mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-05-30 06:28:58 +02:00
talk-llama : sync llama.cpp
ggml-ci
This commit is contained in:
parent
05501c218d
commit
6b6cf19c65
@ -1481,6 +1481,9 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
|
||||
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -1704,10 +1704,12 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
|
||||
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
||||
|
||||
kv_self->state_write(io);
|
||||
if (kv_self != nullptr) {
|
||||
LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
|
||||
kv_self->state_write(io);
|
||||
}
|
||||
|
||||
return io.n_bytes();
|
||||
}
|
||||
|
@ -441,6 +441,13 @@ void llama_kv_cache_unified::defrag_sched(float thold) {
|
||||
|
||||
void llama_kv_cache_unified::set_full() {
|
||||
n = size;
|
||||
|
||||
// when simulating a full KV cache, the specific value of the "head" pointer is not important because it does not
|
||||
// affect the shapes of the tensors in the compute graph - it only affects the offsets of the K/V views.
|
||||
// we should only guarantee that the head position won't cause out-of-bounds view of the K, V tensors, so
|
||||
// setting it to 0 is the simplest way to achieve that
|
||||
// ref: https://github.com/ggml-org/llama.cpp/issues/13359
|
||||
head = 0;
|
||||
}
|
||||
|
||||
llama_sbatch llama_kv_cache_unified::sbatch_init(
|
||||
@ -1712,6 +1719,7 @@ void llama_kv_cache_recurrent::defrag_sched(float thold) {
|
||||
|
||||
void llama_kv_cache_recurrent::set_full() {
|
||||
n = size;
|
||||
head = 0;
|
||||
}
|
||||
|
||||
llama_sbatch llama_kv_cache_recurrent::sbatch_init(
|
||||
|
@ -171,11 +171,8 @@ public:
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
||||
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
||||
|
||||
// Note: The value of head isn't only used to optimize searching
|
||||
// for a free KV slot. llama_decode_impl also uses it, so it
|
||||
// cannot be freely changed after a slot has been allocated.
|
||||
uint32_t head = 0;
|
||||
uint32_t size = 0;
|
||||
uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot())
|
||||
uint32_t size = 0; // total number of cells, shared across all sequences
|
||||
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
||||
|
||||
// computed before each graph build
|
||||
@ -343,11 +340,8 @@ public:
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
||||
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
||||
|
||||
// Note: The value of head isn't only used to optimize searching
|
||||
// for a free KV slot. llama_decode_impl also uses it, so it
|
||||
// cannot be freely changed after a slot has been allocated.
|
||||
uint32_t head = 0;
|
||||
uint32_t size = 0;
|
||||
uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot())
|
||||
uint32_t size = 0; // total number of cells, shared across all sequences
|
||||
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
||||
|
||||
// computed before each graph build
|
||||
|
@ -469,7 +469,7 @@ llama_model_loader::llama_model_loader(
|
||||
|
||||
meta.reset(gguf_init_from_file(fname.c_str(), params));
|
||||
if (!meta) {
|
||||
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
|
||||
throw std::runtime_error(format("%s: failed to load model from %s", __func__, fname.c_str()));
|
||||
}
|
||||
|
||||
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
|
||||
@ -528,7 +528,7 @@ llama_model_loader::llama_model_loader(
|
||||
};
|
||||
gguf_context_ptr ctx_gguf { gguf_init_from_file(fname_split, split_params) };
|
||||
if (!ctx_gguf) {
|
||||
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, fname_split));
|
||||
throw std::runtime_error(format("%s: failed to load GGUF split from %s", __func__, fname_split));
|
||||
}
|
||||
|
||||
// check idx
|
||||
@ -822,13 +822,18 @@ void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps
|
||||
mappings.reserve(files.size());
|
||||
mmaps_used.reserve(files.size());
|
||||
for (const auto & file : files) {
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
|
||||
if (!reg) {
|
||||
throw std::runtime_error(format("%s: no CPU backend found", __func__));
|
||||
bool is_numa = false;
|
||||
|
||||
auto * dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
if (dev) {
|
||||
auto * reg = ggml_backend_dev_backend_reg(dev);
|
||||
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
|
||||
if (is_numa_fn) {
|
||||
is_numa = is_numa_fn();
|
||||
}
|
||||
}
|
||||
|
||||
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
|
||||
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
|
||||
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa);
|
||||
mmaps_used.emplace_back(mapping->size(), 0);
|
||||
if (mlock_mmaps) {
|
||||
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
|
||||
|
@ -1389,6 +1389,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
// Add additional layer/vocab/etc checks here for other model sizes
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
|
||||
// For Granite MoE Shared
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
|
||||
} break;
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
{
|
||||
@ -1772,6 +1775,13 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
|
||||
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
|
||||
|
||||
// For Granite MoE Shared
|
||||
if (hparams.n_ff_shexp > 0) {
|
||||
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
|
||||
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
|
||||
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
@ -4385,10 +4395,13 @@ void llama_model::print_info() const {
|
||||
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
||||
}
|
||||
|
||||
if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
|
||||
if (arch == LLM_ARCH_MINICPM ||
|
||||
arch == LLM_ARCH_GRANITE ||
|
||||
arch == LLM_ARCH_GRANITE_MOE) {
|
||||
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
||||
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
||||
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
||||
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
||||
}
|
||||
|
||||
if (arch == LLM_ARCH_BAILINGMOE) {
|
||||
@ -4598,11 +4611,6 @@ struct llm_build_llama : public llm_graph_context {
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
// For Granite architecture
|
||||
if (hparams.f_residual_scale) {
|
||||
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
@ -4674,11 +4682,6 @@ struct llm_build_llama : public llm_graph_context {
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
}
|
||||
|
||||
// For Granite architecture
|
||||
if (hparams.f_residual_scale) {
|
||||
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
@ -4701,11 +4704,6 @@ struct llm_build_llama : public llm_graph_context {
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
// For Granite architecture
|
||||
if (hparams.f_logit_scale) {
|
||||
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
|
||||
}
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
@ -4816,11 +4814,6 @@ struct llm_build_deci : public llm_graph_context {
|
||||
continue;
|
||||
}
|
||||
|
||||
// For Granite architecture
|
||||
if (hparams.f_residual_scale) {
|
||||
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||||
}
|
||||
|
||||
// modified to support attention-free layer of Llama-3_1-Nemotron-51B
|
||||
ggml_tensor * ffn_inp = cur;
|
||||
if (n_head > 0) {
|
||||
@ -4844,11 +4837,6 @@ struct llm_build_deci : public llm_graph_context {
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
|
||||
// For Granite architecture
|
||||
if (hparams.f_residual_scale) {
|
||||
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
@ -4871,11 +4859,6 @@ struct llm_build_deci : public llm_graph_context {
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
// For Granite architecture
|
||||
if (hparams.f_logit_scale) {
|
||||
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
|
||||
}
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
@ -12214,6 +12197,194 @@ struct llm_build_arwkv7 : public llm_build_rwkv7_base {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct llm_build_granite : public llm_graph_context {
|
||||
llm_build_granite(
|
||||
const llama_model & model,
|
||||
const llm_graph_params & params,
|
||||
ggml_cgraph * gf,
|
||||
const bool use_rope = true)
|
||||
: llm_graph_context(params) {
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - built only if rope enabled
|
||||
ggml_tensor * inp_pos = nullptr;
|
||||
if (use_rope) {
|
||||
inp_pos = build_inp_pos();
|
||||
}
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified();
|
||||
|
||||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and (optionally) RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
if (use_rope) {
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
}
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_out", il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
// For Granite architectures - scale residual
|
||||
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network (non-MoE)
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
} else {
|
||||
// MoE branch
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
ggml_tensor * moe_out = build_moe_ffn(cur,
|
||||
model.layers[il].ffn_gate_inp,
|
||||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, true,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
il);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
||||
// For Granite MoE Shared
|
||||
if (hparams.n_ff_shexp > 0) {
|
||||
ggml_tensor * ffn_shexp = build_ffn(cur,
|
||||
model.layers[il].ffn_up_shexp, NULL, NULL,
|
||||
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
||||
model.layers[il].ffn_down_shexp, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(ffn_shexp, "ffn_shexp", il);
|
||||
|
||||
cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
cur = moe_out;
|
||||
}
|
||||
}
|
||||
|
||||
// For Granite architectures - scale residual
|
||||
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
// For Granite architectures - scale logits
|
||||
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
// ref: https://github.com/facebookresearch/chameleon
|
||||
// based on the original build_llama() function, changes:
|
||||
// * qk-norm
|
||||
@ -12921,8 +13092,6 @@ llm_graph_result_ptr llama_model::build_graph(
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_LLAMA4:
|
||||
case LLM_ARCH_MINICPM:
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_llama>(*this, params, gf);
|
||||
} break;
|
||||
@ -13153,6 +13322,11 @@ llm_graph_result_ptr llama_model::build_graph(
|
||||
{
|
||||
llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_granite>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
{
|
||||
llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
|
||||
|
@ -14,6 +14,12 @@
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
|
||||
// Quantization types. Changes to this struct must be replicated in quantize.cpp
|
||||
struct tensor_quantization {
|
||||
std::string name;
|
||||
ggml_type quant = GGML_TYPE_COUNT;
|
||||
};
|
||||
|
||||
static void zeros(std::ofstream & file, size_t n) {
|
||||
char zero = 0;
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
@ -48,12 +54,6 @@ struct quantize_state_impl {
|
||||
{}
|
||||
};
|
||||
|
||||
// changes to this struct must be replicated in quantize.cpp
|
||||
struct tensor_quantization {
|
||||
std::string name;
|
||||
ggml_type quant = GGML_TYPE_COUNT;
|
||||
};
|
||||
|
||||
static void llama_tensor_dequantize_impl(
|
||||
ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
||||
const size_t nelements, const int nthread
|
||||
@ -796,17 +796,19 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
// unless the user specifies a type
|
||||
if (params->tensor_types) {
|
||||
const std::vector<tensor_quantization> & tensor_types = *static_cast<const std::vector<tensor_quantization> *>(params->tensor_types);
|
||||
const std::string tensor_name(tensor->name);
|
||||
for (const auto & [tname, qtype] : tensor_types) {
|
||||
if (std::regex pattern(tname); std::regex_search(tensor->name, pattern)) {
|
||||
if (qtype != new_type) {
|
||||
LLAMA_LOG_DEBUG("(overriding %s -> %s), ", ggml_type_name(new_type), ggml_type_name(qtype));
|
||||
if (std::regex pattern(tname); std::regex_search(tensor_name, pattern)) {
|
||||
if (qtype != new_type) {
|
||||
LLAMA_LOG_DEBUG("(overriding %s) ", ggml_type_name(new_type));
|
||||
new_type = qtype;
|
||||
break; // if two or more types are specified for the tensor, first match wins
|
||||
}
|
||||
new_type = qtype;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
|
||||
new_type = params->token_embedding_type;
|
||||
}
|
||||
|
@ -140,6 +140,11 @@ static struct llama_model * llama_model_load_from_file_impl(
|
||||
struct llama_model_params params) {
|
||||
ggml_time_init();
|
||||
|
||||
if (!params.vocab_only && ggml_backend_reg_count() == 0) {
|
||||
LLAMA_LOG_ERROR("%s: no backends are loaded. hint: use ggml_backend_load() or ggml_backend_load_all() to load a backend before calling this function\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
unsigned cur_percentage = 0;
|
||||
if (params.progress_callback == NULL) {
|
||||
params.progress_callback_user_data = &cur_percentage;
|
||||
|
Loading…
x
Reference in New Issue
Block a user