubatches));
} while (false);
// if it fails, try equal split
do {
auto sbatch = llama_sbatch(batch, hparams.n_embd, false);
std::vector<llama_ubatch> ubatches;
while (sbatch.n_tokens > 0) {
auto ubatch = sbatch.split_equal(n_ubatch);
ubatches.push_back(ubatch);
}
auto heads_base = kv_base->prepare(ubatches);
if (heads_base.empty()) {
break;
}
auto heads_swa = kv_swa->prepare(ubatches);
if (heads_swa.empty()) {
break;
}
assert(heads_base.size() == heads_swa.size());
return std::make_unique<llama_kv_cache_unified_iswa_state>(
this, std::move(sbatch), std::move(heads_base), std::move(heads_swa), std::move(ubatches));
} while (false);
// TODO: if we fail again, we should attempt different splitting strategies
// but to do that properly, we first have to refactor the batches to be more flexible
auto sbatch = llama_sbatch(batch, hparams.n_embd, true, logits_all);
std::vector<llama_ubatch> ubatches;
while (sbatch.n_tokens > 0) {
auto ubatch = sbatch.split_simple(n_ubatch);
ubatches.push_back(ubatch);
}
auto heads_base = kv_base->prepare(ubatches);
if (heads_base.empty()) {
return std::make_unique<llama_kv_cache_unified_iswa_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
auto heads_swa = kv_swa->prepare(ubatches);
if (heads_swa.empty()) {
return std::make_unique<llama_kv_cache_unified_iswa_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
assert(heads_base.size() == heads_swa.size());
return std::make_unique<llama_kv_cache_unified_iswa_state>(
this, std::move(sbatch), std::move(heads_base), std::move(heads_swa), std::move(ubatches));
return std::make_unique<llama_kv_cache_unified_iswa_state>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
llama_memory_state_ptr llama_kv_cache_unified_iswa::init_full() {