ggml : sync latest ggml

This commit is contained in:
Georgi Gerganov 2023-04-14 19:20:39 +03:00
parent 514cd04452
commit 677ad754a0
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
2 changed files with 258 additions and 13 deletions

253
ggml.c
View File

@ -2712,9 +2712,12 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
"FLASH_ATTN", "FLASH_ATTN",
"FLASH_FF", "FLASH_FF",
"MAP_UNARY",
"MAP_BINARY",
}; };
static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36"); static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -2757,9 +2760,12 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"flash_attn(x)", "flash_attn(x)",
"flash_ff(x)", "flash_ff(x)",
"f(x)",
"f(x,y)",
}; };
static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36"); static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
@ -3054,9 +3060,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
return NULL; return NULL;
} }
const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
*ctx = (struct ggml_context) { *ctx = (struct ggml_context) {
/*.mem_size =*/ params.mem_size, /*.mem_size =*/ mem_size,
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(params.mem_size), /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true, /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
/*.no_alloc =*/ params.no_alloc, /*.no_alloc =*/ params.no_alloc,
/*.n_objects =*/ 0, /*.n_objects =*/ 0,
@ -3066,7 +3074,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
/*.scratch_save =*/ { 0, 0, NULL, }, /*.scratch_save =*/ { 0, 0, NULL, },
}; };
GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure GGML_ASSERT(ctx->mem_buffer != NULL);
ggml_assert_aligned(ctx->mem_buffer); ggml_assert_aligned(ctx->mem_buffer);
@ -4905,6 +4913,90 @@ struct ggml_tensor * ggml_flash_ff(
return result; return result;
} }
// ggml_map_unary
struct ggml_tensor * ggml_map_unary_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && a->grad) {
is_node = true;
}
struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
*((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_MAP_UNARY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src0 = a;
result->opt[0] = addr_tensor;
return result;
}
struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, false);
}
struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, true);
}
// ggml_map_binary
struct ggml_tensor * ggml_map_binary_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
*((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_MAP_BINARY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src0 = a;
result->src1 = b;
result->opt[0] = addr_tensor;
return result;
}
struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
void ggml_set_param( void ggml_set_param(
@ -7507,6 +7599,8 @@ static void ggml_compute_forward_rope_f32(
// row index used to determine which thread to use // row index used to determine which thread to use
int ir = 0; int ir = 0;
const float theta_scale = powf(10000.0, -2.0f/n_dims);
for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
const int p = (mode == 0 ? n_past + i2 : i2); const int p = (mode == 0 ? n_past + i2 : i2);
@ -7514,11 +7608,13 @@ static void ggml_compute_forward_rope_f32(
if (ir++ < ir0) continue; if (ir++ < ir0) continue;
if (ir > ir1) break; if (ir > ir1) break;
for (int i0 = 0; i0 < n_dims; i0 += 2) { float theta = (float)p;
const float theta = powf(10000.0, ((float)-i0)/n_dims);
const float cos_theta = cosf(p*theta); for (int i0 = 0; i0 < n_dims; i0 += 2) {
const float sin_theta = sinf(p*theta); const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
theta *= theta_scale;
const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
@ -7580,6 +7676,8 @@ static void ggml_compute_forward_rope_f16(
// row index used to determine which thread to use // row index used to determine which thread to use
int ir = 0; int ir = 0;
const float theta_scale = powf(10000.0, -2.0f/n_dims);
for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) { for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
const int p = (mode == 0 ? n_past + i2 : i2); const int p = (mode == 0 ? n_past + i2 : i2);
@ -7587,11 +7685,13 @@ static void ggml_compute_forward_rope_f16(
if (ir++ < ir0) continue; if (ir++ < ir0) continue;
if (ir > ir1) break; if (ir > ir1) break;
for (int i0 = 0; i0 < n_dims; i0 += 2) { float theta = (float)p;
const float theta = powf(10000.0, ((float)-i0)/n_dims);
const float cos_theta = cosf(p*theta); for (int i0 = 0; i0 < n_dims; i0 += 2) {
const float sin_theta = sinf(p*theta); const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
theta *= theta_scale;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
@ -8865,6 +8965,111 @@ static void ggml_compute_forward_flash_ff(
} }
} }
// ggml_compute_forward_map_unary
static void ggml_compute_forward_map_unary_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_map_unary(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_F16:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_binary
static void ggml_compute_forward_map_binary_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
assert(src1->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])),
(float *) ((char *) src1->data + i*(src1->nb[1])));
}
}
static void ggml_compute_forward_map_binary(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_F16:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
///////////////////////////////// /////////////////////////////////
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
@ -9014,6 +9219,18 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor); ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
} break; } break;
case GGML_OP_MAP_UNARY:
{
const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
}
break;
case GGML_OP_MAP_BINARY:
{
const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
}
break;
case GGML_OP_NONE: case GGML_OP_NONE:
{ {
// nop // nop
@ -9273,6 +9490,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{ {
GGML_ASSERT(false); // not supported GGML_ASSERT(false); // not supported
} break; } break;
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_NONE: case GGML_OP_NONE:
{ {
// nop // nop
@ -9765,6 +9987,11 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
work_size = MAX(work_size, cur); work_size = MAX(work_size, cur);
} break; } break;
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
{
node->n_tasks = 1;
} break;
case GGML_OP_NONE: case GGML_OP_NONE:
{ {
node->n_tasks = 1; node->n_tasks = 1;

18
ggml.h
View File

@ -253,6 +253,9 @@ enum ggml_op {
GGML_OP_FLASH_ATTN, GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF, GGML_OP_FLASH_FF,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
GGML_OP_COUNT, GGML_OP_COUNT,
}; };
@ -652,6 +655,21 @@ struct ggml_tensor * ggml_flash_ff(
struct ggml_tensor * c0, struct ggml_tensor * c0,
struct ggml_tensor * c1); struct ggml_tensor * c1);
// Mapping operations
typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun);
struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun);
// //
// automatic differentiation // automatic differentiation
// //