mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-11-07 08:34:37 +01:00
talk-llama : add new example + sync ggml from llama.cpp (#664)
* talk-llama : talk with LLaMA AI * talk.llama : disable EOS token * talk-llama : add README instructions * ggml : fix build in debug
This commit is contained in:
parent
8e361d90d7
commit
4a0deb8b1e
3
.gitignore
vendored
3
.gitignore
vendored
@ -18,6 +18,7 @@ build-sanitize-thread/
|
||||
/stream
|
||||
/command
|
||||
/talk
|
||||
/talk-llama
|
||||
/bench
|
||||
|
||||
arm_neon.h
|
||||
@ -32,3 +33,5 @@ examples/whisper.objc/whisper.objc.xcodeproj/xcuserdata/
|
||||
examples/whisper.objc/whisper.objc.xcodeproj/project.xcworkspace/xcuserdata
|
||||
|
||||
extra/bench-gg.txt
|
||||
|
||||
*.mlmodel*
|
||||
|
13
Makefile
13
Makefile
@ -36,7 +36,7 @@ LDFLAGS =
|
||||
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/37
|
||||
ifneq ($(wildcard /usr/include/musl/*),)
|
||||
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
CFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
CXXFLAGS += -D_POSIX_SOURCE -D_GNU_SOURCE
|
||||
endif
|
||||
|
||||
@ -178,7 +178,7 @@ $(info I CC: $(CCV))
|
||||
$(info I CXX: $(CXXV))
|
||||
$(info )
|
||||
|
||||
default: main
|
||||
default: main bench
|
||||
|
||||
#
|
||||
# Build library
|
||||
@ -197,7 +197,7 @@ libwhisper.so: ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
|
||||
rm -f *.o main stream command talk talk-llama bench libwhisper.a libwhisper.so
|
||||
|
||||
#
|
||||
# Examples
|
||||
@ -212,6 +212,9 @@ main: examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
bench: examples/bench/bench.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
|
||||
|
||||
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
@ -221,8 +224,8 @@ command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whi
|
||||
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
bench: examples/bench/bench.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
|
||||
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o talk-llama $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Audio samples
|
||||
|
@ -63,4 +63,5 @@ else()
|
||||
add_subdirectory(command)
|
||||
add_subdirectory(bench)
|
||||
add_subdirectory(talk)
|
||||
add_subdirectory(talk-llama)
|
||||
endif()
|
||||
|
2
examples/talk-llama/.gitignore
vendored
Normal file
2
examples/talk-llama/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
eleven-labs.py
|
||||
audio.mp3
|
10
examples/talk-llama/CMakeLists.txt
Normal file
10
examples/talk-llama/CMakeLists.txt
Normal file
@ -0,0 +1,10 @@
|
||||
if (WHISPER_SUPPORT_SDL2)
|
||||
# talk-llama
|
||||
set(TARGET talk-llama)
|
||||
|
||||
add_executable(${TARGET} talk-llama.cpp llama.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
endif ()
|
32
examples/talk-llama/README.md
Normal file
32
examples/talk-llama/README.md
Normal file
@ -0,0 +1,32 @@
|
||||
# talk-llama
|
||||
|
||||
Talk with an LLaMA AI in your terminal
|
||||
|
||||
[Demo Talk](https://user-images.githubusercontent.com/1991296/228024237-848f998c-c334-46a6-bef8-3271590da83b.mp4)
|
||||
|
||||
## Building
|
||||
|
||||
The `talk-llama` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2 on Linux
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
# Install SDL2 on Mac OS
|
||||
brew install sdl2
|
||||
|
||||
# Build the "talk-llama" executable
|
||||
make talk-llama
|
||||
|
||||
# Run it
|
||||
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/13B/ggml-model-q4_0.bin -p "Georgi" -t 8
|
||||
```
|
||||
|
||||
- The `-mw` argument specifies the Whisper model that you would like to use. Recommended `base` or `small` for real-time experience
|
||||
- The `-ml` argument specifies the LLaMA model that you would like to use. Read the instructions in https://github.com/ggerganov/llama.cpp for information about how to obtain a `ggml` compatible LLaMA model
|
||||
|
||||
## TTS
|
||||
|
||||
For best experience, this example needs a TTS tool to convert the generated text responses to voice.
|
||||
You can use any TTS engine that you would like - simply edit the [speak.sh](speak.sh) script to your needs.
|
||||
By default, it is configured to use MacOS's `say`, but you can use whatever you wish.
|
1865
examples/talk-llama/llama.cpp
Normal file
1865
examples/talk-llama/llama.cpp
Normal file
File diff suppressed because it is too large
Load Diff
153
examples/talk-llama/llama.h
Normal file
153
examples/talk-llama/llama.h
Normal file
@ -0,0 +1,153 @@
|
||||
#ifndef LLAMA_H
|
||||
#define LLAMA_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# ifdef _WIN32
|
||||
# ifdef LLAMA_BUILD
|
||||
# define LLAMA_API __declspec(dllexport)
|
||||
# else
|
||||
# define LLAMA_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define LLAMA_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_VERSION 1
|
||||
#define LLAMA_FILE_MAGIC 0x67676d66 // 'ggmf' in hex
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// C interface
|
||||
//
|
||||
// TODO: show sample usage
|
||||
//
|
||||
|
||||
struct llama_context;
|
||||
|
||||
typedef int llama_token;
|
||||
|
||||
typedef struct llama_token_data {
|
||||
llama_token id; // token id
|
||||
|
||||
float p; // probability of the token
|
||||
float plog; // log probability of the token
|
||||
|
||||
} llama_token_data;
|
||||
|
||||
typedef void (*llama_progress_callback)(double progress, void *ctx);
|
||||
|
||||
struct llama_context_params {
|
||||
int n_ctx; // text context
|
||||
int n_parts; // -1 for default
|
||||
int seed; // RNG seed, 0 for random
|
||||
|
||||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool embedding; // embedding mode only
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||
|
||||
// Various functions for loading a ggml llama model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
LLAMA_API struct llama_context * llama_init_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params);
|
||||
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
// TODO: not great API - very likely to change
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
int itype,
|
||||
int qk);
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
// n_past is the number of tokens to use from previous eval calls
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_eval(
|
||||
struct llama_context * ctx,
|
||||
const llama_token * tokens,
|
||||
int n_tokens,
|
||||
int n_past,
|
||||
int n_threads);
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||
// TODO: not sure if correct
|
||||
LLAMA_API int llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const char * text,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_n_vocab(struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx (struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (struct llama_context * ctx);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Can be mutated in order to change the probabilities of the next token
|
||||
// Rows: n_tokens
|
||||
// Cols: n_vocab
|
||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||
|
||||
// Get the embeddings for the input
|
||||
// shape: [n_embd] (1-dimensional)
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
|
||||
// Token Id -> String. Uses the vocabulary in the provided context
|
||||
LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token);
|
||||
|
||||
// Special tokens
|
||||
LLAMA_API llama_token llama_token_bos();
|
||||
LLAMA_API llama_token llama_token_eos();
|
||||
|
||||
// TODO: improve the last_n_tokens interface ?
|
||||
LLAMA_API llama_token llama_sample_top_p_top_k(
|
||||
struct llama_context * ctx,
|
||||
const llama_token * last_n_tokens_data,
|
||||
int last_n_tokens_size,
|
||||
int top_k,
|
||||
double top_p,
|
||||
double temp,
|
||||
double repeat_penalty);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||||
|
||||
// Print system information
|
||||
LLAMA_API const char * llama_print_system_info(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
20
examples/talk-llama/speak.sh
Executable file
20
examples/talk-llama/speak.sh
Executable file
@ -0,0 +1,20 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Usage:
|
||||
# speak.sh <voice_id> <text-to-speak>
|
||||
|
||||
# espeak
|
||||
# Mac OS: brew install espeak
|
||||
# Linux: apt-get install espeak
|
||||
#
|
||||
#espeak -v en-us+m$1 -s 225 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
|
||||
# for Mac
|
||||
say "$2"
|
||||
|
||||
# Eleven Labs
|
||||
#
|
||||
#wd=$(dirname $0)
|
||||
#script=$wd/eleven-labs.py
|
||||
#python3 $script $1 "$2" >/dev/null 2>&1
|
||||
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3 >/dev/null 2>&1
|
529
examples/talk-llama/talk-llama.cpp
Normal file
529
examples/talk-llama/talk-llama.cpp
Normal file
@ -0,0 +1,529 @@
|
||||
// Talk with AI
|
||||
//
|
||||
|
||||
#include "common.h"
|
||||
#include "common-sdl.h"
|
||||
#include "whisper.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <regex>
|
||||
|
||||
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
|
||||
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
|
||||
std::vector<llama_token> res(text.size() + (int)add_bos);
|
||||
int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
|
||||
assert(n >= 0);
|
||||
res.resize(n);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
int32_t voice_ms = 10000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
float vad_thold = 0.6f;
|
||||
float freq_thold = 100.0f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool translate = false;
|
||||
bool print_special = false;
|
||||
bool print_energy = false;
|
||||
bool no_timestamps = true;
|
||||
|
||||
std::string person = "Georgi";
|
||||
std::string language = "en";
|
||||
std::string model_wsp = "models/ggml-base.en.bin";
|
||||
std::string model_llama = "models/ggml-llama-7B.bin";
|
||||
std::string speak = "./examples/talk/speak.sh";
|
||||
std::string fname_out;
|
||||
};
|
||||
|
||||
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
||||
|
||||
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
||||
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
||||
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
|
||||
else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; }
|
||||
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
||||
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
||||
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
||||
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
||||
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
||||
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
||||
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
||||
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
||||
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
||||
fprintf(stderr, " -mg FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str());
|
||||
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
|
||||
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
std::string transcribe(
|
||||
whisper_context * ctx,
|
||||
const whisper_params & params,
|
||||
const std::vector<float> & pcmf32,
|
||||
const std::string prompt_text,
|
||||
float & prob,
|
||||
int64_t & t_ms) {
|
||||
const auto t_start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
prob = 0.0f;
|
||||
t_ms = 0;
|
||||
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
|
||||
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
||||
|
||||
prompt_tokens.resize(1024);
|
||||
prompt_tokens.resize(whisper_tokenize(ctx, prompt_text.c_str(), prompt_tokens.data(), prompt_tokens.size()));
|
||||
|
||||
wparams.print_progress = false;
|
||||
wparams.print_special = params.print_special;
|
||||
wparams.print_realtime = false;
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = true;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
return "";
|
||||
}
|
||||
|
||||
int prob_n = 0;
|
||||
std::string result;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
result += text;
|
||||
|
||||
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const auto token = whisper_full_get_token_data(ctx, i, j);
|
||||
|
||||
prob += token.p;
|
||||
++prob_n;
|
||||
}
|
||||
}
|
||||
|
||||
if (prob_n > 0) {
|
||||
prob /= prob_n;
|
||||
}
|
||||
|
||||
const auto t_end = std::chrono::high_resolution_clock::now();
|
||||
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)";
|
||||
|
||||
// need to have leading ' '
|
||||
const std::string k_prompt_llama = R"( Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}.
|
||||
{1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}’s requests immediately and with details and precision.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
{1} responds with short and concise answers.
|
||||
|
||||
{0}{4} Hello, {1}!
|
||||
{1}{4} Hello {0}! How may I help you today?
|
||||
{0}{4} What time is it?
|
||||
{1}{4} It is {2} o'clock.
|
||||
{0}{4} What year is it?
|
||||
{1}{4} We are in {3}.
|
||||
{0}{4} What is a cat?
|
||||
{1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
||||
{0}{4} Name a color.
|
||||
{1}{4} Blue
|
||||
{0}{4})";
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (whisper_lang_id(params.language.c_str()) == -1) {
|
||||
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx_wsp = whisper_init_from_file(params.model_wsp.c_str());
|
||||
|
||||
// llama init
|
||||
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
// tune these to your liking
|
||||
lparams.n_ctx = 512;
|
||||
lparams.seed = 1;
|
||||
lparams.f16_kv = true;
|
||||
|
||||
struct llama_context * ctx_llama = llama_init_from_file(params.model_llama.c_str(), lparams);
|
||||
|
||||
// print some info about the processing
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
if (!whisper_is_multilingual(ctx_wsp)) {
|
||||
if (params.language != "en" || params.translate) {
|
||||
params.language = "en";
|
||||
params.translate = false;
|
||||
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
||||
}
|
||||
}
|
||||
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
||||
__func__,
|
||||
params.n_threads,
|
||||
params.language.c_str(),
|
||||
params.translate ? "translate" : "transcribe",
|
||||
params.no_timestamps ? 0 : 1);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
|
||||
// init audio
|
||||
|
||||
audio_async audio(30*1000);
|
||||
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
||||
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
audio.resume();
|
||||
|
||||
int n_iter = 0;
|
||||
|
||||
bool is_running = true;
|
||||
bool force_speak = false;
|
||||
|
||||
float prob0 = 0.0f;
|
||||
|
||||
const std::string chat_symb = ":";
|
||||
const std::string bot_name = "LLaMA";
|
||||
|
||||
std::vector<float> pcmf32_cur;
|
||||
std::vector<float> pcmf32_prompt;
|
||||
|
||||
const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", bot_name);
|
||||
|
||||
// construct the initial prompt for LLaMA inference
|
||||
std::string prompt_llama = k_prompt_llama;
|
||||
|
||||
prompt_llama = ::replace(prompt_llama, "{0}", params.person);
|
||||
prompt_llama = ::replace(prompt_llama, "{1}", bot_name);
|
||||
|
||||
{
|
||||
// get time string
|
||||
std::string time_str;
|
||||
{
|
||||
time_t t = time(0);
|
||||
struct tm * now = localtime(&t);
|
||||
char buf[128];
|
||||
strftime(buf, sizeof(buf), "%H:%M", now);
|
||||
time_str = buf;
|
||||
}
|
||||
prompt_llama = ::replace(prompt_llama, "{2}", time_str);
|
||||
}
|
||||
|
||||
{
|
||||
// get year string
|
||||
std::string year_str;
|
||||
{
|
||||
time_t t = time(0);
|
||||
struct tm * now = localtime(&t);
|
||||
char buf[128];
|
||||
strftime(buf, sizeof(buf), "%Y", now);
|
||||
year_str = buf;
|
||||
}
|
||||
prompt_llama = ::replace(prompt_llama, "{3}", year_str);
|
||||
}
|
||||
|
||||
prompt_llama = ::replace(prompt_llama, "{4}", chat_symb);
|
||||
|
||||
// evaluate the initial prompt
|
||||
|
||||
auto embd_inp = ::llama_tokenize(ctx_llama, prompt_llama, true);
|
||||
|
||||
printf("\n");
|
||||
printf("%s : initializing - please wait ...\n", __func__);
|
||||
|
||||
if (llama_eval(ctx_llama, embd_inp.data(), embd_inp.size(), 0, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
//fprintf(stdout, "\n");
|
||||
//fprintf(stdout, "%s", prompt_llama.c_str());
|
||||
//fflush(stdout);
|
||||
|
||||
printf("%s : done! start speaking in the microphone\n", __func__);
|
||||
printf("\n");
|
||||
printf("%s%s", params.person.c_str(), chat_symb.c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// clear audio buffer
|
||||
audio.clear();
|
||||
|
||||
// text inference variables
|
||||
const int voice_id = 2;
|
||||
const int n_keep = embd_inp.size();
|
||||
const int n_ctx = llama_n_ctx(ctx_llama);
|
||||
|
||||
int n_past = n_keep;
|
||||
int n_prev = 64; // TODO arg
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
// reverse prompts for detecting when it's time to stop speaking
|
||||
std::vector<std::string> antiprompts = {
|
||||
params.person + chat_symb,
|
||||
};
|
||||
|
||||
// main loop
|
||||
while (is_running) {
|
||||
// handle Ctrl + C
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
|
||||
// delay
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
||||
|
||||
int64_t t_ms = 0;
|
||||
|
||||
{
|
||||
audio.get(2000, pcmf32_cur);
|
||||
|
||||
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
|
||||
//fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
||||
|
||||
audio.get(params.voice_ms, pcmf32_cur);
|
||||
|
||||
std::string text_heard;
|
||||
|
||||
if (!force_speak) {
|
||||
text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prompt_whisper, prob0, t_ms));
|
||||
}
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\[.*?\\]");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove text between brackets using regex
|
||||
{
|
||||
std::regex re("\\(.*?\\)");
|
||||
text_heard = std::regex_replace(text_heard, re, "");
|
||||
}
|
||||
|
||||
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
|
||||
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
||||
|
||||
// take first line
|
||||
text_heard = text_heard.substr(0, text_heard.find_first_of('\n'));
|
||||
|
||||
// remove leading and trailing whitespace
|
||||
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
|
||||
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
|
||||
|
||||
const std::vector<llama_token> tokens = llama_tokenize(ctx_llama, text_heard.c_str(), false);
|
||||
|
||||
if (text_heard.empty() || tokens.empty() || force_speak) {
|
||||
//fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__);
|
||||
audio.clear();
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
force_speak = false;
|
||||
|
||||
text_heard.insert(0, 1, ' ');
|
||||
text_heard += "\n" + bot_name + chat_symb;
|
||||
fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m");
|
||||
fflush(stdout);
|
||||
|
||||
embd = ::llama_tokenize(ctx_llama, text_heard, false);
|
||||
|
||||
// text inference
|
||||
bool done = false;
|
||||
std::string text_to_speak;
|
||||
while (true) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
if (n_past + (int) embd.size() > n_ctx) {
|
||||
n_past = n_keep;
|
||||
|
||||
// insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||
embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end());
|
||||
|
||||
//printf("\n---\n");
|
||||
//printf("resetting: '");
|
||||
//for (int i = 0; i < (int) embd.size(); i++) {
|
||||
// printf("%s", llama_token_to_str(ctx_llama, embd[i]));
|
||||
//}
|
||||
//printf("'\n");
|
||||
//printf("\n---\n");
|
||||
}
|
||||
|
||||
if (llama_eval(ctx_llama, embd.data(), embd.size(), n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
//printf("n_iter = %d, n_past = %d, n_ctx = %d, n_keep = %d, n_prev = %d, embd.size() = %d\n", n_iter, n_past, n_ctx, n_keep, n_prev, (int) embd.size());
|
||||
|
||||
embd_inp.insert(embd_inp.end(), embd.begin(), embd.end());
|
||||
n_past += embd.size();
|
||||
embd.clear();
|
||||
|
||||
if (done) break;
|
||||
|
||||
{
|
||||
// out of user input, sample next token
|
||||
const float top_k = 5;
|
||||
const float top_p = 0.80f;
|
||||
const float temp = 0.30f;
|
||||
const float repeat_penalty = 1.1764f;
|
||||
|
||||
const int repeat_last_n = 256;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
{
|
||||
auto logits = llama_get_logits(ctx_llama);
|
||||
logits[llama_token_eos()] = 0;
|
||||
|
||||
id = llama_sample_top_p_top_k(ctx_llama,
|
||||
embd_inp.data() + std::max(0, n_past - repeat_last_n),
|
||||
repeat_last_n, top_k, top_p, temp, repeat_penalty);
|
||||
}
|
||||
|
||||
if (id != llama_token_eos()) {
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
|
||||
text_to_speak += llama_token_to_str(ctx_llama, id);
|
||||
|
||||
printf("%s", llama_token_to_str(ctx_llama, id));
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
std::string last_output;
|
||||
for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) {
|
||||
last_output += llama_token_to_str(ctx_llama, embd_inp[i]);
|
||||
}
|
||||
last_output += llama_token_to_str(ctx_llama, embd[0]);
|
||||
|
||||
for (std::string & antiprompt : antiprompts) {
|
||||
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
||||
done = true;
|
||||
text_to_speak = ::replace(text_to_speak, antiprompt, "");
|
||||
fflush(stdout);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
is_running = sdl_poll_events();
|
||||
|
||||
if (!is_running) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
text_to_speak = ::replace(text_to_speak, "\"", "");
|
||||
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
||||
|
||||
audio.clear();
|
||||
|
||||
++n_iter;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
audio.pause();
|
||||
|
||||
whisper_print_timings(ctx_wsp);
|
||||
whisper_free(ctx_wsp);
|
||||
|
||||
llama_print_timings(ctx_llama);
|
||||
llama_free(ctx_llama);
|
||||
|
||||
return 0;
|
||||
}
|
@ -7,7 +7,10 @@
|
||||
# Mac OS: brew install espeak
|
||||
# Linux: apt-get install espeak
|
||||
#
|
||||
espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
#espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
|
||||
|
||||
# Mac OS "say" command
|
||||
say "$2"
|
||||
|
||||
# Eleven Labs
|
||||
#
|
||||
|
27
ggml.h
27
ggml.h
@ -198,6 +198,8 @@ struct ggml_object;
|
||||
struct ggml_context;
|
||||
|
||||
enum ggml_type {
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
@ -226,7 +228,9 @@ enum ggml_op {
|
||||
GGML_OP_STEP,
|
||||
GGML_OP_RELU,
|
||||
GGML_OP_GELU,
|
||||
GGML_OP_SILU,
|
||||
GGML_OP_NORM, // normalize
|
||||
GGML_OP_RMS_NORM,
|
||||
|
||||
GGML_OP_MUL_MAT,
|
||||
|
||||
@ -326,7 +330,10 @@ void ggml_print_objects(const struct ggml_context * ctx);
|
||||
int ggml_nelements(const struct ggml_tensor * tensor);
|
||||
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
|
||||
size_t ggml_type_size (enum ggml_type type);
|
||||
int ggml_blck_size (enum ggml_type type);
|
||||
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
||||
float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
||||
|
||||
size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
|
||||
struct ggml_context * ggml_init(struct ggml_init_params params);
|
||||
@ -336,6 +343,9 @@ size_t ggml_used_mem(const struct ggml_context * ctx);
|
||||
|
||||
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
||||
|
||||
bool ggml_mlock_supported(void);
|
||||
bool ggml_mlock(struct ggml_context * ctx, char ** err_p);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
@ -466,12 +476,20 @@ struct ggml_tensor * ggml_gelu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_silu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// normalize along rows
|
||||
// TODO: eps is hardcoded to 1e-5 for now
|
||||
struct ggml_tensor * ggml_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
struct ggml_tensor * ggml_rms_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// A: m rows, n columns
|
||||
// B: p rows, n columns (i.e. we transpose it internally)
|
||||
// result is m columns, p rows
|
||||
@ -726,6 +744,13 @@ enum ggml_opt_result ggml_opt(
|
||||
struct ggml_opt_params params,
|
||||
struct ggml_tensor * f);
|
||||
|
||||
//
|
||||
// quantization
|
||||
//
|
||||
|
||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
||||
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
|
||||
|
||||
//
|
||||
// system info
|
||||
//
|
||||
|
57
whisper.cpp
57
whisper.cpp
@ -636,6 +636,8 @@ struct whisper_context {
|
||||
whisper_model model;
|
||||
whisper_vocab vocab;
|
||||
whisper_state * state = nullptr;
|
||||
|
||||
std::string path_model; // populated by whisper_init_from_file()
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
@ -1597,7 +1599,7 @@ static bool whisper_encode_internal(
|
||||
ggml_repeat(ctx0, layer.mlp_ln_w, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, layer.mlp_ln_b, cur));
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef WHISPER_USE_FLASH_FF
|
||||
wstate.use_buf(ctx0, 0);
|
||||
@ -1637,7 +1639,7 @@ static bool whisper_encode_internal(
|
||||
ggml_repeat(ctx0, layer.mlp_1_b, cur),
|
||||
cur);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
wstate.use_buf(ctx0, 3);
|
||||
|
||||
@ -1841,8 +1843,6 @@ static bool whisper_decode_internal(
|
||||
|
||||
// self-attention
|
||||
{
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
|
||||
layer.attn_q_w,
|
||||
cur);
|
||||
@ -1904,8 +1904,6 @@ static bool whisper_decode_internal(
|
||||
// K * Q
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
//struct ggml_tensor * KQ_scaled =
|
||||
// ggml_scale(ctx0,
|
||||
// KQ,
|
||||
@ -1914,20 +1912,16 @@ static bool whisper_decode_internal(
|
||||
|
||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ, n_past);
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, kv_self.v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(kv_self.v)*n_state),
|
||||
n_state/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3);
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
ggml_cpy(ctx0,
|
||||
ggml_permute(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_view_1d(ctx0, kv_self.v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(kv_self.v)*n_state),
|
||||
n_state/n_head, n_head, n_past + N),
|
||||
1, 2, 0, 3),
|
||||
ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_state/n_head, n_head));
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
||||
|
||||
@ -1964,8 +1958,6 @@ static bool whisper_decode_internal(
|
||||
|
||||
cur = ggml_norm(ctx0, inpCA); // note: we use inpCA here
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
// cur = ln_0_w*cur + ln_0_b
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
@ -1976,8 +1968,6 @@ static bool whisper_decode_internal(
|
||||
|
||||
// cross-attention
|
||||
{
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0,
|
||||
layer.cross_attn_q_w,
|
||||
cur);
|
||||
@ -2001,12 +1991,13 @@ static bool whisper_decode_internal(
|
||||
ggml_view_1d(ctx0, wstate.kv_cross.v, M*n_state, il*M*ggml_element_size(wstate.kv_cross.v)*n_state),
|
||||
n_state/n_head, n_head, M);
|
||||
|
||||
struct ggml_tensor * V_trans = ggml_permute(ctx0, Vcross, 1, 2, 0, 3);
|
||||
struct ggml_tensor * V_trans =
|
||||
ggml_cpy(ctx0,
|
||||
ggml_permute(ctx0, Vcross, 1, 2, 0, 3),
|
||||
ggml_new_tensor_3d(ctx0, Vcross->type, M, n_state/n_head, n_head));
|
||||
|
||||
// ------
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
struct ggml_tensor * Q =
|
||||
ggml_permute(ctx0,
|
||||
ggml_cpy(ctx0,
|
||||
@ -2016,8 +2007,6 @@ static bool whisper_decode_internal(
|
||||
|
||||
struct ggml_tensor * K = ggml_permute(ctx0, Kcross, 0, 2, 1, 3);
|
||||
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
// K * Q
|
||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
||||
|
||||
@ -2030,16 +2019,10 @@ static bool whisper_decode_internal(
|
||||
// no masking for cross-attention
|
||||
//struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ);
|
||||
|
||||
wstate.use_buf(ctx0, 0);
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
||||
|
||||
wstate.use_buf(ctx0, 1);
|
||||
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
// cur = KQV_merged.contiguous().view(n_state, N)
|
||||
@ -2482,7 +2465,6 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
|
||||
const size_t scale = ctx->model.hparams.f16 ? 1 : 2;
|
||||
|
||||
|
||||
if (!kv_cache_init(ctx->model.hparams, scale * MEM_REQ_KV_SELF.at(ctx->model.type), state->decoders[0].kv_self, ctx->wtype, ctx->model.hparams.n_text_ctx)) {
|
||||
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
return nullptr;
|
||||
@ -2503,7 +2485,6 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
|
||||
fprintf(stderr, "%s: kv cross size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
|
||||
state->logits.reserve(ctx->vocab.n_vocab * ctx->model.hparams.n_text_ctx);
|
||||
|
||||
state->logits_id.reserve(ctx->model.hparams.n_vocab);
|
||||
@ -2554,7 +2535,13 @@ struct whisper_context * whisper_init_from_file_no_state(const char * path_model
|
||||
fin->close();
|
||||
};
|
||||
|
||||
return whisper_init_no_state(&loader);
|
||||
auto ctx = whisper_init_no_state(&loader);
|
||||
|
||||
if (ctx) {
|
||||
ctx->path_model = path_model;
|
||||
}
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
struct whisper_context * whisper_init_from_buffer_no_state(void * buffer, size_t buffer_size) {
|
||||
|
Loading…
Reference in New Issue
Block a user