whisper : Metal and ggml-alloc support (#1270)

* metal : init

* whisper : factor out graph builds

* whisper : allocate encoder and decoder using ggml-alloc

* whisper : ggml-alloc is now supported

* whisper : CoreML support ggml-alloc

* build : fix ggml-alloc

* ios : update submodule

* extra : update sync-ggml.sh script to also sync ggml-alloc

* ci : see if this is causing the crash

* whisper : refactor ggml-alloc init

* whisper.android : try to fix build

* whisper : initial Metal version

* ci : try to debug vmem issue

* metal : decoder works on GPU!

* metal : add multi-decoder support

* ggml : fix ggml_nbytes (probably temp solution)

* metal : run "cross" step on the GPU

* whisper : remove ggml_repeat in the encoder

* whisper : offload the Encoder to Metal

* ggml : use simpler ggml_bytes() implementation

* ggml-alloc : try to make CI happy by reducing vram to 128GB

* whisper : add whisper_allocr to wrap ggml_allocr

* whisper : factor out alloc init in a function

* cmake : update to support Metal build

* whisper : add <functional> header

* objc : fix build (no Metal yet)

* ios : add Metal support

* swiftui : fix build

* metal : speed-up KQ multiplication

* metal : sync latest llama.cpp kernels

* readme : add Metal info

* ios : update submodule

* coreml : add code to toggle Core ML config (CPU, ANE, GPU)

* bench : fix timings by running a pre-heat

* bench : start benching the decoder

* whisper : add ggml_mul_mat_pad

* bench : fix uninitialized vars

* whisper : add comment for disabling mul-mat padding

* whisper : add description of ggml_mul_mat_pad

* whisper : clean-up ggml_mul_mat_pad

* metal : remove the "concurrent" flag

* bench : variable n_past

* ios : update SPM package
This commit is contained in:
Georgi Gerganov 2023-09-15 12:18:18 +03:00 committed by GitHub
parent 3fec2119e6
commit 93935980f8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 1855 additions and 1252 deletions

View File

@ -1,4 +1,4 @@
cmake_minimum_required (VERSION 3.0) cmake_minimum_required (VERSION 3.5)
project(whisper.cpp VERSION 1.4.2) project(whisper.cpp VERSION 1.4.2)
@ -35,6 +35,12 @@ endif()
# options # options
if (APPLE)
set(WHISPER_METAL_DEFAULT ON)
else()
set(WHISPER_METAL_DEFAULT OFF)
endif()
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT}) option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON) option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
@ -58,6 +64,8 @@ option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
if (APPLE) if (APPLE)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF) option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_METAL "whisper: use Metal" ${WHISPER_METAL_DEFAULT})
option(WHISPER_METAL_NDEBUG "whisper: disable Metal debugging" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF) option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF) option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
else() else()
@ -113,6 +121,34 @@ if (APPLE)
endif() endif()
endif() endif()
if (WHISPER_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
if (METAL_FRAMEWORK)
message(STATUS "Metal framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_METAL)
if (WHISPER_METAL_NDEBUG)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_NDEBUG)
endif()
else()
message(WARNING "Metal framework not found")
endif()
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
# copy ggml-metal.metal to bin directory
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
endif()
if (WHISPER_COREML) if (WHISPER_COREML)
find_library(FOUNDATION_FRAMEWORK Foundation) find_library(FOUNDATION_FRAMEWORK Foundation)
find_library(COREML_FRAMEWORK CoreML) find_library(COREML_FRAMEWORK CoreML)
@ -177,7 +213,7 @@ if (WHISPER_CUBLAS)
enable_language(CUDA) enable_language(CUDA)
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h) set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
add_compile_definitions(GGML_USE_CUBLAS) add_compile_definitions(GGML_USE_CUBLAS)
@ -228,7 +264,7 @@ if (WHISPER_CLBLAST)
if (CLBlast_FOUND) if (CLBlast_FOUND)
message(STATUS "CLBlast found") message(STATUS "CLBlast found")
set(GGML_OPENCL_SOURCES ggml-opencl.cpp ggml-opencl.h) set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h)
add_compile_definitions(GGML_USE_CLBLAST) add_compile_definitions(GGML_USE_CLBLAST)
@ -426,8 +462,11 @@ set(TARGET whisper)
add_library(${TARGET} add_library(${TARGET}
ggml.h ggml.h
ggml.c ggml.c
${GGML_CUDA_SOURCES} ggml-alloc.h
${GGML_OPENCL_SOURCES} ggml-alloc.c
${GGML_SOURCES_METAL}
${GGML_SOURCES_CUDA}
${GGML_SOURCES_OPENCL}
whisper.h whisper.h
whisper.cpp whisper.cpp
) )
@ -468,9 +507,15 @@ if (BUILD_SHARED_LIBS)
WHISPER_BUILD WHISPER_BUILD
GGML_BUILD GGML_BUILD
) )
if (WHISPER_METAL)
# TODO: I think this should make ggml-metal.m "see" the ggml-metal.metal file from the "bin" directory
# but for some reason it does not work here like it does in llama.cpp
set_target_properties(${TARGET} PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
endif()
endif() endif()
if (GGML_CUDA_SOURCES) if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture") message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF) set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto") set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
@ -486,10 +531,13 @@ target_compile_definitions(${TARGET} PUBLIC
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h") set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h")
include(GNUInstallDirs)
install(TARGETS ${TARGET} install(TARGETS ${TARGET}
LIBRARY DESTINATION lib LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib/static ARCHIVE DESTINATION lib/static
RUNTIME DESTINATION bin RUNTIME DESTINATION bin
RESOURCE DESTINATION bin
PUBLIC_HEADER DESTINATION include PUBLIC_HEADER DESTINATION include
) )

View File

@ -18,7 +18,7 @@ ifndef NVCC_VERSION
endif endif
endif endif
CCV := $(shell $(CC) --version | head -n 1) CCV := $(shell $(CC) --version | head -n 1)
CXXV := $(shell $(CXX) --version | head -n 1) CXXV := $(shell $(CXX) --version | head -n 1)
# Mac OS + Arm can report x86_64 # Mac OS + Arm can report x86_64
@ -182,6 +182,15 @@ ifdef WHISPER_COREML_ALLOW_FALLBACK
endif endif
endif endif
ifndef WHISPER_NO_METAL
ifeq ($(UNAME_S),Darwin)
WHISPER_METAL := 1
CXXFLAGS += -DGGML_USE_METAL
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
endif
endif
ifdef WHISPER_OPENBLAS ifdef WHISPER_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
LDFLAGS += -lopenblas LDFLAGS += -lopenblas
@ -288,6 +297,11 @@ $(info )
ggml.o: ggml.c ggml.h ggml-cuda.h ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@ $(CC) $(CFLAGS) -c $< -o $@
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
$(CC) $(CFLAGS) -c $< -o $@
WHISPER_OBJ += ggml-alloc.o
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
@ -303,6 +317,13 @@ whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-imp
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
endif endif
ifdef WHISPER_METAL
ggml-metal.o: ggml-metal.m ggml-metal.h
$(CC) $(CFLAGS) -c $< -o $@
WHISPER_OBJ += ggml-metal.o
endif
libwhisper.a: ggml.o $(WHISPER_OBJ) libwhisper.a: ggml.o $(WHISPER_OBJ)
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ) $(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)

View File

@ -11,14 +11,14 @@ Beta: [v1.4.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.2) / S
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model: High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
- Plain C/C++ implementation without dependencies - Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate framework and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support) - Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
- AVX intrinsics support for x86 architectures - AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures - VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision - Mixed F16 / F32 precision
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization) - [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
- Low memory usage (Flash Attention) - Low memory usage (Flash Attention)
- Zero memory allocations at runtime - Zero memory allocations at runtime
- Runs on the CPU - Support for CPU-only inference
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas) - [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast) - [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
- [BLAS CPU support via OpenBLAS](https://github.com/ggerganov/whisper.cpp#blas-cpu-support-via-openblas) - [BLAS CPU support via OpenBLAS](https://github.com/ggerganov/whisper.cpp#blas-cpu-support-via-openblas)
@ -50,6 +50,10 @@ You can also easily make your own offline voice assistant application: [command]
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4 https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
On Apply Silicon, the inference runs fully on the GPU via Metal:
https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm) Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
## Implementation details ## Implementation details

@ -1 +1 @@
Subproject commit de46d9e7817fe851c109d66080239d415812d32a Subproject commit 22a9eef021afc67f2154bc9811ed620b26299d1b

View File

@ -22,7 +22,13 @@ struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
NSURL * url_model = [NSURL fileURLWithPath: path_model_str]; NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model error:nil]); // select which device to run the Core ML model on
MLModelConfiguration *config = [[MLModelConfiguration alloc] init];
config.computeUnits = MLComputeUnitsCPUAndGPU;
//config.computeUnits = MLComputeUnitsCPUAndNeuralEngine;
//config.computeUnits = MLComputeUnitsAll;
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model configuration:config error:nil]);
if (data == NULL) { if (data == NULL) {
return NULL; return NULL;

View File

@ -44,13 +44,13 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads); fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str()); fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what); fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
fprintf(stderr, " %-7s 0 - whisper encoder\n", ""); fprintf(stderr, " %-7s 0 - whisper\n", "");
fprintf(stderr, " %-7s 1 - memcpy\n", ""); fprintf(stderr, " %-7s 1 - memcpy\n", "");
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", ""); fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
fprintf(stderr, "\n"); fprintf(stderr, "\n");
} }
int whisper_bench_encoder(const whisper_params & params) { int whisper_bench_full(const whisper_params & params) {
// whisper init // whisper init
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str()); struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
@ -69,12 +69,49 @@ int whisper_bench_encoder(const whisper_params & params) {
fprintf(stderr, "error: failed to set mel: %d\n", ret); fprintf(stderr, "error: failed to set mel: %d\n", ret);
return 3; return 3;
} }
// heat encoder
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) { if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret); fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4; return 4;
} }
whisper_token tokens[512];
memset(tokens, 0, sizeof(tokens));
// prompt heat
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
// text-generation heat
if (int ret = whisper_decode(ctx, tokens, 1, 256, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
whisper_reset_timings(ctx);
// actual run
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
for (int i = 0; i < 16; i++) {
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
}
for (int i = 0; i < 256; i++) {
if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) {
fprintf(stderr, "error: failed to encode model: %d\n", ret);
return 4;
}
}
whisper_print_timings(ctx); whisper_print_timings(ctx);
whisper_free(ctx); whisper_free(ctx);
@ -103,7 +140,7 @@ int main(int argc, char ** argv) {
int ret = -1; int ret = -1;
switch (params.what) { switch (params.what) {
case 0: ret = whisper_bench_encoder(params); break; case 0: ret = whisper_bench_full(params); break;
case 1: ret = whisper_bench_memcpy(params.n_threads); break; case 1: ret = whisper_bench_memcpy(params.n_threads); break;
case 2: ret = whisper_bench_ggml_mul_mat(params.n_threads); break; case 2: ret = whisper_bench_ggml_mul_mat(params.n_threads); break;
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break; default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;

View File

@ -7,7 +7,7 @@ if (WHISPER_SDL2)
# TODO: this is temporary # TODO: this is temporary
# need to export ggml symbols for MSVC, but too lazy .. # need to export ggml symbols for MSVC, but too lazy ..
add_executable(${TARGET} talk-llama.cpp llama.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../whisper.cpp) add_executable(${TARGET} talk-llama.cpp llama.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../ggml-alloc.c ../../whisper.cpp)
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../) target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})

View File

@ -8,6 +8,7 @@ set(WHISPER_LIB_DIR ${CMAKE_SOURCE_DIR}/../../../../../../../)
set( set(
SOURCE_FILES SOURCE_FILES
${WHISPER_LIB_DIR}/ggml.c ${WHISPER_LIB_DIR}/ggml.c
${WHISPER_LIB_DIR}/ggml-alloc.c
${WHISPER_LIB_DIR}/whisper.cpp ${WHISPER_LIB_DIR}/whisper.cpp
${CMAKE_SOURCE_DIR}/jni.c ${CMAKE_SOURCE_DIR}/jni.c
) )

View File

@ -28,6 +28,8 @@ This can significantly improve the performance of the transcription:
<img width="1072" alt="image" src="https://user-images.githubusercontent.com/1991296/208511239-8d7cdbd1-aa48-41b5-becd-ca288d53cc07.png"> <img width="1072" alt="image" src="https://user-images.githubusercontent.com/1991296/208511239-8d7cdbd1-aa48-41b5-becd-ca288d53cc07.png">
## Core ML
If you want to enable Core ML support, you can add the `-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK` compiler flag for `whisper.cpp` in Build Phases: If you want to enable Core ML support, you can add the `-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK` compiler flag for `whisper.cpp` in Build Phases:
<img width="1072" alt="image" src="https://github.com/ggerganov/whisper.cpp/assets/3001525/103e8f57-6eb6-490d-a60c-f6cf6c319324"> <img width="1072" alt="image" src="https://github.com/ggerganov/whisper.cpp/assets/3001525/103e8f57-6eb6-490d-a60c-f6cf6c319324">
@ -35,3 +37,13 @@ If you want to enable Core ML support, you can add the `-DWHISPER_USE_COREML -DW
Then follow the [`Core ML support` section of readme](../../README.md#core-ml-support) for convert the model. Then follow the [`Core ML support` section of readme](../../README.md#core-ml-support) for convert the model.
In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project. In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project.
## Metal
You can also enable Metal to make the inference run on the GPU of your device. This might or might not be more efficient
compared to Core ML depending on the model and device that you use.
To enable Metal, just add `-DGGML_USE_METAL` instead off the `-DWHISPER_USE_COREML` flag and you are ready.
This will make both the Encoder and the Decoder run on the GPU.
If you want to run the Encoder with Core ML and the Decoder with Metal then simply add both `-DWHISPER_USE_COREML -DGGML_USE_METAL` flags. That's all!

View File

@ -7,6 +7,9 @@
objects = { objects = {
/* Begin PBXBuildFile section */ /* Begin PBXBuildFile section */
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 184447182AB211A2007D6BFE /* ggml-alloc.c */; };
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 1844471B2AB21655007D6BFE /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-framework Foundation -framework Metal -framework MetalKit -fno-objc-arc"; }; };
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7A29052BDF00BD2A04 /* AppDelegate.m */; }; 18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7A29052BDF00BD2A04 /* AppDelegate.m */; };
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7D29052BDF00BD2A04 /* SceneDelegate.m */; }; 18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7D29052BDF00BD2A04 /* SceneDelegate.m */; };
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8029052BDF00BD2A04 /* ViewController.m */; }; 18627C8129052BDF00BD2A04 /* ViewController.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8029052BDF00BD2A04 /* ViewController.m */; };
@ -14,7 +17,7 @@
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8529052BE000BD2A04 /* Assets.xcassets */; }; 18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8529052BE000BD2A04 /* Assets.xcassets */; };
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8729052BE000BD2A04 /* LaunchScreen.storyboard */; }; 18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8729052BE000BD2A04 /* LaunchScreen.storyboard */; };
18627C8C29052BE000BD2A04 /* main.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8B29052BE000BD2A04 /* main.m */; }; 18627C8C29052BE000BD2A04 /* main.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8B29052BE000BD2A04 /* main.m */; };
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK"; }; }; 18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML"; }; };
18627C9629052C5800BD2A04 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9529052C5800BD2A04 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE"; }; }; 18627C9629052C5800BD2A04 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9529052C5800BD2A04 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE"; }; };
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */ = {isa = PBXBuildFile; fileRef = 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */; }; 18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */ = {isa = PBXBuildFile; fileRef = 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */; };
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */; }; 7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */; };
@ -23,7 +26,24 @@
7FE3424F2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc in Resources */ = {isa = PBXBuildFile; fileRef = 7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */; }; 7FE3424F2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc in Resources */ = {isa = PBXBuildFile; fileRef = 7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */; };
/* End PBXBuildFile section */ /* End PBXBuildFile section */
/* Begin PBXCopyFilesBuildPhase section */
184447202AB21B25007D6BFE /* CopyFiles */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 2147483647;
dstPath = "";
dstSubfolderSpec = 7;
files = (
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */,
);
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */ /* Begin PBXFileReference section */
184447182AB211A2007D6BFE /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../../ggml-alloc.c"; sourceTree = "<group>"; };
184447192AB211A2007D6BFE /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../../ggml-alloc.h"; sourceTree = "<group>"; };
1844471B2AB21655007D6BFE /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../../ggml-metal.m"; sourceTree = "<group>"; };
1844471D2AB2195F007D6BFE /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../../ggml-metal.metal"; sourceTree = "<group>"; };
18627C7629052BDF00BD2A04 /* whisper.objc.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = whisper.objc.app; sourceTree = BUILT_PRODUCTS_DIR; }; 18627C7629052BDF00BD2A04 /* whisper.objc.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = whisper.objc.app; sourceTree = BUILT_PRODUCTS_DIR; };
18627C7929052BDF00BD2A04 /* AppDelegate.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = AppDelegate.h; sourceTree = "<group>"; }; 18627C7929052BDF00BD2A04 /* AppDelegate.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = AppDelegate.h; sourceTree = "<group>"; };
18627C7A29052BDF00BD2A04 /* AppDelegate.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = AppDelegate.m; sourceTree = "<group>"; }; 18627C7A29052BDF00BD2A04 /* AppDelegate.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = AppDelegate.m; sourceTree = "<group>"; };
@ -80,6 +100,10 @@
18627C7829052BDF00BD2A04 /* whisper.objc */ = { 18627C7829052BDF00BD2A04 /* whisper.objc */ = {
isa = PBXGroup; isa = PBXGroup;
children = ( children = (
1844471D2AB2195F007D6BFE /* ggml-metal.metal */,
1844471B2AB21655007D6BFE /* ggml-metal.m */,
184447182AB211A2007D6BFE /* ggml-alloc.c */,
184447192AB211A2007D6BFE /* ggml-alloc.h */,
7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */, 7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */,
7FE342442A0C3FA20015A058 /* coreml */, 7FE342442A0C3FA20015A058 /* coreml */,
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */, 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */,
@ -126,6 +150,7 @@
18627C7229052BDF00BD2A04 /* Sources */, 18627C7229052BDF00BD2A04 /* Sources */,
18627C7329052BDF00BD2A04 /* Frameworks */, 18627C7329052BDF00BD2A04 /* Frameworks */,
18627C7429052BDF00BD2A04 /* Resources */, 18627C7429052BDF00BD2A04 /* Resources */,
184447202AB21B25007D6BFE /* CopyFiles */,
); );
buildRules = ( buildRules = (
); );
@ -194,8 +219,10 @@
18627C9629052C5800BD2A04 /* ggml.c in Sources */, 18627C9629052C5800BD2A04 /* ggml.c in Sources */,
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */, 18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */,
7FE3424D2A0C3FA20015A058 /* whisper-decoder-impl.m in Sources */, 7FE3424D2A0C3FA20015A058 /* whisper-decoder-impl.m in Sources */,
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */,
18627C8C29052BE000BD2A04 /* main.m in Sources */, 18627C8C29052BE000BD2A04 /* main.m in Sources */,
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */, 18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */,
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */,
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */, 7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */,
); );
runOnlyForDeploymentPostprocessing = 0; runOnlyForDeploymentPostprocessing = 0;

View File

@ -20,6 +20,7 @@
0AAC5DCC29539EB1003032C3 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DC929539EB0003032C3 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -Wno-shorten-64-to-32"; }; }; 0AAC5DCC29539EB1003032C3 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DC929539EB0003032C3 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -Wno-shorten-64-to-32"; }; };
0AAC5DCE2953A05C003032C3 /* WhisperState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DCD2953A05C003032C3 /* WhisperState.swift */; }; 0AAC5DCE2953A05C003032C3 /* WhisperState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DCD2953A05C003032C3 /* WhisperState.swift */; };
0AAC5DD12953A394003032C3 /* LibWhisper.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DD02953A394003032C3 /* LibWhisper.swift */; }; 0AAC5DD12953A394003032C3 /* LibWhisper.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DD02953A394003032C3 /* LibWhisper.swift */; };
18AED4812AB21F2B009D854F /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 18AED47F2AB21F2B009D854F /* ggml-alloc.c */; };
/* End PBXBuildFile section */ /* End PBXBuildFile section */
/* Begin PBXFileReference section */ /* Begin PBXFileReference section */
@ -41,6 +42,8 @@
0AAC5DCA29539EB0003032C3 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = ggml.h; sourceTree = "<group>"; }; 0AAC5DCA29539EB0003032C3 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = ggml.h; sourceTree = "<group>"; };
0AAC5DCD2953A05C003032C3 /* WhisperState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = WhisperState.swift; sourceTree = "<group>"; }; 0AAC5DCD2953A05C003032C3 /* WhisperState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = WhisperState.swift; sourceTree = "<group>"; };
0AAC5DD02953A394003032C3 /* LibWhisper.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibWhisper.swift; sourceTree = "<group>"; }; 0AAC5DD02953A394003032C3 /* LibWhisper.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibWhisper.swift; sourceTree = "<group>"; };
18AED47F2AB21F2B009D854F /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = "ggml-alloc.c"; sourceTree = "<group>"; };
18AED4802AB21F2B009D854F /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "ggml-alloc.h"; sourceTree = "<group>"; };
/* End PBXFileReference section */ /* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */ /* Begin PBXFrameworksBuildPhase section */
@ -124,6 +127,8 @@
0AAC5DC529539E89003032C3 /* whisper.cpp */ = { 0AAC5DC529539E89003032C3 /* whisper.cpp */ = {
isa = PBXGroup; isa = PBXGroup;
children = ( children = (
18AED47F2AB21F2B009D854F /* ggml-alloc.c */,
18AED4802AB21F2B009D854F /* ggml-alloc.h */,
0AAC5DC929539EB0003032C3 /* ggml.c */, 0AAC5DC929539EB0003032C3 /* ggml.c */,
0AAC5DCA29539EB0003032C3 /* ggml.h */, 0AAC5DCA29539EB0003032C3 /* ggml.h */,
0AAC5DC729539EB0003032C3 /* whisper.cpp */, 0AAC5DC729539EB0003032C3 /* whisper.cpp */,
@ -242,6 +247,7 @@
0AA7514C2953B569001EE061 /* RiffWaveUtils.swift in Sources */, 0AA7514C2953B569001EE061 /* RiffWaveUtils.swift in Sources */,
0AAC5DCB29539EB1003032C3 /* whisper.cpp in Sources */, 0AAC5DCB29539EB1003032C3 /* whisper.cpp in Sources */,
0AA7514E2953D958001EE061 /* Recorder.swift in Sources */, 0AA7514E2953D958001EE061 /* Recorder.swift in Sources */,
18AED4812AB21F2B009D854F /* ggml-alloc.c in Sources */,
); );
runOnlyForDeploymentPostprocessing = 0; runOnlyForDeploymentPostprocessing = 0;
}; };
@ -369,7 +375,7 @@
CODE_SIGN_STYLE = Automatic; CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1; CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"whisper.swiftui.demo/Supporting files/Preview Content\""; DEVELOPMENT_ASSET_PATHS = "\"whisper.swiftui.demo/Supporting files/Preview Content\"";
DEVELOPMENT_TEAM = 3TZ9BM962G; DEVELOPMENT_TEAM = P8JZH34X63;
ENABLE_HARDENED_RUNTIME = YES; ENABLE_HARDENED_RUNTIME = YES;
ENABLE_PREVIEWS = YES; ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES; GENERATE_INFOPLIST_FILE = YES;
@ -410,7 +416,7 @@
CODE_SIGN_STYLE = Automatic; CODE_SIGN_STYLE = Automatic;
CURRENT_PROJECT_VERSION = 1; CURRENT_PROJECT_VERSION = 1;
DEVELOPMENT_ASSET_PATHS = "\"whisper.swiftui.demo/Supporting files/Preview Content\""; DEVELOPMENT_ASSET_PATHS = "\"whisper.swiftui.demo/Supporting files/Preview Content\"";
DEVELOPMENT_TEAM = 3TZ9BM962G; DEVELOPMENT_TEAM = P8JZH34X63;
ENABLE_HARDENED_RUNTIME = YES; ENABLE_HARDENED_RUNTIME = YES;
ENABLE_PREVIEWS = YES; ENABLE_PREVIEWS = YES;
GENERATE_INFOPLIST_FILE = YES; GENERATE_INFOPLIST_FILE = YES;

View File

@ -44,27 +44,26 @@ if [ "$encoder_only" -eq 0 ]; then
printf "\n" printf "\n"
fi fi
printf "| CPU | OS | Config | Model | Th | Load | Enc. | Commit |\n" printf "| %6s | %6s | %12s | %9s | %3s | %7s | %7s | %7s | %7s |\n" "CPU" "OS" "Config" "Model" "Th" "Enc." "Dec." "PP" "Commit"
printf "| --- | -- | ------ | ----- | -- | ---- | ---- | ------ |\n" printf "| %6s | %6s | %12s | %9s | %3s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---"
for model in "${models[@]}"; do for model in "${models[@]}"; do
# run once to heat-up the cache
./bench -m ./models/ggml-$model.bin -t $n_threads 2>/dev/null 1>/dev/null
# actual run # actual run
# store stderr output in a variable in order to parse it later # store stderr output in a variable in order to parse it later
output=$(./bench -m ./models/ggml-$model.bin -t $n_threads 2>&1) output=$(./bench -m ./models/ggml-$model.bin -t $n_threads 2>&1)
ret=$? ret=$?
# parse the output: # parse the output:
load_time=$(echo "$output" | grep "load time" | awk '{print $5}') encode_time=$(echo "$output" | grep "encode time" | awk '{print $11}')
encode_time=$(echo "$output" | grep "encode time" | awk '{print $5}') decode_time=$(echo "$output" | grep "decode time" | awk '{print $11}')
prompt_time=$(echo "$output" | grep "prompt time" | awk '{print $11}')
system_info=$(echo "$output" | grep "system_info") system_info=$(echo "$output" | grep "system_info")
n_threads=$(echo "$output" | grep "system_info" | awk '{print $4}') n_threads=$(echo "$output" | grep "system_info" | awk '{print $4}')
# floor to milliseconds # floor to milliseconds
load_time=${load_time%.*} #encode_time=${encode_time%.*}
encode_time=${encode_time%.*} #decode_time=${decode_time%.*}
#prompt_time=${prompt_time%.*}
config="" config=""
@ -87,6 +86,6 @@ for model in "${models[@]}"; do
commit=$(git rev-parse --short HEAD) commit=$(git rev-parse --short HEAD)
if [ $ret -eq 0 ]; then if [ $ret -eq 0 ]; then
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n" printf "| <todo> | <todo> | %12s | %9s | %3s | %7s | %7s | %7s | %7s |\n" "$config" "$model" "$n_threads" "$encode_time" "$decode_time" "$prompt_time" "$commit"
fi fi
done done

View File

@ -1,18 +1,20 @@
#!/bin/bash #!/bin/bash
cp -rpv ../ggml/src/ggml.c ./ggml.c cp -rpv ../ggml/src/ggml.c ./ggml.c
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
cp -rpv ../ggml/examples/common.h ./examples/common.h cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h cp -rpv ../ggml/examples/common.h ./examples/common.h
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp
cp -rpv ../ggml/examples/whisper/whisper.h ./whisper.h cp -rpv ../ggml/examples/whisper/whisper.h ./whisper.h
cp -rpv ../ggml/examples/whisper/whisper.cpp ./whisper.cpp cp -rpv ../ggml/examples/whisper/whisper.cpp ./whisper.cpp

View File

@ -6,6 +6,26 @@
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/types.h>
#include <sys/mman.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <memoryapi.h>
#endif
#define UNUSED(x) (void)(x) #define UNUSED(x) (void)(x)
#define MAX(a, b) ((a) > (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b))
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES) #define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
@ -99,15 +119,28 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
} }
#endif #endif
static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
return ggml_nbytes(tensor); return ggml_nbytes(tensor);
UNUSED(alloc); UNUSED(alloc);
} }
// check if a tensor is allocated by this buffer
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
void * ptr = tensor->data;
return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
}
static bool ggml_is_view(struct ggml_tensor * t) {
return t->view_src != NULL;
}
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
size_t size = ggml_allocator_get_alloc_size(alloc, tensor); #ifdef GGML_ALLOCATOR_DEBUG
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
#endif
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment); size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
@ -131,14 +164,14 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
if (best_fit_block == -1) { if (best_fit_block == -1) {
// the last block is our last resort // the last block is our last resort
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
max_avail = MAX(max_avail, block->size);
if (block->size >= size) { if (block->size >= size) {
best_fit_block = alloc->n_free_blocks - 1; best_fit_block = alloc->n_free_blocks - 1;
max_avail = MAX(max_avail, block->size);
} else { } else {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
__func__, size, max_avail); __func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer"); GGML_ASSERT(!"not enough space in the buffer");
return; return;
} }
} }
struct free_block * block = &alloc->free_blocks[best_fit_block]; struct free_block * block = &alloc->free_blocks[best_fit_block];
@ -173,17 +206,17 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
} }
// this is a very naive implementation, but for our case the number of free blocks should be very small // this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
void * ptr = tensor->data; void * ptr = tensor->data;
if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) { if (ggml_allocr_is_own(alloc, tensor) == false) {
// the tensor was not allocated in this buffer // the tensor was not allocated in this buffer
// this can happen because the graph allocator will try to free weights and other tensors from different buffers // this can happen because the graph allocator will try to free weights and other tensors from different buffers
// the easiest way to deal with this is just to ignore it // the easiest way to deal with this is just to ignore it
return; return;
} }
size_t size = ggml_allocator_get_alloc_size(alloc, tensor); size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
size = aligned_offset(NULL, size, alloc->alignment); size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks); AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
@ -277,17 +310,68 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
return alloc; return alloc;
} }
// address and size of the buffer when measuring // OS specific functions to allocate and free uncommitted virtual memory
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers static void * alloc_vmem(size_t size) {
static void * const MEASURE_BASE_ADDR = (void *) 0x1000; #if defined(_WIN32)
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
#elif defined(_POSIX_MAPPED_FILES)
void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
if (ptr == MAP_FAILED) {
return NULL;
}
return ptr;
#else
// use a fixed address for other platforms
uintptr_t base_addr = (uintptr_t)-size - 0x100;
return (void *)base_addr;
#endif
}
static void free_vmem(void * base_addr, size_t size) {
#if defined(_WIN32)
VirtualFree(base_addr, 0, MEM_RELEASE);
UNUSED(size);
#elif defined(_POSIX_MAPPED_FILES)
munmap(base_addr, size);
#else
// nothing to do
UNUSED(base_addr);
UNUSED(size);
#endif
}
// allocate uncommitted virtual memory to measure the size of the graph
static void alloc_measure_vmem(void ** base_addr, size_t * size) {
// 128GB for 64-bit, 1GB for 32-bit
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37;
do {
*base_addr = alloc_vmem(*size);
if (*base_addr != NULL) {
AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr);
return;
}
// try again with half the size
*size /= 2;
} while (*size > 0);
GGML_ASSERT(!"failed to allocate virtual memory for measure buffer");
}
static void free_measure_vmem(void * base_addr, size_t size) {
free_vmem(base_addr, size);
}
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
void * base_addr;
size_t size;
alloc_measure_vmem(&base_addr, &size);
*alloc = (struct ggml_allocr){ *alloc = (struct ggml_allocr){
/*.data = */ MEASURE_BASE_ADDR, /*.data = */ base_addr,
/*.size = */ MEASURE_MAX_SIZE, /*.size = */ size,
/*.alignment = */ alignment, /*.alignment = */ alignment,
/*.n_free_blocks = */ 0, /*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}}, /*.free_blocks = */ {{0}},
@ -307,6 +391,9 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
} }
void ggml_allocr_free(struct ggml_allocr * alloc) { void ggml_allocr_free(struct ggml_allocr * alloc) {
if (alloc->measure) {
free_measure_vmem(alloc->data, alloc->size);
}
free(alloc); free(alloc);
} }
@ -316,11 +403,6 @@ bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
//////////// compute graph allocator //////////// compute graph allocator
static bool ggml_is_view(struct ggml_tensor * t) {
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
}
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) { if (a->type != b->type) {
return false; return false;
@ -336,28 +418,6 @@ static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml
return true; return true;
} }
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
switch (t->op) {
case GGML_OP_PERMUTE:
case GGML_OP_RESHAPE:
case GGML_OP_TRANSPOSE:
case GGML_OP_VIEW:
return t->src[0];
case GGML_OP_CPY:
return t->src[1];
default:
return NULL;
}
}
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
struct ggml_tensor * parent = t;
do {
parent = get_view_parent(parent);
} while (ggml_is_view(parent));
return parent;
}
static bool ggml_op_can_inplace(enum ggml_op op) { static bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) { switch (op) {
case GGML_OP_SCALE: case GGML_OP_SCALE:
@ -365,7 +425,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
case GGML_OP_ADD: case GGML_OP_ADD:
case GGML_OP_ADD1: case GGML_OP_ADD1:
case GGML_OP_ACC:
case GGML_OP_SUB: case GGML_OP_SUB:
case GGML_OP_MUL: case GGML_OP_MUL:
case GGML_OP_DIV: case GGML_OP_DIV:
@ -375,10 +434,8 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
case GGML_OP_UNARY: case GGML_OP_UNARY:
case GGML_OP_ROPE: case GGML_OP_ROPE:
case GGML_OP_RMS_NORM: case GGML_OP_RMS_NORM:
case GGML_OP_SET:
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
case GGML_OP_CONT: case GGML_OP_CONT:
case GGML_OP_ADD_REL_POS:
return true; return true;
default: default:
@ -390,24 +447,8 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
struct hash_node * ht = alloc->hash_table; struct hash_node * ht = alloc->hash_table;
if (node->data == NULL) { if (node->data == NULL) {
if (ggml_is_view(node)) { if (ggml_is_view(node)) {
size_t offset; assert(node->view_src->data != NULL);
switch(node->op) { node->data = (char *)node->view_src->data + node->view_offs;
case GGML_OP_VIEW:
memcpy(&offset, node->op_params, sizeof(size_t));
node->data = (char *) node->src[0]->data + offset;
break;
case GGML_OP_PERMUTE:
case GGML_OP_RESHAPE:
case GGML_OP_TRANSPOSE:
node->data = node->src[0]->data;
break;
case GGML_OP_CPY:
node->data = node->src[1]->data;
break;
default:
GGML_ASSERT(!"unknown view op");
break;
}
} else { } else {
// see if we can reuse a parent's buffer (inplace) // see if we can reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) { if (ggml_op_can_inplace(node->op)) {
@ -418,8 +459,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
} }
// if the node's data is external, then we cannot re-use it // if the node's data is external, then we cannot re-use it
if ((char *) parent->data < (char *) alloc->data || if (ggml_allocr_is_own(alloc, parent) == false) {
(char *) parent->data >= ((char *) alloc->data + alloc->size)) {
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
continue; continue;
} }
@ -427,7 +467,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
struct hash_node * p_hn = hash_get(ht, parent); struct hash_node * p_hn = hash_get(ht, parent);
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
if (ggml_is_view(parent)) { if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = get_view_source(parent); struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(ht, view_src); struct hash_node * view_src_hn = hash_get(ht, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
@ -453,7 +493,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
} }
} }
static size_t ggml_allocator_alloc_graph_tensors_n( static size_t ggml_allocr_alloc_graph_tensors_n(
struct ggml_allocr * alloc, struct ggml_allocr * alloc,
struct ggml_cgraph ** graphs, int n_graphs, struct ggml_cgraph ** graphs, int n_graphs,
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) { struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
@ -469,7 +509,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
struct ggml_tensor * node = gf->nodes[i]; struct ggml_tensor * node = gf->nodes[i];
if (ggml_is_view(node)) { if (ggml_is_view(node)) {
struct ggml_tensor * view_src = get_view_source(node); struct ggml_tensor * view_src = node->view_src;
hash_get(ht, view_src)->n_views += 1; hash_get(ht, view_src)->n_views += 1;
} }
@ -531,11 +571,10 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
AT_PRINTF("\n"); AT_PRINTF("\n");
} }
// update parents // update parents
// update immediately if there is no parse_seq // update immediately if there is no parse_seq
// update only at barriers if there is parse_seq // update only at barriers if there is parse_seq
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) { if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind; int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
int update_end = alloc->parse_seq_len ? ind : ind + 1; int update_end = alloc->parse_seq_len ? ind : ind + 1;
for (int i = update_start; i < update_end; i++) { for (int i = update_start; i < update_end; i++) {
@ -554,17 +593,17 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
if (p_hn->n_children == 0 && p_hn->n_views == 0) { if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) { if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = get_view_source(parent); struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(ht, view_src); struct hash_node * view_src_hn = hash_get(ht, view_src);
view_src_hn->n_views -= 1; view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views); AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) { if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocator_free_tensor(alloc, view_src); ggml_allocr_free_tensor(alloc, view_src);
} }
} }
else { else {
if (parent->data != node->data) { if (parent->data != node->data) {
ggml_allocator_free_tensor(alloc, parent); ggml_allocr_free_tensor(alloc, parent);
} }
} }
} }
@ -581,7 +620,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
for (int i = 0; outputs[g][i] != NULL; i++) { for (int i = 0; outputs[g][i] != NULL; i++) {
struct ggml_tensor * output = outputs[g][i]; struct ggml_tensor * output = outputs[g][i];
AT_PRINTF("output: %s\n", output->name); AT_PRINTF("output: %s\n", output->name);
ggml_allocator_free_tensor(alloc, output); ggml_allocr_free_tensor(alloc, output);
} }
} }
} }
@ -590,5 +629,5 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
} }
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL); return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
} }

View File

@ -63,7 +63,10 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(relu); GGML_METAL_DECL_KERNEL(relu);
GGML_METAL_DECL_KERNEL(gelu); GGML_METAL_DECL_KERNEL(gelu);
GGML_METAL_DECL_KERNEL(soft_max); GGML_METAL_DECL_KERNEL(soft_max);
GGML_METAL_DECL_KERNEL(soft_max_4);
GGML_METAL_DECL_KERNEL(diag_mask_inf); GGML_METAL_DECL_KERNEL(diag_mask_inf);
GGML_METAL_DECL_KERNEL(diag_mask_inf_8);
GGML_METAL_DECL_KERNEL(get_rows_f32);
GGML_METAL_DECL_KERNEL(get_rows_f16); GGML_METAL_DECL_KERNEL(get_rows_f16);
GGML_METAL_DECL_KERNEL(get_rows_q4_0); GGML_METAL_DECL_KERNEL(get_rows_q4_0);
GGML_METAL_DECL_KERNEL(get_rows_q4_1); GGML_METAL_DECL_KERNEL(get_rows_q4_1);
@ -77,6 +80,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(norm); GGML_METAL_DECL_KERNEL(norm);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32); GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row); GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32); GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
@ -117,14 +121,17 @@ static NSString * const msl_library_source = @"see metal.metal";
struct ggml_metal_context * ggml_metal_init(int n_cb) { struct ggml_metal_context * ggml_metal_init(int n_cb) {
metal_printf("%s: allocating\n", __func__); metal_printf("%s: allocating\n", __func__);
// Show all the Metal device instances in the system
NSArray * devices = MTLCopyAllDevices();
id <MTLDevice> device; id <MTLDevice> device;
NSString * s; NSString * s;
#if TARGET_OS_OSX
// Show all the Metal device instances in the system
NSArray * devices = MTLCopyAllDevices();
for (device in devices) { for (device in devices) {
s = [device name]; s = [device name];
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]); metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
} }
#endif
// Pick and show default Metal device // Pick and show default Metal device
device = MTLCreateSystemDefaultDevice(); device = MTLCreateSystemDefaultDevice();
@ -139,14 +146,22 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->n_buffers = 0; ctx->n_buffers = 0;
ctx->concur_list_len = 0; ctx->concur_list_len = 0;
ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT); ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
#if 0 #ifdef GGML_SWIFT
// compile from source string and show compile log // load the default.metallib file
{ {
NSError * error = nil; NSError * error = nil;
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error]; NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
NSString * llamaBundlePath = [bundle pathForResource:@"llama_llama" ofType:@"bundle"];
NSBundle * llamaBundle = [NSBundle bundleWithPath:llamaBundlePath];
NSString * libPath = [llamaBundle pathForResource:@"default" ofType:@"metallib"];
NSURL * libURL = [NSURL fileURLWithPath:libPath];
// Load the metallib file into a Metal library
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
if (error) { if (error) {
metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]); metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL; return NULL;
@ -161,7 +176,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"]; //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
metal_printf("%s: loading '%s'\n", __func__, [path UTF8String]); metal_printf("%s: loading '%s'\n", __func__, [path UTF8String]);
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error]; NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
@ -207,7 +222,10 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(relu); GGML_METAL_ADD_KERNEL(relu);
GGML_METAL_ADD_KERNEL(gelu); GGML_METAL_ADD_KERNEL(gelu);
GGML_METAL_ADD_KERNEL(soft_max); GGML_METAL_ADD_KERNEL(soft_max);
GGML_METAL_ADD_KERNEL(soft_max_4);
GGML_METAL_ADD_KERNEL(diag_mask_inf); GGML_METAL_ADD_KERNEL(diag_mask_inf);
GGML_METAL_ADD_KERNEL(diag_mask_inf_8);
GGML_METAL_ADD_KERNEL(get_rows_f32);
GGML_METAL_ADD_KERNEL(get_rows_f16); GGML_METAL_ADD_KERNEL(get_rows_f16);
GGML_METAL_ADD_KERNEL(get_rows_q4_0); GGML_METAL_ADD_KERNEL(get_rows_q4_0);
GGML_METAL_ADD_KERNEL(get_rows_q4_1); GGML_METAL_ADD_KERNEL(get_rows_q4_1);
@ -221,6 +239,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(norm); GGML_METAL_ADD_KERNEL(norm);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32); GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row); GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32); GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
@ -247,13 +266,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
#undef GGML_METAL_ADD_KERNEL #undef GGML_METAL_ADD_KERNEL
} }
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
#if TARGET_OS_OSX
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.maxTransferRate != 0) { if (ctx->device.maxTransferRate != 0) {
metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else { } else {
metal_printf("%s: maxTransferRate = built-in GPU\n", __func__); metal_printf("%s: maxTransferRate = built-in GPU\n", __func__);
} }
#endif
return ctx; return ctx;
} }
@ -273,7 +294,10 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(relu); GGML_METAL_DEL_KERNEL(relu);
GGML_METAL_DEL_KERNEL(gelu); GGML_METAL_DEL_KERNEL(gelu);
GGML_METAL_DEL_KERNEL(soft_max); GGML_METAL_DEL_KERNEL(soft_max);
GGML_METAL_DEL_KERNEL(soft_max_4);
GGML_METAL_DEL_KERNEL(diag_mask_inf); GGML_METAL_DEL_KERNEL(diag_mask_inf);
GGML_METAL_DEL_KERNEL(diag_mask_inf_8);
GGML_METAL_DEL_KERNEL(get_rows_f32);
GGML_METAL_DEL_KERNEL(get_rows_f16); GGML_METAL_DEL_KERNEL(get_rows_f16);
GGML_METAL_DEL_KERNEL(get_rows_q4_0); GGML_METAL_DEL_KERNEL(get_rows_q4_0);
GGML_METAL_DEL_KERNEL(get_rows_q4_1); GGML_METAL_DEL_KERNEL(get_rows_q4_1);
@ -287,6 +311,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
GGML_METAL_DEL_KERNEL(norm); GGML_METAL_DEL_KERNEL(norm);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32); GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row); GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4);
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32); GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32); GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32); GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
@ -365,6 +390,7 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
for (int i = 0; i < ctx->n_buffers; ++i) { for (int i = 0; i < ctx->n_buffers; ++i) {
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
//metal_printf("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name);
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
*offs = (size_t) ioffs; *offs = (size_t) ioffs;
@ -454,6 +480,7 @@ bool ggml_metal_add_buffer(
} }
} }
#if TARGET_OS_OSX
metal_printf(", (%8.2f / %8.2f)", metal_printf(", (%8.2f / %8.2f)",
ctx->device.currentAllocatedSize / 1024.0 / 1024.0, ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
@ -463,6 +490,9 @@ bool ggml_metal_add_buffer(
} else { } else {
metal_printf("\n"); metal_printf("\n");
} }
#else
metal_printf(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
#endif
} }
return true; return true;
@ -698,6 +728,7 @@ void ggml_metal_graph_compute(
case GGML_OP_ADD: case GGML_OP_ADD:
{ {
GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
// utilize float4 // utilize float4
GGML_ASSERT(ne00 % 4 == 0); GGML_ASSERT(ne00 % 4 == 0);
@ -705,6 +736,7 @@ void ggml_metal_graph_compute(
if (ggml_nelements(src1) == ne10) { if (ggml_nelements(src1) == ne10) {
// src1 is a row // src1 is a row
GGML_ASSERT(ne11 == 1);
[encoder setComputePipelineState:ctx->pipeline_add_row]; [encoder setComputePipelineState:ctx->pipeline_add_row];
} else { } else {
[encoder setComputePipelineState:ctx->pipeline_add]; [encoder setComputePipelineState:ctx->pipeline_add];
@ -721,6 +753,7 @@ void ggml_metal_graph_compute(
case GGML_OP_MUL: case GGML_OP_MUL:
{ {
GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
// utilize float4 // utilize float4
GGML_ASSERT(ne00 % 4 == 0); GGML_ASSERT(ne00 % 4 == 0);
@ -728,6 +761,7 @@ void ggml_metal_graph_compute(
if (ggml_nelements(src1) == ne10) { if (ggml_nelements(src1) == ne10) {
// src1 is a row // src1 is a row
GGML_ASSERT(ne11 == 1);
[encoder setComputePipelineState:ctx->pipeline_mul_row]; [encoder setComputePipelineState:ctx->pipeline_mul_row];
} else { } else {
[encoder setComputePipelineState:ctx->pipeline_mul]; [encoder setComputePipelineState:ctx->pipeline_mul];
@ -743,6 +777,8 @@ void ggml_metal_graph_compute(
} break; } break;
case GGML_OP_SCALE: case GGML_OP_SCALE:
{ {
GGML_ASSERT(ggml_is_contiguous(src0));
const float scale = *(const float *) src1->data; const float scale = *(const float *) src1->data;
[encoder setComputePipelineState:ctx->pipeline_scale]; [encoder setComputePipelineState:ctx->pipeline_scale];
@ -750,7 +786,7 @@ void ggml_metal_graph_compute(
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&scale length:sizeof(scale) atIndex:2]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
const int64_t n = ggml_nelements(dst); const int64_t n = ggml_nelements(dst)/4;
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
@ -762,7 +798,7 @@ void ggml_metal_graph_compute(
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst); const int64_t n = ggml_nelements(dst)/4;
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
@ -782,7 +818,7 @@ void ggml_metal_graph_compute(
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
const int64_t n = ggml_nelements(dst); const int64_t n = ggml_nelements(dst)/4;
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
@ -796,13 +832,16 @@ void ggml_metal_graph_compute(
{ {
const int nth = 32; const int nth = 32;
[encoder setComputePipelineState:ctx->pipeline_soft_max]; if (ne00%4 == 0) {
[encoder setComputePipelineState:ctx->pipeline_soft_max_4];
} else {
[encoder setComputePipelineState:ctx->pipeline_soft_max];
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break; } break;
@ -810,14 +849,23 @@ void ggml_metal_graph_compute(
{ {
const int n_past = ((int32_t *)(dst->op_params))[0]; const int n_past = ((int32_t *)(dst->op_params))[0];
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; if (ne00%8 == 0) {
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf_8];
} else {
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&n_past length:sizeof(int) atIndex:4]; [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; if (ne00%8 == 0) {
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
}
else {
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
}
} break; } break;
case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT:
{ {
@ -830,8 +878,8 @@ void ggml_metal_graph_compute(
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
if (ggml_is_contiguous(src0) && if (!ggml_is_transposed(src0) &&
ggml_is_contiguous(src1) && !ggml_is_transposed(src1) &&
src1t == GGML_TYPE_F32 && src1t == GGML_TYPE_F32 &&
[ctx->device supportsFamily:MTLGPUFamilyApple7] && [ctx->device supportsFamily:MTLGPUFamilyApple7] &&
ne00%32 == 0 && ne00%32 == 0 &&
@ -856,14 +904,18 @@ void ggml_metal_graph_compute(
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:10]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:13];
[encoder setThreadgroupMemoryLength:8192 atIndex:0]; [encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else { } else {
int nth0 = 32; int nth0 = 32;
int nth1 = 1; int nth1 = 1;
int nrows = 1;
// use custom matrix x vector kernel // use custom matrix x vector kernel
switch (src0t) { switch (src0t) {
@ -873,8 +925,14 @@ void ggml_metal_graph_compute(
nth1 = 1; nth1 = 1;
if (ne11 * ne12 < 4) { if (ne11 * ne12 < 4) {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row]; [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
//} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
} else if (false) {
// TODO: with ggml_mul_mat_pad this kernel no longer seems to be needed
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4];
nrows = ne11;
} else { } else {
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
nrows = 4;
} }
} break; } break;
case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_0:
@ -995,7 +1053,7 @@ void ggml_metal_graph_compute(
else if (src0t == GGML_TYPE_Q6_K) { else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else { } else {
int64_t ny = (ne11 + 3)/4; int64_t ny = (ne11 + nrows - 1)/nrows;
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
} }
@ -1003,6 +1061,7 @@ void ggml_metal_graph_compute(
case GGML_OP_GET_ROWS: case GGML_OP_GET_ROWS:
{ {
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_get_rows_f32]; break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
@ -1018,9 +1077,9 @@ void ggml_metal_graph_compute(
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
[encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:5];
const int64_t n = ggml_nelements(src1); const int64_t n = ggml_nelements(src1);

View File

@ -38,7 +38,7 @@ kernel void kernel_add_row(
device const float4 * src0, device const float4 * src0,
device const float4 * src1, device const float4 * src1,
device float4 * dst, device float4 * dst,
constant int64_t & nb, constant int64_t & nb,
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig % nb]; dst[tpig] = src0[tpig] + src1[tpig % nb];
} }
@ -63,18 +63,18 @@ kernel void kernel_mul_row(
} }
kernel void kernel_scale( kernel void kernel_scale(
device const float * src0, device const float4 * src0,
device float * dst, device float4 * dst,
constant float & scale, constant float & scale,
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale; dst[tpig] = src0[tpig] * scale;
} }
kernel void kernel_silu( kernel void kernel_silu(
device const float * src0, device const float4 * src0,
device float * dst, device float4 * dst,
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
float x = src0[tpig]; device const float4 & x = src0[tpig];
dst[tpig] = x / (1.0f + exp(-x)); dst[tpig] = x / (1.0f + exp(-x));
} }
@ -89,10 +89,10 @@ constant float GELU_COEF_A = 0.044715f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
kernel void kernel_gelu( kernel void kernel_gelu(
device const float * src0, device const float4 * src0,
device float * dst, device float4 * dst,
uint tpig[[thread_position_in_grid]]) { uint tpig[[thread_position_in_grid]]) {
float x = src0[tpig]; device const float4 & x = src0[tpig];
// BEWARE !!! // BEWARE !!!
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs! // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
@ -107,7 +107,6 @@ kernel void kernel_soft_max(
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne01, constant int64_t & ne01,
constant int64_t & ne02, constant int64_t & ne02,
threadgroup float * buf [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]], uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) { uint3 ntg[[threads_per_threadgroup]]) {
@ -119,64 +118,70 @@ kernel void kernel_soft_max(
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
// parallel max // parallel max
buf[tpitg[0]] = -INFINITY; float lmax = psrc0[tpitg[0]];
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { for (int i00 = tpitg[0] + ntg[0]; i00 < ne00; i00 += ntg[0]) {
buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]); lmax = MAX(lmax, psrc0[i00]);
} }
const float max = simd_max(lmax);
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg[0]/2; i > 0; i /= 2) {
if (tpitg[0] < i) {
buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
//// broadcast - not needed. There is a threadgroup barrier above in the last iteration of
// the loop, and when that is done, buf[0] has the correct (synchronized) value
//if (tpitg[0] == 0) {
// buf[0] = buf[0];
//}
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float max = buf[0];
// parallel sum // parallel sum
buf[tpitg[0]] = 0.0f; float lsum = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
const float exp_psrc0 = exp(psrc0[i00] - max); const float exp_psrc0 = exp(psrc0[i00] - max);
buf[tpitg[0]] += exp_psrc0; lsum += exp_psrc0;
// Remember the result of exp here. exp is expensive, so we really do not // Remember the result of exp here. exp is expensive, so we really do not
// whish to compute it twice. // whish to compute it twice.
pdst[i00] = exp_psrc0; pdst[i00] = exp_psrc0;
} }
// reduce const float sum = simd_sum(lsum);
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg[0]/2; i > 0; i /= 2) {
if (tpitg[0] < i) {
buf[tpitg[0]] += buf[tpitg[0] + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast - not needed, see above
//// broadcast
//if (tpitg[0] == 0) {
// buf[0] = buf[0];
//}
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float sum = buf[0];
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) { for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
pdst[i00] /= sum; pdst[i00] /= sum;
} }
} }
kernel void kernel_soft_max_4(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
// parallel max
float4 lmax4 = psrc4[tpitg[0]];
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00/4; i00 += ntg[0]) {
lmax4 = fmax(lmax4, psrc4[i00]);
}
float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
const float max = simd_max(lmax);
// parallel sum
float4 lsum4 = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
const float4 exp_psrc4 = exp(psrc4[i00] - max);
lsum4 += exp_psrc4;
pdst4[i00] = exp_psrc4;
}
float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
const float sum = simd_sum(lsum);
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
pdst4[i00] /= sum;
}
}
kernel void kernel_diag_mask_inf( kernel void kernel_diag_mask_inf(
device const float * src0, device const float * src0,
device float * dst, device float * dst,
@ -192,6 +197,33 @@ kernel void kernel_diag_mask_inf(
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY; dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
} else { } else {
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00]; dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
}
}
kernel void kernel_diag_mask_inf_8(
device const float4 * src0,
device float4 * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int & n_past,
uint3 tpig[[thread_position_in_grid]]) {
const int64_t i = 2*tpig[0];
dst[i+0] = src0[i+0];
dst[i+1] = src0[i+1];
int64_t i4 = 4*i;
const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
const int64_t i00 = i4;
for (int k = 3; k >= 0; --k) {
if (i00 + 4 + k <= n_past + i01) {
break;
}
dst[i+1][k] = -INFINITY;
if (i00 + k > n_past + i01) {
dst[i][k] = -INFINITY;
}
} }
} }
@ -616,6 +648,49 @@ kernel void kernel_mul_mat_f16_f32(
} }
} }
// Assumes row size (ne00) is a multiple of 4
kernel void kernel_mul_mat_f16_f32_l4(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant int64_t & ne12,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]]) {
const int nrows = ne11;
const int64_t r0 = tgpig.x;
const int64_t im = tgpig.z;
device const half4 * x4 = (device const half4 *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
for (int r1 = 0; r1 < nrows; ++r1) {
device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
float sumf = 0;
for (int i = tiisg; i < ne00/4; i += 32) {
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
}
float all_sum = simd_sum(sumf);
if (tiisg == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
}
}
}
kernel void kernel_alibi_f32( kernel void kernel_alibi_f32(
device const float * src0, device const float * src0,
device float * dst, device float * dst,
@ -1123,31 +1198,40 @@ kernel void kernel_mul_mat_q3_K_f32(
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0; device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1; device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
float yl[16]; float yl[32];
const uint16_t kmask1 = 0x0303; const uint16_t kmask1 = 0x3030;
const uint16_t kmask2 = 0x0f0f; const uint16_t kmask2 = 0x0f0f;
const int tid = tiisg/2; const int tid = tiisg/4;
const int ix = tiisg%2; const int ix = tiisg%4;
const int ip = tid/8; // 0 or 1 const int ip = tid/4; // 0 or 1
const int il = tid/2 - 4*ip; // 0...3 const int il = 2*((tid%4)/2); // 0 or 2
const int ir = tid%2; const int ir = tid%2;
const int n = 8; const int n = 8;
const int l0 = n*ir; const int l0 = n*ir;
const uint16_t m1 = 1 << (4*ip + il); // One would think that the Metal compiler would figure out that ip and il can only have
const uint16_t m2 = m1 << 8; // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
// with these two tales.
//
// Possible masks for the high bit
const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
{0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
{0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
{0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
// Possible masks for the low 2 bits
const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
const ushort4 hm = mm[2*ip + il/2];
const int shift = 2*il; const int shift = 2*il;
const uint16_t qm1 = 0x0003 << shift; const float v1 = il == 0 ? 4.f : 64.f;
const uint16_t qm2 = 0x0300 << shift; const float v2 = 4.f * v1;
const int32_t v1 = 4 << shift;
const int32_t v2 = 1024 << shift;
const uint16_t s_shift1 = 4*ip; const uint16_t s_shift1 = 4*ip;
const uint16_t s_shift2 = s_shift1 + 2*(il/2); const uint16_t s_shift2 = s_shift1 + il;
const int ik = 4 + (il%2);
const int q_offset = 32*ip + l0; const int q_offset = 32*ip + l0;
const int y_offset = 128*ip + 32*il + l0; const int y_offset = 128*ip + 32*il + l0;
@ -1156,12 +1240,19 @@ kernel void kernel_mul_mat_q3_K_f32(
device const float * y1 = yy + ix*QK_K + y_offset; device const float * y1 = yy + ix*QK_K + y_offset;
float sumf1[2] = {0.f}, sumf2[2] = {0.f}; uint32_t scales32, aux32;
for (int i = ix; i < nb; i += 2) { thread uint16_t * scales16 = (thread uint16_t *)&scales32;
thread const int8_t * scales = (thread const int8_t *)&scales32;
float sumf1[2] = {0.f};
float sumf2[2] = {0.f};
for (int i = ix; i < nb; i += 4) {
for (int l = 0; l < 8; ++l) { for (int l = 0; l < 8; ++l) {
yl[l+0] = y1[l+ 0]; yl[l+ 0] = y1[l+ 0];
yl[l+8] = y1[l+16]; yl[l+ 8] = y1[l+16];
yl[l+16] = y1[l+32];
yl[l+24] = y1[l+48];
} }
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset); device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
@ -1172,27 +1263,43 @@ kernel void kernel_mul_mat_q3_K_f32(
for (int row = 0; row < 2; ++row) { for (int row = 0; row < 2; ++row) {
const float d_all = (float)dh[0]; const float d_all = (float)dh[0];
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
float s1 = 0, s2 = 0; scales16[0] = a[4];
for (int l = 0; l < n; l += 2) { scales16[1] = a[5];
const uint16_t qs = q[l/2]; aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1)); scales16[0] = a[il+0];
s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2)); scales16[1] = a[il+1];
} scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
float d = d_all * (s1 + 1.f/256.f * s2);
sumf1[row] += d * scales[0];
sumf2[row] += d;
s1 = s2 = 0; float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
for (int l = 0; l < n; l += 2) { for (int l = 0; l < n; l += 2) {
const uint16_t qs = q[l/2+8]; const int32_t qs = q[l/2];
s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1)); s1 += yl[l+0] * (qs & qm[il/2][0]);
s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2)); s2 += yl[l+1] * (qs & qm[il/2][1]);
s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
s4 += yl[l+16] * (qs & qm[il/2][2]);
s5 += yl[l+17] * (qs & qm[il/2][3]);
s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
} }
d = d_all * (s1 + 1.f/256.f * s2); float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
sumf1[row] += d * scales[1]; float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf2[row] += d; sumf1[row] += d1 * (scales[0] - 32);
sumf2[row] += d2 * (scales[2] - 32);
s1 = s2 = s3 = s4 = s5 = s6 = 0;
for (int l = 0; l < n; l += 2) {
const int32_t qs = q[l/2+8];
s1 += yl[l+8] * (qs & qm[il/2][0]);
s2 += yl[l+9] * (qs & qm[il/2][1]);
s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
s4 += yl[l+24] * (qs & qm[il/2][2]);
s5 += yl[l+25] * (qs & qm[il/2][3]);
s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
}
d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf1[row] += d1 * (scales[1] - 32);
sumf2[row] += d2 * (scales[3] - 32);
q += step; q += step;
h += step; h += step;
@ -1201,15 +1308,17 @@ kernel void kernel_mul_mat_q3_K_f32(
} }
y1 += 2 * QK_K; y1 += 4 * QK_K;
} }
for (int row = 0; row < 2; ++row) { for (int row = 0; row < 2; ++row) {
const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift); const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
const float tot = simd_sum(sumf); sumf1[row] = simd_sum(sumf);
if (tiisg == 0) { }
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = tot; if (tiisg == 0) {
for (int row = 0; row < 2; ++row) {
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = sumf1[row];
} }
} }
} }
@ -1564,17 +1673,25 @@ kernel void kernel_mul_mat_q5_K_f32(
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2); sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2); sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
float4 acc = {0.f, 0.f, 0.f, 0.f}; float4 acc1 = {0.f};
float4 acc2 = {0.f};
for (int l = 0; l < n; ++l) { for (int l = 0; l < n; ++l) {
uint8_t h = qh[l]; uint8_t h = qh[l];
acc[0] += yl[l+0] * ((uint16_t)(q1[l] & 0x0F) + (h & hm1 ? 16 : 0)); acc1[0] += yl[l+0] * (q1[l] & 0x0F);
acc[1] += yl[l+8] * ((uint16_t)(q1[l] & 0xF0) + (h & hm2 ? 256 : 0)); acc1[1] += yl[l+8] * (q1[l] & 0xF0);
acc[2] += yh[l+0] * ((uint16_t)(q2[l] & 0x0F) + (h & hm3 ? 16 : 0)); acc1[2] += yh[l+0] * (q2[l] & 0x0F);
acc[3] += yh[l+8] * ((uint16_t)(q2[l] & 0xF0) + (h & hm4 ? 256 : 0)); acc1[3] += yh[l+8] * (q2[l] & 0xF0);
acc2[0] += h & hm1 ? yl[l+0] : 0.f;
acc2[1] += h & hm2 ? yl[l+8] : 0.f;
acc2[2] += h & hm3 ? yh[l+0] : 0.f;
acc2[3] += h & hm4 ? yh[l+8] : 0.f;
} }
const float dall = dh[0]; const float dall = dh[0];
const float dmin = dh[1]; const float dmin = dh[1];
sumf[row] += dall * (acc[0] * sc8[0] + acc[1] * sc8[1] * 1.f/16.f + acc[2] * sc8[4] + acc[3] * sc8[5] * 1.f/16.f) - sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
sc8[4] * (acc1[2] + 16.f*acc2[2]) +
sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]); dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
q1 += step; q1 += step;
@ -1747,6 +1864,15 @@ kernel void kernel_mul_mat_q6_K_f32(
//============================= templates and their specializations ============================= //============================= templates and their specializations =============================
// NOTE: this is not dequantizing - we are simply fitting the template
template <typename type4x4>
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
float4x4 temp = *(((device float4x4 *)src));
for (int i = 0; i < 16; i++){
reg[i/4][i%4] = temp[i/4][i%4];
}
}
template <typename type4x4> template <typename type4x4>
void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) { void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
half4x4 temp = *(((device half4x4 *)src)); half4x4 temp = *(((device half4x4 *)src));
@ -1758,28 +1884,30 @@ void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg)
template <typename type4x4> template <typename type4x4>
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) { void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 1); device const uint16_t * qs = ((device const uint16_t *)xb + 1);
const half d = il ? (xb->d / 16.h) : xb->d; const float d1 = il ? (xb->d / 16.h) : xb->d;
const half m = il ? ( -8.h * 16.h) : -8.h; const float d2 = d1 / 256.f;
const float md = -8.h * xb->d;
const ushort mask0 = il ? 0x00F0 : 0x000F; const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = il ? 0xF000 : 0x0F00; const ushort mask1 = mask0 << 8;
for (int i=0;i<8;i++) { for (int i=0;i<8;i++) {
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) + m) * d; reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) + m) * d; reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
} }
} }
template <typename type4x4> template <typename type4x4>
void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) { void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
device const uint16_t * qs = ((device const uint16_t *)xb + 2); device const uint16_t * qs = ((device const uint16_t *)xb + 2);
const half d = il ? (xb->d / 16.h) : xb->d; const float d1 = il ? (xb->d / 16.h) : xb->d;
const half m = xb->m; const float d2 = d1 / 256.f;
const float m = xb->m;
const ushort mask0 = il ? 0x00F0 : 0x000F; const ushort mask0 = il ? 0x00F0 : 0x000F;
const ushort mask1 = il ? 0xF000 : 0x0F00; const ushort mask1 = mask0 << 8;
for (int i=0;i<8;i++) { for (int i=0;i<8;i++) {
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) * d) + m; reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) * d) + m; reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
} }
} }
@ -1815,7 +1943,7 @@ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg
template <typename type4x4> template <typename type4x4>
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) { void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
const float d_all = (float)(xb->d); const half d_all = xb->d;
device const uint8_t * q = (device const uint8_t *)xb->qs; device const uint8_t * q = (device const uint8_t *)xb->qs;
device const uint8_t * h = (device const uint8_t *)xb->hmask; device const uint8_t * h = (device const uint8_t *)xb->hmask;
device const int8_t * scales = (device const int8_t *)xb->scales; device const int8_t * scales = (device const int8_t *)xb->scales;
@ -1828,16 +1956,18 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
((il/4)>0 ? 12 : 3); ((il/4)>0 ? 12 : 3);
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F; uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4]; uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) : \ int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
(scale_2&kmask2) | ((scale_1&kmask1) << 4); : (scale_2&kmask2) | ((scale_1&kmask1) << 4);
float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f); half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h);
const half ml = 4.h * dl;
il = (il/2)%4; il = (il/2) & 3;
float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl *= coef;
for (int i = 0; i < 16; ++i) { for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i] & m) ? 0 : 4.f/coef)); reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
} }
#else #else
float kcoef = il&1 ? 1.f/16.f : 1.f; float kcoef = il&1 ? 1.f/16.f : 1.f;
@ -1852,26 +1982,31 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
#endif #endif
} }
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
: uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
}
template <typename type4x4> template <typename type4x4>
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) { void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
device const uint8_t * q = xb->qs; device const uchar * q = xb->qs;
#if QK_K == 256 #if QK_K == 256
const float d = (float)(xb->d);
const float min = (float)(xb->dmin);
short is = (il/4) * 2; short is = (il/4) * 2;
q = q + (il/4) * 32 + 16 * (il&1); q = q + (il/4) * 32 + 16 * (il&1);
il = il%4; il = il & 3;
const uchar4 sc = get_scale_min_k4(is, xb->scales); const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h; const half d = il < 2 ? xb->d : xb->d / 16.h;
const float ml = il<2 ? min * sc[1] : min * sc[3]; const half min = xb->dmin;
const half dl = d * sc[0];
const half ml = min * sc[1];
#else #else
q = q + 16 * (il&1); q = q + 16 * (il&1);
device const uint8_t * s = xb->scales; device const uint8_t * s = xb->scales;
device const half2 * dh = (device const half2 *)xb->d; device const half2 * dh = (device const half2 *)xb->d;
const float2 d = (float2)dh[0]; const float2 d = (float2)dh[0];
const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h; const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1 ]* (s[1]>>4); const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
#endif #endif
const ushort mask = il<2 ? 0x0F : 0xF0; const ushort mask = il<2 ? 0x0F : 0xF0;
for (int i = 0; i < 16; ++i) { for (int i = 0; i < 16; ++i) {
@ -1885,19 +2020,19 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
device const uint8_t * qh = xb->qh; device const uint8_t * qh = xb->qh;
#if QK_K == 256 #if QK_K == 256
const float d = (float)(xb->d);
const float min = (float)(xb->dmin);
short is = (il/4) * 2; short is = (il/4) * 2;
q = q + 32 * (il/4) + 16 * (il&1); q = q + 32 * (il/4) + 16 * (il&1);
qh = qh + 16 * (il&1); qh = qh + 16 * (il&1);
uint8_t ul = 1 << (il/2); uint8_t ul = 1 << (il/2);
il = il%4; il = il & 3;
const uchar4 sc = get_scale_min_k4(is, xb->scales); const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h; const half d = il < 2 ? xb->d : xb->d / 16.h;
const float ml = il<2 ? min * sc[1] : min * sc[3]; const half min = xb->dmin;
const half dl = d * sc[0];
const half ml = min * sc[1];
const ushort mask = il<2 ? 0x0F : 0xF0; const ushort mask = il<2 ? 0x0F : 0xF0;
const float qh_val = il<2 ? 16.f : 256.f; const half qh_val = il<2 ? 16.h : 256.h;
for (int i = 0; i < 16; ++i) { for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml; reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
} }
@ -1916,7 +2051,7 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
template <typename type4x4> template <typename type4x4>
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) { void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
const float d_all = (float)(xb->d); const half d_all = xb->d;
device const uint8_t * ql = (device const uint8_t *)xb->ql; device const uint8_t * ql = (device const uint8_t *)xb->ql;
device const uint8_t * qh = (device const uint8_t *)xb->qh; device const uint8_t * qh = (device const uint8_t *)xb->qh;
device const int8_t * scales = (device const int8_t *)xb->scales; device const int8_t * scales = (device const int8_t *)xb->scales;
@ -1924,19 +2059,21 @@ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg
#if QK_K == 256 #if QK_K == 256
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1); ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
qh = qh + 32*(il/8) + 16*(il&1); qh = qh + 32*(il/8) + 16*(il&1);
float sc = scales[(il%2) + 2 * ((il/2))]; half sc = scales[(il%2) + 2 * ((il/2))];
il = (il/2)%4; il = (il/2) & 3;
#else #else
ql = ql + 16 * (il&1); ql = ql + 16 * (il&1);
float sc = scales[il]; half sc = scales[il];
#endif #endif
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
const half coef = il>1 ? 1.f/16.h : 1.h;
const half ml = d_all * sc * 32.h;
const half dl = d_all * sc * coef;
for (int i = 0; i < 16; ++i) { for (int i = 0; i < 16; ++i) {
uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
uint16_t kmask2 = il>1 ? 0xF0 : 0x0F; : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
const float coef = il>1 ? 1.f/16.f : 1.f; reg[i/4][i%4] = dl * q - ml;
float q = il&1 ? ((ql[i]&kmask2)|((qh[i]&kmask1)<<2)) - 32.f/coef : \
((ql[i]&kmask2)|((qh[i]&kmask1)<<4)) - 32.f/coef;
reg[i/4][i%4] = d_all * sc * q * coef;
} }
} }
@ -1976,22 +2113,25 @@ kernel void kernel_get_rows(
// each block_q contains 16*nl weights // each block_q contains 16*nl weights
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)> template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
kernel void kernel_mul_mm(device const uchar * src0, kernel void kernel_mul_mm(device const uchar * src0,
device const float * src1, device const uchar * src1,
device float * dst, device float * dst,
constant int64_t & ne00, constant int64_t & ne00,
constant int64_t & ne02, constant int64_t & ne02,
constant int64_t & nb01, constant int64_t & nb01,
constant int64_t & nb02, constant int64_t & nb02,
constant int64_t & ne12, constant int64_t & ne12,
constant int64_t & ne0, constant int64_t & nb10,
constant int64_t & ne1, constant int64_t & nb11,
constant uint & gqa, constant int64_t & nb12,
threadgroup uchar * shared_memory [[threadgroup(0)]], constant int64_t & ne0,
uint3 tgpig[[threadgroup_position_in_grid]], constant int64_t & ne1,
uint tiitg[[thread_index_in_threadgroup]], constant uint & gqa,
uint sgitg[[simdgroup_index_in_threadgroup]]) { threadgroup uchar * shared_memory [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiitg[[thread_index_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
threadgroup half * sa = ((threadgroup half *)shared_memory); threadgroup half * sa = (threadgroup half *)(shared_memory);
threadgroup float * sb = (threadgroup float *)(shared_memory + 4096); threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
const uint r0 = tgpig.y; const uint r0 = tgpig.y;
@ -2004,7 +2144,7 @@ kernel void kernel_mul_mm(device const uchar * src0,
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
simdgroup_half8x8 ma[4]; simdgroup_half8x8 ma[4];
simdgroup_float8x8 mb[2]; simdgroup_float8x8 mb[2];
simdgroup_float8x8 c_res[8]; simdgroup_float8x8 c_res[8];
for (int i = 0; i < 8; i++){ for (int i = 0; i < 8; i++){
@ -2012,10 +2152,15 @@ kernel void kernel_mul_mm(device const uchar * src0,
} }
short il = (tiitg % THREAD_PER_ROW); short il = (tiitg % THREAD_PER_ROW);
uint offset0 = im/gqa*nb02; ushort offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1; uint offset0 = im/gqa*nb02;
device const float * y = src1 + (r1 * BLOCK_SIZE_N + thread_col) * ne00 \ ushort offset1 = il/nl;
+ BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL) + im * ne00 * ne1;
device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
device const float * y = (device const float *)(src1
+ nb12 * im
+ nb11 * (r1 * BLOCK_SIZE_N + thread_col)
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
//load data and store to threadgroup memory //load data and store to threadgroup memory
@ -2095,6 +2240,7 @@ kernel void kernel_mul_mm(device const uchar * src0,
typedef void (get_rows_t)(device const void *, device const int *, device float *, constant int64_t &, \ typedef void (get_rows_t)(device const void *, device const int *, device float *, constant int64_t &, \
constant uint64_t &, constant uint64_t &, uint, uint, uint); constant uint64_t &, constant uint64_t &, uint, uint, uint);
template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows<float4x4, 1, dequantize_f32>;
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>; template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>; template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>; template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
@ -2105,14 +2251,27 @@ template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows
template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>; template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>; template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
typedef void (mat_mm_t)(device const uchar *, device const float *, device float *, constant int64_t &,\ typedef void (mat_mm_t)(
constant int64_t &, constant int64_t &, constant int64_t &, constant int64_t &, \ device const uchar * src0,
constant int64_t &, constant int64_t &, constant uint &, threadgroup uchar *, uint3, uint, uint); device const uchar * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne02,
constant int64_t & nb01,
constant int64_t & nb02,
constant int64_t & ne12,
constant int64_t & nb10,
constant int64_t & nb11,
constant int64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & gqa,
threadgroup uchar *, uint3, uint, uint);
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>; template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>; template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>; template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>; template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>; template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>; template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>; template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;

22
ggml.c
View File

@ -4303,10 +4303,21 @@ int64_t ggml_nrows(const struct ggml_tensor * tensor) {
} }
size_t ggml_nbytes(const struct ggml_tensor * tensor) { size_t ggml_nbytes(const struct ggml_tensor * tensor) {
size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type); size_t nbytes;
for (int i = 1; i < GGML_MAX_DIMS; ++i) { size_t blck_size = ggml_blck_size(tensor->type);
nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; if (blck_size == 1) {
nbytes = ggml_type_size(tensor->type);
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
}
} }
else {
nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
}
}
return nbytes; return nbytes;
} }
@ -18345,10 +18356,11 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
for (int i = 0; i < cgraph->n_leafs; i++) { for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * node = cgraph->leafs[i]; struct ggml_tensor * node = cgraph->leafs[i];
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n", GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
i, i,
node->ne[0], node->ne[1], node->ne[0], node->ne[1],
ggml_op_name(node->op)); ggml_op_name(node->op),
ggml_get_name(node));
} }
for (int i = 0; i < GGML_OP_COUNT; i++) { for (int i = 0; i < GGML_OP_COUNT; i++) {

File diff suppressed because it is too large Load Diff