diff --git a/ggml/src/ggml-rpc/ggml-rpc.cpp b/ggml/src/ggml-rpc/ggml-rpc.cpp
index 9023eb09..140a775f 100644
--- a/ggml/src/ggml-rpc/ggml-rpc.cpp
+++ b/ggml/src/ggml-rpc/ggml-rpc.cpp
@@ -982,8 +982,21 @@ bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
 }
 
 ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
+    // Validate tensor type before using it
+    if (tensor->type >= GGML_TYPE_COUNT) {
+        GGML_LOG_ERROR("[%s] invalid tensor type received: %u\n", __func__, tensor->type);
+        return nullptr;
+    }
+
     ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
         tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
+
+    // ggml_new_tensor_4d might fail if dimensions are invalid, although less likely to crash than invalid type
+    if (result == nullptr) {
+        GGML_LOG_ERROR("[%s] ggml_new_tensor_4d failed for type %u\\n", __func__, tensor->type);
+        return nullptr;
+    }
+
     for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
         result->nb[i] = tensor->nb[i];
     }
@@ -1043,7 +1056,9 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
         const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
 
         if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
-            GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
+            GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu) out of buffer bounds [0x%zx, 0x%zx)\n",
+                           __func__, in_tensor->data, offset, size, p0, p1);
+            return false;
         }
     }
 
@@ -1118,7 +1133,9 @@ bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set
         const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
 
         if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
-            GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
+            GGML_LOG_ERROR("[%s] tensor data region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%zu, hash=0x%" PRIx64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
+                           __func__, in_tensor->data, offset, size, *hash, p0, p1);
+            return false;
         }
     }
     ggml_backend_tensor_set(tensor, cached_file.data(), offset, size);
@@ -1183,7 +1200,9 @@ bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<
         if (request.tensor.data + request.offset < p0 ||
             request.tensor.data + request.offset >= p1 ||
             request.size > (p1 - request.tensor.data - request.offset)) {
-                GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
+                GGML_LOG_ERROR("[%s] requested tensor region (data=0x%" PRIx64 ", offset=%" PRIu64 ", size=%" PRIu64 ") out of buffer bounds [0x%zx, 0x%zx)\n",
+                               __func__, request.tensor.data, request.offset, request.size, p0, p1);
+                return false;
         }
     }
 
@@ -1237,22 +1256,50 @@ ggml_tensor * rpc_server::create_node(uint64_t id,
                                       struct ggml_context * ctx,
                                       const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
                                       std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
-    if (id == 0) {
-        return nullptr;
-    }
     if (tensor_map.find(id) != tensor_map.end()) {
         return tensor_map[id];
     }
-    const rpc_tensor * tensor = tensor_ptrs.at(id);
+    // Safely find the tensor pointer
+    auto it_ptr = tensor_ptrs.find(id);
+    if (it_ptr == tensor_ptrs.end()) {
+        return nullptr;
+    }
+    const rpc_tensor * tensor = it_ptr->second;
+
     struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
     if (result == nullptr) {
         return nullptr;
     }
     tensor_map[id] = result;
     for (int i = 0; i < GGML_MAX_SRC; i++) {
-        result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
+        // Check if the source ID is 0 before calling create_node recursively
+        if (tensor->src[i] == 0) {
+            result->src[i] = nullptr;
+        } else {
+            result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
+            // If the recursive call failed for a non-zero ID, propagate the error
+            if (result->src[i] == nullptr) {
+                GGML_LOG_ERROR("[%s] failed to create source node %d (src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
+                               __func__, i, tensor->src[i], id);
+                // Must return nullptr to signal failure up the call stack
+                return nullptr;
+            }
+        }
+    }
+
+    // Handle view_src similarly
+    if (tensor->view_src == 0) {
+        result->view_src = nullptr;
+    } else {
+        result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
+        // If the recursive call failed for a non-zero ID, propagate the error
+        if (result->view_src == nullptr) {
+            GGML_LOG_ERROR("[%s] failed to create view_src node (view_src_id=%" PRIu64 ") for node id %" PRIu64 "\n",
+                           __func__, tensor->view_src, id);
+            // Must return nullptr to signal failure up the call stack
+            return nullptr;
+        }
     }
-    result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
     result->view_offs = tensor->view_offs;
     return result;
 }
@@ -1278,6 +1325,7 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
     GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
 
     size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
+
     struct ggml_init_params params = {
         /*.mem_size   =*/ buf_size,
         /*.mem_buffer =*/ NULL,
@@ -1297,6 +1345,14 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
         int64_t id;
         memcpy(&id, &nodes[i], sizeof(id));
         graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
+
+        // Check if create_node failed for a *non-zero* ID.
+        // If id was 0, create_node returning nullptr is expected.
+        // If id was non-zero and create_node returned nullptr, it indicates a deserialization error.
+        if (graph->nodes[i] == nullptr && id != 0) {
+            GGML_LOG_ERROR("[%s] failed to create graph node %d (id=%" PRId64 ")\n", __func__, i, id);
+            return false;
+        }
     }
     ggml_status status = ggml_backend_graph_compute(backend, graph);
     response.result = status;
@@ -1361,7 +1417,9 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
                     return;
                 }
                 rpc_msg_get_alloc_size_rsp response;
-                server.get_alloc_size(request, response);
+                if (!server.get_alloc_size(request, response)) {
+                    return;
+                }
                 if (!send_msg(sockfd, &response, sizeof(response))) {
                     return;
                 }