mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-02-03 03:49:47 +01:00
Use Accelerate framework on Apple silicon
Huge performance improvement in the Encode (almost x2 on MacBook M1 Pro) Also various extra optimizations: - Multi-threaded NORM operator - Faster GELU via F16 cast
This commit is contained in:
parent
130b5c02d6
commit
72d967bce4
9
Makefile
9
Makefile
@ -8,6 +8,7 @@ UNAME_M := $(shell uname -m)
|
||||
|
||||
CFLAGS = -O3 -std=c11
|
||||
CXXFLAGS = -O3 -std=c++11
|
||||
LDFLAGS =
|
||||
|
||||
CFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
|
||||
CXXFLAGS += -Wall -Wextra -Wno-unused-parameter -Wno-unused-function
|
||||
@ -37,7 +38,11 @@ ifeq ($(UNAME_M),amd64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
ifneq ($(filter arm%,$(UNAME_M)),)
|
||||
# Mac M1
|
||||
# Mac M1 - include Accelerate framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
endif
|
||||
@ -59,7 +64,7 @@ endif
|
||||
#
|
||||
|
||||
main: main.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) main.cpp whisper.o ggml.o -o main
|
||||
$(CXX) $(CXXFLAGS) main.cpp whisper.o ggml.o -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
ggml.o: ggml.c ggml.h
|
||||
|
20
README.md
20
README.md
@ -6,7 +6,8 @@
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- ARM_NEON and AVX intrinsics support
|
||||
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
|
||||
- AVX intrinsics support for x86 architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- Low memory usage (Flash Attention + Flash Forward)
|
||||
- Zero memory allocations at runtime
|
||||
@ -224,7 +225,7 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
|
||||
The `stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2 on Linux
|
||||
# Install SDL2 on Linux
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
# Install SDL2 on Mac OS
|
||||
@ -240,6 +241,10 @@ make stream
|
||||
- Simple usage is demonstrated in [main.cpp](main.cpp)
|
||||
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](stream.cpp)
|
||||
|
||||
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
|
||||
instrisics or CBLAS Accelerate framwork routines are used. The latter are especially effective for bigger sizes since
|
||||
the framwork utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
||||
|
||||
## Limitations
|
||||
|
||||
- Very basic greedy sampling scheme - always pick up the top token. You can implement your own strategy
|
||||
@ -250,11 +255,12 @@ make stream
|
||||
|
||||
| Model | Disk | Mem |
|
||||
| --- | --- | --- |
|
||||
| tiny | 75 MB | ~240 MB |
|
||||
| base | 142 MB | ~380 MB |
|
||||
| small | 466 MB | ~970 MB |
|
||||
| medium | 1.5 GB | ~2.5 GB |
|
||||
| large | 2.9 GB | ~4.6 GB |
|
||||
| tiny | 75 MB | ~280 MB |
|
||||
| base | 142 MB | ~430 MB |
|
||||
| small | 466 MB | ~1.0 GB |
|
||||
| medium | 1.5 GB | ~2.6 GB |
|
||||
| large | 2.9 GB | ~4.7 GB |
|
||||
|
||||
|
||||
## ggml format
|
||||
|
||||
|
295
ggml.c
295
ggml.c
@ -716,12 +716,6 @@ inline static float ggml_gelu_f32(float x) {
|
||||
return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
|
||||
}
|
||||
|
||||
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = ggml_gelu_f32(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
const uint16_t * i16 = (const uint16_t *) x;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@ -729,6 +723,21 @@ inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||
uint16_t t;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
ggml_fp16_t fp16 = ggml_fp32_to_fp16(x[i]);
|
||||
memcpy(&t, &fp16, sizeof(uint16_t));
|
||||
y[i] = table_gelu_f16[t];
|
||||
}
|
||||
}
|
||||
|
||||
//inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||
// for (int i = 0; i < n; ++i) {
|
||||
// y[i] = ggml_gelu_f32(x[i]);
|
||||
// }
|
||||
//}
|
||||
|
||||
inline static void ggml_vec_sum_f32 (const int n, float * s, const float * x) { ggml_float sum = 0.0; for (int i = 0; i < n; ++i) sum += x[i]; *s += sum; }
|
||||
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
|
||||
|
||||
@ -2867,13 +2876,15 @@ void ggml_compute_forward_add_f32(
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(params->ith == 0);
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int n = ggml_nrows(src0);
|
||||
const int nc = src0->ne[0];
|
||||
|
||||
@ -2890,7 +2901,7 @@ void ggml_compute_forward_add_f32(
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
if (nb10 == sizeof(float)) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
for (int j = ith; j < n; j += nth) {
|
||||
ggml_vec_add_f32(nc,
|
||||
(float *) ((char *) dst->data + j*nb1),
|
||||
(float *) ((char *) src0->data + j*nb01),
|
||||
@ -2898,7 +2909,7 @@ void ggml_compute_forward_add_f32(
|
||||
}
|
||||
} else {
|
||||
// src1 is not contiguous
|
||||
for (int j = 0; j < n; j++) {
|
||||
for (int j = ith; j < n; j += nth) {
|
||||
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
|
||||
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
|
||||
for (int i = 0; i < nc; i++) {
|
||||
@ -3669,14 +3680,16 @@ void ggml_compute_forward_norm_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
struct ggml_tensor * dst) {
|
||||
assert(params->ith == 0);
|
||||
assert(ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
assert(src0->nb[0] == sizeof(float));
|
||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int ne00 = src0->ne[0];
|
||||
const int ne01 = src0->ne[1];
|
||||
@ -3696,7 +3709,7 @@ void ggml_compute_forward_norm_f32(
|
||||
// TODO: optimize
|
||||
for (int i03 = 0; i03 < ne03; i03++) {
|
||||
for (int i02 = 0; i02 < ne02; i02++) {
|
||||
for (int i01 = 0; i01 < ne01; i01++) {
|
||||
for (int i01 = ith; i01 < ne01; i01 += nth) {
|
||||
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
ggml_float mean = 0.0;
|
||||
@ -3745,6 +3758,28 @@ void ggml_compute_forward_norm(
|
||||
|
||||
// ggml_compute_forward_mul_mat
|
||||
|
||||
// helper function to determine if it is better to use BLAS or not
|
||||
// for large matrices, BLAS is faster
|
||||
bool ggml_compute_forward_mul_mat_use_blas(
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
UNUSED(src0);
|
||||
|
||||
const int ne10 = src1->ne[0];
|
||||
|
||||
const int ne0 = dst->ne[0];
|
||||
const int ne1 = dst->ne[1];
|
||||
|
||||
// TODO: find the optimal values for these
|
||||
if (ggml_is_contiguous(src1) && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) {
|
||||
//printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void ggml_compute_forward_mul_mat_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
@ -3812,6 +3847,47 @@ void ggml_compute_forward_mul_mat_f32(
|
||||
// nb00 < nb01 - src0 is transposed
|
||||
// compute by src0 columns
|
||||
|
||||
//#ifdef GGML_USE_ACCELERATE
|
||||
// if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
||||
// GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
// GGML_ASSERT(nb10 == sizeof(float));
|
||||
//
|
||||
// if (params->ith != 0) return;
|
||||
//
|
||||
// if (params->type == GGML_TASK_INIT) {
|
||||
// return;
|
||||
// }
|
||||
//
|
||||
// if (params->type == GGML_TASK_FINALIZE) {
|
||||
// return;
|
||||
// }
|
||||
//
|
||||
// float * const wdata = params->wdata;
|
||||
//
|
||||
// for (int i03 = 0; i03 < ne03; i03++) {
|
||||
// for (int i02 = 0; i02 < ne02; i02++) {
|
||||
// const float * x = (float *) (src0->data);
|
||||
// const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
||||
//
|
||||
// float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
//
|
||||
// // zT = y * xT
|
||||
// {
|
||||
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
// ne11, ne01, ne10,
|
||||
// 1.0f, y, ne10,
|
||||
// x, ne10,
|
||||
// 0.0f, d, ne01);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
||||
//
|
||||
// return;
|
||||
// }
|
||||
//#endif
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (nb01 >= nb00) {
|
||||
return;
|
||||
@ -3848,78 +3924,6 @@ void ggml_compute_forward_mul_mat_f32(
|
||||
return;
|
||||
}
|
||||
|
||||
//#ifdef GGML_USE_ACCELERATE
|
||||
// // try to use BLAS
|
||||
//
|
||||
// if (nb01 >= nb00 && ne0 > 1024 && ne1 > 1024) {
|
||||
// if (params->ith != 0) return;
|
||||
// printf("XXXXXXXX\n");
|
||||
//
|
||||
// GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
// GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
//
|
||||
// printf("ne00 = %d, ne01 = %d, ne02 = %d, ne03 = %d\n", ne00, ne01, ne02, ne03);
|
||||
// printf("ne10 = %d, ne11 = %d, ne12 = %d, ne13 = %d\n", ne10, ne11, ne12, ne13);
|
||||
// printf("ne0 = %d, ne1 = %d, ne2 = %d, ne3 = %d\n", ne0, ne1, ne2, ne3);
|
||||
//
|
||||
// printf("nb00 = %d, nb01 = %d, nb02 = %d, nb03 = %d\n", nb00, nb01, nb02, nb03);
|
||||
// printf("nb10 = %d, nb11 = %d, nb12 = %d, nb13 = %d\n", nb10, nb11, nb12, nb13);
|
||||
// printf("nb0 = %d, nb1 = %d, nb2 = %d, nb3 = %d\n", nb0, nb1, nb2, nb3);
|
||||
//
|
||||
// float * const wdata = params->wdata;
|
||||
//
|
||||
// int64_t tsum = 0.0;
|
||||
// for (int i03 = 0; i03 < ne03; i03++) {
|
||||
// for (int i02 = 0; i02 < ne02; i02++) {
|
||||
// const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
||||
// const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
||||
// float * z = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
//
|
||||
// // transpose src1
|
||||
// for (int j = 0; j < ne11; ++j) {
|
||||
// for (int i = 0; i < ne10; ++i) {
|
||||
// wdata[i*ne11 + j] = y[j*ne10 + i];
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// {
|
||||
// const int64_t tt0 = ggml_time_us();
|
||||
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
|
||||
// 1500, 1500, 64,
|
||||
// 1.0, x, 64,
|
||||
// wdata, 1500,
|
||||
// 0.0, z, 1500);
|
||||
// const int64_t tt1 = ggml_time_us();
|
||||
// tsum += tt1 - tt0;
|
||||
// }
|
||||
//
|
||||
// // transpose z
|
||||
// for (int j = 0; j < ne1; ++j) {
|
||||
// for (int i = 0; i < ne0; ++i) {
|
||||
// wdata[i*ne1 + j] = z[j*ne0 + i];
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// memcpy(z, wdata, ne0*ne1*sizeof(float));
|
||||
//
|
||||
// //cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
|
||||
// // ne0, ne1, 64,
|
||||
// // 1.0f,
|
||||
// // x, ne00,
|
||||
// // y, ne11,
|
||||
// // 0.0f,
|
||||
// // z, 1500);
|
||||
// }
|
||||
// }
|
||||
// printf("time = %f ms\n", tsum/1000.0);
|
||||
// return;
|
||||
// } else {
|
||||
// //cblas_sgemv(CblasRowMajor, CblasTrans, ne00, ne01, 1.0, src0->data, ne01, src1->data, 1, 0.0, dst->data, 1);
|
||||
// }
|
||||
//
|
||||
//#endif
|
||||
|
||||
|
||||
if (nb01 >= nb00) {
|
||||
// TODO: do not support transposed src1
|
||||
assert(nb10 == sizeof(float));
|
||||
@ -4064,24 +4068,24 @@ void ggml_compute_forward_mul_mat_f16_f32(
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
assert(ne02 == ne12);
|
||||
assert(ne03 == ne13);
|
||||
assert(ne2 == ne12);
|
||||
assert(ne3 == ne13);
|
||||
GGML_ASSERT(ne02 == ne12);
|
||||
GGML_ASSERT(ne03 == ne13);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// TODO: we don't support permuted src0
|
||||
assert(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
|
||||
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t) || nb01 == sizeof(ggml_fp16_t));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
assert(nb0 == sizeof(float));
|
||||
assert(nb0 <= nb1);
|
||||
assert(nb1 <= nb2);
|
||||
assert(nb2 <= nb3);
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
assert(ne0 == ne01);
|
||||
assert(ne1 == ne11);
|
||||
assert(ne2 == ne02);
|
||||
assert(ne3 == ne03);
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
GGML_ASSERT(ne1 == ne11);
|
||||
GGML_ASSERT(ne2 == ne02);
|
||||
GGML_ASSERT(ne3 == ne03);
|
||||
|
||||
// nb01 >= nb00 - src0 is not transposed
|
||||
// compute by src0 rows
|
||||
@ -4089,6 +4093,73 @@ void ggml_compute_forward_mul_mat_f16_f32(
|
||||
// nb00 < nb01 - src0 is transposed
|
||||
// compute by src0 columns
|
||||
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
if (params->ith != 0) return;
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
float * const wdata = params->wdata;
|
||||
|
||||
for (int i03 = 0; i03 < ne03; i03++) {
|
||||
for (int i02 = 0; i02 < ne02; i02++) {
|
||||
{
|
||||
int id = 0;
|
||||
for (int i01 = 0; i01 < ne01; ++i01) {
|
||||
for (int i00 = 0; i00 < ne00; ++i00) {
|
||||
wdata[id++] = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const float * x = wdata;
|
||||
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
||||
|
||||
// float * z = wdata + ne00*ne01;
|
||||
|
||||
// z = x * yT
|
||||
//{
|
||||
// cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
// ne01, ne11, ne00,
|
||||
// 1.0f, x, ne00,
|
||||
// y, ne00,
|
||||
// 0.0f, z, ne11);
|
||||
//}
|
||||
|
||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||
|
||||
// transpose z
|
||||
//for (int j = 0; j < ne11; ++j) {
|
||||
// for (int i = 0; i < ne01; ++i) {
|
||||
// d[j*ne01 + i] = z[i*ne11 + j];
|
||||
// }
|
||||
//}
|
||||
|
||||
// zT = y * xT
|
||||
{
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne11, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne10,
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
if (nb01 >= nb00) {
|
||||
ggml_fp16_t * const wdata = params->wdata;
|
||||
@ -6534,7 +6605,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_DUP:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
} break;
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
@ -6553,11 +6630,11 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
} break;
|
||||
case GGML_OP_GELU:
|
||||
{
|
||||
node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
|
||||
node->n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_NORM:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
node->n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
@ -6572,7 +6649,15 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
} else {
|
||||
if (node->src0->type == GGML_TYPE_F16 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
|
||||
cur = sizeof(float)*(node->src0->ne[0]*node->src0->ne[1]);
|
||||
} else {
|
||||
cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
|
||||
}
|
||||
#else
|
||||
cur = sizeof(ggml_fp16_t)*ggml_nelements(node->src1);
|
||||
#endif
|
||||
} else if (node->src0->type == GGML_TYPE_F32 &&
|
||||
node->src1->type == GGML_TYPE_F32) {
|
||||
cur = 0;
|
||||
@ -6585,7 +6670,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
} break;
|
||||
case GGML_OP_SCALE:
|
||||
{
|
||||
node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
|
||||
node->n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_RESHAPE:
|
||||
@ -6599,7 +6684,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
} break;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
{
|
||||
node->n_tasks = MIN(n_threads, ggml_nrows(node->src0));
|
||||
node->n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
@ -6714,7 +6799,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
struct ggml_compute_params params = {
|
||||
/*.type =*/ GGML_TASK_INIT,
|
||||
/*.ith =*/ 0,
|
||||
/*.nth =*/ n_threads,
|
||||
/*.nth =*/ node->n_tasks,
|
||||
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
||||
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
|
||||
};
|
||||
@ -6898,9 +6983,9 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
||||
|
||||
perf_total_per_op_us[node->op] += node->perf_time_us;
|
||||
|
||||
GGML_PRINT(" - %3d: [ %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
|
||||
GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
|
||||
i,
|
||||
node->ne[0], node->ne[1],
|
||||
node->ne[0], node->ne[1], node->ne[2],
|
||||
GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
|
||||
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
|
||||
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
|
||||
|
2
main.cpp
2
main.cpp
@ -21,7 +21,7 @@ std::string to_timestamp(int64_t t) {
|
||||
msec = msec - min * (1000 * 60);
|
||||
int64_t sec = msec / 1000;
|
||||
msec = msec - sec * 1000;
|
||||
|
||||
|
||||
char buf[32];
|
||||
snprintf(buf, sizeof(buf), "%02d:%02d:%02d.%03d", (int) hr, (int) min, (int) sec, (int) msec);
|
||||
|
||||
|
12
whisper.cpp
12
whisper.cpp
@ -15,7 +15,7 @@
|
||||
#include <vector>
|
||||
|
||||
#define USE_FLASH_ATTN
|
||||
#define USE_FLASH_FF
|
||||
//#define USE_FLASH_FF
|
||||
|
||||
// available whisper models
|
||||
enum e_model {
|
||||
@ -148,11 +148,11 @@ static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
|
||||
};
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
|
||||
{ MODEL_TINY, 64ull*MB },
|
||||
{ MODEL_BASE, 84ull*MB },
|
||||
{ MODEL_SMALL, 128ull*MB },
|
||||
{ MODEL_MEDIUM, 172ull*MB },
|
||||
{ MODEL_LARGE, 216ull*MB },
|
||||
{ MODEL_TINY, 104ull*MB },
|
||||
{ MODEL_BASE, 138ull*MB },
|
||||
{ MODEL_SMALL, 208ull*MB },
|
||||
{ MODEL_MEDIUM, 280ull*MB },
|
||||
{ MODEL_LARGE, 354ull*MB },
|
||||
};
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_DECODE = {
|
||||
|
Loading…
Reference in New Issue
Block a user