mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-26 12:42:14 +02:00
opencl: add new ops - argsort
, div
, sub
, addrows
, sigmoid
, group_norm
(llama/13787)
* opencl: add `argsort` * opencl: add `div` * opencl: add `add_rows` * opencl: add `sub` * opencl: add `sigmoid`, both `f16` and `f32` * opencl: add `group_norm`
This commit is contained in:
parent
67beac47f3
commit
3623186312
@ -55,14 +55,17 @@ endfunction()
|
|||||||
|
|
||||||
set(GGML_OPENCL_KERNELS
|
set(GGML_OPENCL_KERNELS
|
||||||
add
|
add
|
||||||
|
argsort
|
||||||
clamp
|
clamp
|
||||||
cpy
|
cpy
|
||||||
cvt
|
cvt
|
||||||
diag_mask_inf
|
diag_mask_inf
|
||||||
|
div
|
||||||
gelu
|
gelu
|
||||||
gemv_noshuffle_general
|
gemv_noshuffle_general
|
||||||
gemv_noshuffle
|
gemv_noshuffle
|
||||||
get_rows
|
get_rows
|
||||||
|
group_norm
|
||||||
im2col_f32
|
im2col_f32
|
||||||
im2col_f16
|
im2col_f16
|
||||||
mul_mat_Ab_Bi_8x4
|
mul_mat_Ab_Bi_8x4
|
||||||
@ -83,11 +86,14 @@ set(GGML_OPENCL_KERNELS
|
|||||||
rms_norm
|
rms_norm
|
||||||
rope
|
rope
|
||||||
scale
|
scale
|
||||||
|
sigmoid
|
||||||
silu
|
silu
|
||||||
softmax_4_f32
|
softmax_4_f32
|
||||||
softmax_4_f16
|
softmax_4_f16
|
||||||
softmax_f32
|
softmax_f32
|
||||||
softmax_f16
|
softmax_f16
|
||||||
|
sub
|
||||||
|
sum_rows
|
||||||
transpose
|
transpose
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -299,27 +299,37 @@ struct ggml_backend_opencl_context {
|
|||||||
cl_program program_mul_mv_f16_f32;
|
cl_program program_mul_mv_f16_f32;
|
||||||
cl_program program_mul_mv_f32_f32;
|
cl_program program_mul_mv_f32_f32;
|
||||||
cl_program program_mul;
|
cl_program program_mul;
|
||||||
|
cl_program program_div;
|
||||||
|
cl_program program_sub;
|
||||||
cl_program program_norm;
|
cl_program program_norm;
|
||||||
cl_program program_relu;
|
cl_program program_relu;
|
||||||
cl_program program_rms_norm;
|
cl_program program_rms_norm;
|
||||||
|
cl_program program_group_norm;
|
||||||
cl_program program_rope;
|
cl_program program_rope;
|
||||||
cl_program program_scale;
|
cl_program program_scale;
|
||||||
cl_program program_silu;
|
cl_program program_silu;
|
||||||
|
cl_program program_sigmoid;
|
||||||
cl_program program_softmax_f32;
|
cl_program program_softmax_f32;
|
||||||
cl_program program_softmax_f16;
|
cl_program program_softmax_f16;
|
||||||
cl_program program_softmax_4_f32;
|
cl_program program_softmax_4_f32;
|
||||||
cl_program program_softmax_4_f16;
|
cl_program program_softmax_4_f16;
|
||||||
|
cl_program program_argsort_f32_i32;
|
||||||
|
cl_program program_sum_rows_f32;
|
||||||
|
|
||||||
cl_kernel kernel_add, kernel_add_row;
|
cl_kernel kernel_add, kernel_add_row;
|
||||||
cl_kernel kernel_mul, kernel_mul_row;
|
cl_kernel kernel_mul, kernel_mul_row;
|
||||||
|
cl_kernel kernel_div, kernel_div_row;
|
||||||
|
cl_kernel kernel_sub, kernel_sub_row;
|
||||||
cl_kernel kernel_scale;
|
cl_kernel kernel_scale;
|
||||||
cl_kernel kernel_silu, kernel_silu_4;
|
cl_kernel kernel_silu, kernel_silu_4;
|
||||||
cl_kernel kernel_gelu, kernel_gelu_4;
|
cl_kernel kernel_gelu, kernel_gelu_4;
|
||||||
cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
|
cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
|
||||||
cl_kernel kernel_relu;
|
cl_kernel kernel_relu;
|
||||||
|
cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
|
||||||
cl_kernel kernel_clamp;
|
cl_kernel kernel_clamp;
|
||||||
cl_kernel kernel_norm;
|
cl_kernel kernel_norm;
|
||||||
cl_kernel kernel_rms_norm;
|
cl_kernel kernel_rms_norm;
|
||||||
|
cl_kernel kernel_group_norm;
|
||||||
cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
|
cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
|
||||||
cl_kernel kernel_soft_max, kernel_soft_max_4;
|
cl_kernel kernel_soft_max, kernel_soft_max_4;
|
||||||
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
|
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
|
||||||
@ -339,6 +349,8 @@ struct ggml_backend_opencl_context {
|
|||||||
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
|
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
|
||||||
cl_kernel kernel_mul_mv_q6_K_f32;
|
cl_kernel kernel_mul_mv_q6_K_f32;
|
||||||
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
|
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
|
||||||
|
cl_kernel kernel_argsort_f32_i32;
|
||||||
|
cl_kernel kernel_sum_rows_f32;
|
||||||
|
|
||||||
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
||||||
// Transpose kernels
|
// Transpose kernels
|
||||||
@ -986,6 +998,105 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||||||
GGML_LOG_CONT(".");
|
GGML_LOG_CONT(".");
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// argsort
|
||||||
|
{
|
||||||
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||||
|
const std::string kernel_src {
|
||||||
|
#include "argsort.cl.h"
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
const std::string kernel_src = read_file("argsort.cl");
|
||||||
|
#endif
|
||||||
|
backend_ctx->program_argsort_f32_i32 =
|
||||||
|
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||||
|
|
||||||
|
CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
|
||||||
|
GGML_LOG_CONT(".");
|
||||||
|
}
|
||||||
|
|
||||||
|
// div
|
||||||
|
{
|
||||||
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||||
|
const std::string kernel_src {
|
||||||
|
#include "div.cl.h"
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
const std::string kernel_src = read_file("div.cl");
|
||||||
|
#endif
|
||||||
|
backend_ctx->program_div =
|
||||||
|
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||||
|
|
||||||
|
CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
|
||||||
|
CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
|
||||||
|
GGML_LOG_CONT(".");
|
||||||
|
}
|
||||||
|
|
||||||
|
// sub
|
||||||
|
{
|
||||||
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||||
|
const std::string kernel_src {
|
||||||
|
#include "sub.cl.h"
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
const std::string kernel_src = read_file("sub.cl");
|
||||||
|
#endif
|
||||||
|
backend_ctx->program_sub =
|
||||||
|
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||||
|
|
||||||
|
CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
|
||||||
|
CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
|
||||||
|
GGML_LOG_CONT(".");
|
||||||
|
}
|
||||||
|
|
||||||
|
// sum_rows
|
||||||
|
{
|
||||||
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||||
|
const std::string kernel_src {
|
||||||
|
#include "sum_rows.cl.h"
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
const std::string kernel_src = read_file("sum_rows.cl");
|
||||||
|
#endif
|
||||||
|
backend_ctx->program_sum_rows_f32 =
|
||||||
|
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||||
|
|
||||||
|
CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
|
||||||
|
GGML_LOG_CONT(".");
|
||||||
|
}
|
||||||
|
|
||||||
|
// sigmoid
|
||||||
|
{
|
||||||
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||||
|
const std::string kernel_src {
|
||||||
|
#include "sigmoid.cl.h"
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
const std::string kernel_src = read_file("sigmoid.cl");
|
||||||
|
#endif
|
||||||
|
backend_ctx->program_sigmoid =
|
||||||
|
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||||
|
|
||||||
|
CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
|
||||||
|
CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
|
||||||
|
GGML_LOG_CONT(".");
|
||||||
|
}
|
||||||
|
|
||||||
|
// group_norm
|
||||||
|
{
|
||||||
|
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||||
|
const std::string kernel_src {
|
||||||
|
#include "group_norm.cl.h"
|
||||||
|
};
|
||||||
|
#else
|
||||||
|
const std::string kernel_src = read_file("group_norm.cl");
|
||||||
|
#endif
|
||||||
|
backend_ctx->program_group_norm =
|
||||||
|
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||||
|
|
||||||
|
CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
|
||||||
|
GGML_LOG_CONT(".");
|
||||||
|
}
|
||||||
|
|
||||||
// Adreno kernels
|
// Adreno kernels
|
||||||
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
|
||||||
// transpose
|
// transpose
|
||||||
@ -1856,6 +1967,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|||||||
case GGML_OP_ADD:
|
case GGML_OP_ADD:
|
||||||
case GGML_OP_SCALE:
|
case GGML_OP_SCALE:
|
||||||
case GGML_OP_MUL:
|
case GGML_OP_MUL:
|
||||||
|
case GGML_OP_DIV:
|
||||||
|
case GGML_OP_SUB:
|
||||||
return op->src[0]->type == GGML_TYPE_F32;
|
return op->src[0]->type == GGML_TYPE_F32;
|
||||||
case GGML_OP_UNARY:
|
case GGML_OP_UNARY:
|
||||||
switch (ggml_get_unary_op(op)) {
|
switch (ggml_get_unary_op(op)) {
|
||||||
@ -1864,6 +1977,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|||||||
case GGML_UNARY_OP_RELU:
|
case GGML_UNARY_OP_RELU:
|
||||||
case GGML_UNARY_OP_GELU_QUICK:
|
case GGML_UNARY_OP_GELU_QUICK:
|
||||||
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
|
||||||
|
case GGML_UNARY_OP_SIGMOID:
|
||||||
|
return ggml_is_contiguous(op->src[0]);
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
@ -1873,6 +1988,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|||||||
case GGML_OP_NORM:
|
case GGML_OP_NORM:
|
||||||
case GGML_OP_RMS_NORM:
|
case GGML_OP_RMS_NORM:
|
||||||
return true;
|
return true;
|
||||||
|
case GGML_OP_GROUP_NORM:
|
||||||
|
return ggml_is_contiguous(op->src[0]);
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
if (op->src[0]->type == GGML_TYPE_F16) {
|
if (op->src[0]->type == GGML_TYPE_F16) {
|
||||||
return true;
|
return true;
|
||||||
@ -1912,6 +2029,10 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|||||||
}
|
}
|
||||||
case GGML_OP_IM2COL:
|
case GGML_OP_IM2COL:
|
||||||
return true;
|
return true;
|
||||||
|
case GGML_OP_ARGSORT:
|
||||||
|
return op->src[0]->type == GGML_TYPE_F32;
|
||||||
|
case GGML_OP_SUM_ROWS:
|
||||||
|
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
@ -3238,6 +3359,256 @@ static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
GGML_ASSERT(src0);
|
||||||
|
GGML_ASSERT(src0->extra);
|
||||||
|
GGML_ASSERT(src1);
|
||||||
|
GGML_ASSERT(src1->extra);
|
||||||
|
GGML_ASSERT(dst);
|
||||||
|
GGML_ASSERT(dst->extra);
|
||||||
|
|
||||||
|
const int ne00 = src0->ne[0];
|
||||||
|
const int ne01 = src0->ne[1];
|
||||||
|
const int ne02 = src0->ne[2];
|
||||||
|
const int ne03 = src0->ne[3];
|
||||||
|
|
||||||
|
const cl_ulong nb00 = src0->nb[0];
|
||||||
|
const cl_ulong nb01 = src0->nb[1];
|
||||||
|
const cl_ulong nb02 = src0->nb[2];
|
||||||
|
const cl_ulong nb03 = src0->nb[3];
|
||||||
|
|
||||||
|
const int ne10 = src1->ne[0];
|
||||||
|
const int ne11 = src1->ne[1];
|
||||||
|
const int ne12 = src1->ne[2];
|
||||||
|
const int ne13 = src1->ne[3];
|
||||||
|
|
||||||
|
const cl_ulong nb10 = src1->nb[0];
|
||||||
|
const cl_ulong nb11 = src1->nb[1];
|
||||||
|
const cl_ulong nb12 = src1->nb[2];
|
||||||
|
const cl_ulong nb13 = src1->nb[3];
|
||||||
|
|
||||||
|
const int ne0 = dst->ne[0];
|
||||||
|
|
||||||
|
const cl_ulong nb0 = dst->nb[0];
|
||||||
|
const cl_ulong nb1 = dst->nb[1];
|
||||||
|
const cl_ulong nb2 = dst->nb[2];
|
||||||
|
const cl_ulong nb3 = dst->nb[3];
|
||||||
|
|
||||||
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||||
|
cl_command_queue queue = backend_ctx->queue;
|
||||||
|
|
||||||
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||||
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||||
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||||
|
|
||||||
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||||
|
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
||||||
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||||
|
|
||||||
|
bool bcast_row = false;
|
||||||
|
cl_kernel kernel;
|
||||||
|
|
||||||
|
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
|
// src1 is a row
|
||||||
|
GGML_ASSERT(ne11 == 1);
|
||||||
|
|
||||||
|
bcast_row = true;
|
||||||
|
int ne = ne00 / 4;
|
||||||
|
kernel = backend_ctx->kernel_div_row;
|
||||||
|
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
||||||
|
} else {
|
||||||
|
kernel = backend_ctx->kernel_div;
|
||||||
|
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (bcast_row) {
|
||||||
|
int n = ggml_nelements(dst)/4;
|
||||||
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
||||||
|
size_t local_work_size[] = {64, 1, 1};
|
||||||
|
|
||||||
|
#ifdef GGML_OPENCL_PROFILING
|
||||||
|
cl_event evt;
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||||
|
|
||||||
|
g_profiling_info.emplace_back();
|
||||||
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||||
|
#else
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
unsigned int nth = MIN(64, ne0);
|
||||||
|
size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
|
||||||
|
size_t local_work_size[] = {nth, 1, 1};
|
||||||
|
|
||||||
|
#ifdef GGML_OPENCL_PROFILING
|
||||||
|
cl_event evt;
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||||
|
|
||||||
|
g_profiling_info.emplace_back();
|
||||||
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||||
|
#else
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
GGML_ASSERT(src0);
|
||||||
|
GGML_ASSERT(src0->extra);
|
||||||
|
GGML_ASSERT(src1);
|
||||||
|
GGML_ASSERT(src1->extra);
|
||||||
|
GGML_ASSERT(dst);
|
||||||
|
GGML_ASSERT(dst->extra);
|
||||||
|
|
||||||
|
const int ne00 = src0->ne[0];
|
||||||
|
const int ne01 = src0->ne[1];
|
||||||
|
const int ne02 = src0->ne[2];
|
||||||
|
const int ne03 = src0->ne[3];
|
||||||
|
|
||||||
|
const cl_ulong nb00 = src0->nb[0];
|
||||||
|
const cl_ulong nb01 = src0->nb[1];
|
||||||
|
const cl_ulong nb02 = src0->nb[2];
|
||||||
|
const cl_ulong nb03 = src0->nb[3];
|
||||||
|
|
||||||
|
const int ne10 = src1->ne[0];
|
||||||
|
const int ne11 = src1->ne[1];
|
||||||
|
const int ne12 = src1->ne[2];
|
||||||
|
const int ne13 = src1->ne[3];
|
||||||
|
|
||||||
|
const cl_ulong nb10 = src1->nb[0];
|
||||||
|
const cl_ulong nb11 = src1->nb[1];
|
||||||
|
const cl_ulong nb12 = src1->nb[2];
|
||||||
|
const cl_ulong nb13 = src1->nb[3];
|
||||||
|
|
||||||
|
const int ne0 = dst->ne[0];
|
||||||
|
|
||||||
|
const cl_ulong nb0 = dst->nb[0];
|
||||||
|
const cl_ulong nb1 = dst->nb[1];
|
||||||
|
const cl_ulong nb2 = dst->nb[2];
|
||||||
|
const cl_ulong nb3 = dst->nb[3];
|
||||||
|
|
||||||
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||||
|
cl_command_queue queue = backend_ctx->queue;
|
||||||
|
|
||||||
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||||
|
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
|
||||||
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||||
|
|
||||||
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||||
|
cl_ulong offset1 = extra1->offset + src1->view_offs;
|
||||||
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||||
|
|
||||||
|
bool bcast_row = false;
|
||||||
|
cl_kernel kernel;
|
||||||
|
|
||||||
|
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
|
// src1 is a row
|
||||||
|
GGML_ASSERT(ne11 == 1);
|
||||||
|
|
||||||
|
bcast_row = true;
|
||||||
|
int ne = ne00 / 4;
|
||||||
|
kernel = backend_ctx->kernel_sub_row;
|
||||||
|
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
|
||||||
|
} else {
|
||||||
|
kernel = backend_ctx->kernel_sub;
|
||||||
|
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
|
||||||
|
}
|
||||||
|
|
||||||
|
if (bcast_row) {
|
||||||
|
int n = ggml_nelements(dst)/4;
|
||||||
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
||||||
|
size_t local_work_size[] = {64, 1, 1};
|
||||||
|
|
||||||
|
#ifdef GGML_OPENCL_PROFILING
|
||||||
|
cl_event evt;
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||||
|
|
||||||
|
g_profiling_info.emplace_back();
|
||||||
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||||
|
#else
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
unsigned int nth = MIN(64, ne0);
|
||||||
|
size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
|
||||||
|
size_t local_work_size[] = {nth, 1, 1};
|
||||||
|
|
||||||
|
#ifdef GGML_OPENCL_PROFILING
|
||||||
|
cl_event evt;
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||||
|
|
||||||
|
g_profiling_info.emplace_back();
|
||||||
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||||
|
#else
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
GGML_ASSERT(src0);
|
GGML_ASSERT(src0);
|
||||||
GGML_ASSERT(src0->extra);
|
GGML_ASSERT(src0->extra);
|
||||||
@ -3429,6 +3800,58 @@ static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
GGML_ASSERT(src0);
|
||||||
|
GGML_ASSERT(src0->extra);
|
||||||
|
GGML_ASSERT(dst);
|
||||||
|
GGML_ASSERT(dst->extra);
|
||||||
|
|
||||||
|
UNUSED(src1);
|
||||||
|
|
||||||
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||||
|
cl_command_queue queue = backend_ctx->queue;
|
||||||
|
|
||||||
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||||
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||||
|
|
||||||
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||||
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||||
|
|
||||||
|
cl_kernel kernel;
|
||||||
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||||
|
kernel = backend_ctx->kernel_sigmoid_f32;
|
||||||
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||||
|
kernel = backend_ctx->kernel_sigmoid_f16;
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
|
||||||
|
}
|
||||||
|
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||||
|
|
||||||
|
const int64_t n = ggml_nelements(dst);
|
||||||
|
|
||||||
|
size_t global_work_size[] = {(size_t)n, 1, 1};
|
||||||
|
size_t local_work_size[] = {64, 1, 1};
|
||||||
|
|
||||||
|
size_t * local_work_size_ptr = local_work_size;
|
||||||
|
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
|
||||||
|
local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef GGML_OPENCL_PROFILING
|
||||||
|
cl_event evt;
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, &evt));
|
||||||
|
|
||||||
|
g_profiling_info.emplace_back();
|
||||||
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size_ptr, dst);
|
||||||
|
#else
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size_ptr, 0, NULL, NULL));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
GGML_ASSERT(src0);
|
GGML_ASSERT(src0);
|
||||||
GGML_ASSERT(src0->extra);
|
GGML_ASSERT(src0->extra);
|
||||||
@ -3626,6 +4049,65 @@ static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, c
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
GGML_ASSERT(src0);
|
||||||
|
GGML_ASSERT(src0->extra);
|
||||||
|
GGML_ASSERT(dst);
|
||||||
|
GGML_ASSERT(dst->extra);
|
||||||
|
|
||||||
|
UNUSED(src1);
|
||||||
|
|
||||||
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||||
|
cl_command_queue queue = backend_ctx->queue;
|
||||||
|
|
||||||
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||||
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||||
|
|
||||||
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||||
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||||
|
|
||||||
|
int32_t n_groups = ((const int32_t *) dst->op_params)[0];
|
||||||
|
int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
|
||||||
|
float eps = ((const float *) dst->op_params)[1];
|
||||||
|
|
||||||
|
const int ne00 = src0->ne[0];
|
||||||
|
const int ne01 = src0->ne[1];
|
||||||
|
const int ne02 = src0->ne[2];
|
||||||
|
const int ne = ne00*ne01*ne02;
|
||||||
|
|
||||||
|
cl_kernel kernel = backend_ctx->kernel_group_norm;
|
||||||
|
|
||||||
|
size_t sgs = 64;
|
||||||
|
if (backend_ctx->gpu_family == ADRENO) {
|
||||||
|
sgs = 64;
|
||||||
|
} else if (backend_ctx->gpu_family == INTEL) {
|
||||||
|
sgs = 32;
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(false && "Unsupported GPU");
|
||||||
|
}
|
||||||
|
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
|
||||||
|
|
||||||
|
size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
|
||||||
|
size_t local_work_size[] = {(size_t)sgs, 1, 1};
|
||||||
|
|
||||||
|
#ifdef GGML_OPENCL_PROFILING
|
||||||
|
cl_event evt;
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||||
|
|
||||||
|
g_profiling_info.emplace_back();
|
||||||
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||||
|
#else
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
GGML_ASSERT(src0);
|
GGML_ASSERT(src0);
|
||||||
GGML_ASSERT(src0->extra);
|
GGML_ASSERT(src0->extra);
|
||||||
@ -4975,6 +5457,124 @@ static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, con
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
GGML_ASSERT(src0);
|
||||||
|
GGML_ASSERT(src0->extra);
|
||||||
|
GGML_ASSERT(dst);
|
||||||
|
GGML_ASSERT(dst->extra);
|
||||||
|
GGML_UNUSED(src1);
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||||
|
cl_command_queue queue = backend_ctx->queue;
|
||||||
|
|
||||||
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||||
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||||
|
|
||||||
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||||
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||||
|
|
||||||
|
const int ne00 = src0->ne[0];
|
||||||
|
const int nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
int ne00_padded = 1;
|
||||||
|
while (ne00_padded < ne00) {
|
||||||
|
ne00_padded *= 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
int order = (enum ggml_sort_order) dst->op_params[0];
|
||||||
|
|
||||||
|
cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
|
||||||
|
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
|
||||||
|
|
||||||
|
size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
|
||||||
|
size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
|
||||||
|
|
||||||
|
#ifdef GGML_OPENCL_PROFILING
|
||||||
|
cl_event evt;
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||||
|
|
||||||
|
g_profiling_info.emplace_back();
|
||||||
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||||
|
#else
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
GGML_ASSERT(src0);
|
||||||
|
GGML_ASSERT(src0->extra);
|
||||||
|
GGML_ASSERT(dst);
|
||||||
|
GGML_ASSERT(dst->extra);
|
||||||
|
GGML_UNUSED(src1);
|
||||||
|
|
||||||
|
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
||||||
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||||
|
|
||||||
|
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
|
||||||
|
cl_command_queue queue = backend_ctx->queue;
|
||||||
|
|
||||||
|
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
|
||||||
|
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
|
||||||
|
|
||||||
|
cl_ulong offset0 = extra0->offset + src0->view_offs;
|
||||||
|
cl_ulong offsetd = extrad->offset + dst->view_offs;
|
||||||
|
|
||||||
|
const int ne00 = src0->ne[0];
|
||||||
|
const int ne01 = src0->ne[1];
|
||||||
|
const int ne02 = src0->ne[2];
|
||||||
|
const int ne03 = src0->ne[3];
|
||||||
|
|
||||||
|
const cl_ulong nb01 = src0->nb[1];
|
||||||
|
const cl_ulong nb02 = src0->nb[2];
|
||||||
|
const cl_ulong nb03 = src0->nb[3];
|
||||||
|
|
||||||
|
const cl_ulong nb1 = dst->nb[1];
|
||||||
|
const cl_ulong nb2 = dst->nb[2];
|
||||||
|
const cl_ulong nb3 = dst->nb[3];
|
||||||
|
|
||||||
|
cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
|
||||||
|
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
|
||||||
|
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
|
||||||
|
|
||||||
|
size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
|
||||||
|
size_t local_work_size[] = {(size_t)64, 1, 1};
|
||||||
|
|
||||||
|
#ifdef GGML_OPENCL_PROFILING
|
||||||
|
cl_event evt;
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||||
|
|
||||||
|
g_profiling_info.emplace_back();
|
||||||
|
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
|
||||||
|
#else
|
||||||
|
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
// Op offloading
|
// Op offloading
|
||||||
//------------------------------------------------------------------------------
|
//------------------------------------------------------------------------------
|
||||||
@ -5023,6 +5623,18 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
|||||||
}
|
}
|
||||||
func = ggml_cl_mul;
|
func = ggml_cl_mul;
|
||||||
break;
|
break;
|
||||||
|
case GGML_OP_DIV:
|
||||||
|
if (!any_on_device) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
func = ggml_cl_div;
|
||||||
|
break;
|
||||||
|
case GGML_OP_SUB:
|
||||||
|
if (!any_on_device) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
func = ggml_cl_sub;
|
||||||
|
break;
|
||||||
case GGML_OP_UNARY:
|
case GGML_OP_UNARY:
|
||||||
switch (ggml_get_unary_op(tensor)) {
|
switch (ggml_get_unary_op(tensor)) {
|
||||||
case GGML_UNARY_OP_GELU:
|
case GGML_UNARY_OP_GELU:
|
||||||
@ -5049,6 +5661,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
|||||||
}
|
}
|
||||||
func = ggml_cl_relu;
|
func = ggml_cl_relu;
|
||||||
break;
|
break;
|
||||||
|
case GGML_UNARY_OP_SIGMOID:
|
||||||
|
if (!any_on_device) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
func = ggml_cl_sigmoid;
|
||||||
|
break;
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
} break;
|
} break;
|
||||||
@ -5070,6 +5688,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
|||||||
}
|
}
|
||||||
func = ggml_cl_rms_norm;
|
func = ggml_cl_rms_norm;
|
||||||
break;
|
break;
|
||||||
|
case GGML_OP_GROUP_NORM:
|
||||||
|
if (!any_on_device) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
func = ggml_cl_group_norm;
|
||||||
|
break;
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
|
if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
|
||||||
return false;
|
return false;
|
||||||
@ -5115,6 +5739,18 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
|
|||||||
}
|
}
|
||||||
func = ggml_cl_im2col;
|
func = ggml_cl_im2col;
|
||||||
break;
|
break;
|
||||||
|
case GGML_OP_ARGSORT:
|
||||||
|
if (!any_on_device) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
func = ggml_cl_argsort;
|
||||||
|
break;
|
||||||
|
case GGML_OP_SUM_ROWS:
|
||||||
|
if (!any_on_device) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
func = ggml_cl_sum_rows;
|
||||||
|
break;
|
||||||
default:
|
default:
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
86
ggml/src/ggml-opencl/kernels/argsort.cl
Normal file
86
ggml/src/ggml-opencl/kernels/argsort.cl
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||||
|
|
||||||
|
#ifdef cl_intel_subgroups
|
||||||
|
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||||
|
#else
|
||||||
|
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef cl_intel_required_subgroup_size
|
||||||
|
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||||
|
#define INTEL_GPU 1
|
||||||
|
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||||
|
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||||
|
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||||
|
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||||
|
#define ADRENO_GPU 1
|
||||||
|
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||||
|
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define SWAP(x, y, T) { T tmp = (x); (x) = (y); (y) = tmp; }
|
||||||
|
|
||||||
|
enum ggml_sort_order {
|
||||||
|
GGML_SORT_ORDER_ASC,
|
||||||
|
GGML_SORT_ORDER_DESC,
|
||||||
|
};
|
||||||
|
|
||||||
|
kernel void kernel_argsort_f32_i32(
|
||||||
|
global float * src0,
|
||||||
|
ulong offset0,
|
||||||
|
global int * dst,
|
||||||
|
ulong offsetd,
|
||||||
|
const int ne00,
|
||||||
|
const int ne00_pad,
|
||||||
|
const int order,
|
||||||
|
local int * dst_row
|
||||||
|
) {
|
||||||
|
// bitonic sort
|
||||||
|
int col = get_local_id(0);
|
||||||
|
int row = get_group_id(1);
|
||||||
|
|
||||||
|
if (col >= ne00_pad) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
src0 = (global char *)((global char *)src0 + offset0);
|
||||||
|
dst = (global float *)((global char *)dst + offsetd);
|
||||||
|
|
||||||
|
global float * x_row = src0 + row * ne00;
|
||||||
|
|
||||||
|
// initialize indices
|
||||||
|
dst_row[col] = col;
|
||||||
|
|
||||||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
|
||||||
|
for (int k = 2; k <= ne00_pad; k *= 2) {
|
||||||
|
for (int j = k / 2; j > 0; j /= 2) {
|
||||||
|
int ixj = col ^ j;
|
||||||
|
if (ixj > col) {
|
||||||
|
if ((col & k) == 0) {
|
||||||
|
if (dst_row[col] >= ne00 ||
|
||||||
|
(dst_row[ixj] < ne00 && (order == GGML_SORT_ORDER_ASC ?
|
||||||
|
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
||||||
|
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
||||||
|
) {
|
||||||
|
SWAP(dst_row[col], dst_row[ixj], int);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (dst_row[ixj] >= ne00 ||
|
||||||
|
(dst_row[col] < ne00 && (order == GGML_SORT_ORDER_ASC ?
|
||||||
|
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
||||||
|
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
||||||
|
) {
|
||||||
|
SWAP(dst_row[col], dst_row[ixj], int);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
barrier(CLK_LOCAL_MEM_FENCE);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// copy the result to dst without the padding
|
||||||
|
if (col < ne00) {
|
||||||
|
dst[row * ne00 + col] = dst_row[col];
|
||||||
|
}
|
||||||
|
}
|
72
ggml/src/ggml-opencl/kernels/div.cl
Normal file
72
ggml/src/ggml-opencl/kernels/div.cl
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||||
|
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
// div
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
kernel void kernel_div(
|
||||||
|
global char * src0,
|
||||||
|
ulong offset0,
|
||||||
|
global char * src1,
|
||||||
|
ulong offset1,
|
||||||
|
global char * dst,
|
||||||
|
ulong offsetd,
|
||||||
|
ulong nb00,
|
||||||
|
ulong nb01,
|
||||||
|
ulong nb02,
|
||||||
|
ulong nb03,
|
||||||
|
int ne10,
|
||||||
|
int ne11,
|
||||||
|
int ne12,
|
||||||
|
int ne13,
|
||||||
|
ulong nb10,
|
||||||
|
ulong nb11,
|
||||||
|
ulong nb12,
|
||||||
|
ulong nb13,
|
||||||
|
int ne0,
|
||||||
|
ulong nb0,
|
||||||
|
ulong nb1,
|
||||||
|
ulong nb2,
|
||||||
|
ulong nb3
|
||||||
|
) {
|
||||||
|
src0 = src0 + offset0;
|
||||||
|
src1 = src1 + offset1;
|
||||||
|
dst = dst + offsetd;
|
||||||
|
|
||||||
|
int i03 = get_group_id(2);
|
||||||
|
int i02 = get_group_id(1);
|
||||||
|
int i01 = get_group_id(0);
|
||||||
|
|
||||||
|
int i13 = i03 % ne13;
|
||||||
|
int i12 = i02 % ne12;
|
||||||
|
int i11 = i01 % ne11;
|
||||||
|
|
||||||
|
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||||
|
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
||||||
|
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
||||||
|
|
||||||
|
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||||
|
const int i10 = i0 % ne10;
|
||||||
|
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) / *((global float *)(src1_ptr + i10*nb10));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// assumption: src1 is a row
|
||||||
|
// broadcast src1 into src0
|
||||||
|
kernel void kernel_div_row(
|
||||||
|
global float4 * src0,
|
||||||
|
ulong offset0,
|
||||||
|
global float4 * src1,
|
||||||
|
ulong offset1,
|
||||||
|
global float4 * dst,
|
||||||
|
ulong offsetd,
|
||||||
|
int ne
|
||||||
|
) {
|
||||||
|
src0 = (global float4*)((global char*)src0 + offset0);
|
||||||
|
src1 = (global float4*)((global char*)src1 + offset1);
|
||||||
|
dst = (global float4*)((global char*)dst + offsetd);
|
||||||
|
|
||||||
|
// This performs better than using %.
|
||||||
|
uint gid = get_global_id(0);
|
||||||
|
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||||
|
dst[gid] = src0[gid] / src1[idx1];
|
||||||
|
}
|
72
ggml/src/ggml-opencl/kernels/group_norm.cl
Normal file
72
ggml/src/ggml-opencl/kernels/group_norm.cl
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||||
|
|
||||||
|
#ifdef cl_intel_subgroups
|
||||||
|
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||||
|
#else
|
||||||
|
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef cl_intel_required_subgroup_size
|
||||||
|
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||||
|
#define INTEL_GPU 1
|
||||||
|
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||||
|
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||||
|
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||||
|
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||||
|
#define ADRENO_GPU 1
|
||||||
|
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||||
|
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Workgroup must be a subgroup
|
||||||
|
#ifdef INTEL_GPU
|
||||||
|
REQD_SUBGROUP_SIZE_32
|
||||||
|
#elif defined (ADRENO_GPU)
|
||||||
|
REQD_SUBGROUP_SIZE_64
|
||||||
|
#endif
|
||||||
|
kernel void kernel_group_norm(
|
||||||
|
global float * src0,
|
||||||
|
ulong offset0,
|
||||||
|
global float * dst,
|
||||||
|
ulong offsetd,
|
||||||
|
int ne,
|
||||||
|
int group_size,
|
||||||
|
float eps
|
||||||
|
) {
|
||||||
|
src0 = (global float *)((global char *)src0 + offset0);
|
||||||
|
dst = (global float *)((global char *)dst + offsetd);
|
||||||
|
|
||||||
|
int start = get_group_id(0) * group_size;
|
||||||
|
int end = start + group_size;
|
||||||
|
|
||||||
|
start += get_local_id(0);
|
||||||
|
|
||||||
|
if (end >= ne) {
|
||||||
|
end = ne;
|
||||||
|
}
|
||||||
|
|
||||||
|
float tmp = 0.0f;
|
||||||
|
|
||||||
|
for (int j = start; j < end; j += get_local_size(0)) {
|
||||||
|
tmp += src0[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
tmp = sub_group_reduce_add(tmp);
|
||||||
|
|
||||||
|
const float mean = tmp / group_size;
|
||||||
|
tmp = 0.0f;
|
||||||
|
|
||||||
|
for (int j = start; j < end; j += get_local_size(0)) {
|
||||||
|
float xi = src0[j] - mean;
|
||||||
|
dst[j] = xi;
|
||||||
|
tmp += xi * xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
tmp = sub_group_reduce_add(tmp);
|
||||||
|
|
||||||
|
const float variance = tmp / group_size;
|
||||||
|
const float scale = 1.0f/sqrt(variance + eps);
|
||||||
|
for (int j = start; j < end; j += get_local_size(0)) {
|
||||||
|
dst[j] *= scale;
|
||||||
|
}
|
||||||
|
}
|
29
ggml/src/ggml-opencl/kernels/sigmoid.cl
Normal file
29
ggml/src/ggml-opencl/kernels/sigmoid.cl
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||||
|
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
// sigmoid
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
kernel void kernel_sigmoid_f32(
|
||||||
|
global float * src0,
|
||||||
|
ulong offset0,
|
||||||
|
global float * dst,
|
||||||
|
ulong offsetd
|
||||||
|
) {
|
||||||
|
src0 = (global float*)((global char*)src0 + offset0);
|
||||||
|
dst = (global float*)((global char*)dst + offsetd);
|
||||||
|
|
||||||
|
dst[get_global_id(0)] = 1.0f / (1.0f + exp(-src0[get_global_id(0)]));
|
||||||
|
}
|
||||||
|
|
||||||
|
kernel void kernel_sigmoid_f16(
|
||||||
|
global half * src0,
|
||||||
|
ulong offset0,
|
||||||
|
global half * dst,
|
||||||
|
ulong offsetd
|
||||||
|
) {
|
||||||
|
src0 = (global half*)((global char*)src0 + offset0);
|
||||||
|
dst = (global half*)((global char*)dst + offsetd);
|
||||||
|
|
||||||
|
dst[get_global_id(0)] = 1.0f / (1.0f + exp(-src0[get_global_id(0)]));
|
||||||
|
}
|
72
ggml/src/ggml-opencl/kernels/sub.cl
Normal file
72
ggml/src/ggml-opencl/kernels/sub.cl
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||||
|
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
// div
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
kernel void kernel_sub(
|
||||||
|
global char * src0,
|
||||||
|
ulong offset0,
|
||||||
|
global char * src1,
|
||||||
|
ulong offset1,
|
||||||
|
global char * dst,
|
||||||
|
ulong offsetd,
|
||||||
|
ulong nb00,
|
||||||
|
ulong nb01,
|
||||||
|
ulong nb02,
|
||||||
|
ulong nb03,
|
||||||
|
int ne10,
|
||||||
|
int ne11,
|
||||||
|
int ne12,
|
||||||
|
int ne13,
|
||||||
|
ulong nb10,
|
||||||
|
ulong nb11,
|
||||||
|
ulong nb12,
|
||||||
|
ulong nb13,
|
||||||
|
int ne0,
|
||||||
|
ulong nb0,
|
||||||
|
ulong nb1,
|
||||||
|
ulong nb2,
|
||||||
|
ulong nb3
|
||||||
|
) {
|
||||||
|
src0 = src0 + offset0;
|
||||||
|
src1 = src1 + offset1;
|
||||||
|
dst = dst + offsetd;
|
||||||
|
|
||||||
|
int i03 = get_group_id(2);
|
||||||
|
int i02 = get_group_id(1);
|
||||||
|
int i01 = get_group_id(0);
|
||||||
|
|
||||||
|
int i13 = i03 % ne13;
|
||||||
|
int i12 = i02 % ne12;
|
||||||
|
int i11 = i01 % ne11;
|
||||||
|
|
||||||
|
global char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
||||||
|
global char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
||||||
|
global char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
||||||
|
|
||||||
|
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
|
||||||
|
const int i10 = i0 % ne10;
|
||||||
|
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i0*nb00)) - *((global float *)(src1_ptr + i10*nb10));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// assumption: src1 is a row
|
||||||
|
// broadcast src1 into src0
|
||||||
|
kernel void kernel_sub_row(
|
||||||
|
global float4 * src0,
|
||||||
|
ulong offset0,
|
||||||
|
global float4 * src1,
|
||||||
|
ulong offset1,
|
||||||
|
global float4 * dst,
|
||||||
|
ulong offsetd,
|
||||||
|
int ne
|
||||||
|
) {
|
||||||
|
src0 = (global float4*)((global char*)src0 + offset0);
|
||||||
|
src1 = (global float4*)((global char*)src1 + offset1);
|
||||||
|
dst = (global float4*)((global char*)dst + offsetd);
|
||||||
|
|
||||||
|
// This performs better than using %.
|
||||||
|
uint gid = get_global_id(0);
|
||||||
|
uint idx1 = gid - (gid/ne)*ne; // get_global_id(0) % ne
|
||||||
|
dst[gid] = src0[gid] - src1[idx1];
|
||||||
|
}
|
39
ggml/src/ggml-opencl/kernels/sum_rows.cl
Normal file
39
ggml/src/ggml-opencl/kernels/sum_rows.cl
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
|
||||||
|
kernel void kernel_sum_rows_f32(
|
||||||
|
global float * src0,
|
||||||
|
ulong offset0,
|
||||||
|
global float * dst,
|
||||||
|
ulong offsetd,
|
||||||
|
int ne00,
|
||||||
|
int ne01,
|
||||||
|
int ne02,
|
||||||
|
int ne03,
|
||||||
|
ulong nb01,
|
||||||
|
ulong nb02,
|
||||||
|
ulong nb03,
|
||||||
|
ulong nb1,
|
||||||
|
ulong nb2,
|
||||||
|
ulong nb3
|
||||||
|
) {
|
||||||
|
src0 = (global float *)((global char *)src0 + offset0);
|
||||||
|
dst = (global float *)((global char *)dst + offsetd);
|
||||||
|
|
||||||
|
int i3 = get_global_id(2);
|
||||||
|
int i2 = get_global_id(1);
|
||||||
|
int i1 = get_global_id(0);
|
||||||
|
|
||||||
|
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
global float * src_row = (global float *) ((global char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
|
||||||
|
global float * dst_row = (global float *) ((global char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
|
||||||
|
|
||||||
|
float row_sum = 0;
|
||||||
|
|
||||||
|
for (int i0 = 0; i0 < ne00; i0++) {
|
||||||
|
row_sum += src_row[i0];
|
||||||
|
}
|
||||||
|
|
||||||
|
dst_row[0] = row_sum;
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user