mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-14 18:08:38 +01:00
Update README.md
This commit is contained in:
parent
812ae3ffbd
commit
57ccd7cc4f
@ -2,4 +2,80 @@
|
||||
|
||||
Node.js package for Whisper speech recognition
|
||||
|
||||
For sample usage check [tests/test-whisper.js](/tests/test-whisper.js)
|
||||
Package: https://www.npmjs.com/package/whisper.cpp
|
||||
|
||||
## Details
|
||||
|
||||
The performance is comparable to when running `whisper.cpp` in the browser via WASM.
|
||||
|
||||
The API is currently very rudimentary:
|
||||
|
||||
https://github.com/ggerganov/whisper.cpp/blob/npm/bindings/javascript/emscripten.cpp
|
||||
|
||||
I am hoping that there will be interest in contributions and making it better based on what is needed in practice.
|
||||
For sample usage check [tests/test-whisper.js](https://github.com/ggerganov/whisper.cpp/blob/npm/tests/test-whisper.js)
|
||||
|
||||
## Package building + test
|
||||
|
||||
```bash
|
||||
# load emscripten
|
||||
source /path/to/emsdk/emsdk_env.sh
|
||||
|
||||
# clone repo
|
||||
git clone https://github.com/ggerganov/whisper.cpp
|
||||
cd whisper.cpp
|
||||
|
||||
# grab base.en model
|
||||
./models/download-ggml-model.sh base.en
|
||||
|
||||
# prepare PCM sample for testing
|
||||
ffmpeg -i samples/jfk.wav -f f32le -acodec pcm_f32le samples/jfk.pcmf32
|
||||
|
||||
# build
|
||||
mkdir build-em && cd build-em
|
||||
emcmake cmake .. && make -j
|
||||
|
||||
# run test
|
||||
node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js
|
||||
|
||||
# publish npm package
|
||||
make publish-npm
|
||||
```
|
||||
|
||||
## Sample run
|
||||
|
||||
```java
|
||||
$ node --experimental-wasm-threads --experimental-wasm-simd ../tests/test-whisper.js
|
||||
|
||||
whisper_model_load: loading model from 'whisper.bin'
|
||||
whisper_model_load: n_vocab = 51864
|
||||
whisper_model_load: n_audio_ctx = 1500
|
||||
whisper_model_load: n_audio_state = 512
|
||||
whisper_model_load: n_audio_head = 8
|
||||
whisper_model_load: n_audio_layer = 6
|
||||
whisper_model_load: n_text_ctx = 448
|
||||
whisper_model_load: n_text_state = 512
|
||||
whisper_model_load: n_text_head = 8
|
||||
whisper_model_load: n_text_layer = 6
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 2
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: mem_required = 506.00 MB
|
||||
whisper_model_load: ggml ctx size = 140.60 MB
|
||||
whisper_model_load: memory size = 22.83 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
|
||||
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | NEON = 0 | F16C = 0 | FP16_VA = 0 | WASM_SIMD = 1 | BLAS = 0 |
|
||||
|
||||
operator(): processing 176000 samples, 11.0 sec, 8 threads, 1 processors, lang = en, task = transcribe ...
|
||||
|
||||
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
|
||||
whisper_print_timings: load time = 162.37 ms
|
||||
whisper_print_timings: mel time = 183.70 ms
|
||||
whisper_print_timings: sample time = 4.27 ms
|
||||
whisper_print_timings: encode time = 8582.63 ms / 1430.44 ms per layer
|
||||
whisper_print_timings: decode time = 436.16 ms / 72.69 ms per layer
|
||||
whisper_print_timings: total time = 9370.90 ms
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user