mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-14 01:48:32 +01:00
whisper : Metal and ggml-alloc support (#1270)
* metal : init * whisper : factor out graph builds * whisper : allocate encoder and decoder using ggml-alloc * whisper : ggml-alloc is now supported * whisper : CoreML support ggml-alloc * build : fix ggml-alloc * ios : update submodule * extra : update sync-ggml.sh script to also sync ggml-alloc * ci : see if this is causing the crash * whisper : refactor ggml-alloc init * whisper.android : try to fix build * whisper : initial Metal version * ci : try to debug vmem issue * metal : decoder works on GPU! * metal : add multi-decoder support * ggml : fix ggml_nbytes (probably temp solution) * metal : run "cross" step on the GPU * whisper : remove ggml_repeat in the encoder * whisper : offload the Encoder to Metal * ggml : use simpler ggml_bytes() implementation * ggml-alloc : try to make CI happy by reducing vram to 128GB * whisper : add whisper_allocr to wrap ggml_allocr * whisper : factor out alloc init in a function * cmake : update to support Metal build * whisper : add <functional> header * objc : fix build (no Metal yet) * ios : add Metal support * swiftui : fix build * metal : speed-up KQ multiplication * metal : sync latest llama.cpp kernels * readme : add Metal info * ios : update submodule * coreml : add code to toggle Core ML config (CPU, ANE, GPU) * bench : fix timings by running a pre-heat * bench : start benching the decoder * whisper : add ggml_mul_mat_pad * bench : fix uninitialized vars * whisper : add comment for disabling mul-mat padding * whisper : add description of ggml_mul_mat_pad * whisper : clean-up ggml_mul_mat_pad * metal : remove the "concurrent" flag * bench : variable n_past * ios : update SPM package
This commit is contained in:
parent
3fec2119e6
commit
93935980f8
@ -1,4 +1,4 @@
|
||||
cmake_minimum_required (VERSION 3.0)
|
||||
cmake_minimum_required (VERSION 3.5)
|
||||
|
||||
project(whisper.cpp VERSION 1.4.2)
|
||||
|
||||
@ -35,6 +35,12 @@ endif()
|
||||
|
||||
# options
|
||||
|
||||
if (APPLE)
|
||||
set(WHISPER_METAL_DEFAULT ON)
|
||||
else()
|
||||
set(WHISPER_METAL_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
|
||||
|
||||
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
|
||||
@ -58,6 +64,8 @@ option(WHISPER_OPENVINO "whisper: support for OpenVINO" OFF)
|
||||
|
||||
if (APPLE)
|
||||
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
||||
option(WHISPER_METAL "whisper: use Metal" ${WHISPER_METAL_DEFAULT})
|
||||
option(WHISPER_METAL_NDEBUG "whisper: disable Metal debugging" OFF)
|
||||
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
|
||||
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
|
||||
else()
|
||||
@ -113,6 +121,34 @@ if (APPLE)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
if (METAL_FRAMEWORK)
|
||||
message(STATUS "Metal framework found")
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_METAL)
|
||||
|
||||
if (WHISPER_METAL_NDEBUG)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_METAL_NDEBUG)
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "Metal framework not found")
|
||||
endif()
|
||||
|
||||
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
|
||||
|
||||
# copy ggml-metal.metal to bin directory
|
||||
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML)
|
||||
find_library(FOUNDATION_FRAMEWORK Foundation)
|
||||
find_library(COREML_FRAMEWORK CoreML)
|
||||
@ -177,7 +213,7 @@ if (WHISPER_CUBLAS)
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
|
||||
set(GGML_SOURCES_CUDA ggml-cuda.cu ggml-cuda.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
|
||||
@ -228,7 +264,7 @@ if (WHISPER_CLBLAST)
|
||||
if (CLBlast_FOUND)
|
||||
message(STATUS "CLBlast found")
|
||||
|
||||
set(GGML_OPENCL_SOURCES ggml-opencl.cpp ggml-opencl.h)
|
||||
set(GGML_SOURCES_OPENCL ggml-opencl.cpp ggml-opencl.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_CLBLAST)
|
||||
|
||||
@ -426,8 +462,11 @@ set(TARGET whisper)
|
||||
add_library(${TARGET}
|
||||
ggml.h
|
||||
ggml.c
|
||||
${GGML_CUDA_SOURCES}
|
||||
${GGML_OPENCL_SOURCES}
|
||||
ggml-alloc.h
|
||||
ggml-alloc.c
|
||||
${GGML_SOURCES_METAL}
|
||||
${GGML_SOURCES_CUDA}
|
||||
${GGML_SOURCES_OPENCL}
|
||||
whisper.h
|
||||
whisper.cpp
|
||||
)
|
||||
@ -468,9 +507,15 @@ if (BUILD_SHARED_LIBS)
|
||||
WHISPER_BUILD
|
||||
GGML_BUILD
|
||||
)
|
||||
|
||||
if (WHISPER_METAL)
|
||||
# TODO: I think this should make ggml-metal.m "see" the ggml-metal.metal file from the "bin" directory
|
||||
# but for some reason it does not work here like it does in llama.cpp
|
||||
set_target_properties(${TARGET} PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_SOURCES)
|
||||
if (GGML_SOURCES_CUDA)
|
||||
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
|
||||
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
|
||||
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
|
||||
@ -486,10 +531,13 @@ target_compile_definitions(${TARGET} PUBLIC
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES PUBLIC_HEADER "whisper.h")
|
||||
|
||||
include(GNUInstallDirs)
|
||||
|
||||
install(TARGETS ${TARGET}
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib/static
|
||||
RUNTIME DESTINATION bin
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib/static
|
||||
RUNTIME DESTINATION bin
|
||||
RESOURCE DESTINATION bin
|
||||
PUBLIC_HEADER DESTINATION include
|
||||
)
|
||||
|
||||
|
23
Makefile
23
Makefile
@ -18,7 +18,7 @@ ifndef NVCC_VERSION
|
||||
endif
|
||||
endif
|
||||
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
@ -182,6 +182,15 @@ ifdef WHISPER_COREML_ALLOW_FALLBACK
|
||||
endif
|
||||
endif
|
||||
|
||||
ifndef WHISPER_NO_METAL
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
WHISPER_METAL := 1
|
||||
|
||||
CXXFLAGS += -DGGML_USE_METAL
|
||||
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
endif
|
||||
endif
|
||||
|
||||
ifdef WHISPER_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
@ -288,6 +297,11 @@ $(info )
|
||||
ggml.o: ggml.c ggml.h ggml-cuda.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
WHISPER_OBJ += ggml-alloc.o
|
||||
|
||||
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
@ -303,6 +317,13 @@ whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-imp
|
||||
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
|
||||
endif
|
||||
|
||||
ifdef WHISPER_METAL
|
||||
ggml-metal.o: ggml-metal.m ggml-metal.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
WHISPER_OBJ += ggml-metal.o
|
||||
endif
|
||||
|
||||
libwhisper.a: ggml.o $(WHISPER_OBJ)
|
||||
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
|
||||
|
||||
|
@ -11,14 +11,14 @@ Beta: [v1.4.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.2) / S
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate framework and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
|
||||
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
|
||||
- AVX intrinsics support for x86 architectures
|
||||
- VSX intrinsics support for POWER architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
|
||||
- Low memory usage (Flash Attention)
|
||||
- Zero memory allocations at runtime
|
||||
- Runs on the CPU
|
||||
- Support for CPU-only inference
|
||||
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
|
||||
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
|
||||
- [BLAS CPU support via OpenBLAS](https://github.com/ggerganov/whisper.cpp#blas-cpu-support-via-openblas)
|
||||
@ -50,6 +50,10 @@ You can also easily make your own offline voice assistant application: [command]
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
|
||||
|
||||
On Apply Silicon, the inference runs fully on the GPU via Metal:
|
||||
|
||||
https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
|
||||
|
||||
Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
|
||||
|
||||
## Implementation details
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit de46d9e7817fe851c109d66080239d415812d32a
|
||||
Subproject commit 22a9eef021afc67f2154bc9811ed620b26299d1b
|
@ -22,7 +22,13 @@ struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
|
||||
|
||||
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
|
||||
|
||||
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model error:nil]);
|
||||
// select which device to run the Core ML model on
|
||||
MLModelConfiguration *config = [[MLModelConfiguration alloc] init];
|
||||
config.computeUnits = MLComputeUnitsCPUAndGPU;
|
||||
//config.computeUnits = MLComputeUnitsCPUAndNeuralEngine;
|
||||
//config.computeUnits = MLComputeUnitsAll;
|
||||
|
||||
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model configuration:config error:nil]);
|
||||
|
||||
if (data == NULL) {
|
||||
return NULL;
|
||||
|
@ -44,13 +44,13 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
||||
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
||||
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
|
||||
fprintf(stderr, " %-7s 0 - whisper encoder\n", "");
|
||||
fprintf(stderr, " %-7s 0 - whisper\n", "");
|
||||
fprintf(stderr, " %-7s 1 - memcpy\n", "");
|
||||
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int whisper_bench_encoder(const whisper_params & params) {
|
||||
int whisper_bench_full(const whisper_params & params) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
@ -69,12 +69,49 @@ int whisper_bench_encoder(const whisper_params & params) {
|
||||
fprintf(stderr, "error: failed to set mel: %d\n", ret);
|
||||
return 3;
|
||||
}
|
||||
|
||||
// heat encoder
|
||||
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
whisper_token tokens[512];
|
||||
memset(tokens, 0, sizeof(tokens));
|
||||
|
||||
// prompt heat
|
||||
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
// text-generation heat
|
||||
if (int ret = whisper_decode(ctx, tokens, 1, 256, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
whisper_reset_timings(ctx);
|
||||
|
||||
// actual run
|
||||
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
|
||||
for (int i = 0; i < 16; i++) {
|
||||
if (int ret = whisper_decode(ctx, tokens, 256, 0, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < 256; i++) {
|
||||
if (int ret = whisper_decode(ctx, tokens, 1, i, params.n_threads) != 0) {
|
||||
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
|
||||
whisper_print_timings(ctx);
|
||||
whisper_free(ctx);
|
||||
|
||||
@ -103,7 +140,7 @@ int main(int argc, char ** argv) {
|
||||
int ret = -1;
|
||||
|
||||
switch (params.what) {
|
||||
case 0: ret = whisper_bench_encoder(params); break;
|
||||
case 0: ret = whisper_bench_full(params); break;
|
||||
case 1: ret = whisper_bench_memcpy(params.n_threads); break;
|
||||
case 2: ret = whisper_bench_ggml_mul_mat(params.n_threads); break;
|
||||
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;
|
||||
|
@ -7,7 +7,7 @@ if (WHISPER_SDL2)
|
||||
|
||||
# TODO: this is temporary
|
||||
# need to export ggml symbols for MSVC, but too lazy ..
|
||||
add_executable(${TARGET} talk-llama.cpp llama.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../whisper.cpp)
|
||||
add_executable(${TARGET} talk-llama.cpp llama.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../ggml-alloc.c ../../whisper.cpp)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
|
||||
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
@ -8,6 +8,7 @@ set(WHISPER_LIB_DIR ${CMAKE_SOURCE_DIR}/../../../../../../../)
|
||||
set(
|
||||
SOURCE_FILES
|
||||
${WHISPER_LIB_DIR}/ggml.c
|
||||
${WHISPER_LIB_DIR}/ggml-alloc.c
|
||||
${WHISPER_LIB_DIR}/whisper.cpp
|
||||
${CMAKE_SOURCE_DIR}/jni.c
|
||||
)
|
||||
@ -20,7 +21,7 @@ function(build_library target_name)
|
||||
SHARED
|
||||
${SOURCE_FILES}
|
||||
)
|
||||
|
||||
|
||||
target_link_libraries(${target_name} ${LOG_LIB} android)
|
||||
|
||||
if (${target_name} STREQUAL "whisper_v8fp16_va")
|
||||
|
@ -28,6 +28,8 @@ This can significantly improve the performance of the transcription:
|
||||
|
||||
<img width="1072" alt="image" src="https://user-images.githubusercontent.com/1991296/208511239-8d7cdbd1-aa48-41b5-becd-ca288d53cc07.png">
|
||||
|
||||
## Core ML
|
||||
|
||||
If you want to enable Core ML support, you can add the `-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK` compiler flag for `whisper.cpp` in Build Phases:
|
||||
|
||||
<img width="1072" alt="image" src="https://github.com/ggerganov/whisper.cpp/assets/3001525/103e8f57-6eb6-490d-a60c-f6cf6c319324">
|
||||
@ -35,3 +37,13 @@ If you want to enable Core ML support, you can add the `-DWHISPER_USE_COREML -DW
|
||||
Then follow the [`Core ML support` section of readme](../../README.md#core-ml-support) for convert the model.
|
||||
|
||||
In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project.
|
||||
|
||||
## Metal
|
||||
|
||||
You can also enable Metal to make the inference run on the GPU of your device. This might or might not be more efficient
|
||||
compared to Core ML depending on the model and device that you use.
|
||||
|
||||
To enable Metal, just add `-DGGML_USE_METAL` instead off the `-DWHISPER_USE_COREML` flag and you are ready.
|
||||
This will make both the Encoder and the Decoder run on the GPU.
|
||||
|
||||
If you want to run the Encoder with Core ML and the Decoder with Metal then simply add both `-DWHISPER_USE_COREML -DGGML_USE_METAL` flags. That's all!
|
||||
|
@ -7,6 +7,9 @@
|
||||
objects = {
|
||||
|
||||
/* Begin PBXBuildFile section */
|
||||
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 184447182AB211A2007D6BFE /* ggml-alloc.c */; };
|
||||
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */ = {isa = PBXBuildFile; fileRef = 1844471B2AB21655007D6BFE /* ggml-metal.m */; settings = {COMPILER_FLAGS = "-framework Foundation -framework Metal -framework MetalKit -fno-objc-arc"; }; };
|
||||
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */ = {isa = PBXBuildFile; fileRef = 1844471D2AB2195F007D6BFE /* ggml-metal.metal */; };
|
||||
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7A29052BDF00BD2A04 /* AppDelegate.m */; };
|
||||
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C7D29052BDF00BD2A04 /* SceneDelegate.m */; };
|
||||
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8029052BDF00BD2A04 /* ViewController.m */; };
|
||||
@ -14,7 +17,7 @@
|
||||
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8529052BE000BD2A04 /* Assets.xcassets */; };
|
||||
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8729052BE000BD2A04 /* LaunchScreen.storyboard */; };
|
||||
18627C8C29052BE000BD2A04 /* main.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8B29052BE000BD2A04 /* main.m */; };
|
||||
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK"; }; };
|
||||
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML"; }; };
|
||||
18627C9629052C5800BD2A04 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9529052C5800BD2A04 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE"; }; };
|
||||
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */ = {isa = PBXBuildFile; fileRef = 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */; };
|
||||
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */; };
|
||||
@ -23,7 +26,24 @@
|
||||
7FE3424F2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc in Resources */ = {isa = PBXBuildFile; fileRef = 7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXCopyFilesBuildPhase section */
|
||||
184447202AB21B25007D6BFE /* CopyFiles */ = {
|
||||
isa = PBXCopyFilesBuildPhase;
|
||||
buildActionMask = 2147483647;
|
||||
dstPath = "";
|
||||
dstSubfolderSpec = 7;
|
||||
files = (
|
||||
184447212AB21B43007D6BFE /* ggml-metal.metal in CopyFiles */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
/* End PBXCopyFilesBuildPhase section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
184447182AB211A2007D6BFE /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = "ggml-alloc.c"; path = "../../../ggml-alloc.c"; sourceTree = "<group>"; };
|
||||
184447192AB211A2007D6BFE /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = "ggml-alloc.h"; path = "../../../ggml-alloc.h"; sourceTree = "<group>"; };
|
||||
1844471B2AB21655007D6BFE /* ggml-metal.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; name = "ggml-metal.m"; path = "../../../ggml-metal.m"; sourceTree = "<group>"; };
|
||||
1844471D2AB2195F007D6BFE /* ggml-metal.metal */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.metal; name = "ggml-metal.metal"; path = "../../../ggml-metal.metal"; sourceTree = "<group>"; };
|
||||
18627C7629052BDF00BD2A04 /* whisper.objc.app */ = {isa = PBXFileReference; explicitFileType = wrapper.application; includeInIndex = 0; path = whisper.objc.app; sourceTree = BUILT_PRODUCTS_DIR; };
|
||||
18627C7929052BDF00BD2A04 /* AppDelegate.h */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.h; path = AppDelegate.h; sourceTree = "<group>"; };
|
||||
18627C7A29052BDF00BD2A04 /* AppDelegate.m */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.c.objc; path = AppDelegate.m; sourceTree = "<group>"; };
|
||||
@ -80,6 +100,10 @@
|
||||
18627C7829052BDF00BD2A04 /* whisper.objc */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
1844471D2AB2195F007D6BFE /* ggml-metal.metal */,
|
||||
1844471B2AB21655007D6BFE /* ggml-metal.m */,
|
||||
184447182AB211A2007D6BFE /* ggml-alloc.c */,
|
||||
184447192AB211A2007D6BFE /* ggml-alloc.h */,
|
||||
7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */,
|
||||
7FE342442A0C3FA20015A058 /* coreml */,
|
||||
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */,
|
||||
@ -126,6 +150,7 @@
|
||||
18627C7229052BDF00BD2A04 /* Sources */,
|
||||
18627C7329052BDF00BD2A04 /* Frameworks */,
|
||||
18627C7429052BDF00BD2A04 /* Resources */,
|
||||
184447202AB21B25007D6BFE /* CopyFiles */,
|
||||
);
|
||||
buildRules = (
|
||||
);
|
||||
@ -194,8 +219,10 @@
|
||||
18627C9629052C5800BD2A04 /* ggml.c in Sources */,
|
||||
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */,
|
||||
7FE3424D2A0C3FA20015A058 /* whisper-decoder-impl.m in Sources */,
|
||||
1844471A2AB211A2007D6BFE /* ggml-alloc.c in Sources */,
|
||||
18627C8C29052BE000BD2A04 /* main.m in Sources */,
|
||||
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */,
|
||||
1844471C2AB21655007D6BFE /* ggml-metal.m in Sources */,
|
||||
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
|
@ -20,6 +20,7 @@
|
||||
0AAC5DCC29539EB1003032C3 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DC929539EB0003032C3 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE -Wno-shorten-64-to-32"; }; };
|
||||
0AAC5DCE2953A05C003032C3 /* WhisperState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DCD2953A05C003032C3 /* WhisperState.swift */; };
|
||||
0AAC5DD12953A394003032C3 /* LibWhisper.swift in Sources */ = {isa = PBXBuildFile; fileRef = 0AAC5DD02953A394003032C3 /* LibWhisper.swift */; };
|
||||
18AED4812AB21F2B009D854F /* ggml-alloc.c in Sources */ = {isa = PBXBuildFile; fileRef = 18AED47F2AB21F2B009D854F /* ggml-alloc.c */; };
|
||||
/* End PBXBuildFile section */
|
||||
|
||||
/* Begin PBXFileReference section */
|
||||
@ -41,6 +42,8 @@
|
||||
0AAC5DCA29539EB0003032C3 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = ggml.h; sourceTree = "<group>"; };
|
||||
0AAC5DCD2953A05C003032C3 /* WhisperState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = WhisperState.swift; sourceTree = "<group>"; };
|
||||
0AAC5DD02953A394003032C3 /* LibWhisper.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibWhisper.swift; sourceTree = "<group>"; };
|
||||
18AED47F2AB21F2B009D854F /* ggml-alloc.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = "ggml-alloc.c"; sourceTree = "<group>"; };
|
||||
18AED4802AB21F2B009D854F /* ggml-alloc.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "ggml-alloc.h"; sourceTree = "<group>"; };
|
||||
/* End PBXFileReference section */
|
||||
|
||||
/* Begin PBXFrameworksBuildPhase section */
|
||||
@ -124,6 +127,8 @@
|
||||
0AAC5DC529539E89003032C3 /* whisper.cpp */ = {
|
||||
isa = PBXGroup;
|
||||
children = (
|
||||
18AED47F2AB21F2B009D854F /* ggml-alloc.c */,
|
||||
18AED4802AB21F2B009D854F /* ggml-alloc.h */,
|
||||
0AAC5DC929539EB0003032C3 /* ggml.c */,
|
||||
0AAC5DCA29539EB0003032C3 /* ggml.h */,
|
||||
0AAC5DC729539EB0003032C3 /* whisper.cpp */,
|
||||
@ -242,6 +247,7 @@
|
||||
0AA7514C2953B569001EE061 /* RiffWaveUtils.swift in Sources */,
|
||||
0AAC5DCB29539EB1003032C3 /* whisper.cpp in Sources */,
|
||||
0AA7514E2953D958001EE061 /* Recorder.swift in Sources */,
|
||||
18AED4812AB21F2B009D854F /* ggml-alloc.c in Sources */,
|
||||
);
|
||||
runOnlyForDeploymentPostprocessing = 0;
|
||||
};
|
||||
@ -369,7 +375,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_ASSET_PATHS = "\"whisper.swiftui.demo/Supporting files/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = 3TZ9BM962G;
|
||||
DEVELOPMENT_TEAM = P8JZH34X63;
|
||||
ENABLE_HARDENED_RUNTIME = YES;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
@ -410,7 +416,7 @@
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_ASSET_PATHS = "\"whisper.swiftui.demo/Supporting files/Preview Content\"";
|
||||
DEVELOPMENT_TEAM = 3TZ9BM962G;
|
||||
DEVELOPMENT_TEAM = P8JZH34X63;
|
||||
ENABLE_HARDENED_RUNTIME = YES;
|
||||
ENABLE_PREVIEWS = YES;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
|
@ -44,27 +44,26 @@ if [ "$encoder_only" -eq 0 ]; then
|
||||
printf "\n"
|
||||
fi
|
||||
|
||||
printf "| CPU | OS | Config | Model | Th | Load | Enc. | Commit |\n"
|
||||
printf "| --- | -- | ------ | ----- | -- | ---- | ---- | ------ |\n"
|
||||
printf "| %6s | %6s | %12s | %9s | %3s | %7s | %7s | %7s | %7s |\n" "CPU" "OS" "Config" "Model" "Th" "Enc." "Dec." "PP" "Commit"
|
||||
printf "| %6s | %6s | %12s | %9s | %3s | %7s | %7s | %7s | %7s |\n" "---" "---" "---" "---" "---" "---" "---" "---" "---"
|
||||
|
||||
for model in "${models[@]}"; do
|
||||
# run once to heat-up the cache
|
||||
./bench -m ./models/ggml-$model.bin -t $n_threads 2>/dev/null 1>/dev/null
|
||||
|
||||
# actual run
|
||||
# store stderr output in a variable in order to parse it later
|
||||
output=$(./bench -m ./models/ggml-$model.bin -t $n_threads 2>&1)
|
||||
ret=$?
|
||||
|
||||
# parse the output:
|
||||
load_time=$(echo "$output" | grep "load time" | awk '{print $5}')
|
||||
encode_time=$(echo "$output" | grep "encode time" | awk '{print $5}')
|
||||
encode_time=$(echo "$output" | grep "encode time" | awk '{print $11}')
|
||||
decode_time=$(echo "$output" | grep "decode time" | awk '{print $11}')
|
||||
prompt_time=$(echo "$output" | grep "prompt time" | awk '{print $11}')
|
||||
system_info=$(echo "$output" | grep "system_info")
|
||||
n_threads=$(echo "$output" | grep "system_info" | awk '{print $4}')
|
||||
|
||||
# floor to milliseconds
|
||||
load_time=${load_time%.*}
|
||||
encode_time=${encode_time%.*}
|
||||
#encode_time=${encode_time%.*}
|
||||
#decode_time=${decode_time%.*}
|
||||
#prompt_time=${prompt_time%.*}
|
||||
|
||||
config=""
|
||||
|
||||
@ -87,6 +86,6 @@ for model in "${models[@]}"; do
|
||||
commit=$(git rev-parse --short HEAD)
|
||||
|
||||
if [ $ret -eq 0 ]; then
|
||||
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n"
|
||||
printf "| <todo> | <todo> | %12s | %9s | %3s | %7s | %7s | %7s | %7s |\n" "$config" "$model" "$n_threads" "$encode_time" "$decode_time" "$prompt_time" "$commit"
|
||||
fi
|
||||
done
|
||||
|
@ -1,18 +1,20 @@
|
||||
#!/bin/bash
|
||||
|
||||
cp -rpv ../ggml/src/ggml.c ./ggml.c
|
||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
||||
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
|
||||
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
|
||||
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
|
||||
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
|
||||
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
|
||||
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
||||
cp -rpv ../ggml/examples/common.h ./examples/common.h
|
||||
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
|
||||
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h
|
||||
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp
|
||||
cp -rpv ../ggml/src/ggml.c ./ggml.c
|
||||
cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
|
||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
||||
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
|
||||
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
|
||||
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
|
||||
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
|
||||
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
|
||||
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
||||
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
|
||||
cp -rpv ../ggml/examples/common.h ./examples/common.h
|
||||
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
|
||||
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h
|
||||
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp
|
||||
|
||||
cp -rpv ../ggml/examples/whisper/whisper.h ./whisper.h
|
||||
cp -rpv ../ggml/examples/whisper/whisper.cpp ./whisper.cpp
|
||||
|
187
ggml-alloc.c
187
ggml-alloc.c
@ -6,6 +6,26 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/types.h>
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <memoryapi.h>
|
||||
#endif
|
||||
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
|
||||
@ -99,15 +119,28 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
static size_t ggml_allocr_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
return ggml_nbytes(tensor);
|
||||
|
||||
UNUSED(alloc);
|
||||
}
|
||||
|
||||
// check if a tensor is allocated by this buffer
|
||||
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
|
||||
void * ptr = tensor->data;
|
||||
return ptr >= alloc->data && (char *)ptr < (char *)alloc->data + alloc->max_size;
|
||||
}
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->view_src != NULL;
|
||||
}
|
||||
|
||||
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
|
||||
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
|
||||
#endif
|
||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
|
||||
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
||||
@ -131,14 +164,14 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
||||
if (best_fit_block == -1) {
|
||||
// the last block is our last resort
|
||||
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size) {
|
||||
best_fit_block = alloc->n_free_blocks - 1;
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
} else {
|
||||
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
|
||||
__func__, size, max_avail);
|
||||
GGML_ASSERT(!"not enough space in the buffer");
|
||||
return;
|
||||
return;
|
||||
}
|
||||
}
|
||||
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
||||
@ -173,17 +206,17 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
||||
}
|
||||
|
||||
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||
static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
void * ptr = tensor->data;
|
||||
|
||||
if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
|
||||
if (ggml_allocr_is_own(alloc, tensor) == false) {
|
||||
// the tensor was not allocated in this buffer
|
||||
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
||||
// the easiest way to deal with this is just to ignore it
|
||||
return;
|
||||
}
|
||||
|
||||
size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
|
||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
|
||||
|
||||
@ -277,17 +310,68 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
|
||||
return alloc;
|
||||
}
|
||||
|
||||
// address and size of the buffer when measuring
|
||||
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
|
||||
static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
|
||||
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
|
||||
// OS specific functions to allocate and free uncommitted virtual memory
|
||||
static void * alloc_vmem(size_t size) {
|
||||
#if defined(_WIN32)
|
||||
return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
|
||||
#elif defined(_POSIX_MAPPED_FILES)
|
||||
void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
|
||||
if (ptr == MAP_FAILED) {
|
||||
return NULL;
|
||||
}
|
||||
return ptr;
|
||||
#else
|
||||
// use a fixed address for other platforms
|
||||
uintptr_t base_addr = (uintptr_t)-size - 0x100;
|
||||
return (void *)base_addr;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void free_vmem(void * base_addr, size_t size) {
|
||||
#if defined(_WIN32)
|
||||
VirtualFree(base_addr, 0, MEM_RELEASE);
|
||||
UNUSED(size);
|
||||
#elif defined(_POSIX_MAPPED_FILES)
|
||||
munmap(base_addr, size);
|
||||
#else
|
||||
// nothing to do
|
||||
UNUSED(base_addr);
|
||||
UNUSED(size);
|
||||
#endif
|
||||
}
|
||||
|
||||
// allocate uncommitted virtual memory to measure the size of the graph
|
||||
static void alloc_measure_vmem(void ** base_addr, size_t * size) {
|
||||
// 128GB for 64-bit, 1GB for 32-bit
|
||||
*size = sizeof(void *) == 4 ? 1ULL<<30 : 1ULL<<37;
|
||||
do {
|
||||
*base_addr = alloc_vmem(*size);
|
||||
if (*base_addr != NULL) {
|
||||
AT_PRINTF("allocated %.2f GB of virtual memory for measure buffer at %p\n", *size / 1024.0 / 1024.0 / 1024.0, *base_addr);
|
||||
return;
|
||||
}
|
||||
// try again with half the size
|
||||
*size /= 2;
|
||||
} while (*size > 0);
|
||||
|
||||
GGML_ASSERT(!"failed to allocate virtual memory for measure buffer");
|
||||
}
|
||||
|
||||
static void free_measure_vmem(void * base_addr, size_t size) {
|
||||
free_vmem(base_addr, size);
|
||||
}
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||
|
||||
void * base_addr;
|
||||
size_t size;
|
||||
|
||||
alloc_measure_vmem(&base_addr, &size);
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
/*.data = */ MEASURE_BASE_ADDR,
|
||||
/*.size = */ MEASURE_MAX_SIZE,
|
||||
/*.data = */ base_addr,
|
||||
/*.size = */ size,
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
@ -307,6 +391,9 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||
}
|
||||
|
||||
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
||||
if (alloc->measure) {
|
||||
free_measure_vmem(alloc->data, alloc->size);
|
||||
}
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
@ -316,11 +403,6 @@ bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
|
||||
|
||||
//////////// compute graph allocator
|
||||
|
||||
static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
||||
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
|
||||
}
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
if (a->type != b->type) {
|
||||
return false;
|
||||
@ -336,28 +418,6 @@ static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml
|
||||
return true;
|
||||
}
|
||||
|
||||
static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
|
||||
switch (t->op) {
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_VIEW:
|
||||
return t->src[0];
|
||||
case GGML_OP_CPY:
|
||||
return t->src[1];
|
||||
default:
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
|
||||
struct ggml_tensor * parent = t;
|
||||
do {
|
||||
parent = get_view_parent(parent);
|
||||
} while (ggml_is_view(parent));
|
||||
return parent;
|
||||
}
|
||||
|
||||
static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
switch (op) {
|
||||
case GGML_OP_SCALE:
|
||||
@ -365,7 +425,6 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ADD1:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
@ -375,10 +434,8 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
case GGML_OP_UNARY:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_ADD_REL_POS:
|
||||
return true;
|
||||
|
||||
default:
|
||||
@ -390,24 +447,8 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
if (node->data == NULL) {
|
||||
if (ggml_is_view(node)) {
|
||||
size_t offset;
|
||||
switch(node->op) {
|
||||
case GGML_OP_VIEW:
|
||||
memcpy(&offset, node->op_params, sizeof(size_t));
|
||||
node->data = (char *) node->src[0]->data + offset;
|
||||
break;
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
node->data = node->src[0]->data;
|
||||
break;
|
||||
case GGML_OP_CPY:
|
||||
node->data = node->src[1]->data;
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(!"unknown view op");
|
||||
break;
|
||||
}
|
||||
assert(node->view_src->data != NULL);
|
||||
node->data = (char *)node->view_src->data + node->view_offs;
|
||||
} else {
|
||||
// see if we can reuse a parent's buffer (inplace)
|
||||
if (ggml_op_can_inplace(node->op)) {
|
||||
@ -418,8 +459,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||
}
|
||||
|
||||
// if the node's data is external, then we cannot re-use it
|
||||
if ((char *) parent->data < (char *) alloc->data ||
|
||||
(char *) parent->data >= ((char *) alloc->data + alloc->size)) {
|
||||
if (ggml_allocr_is_own(alloc, parent) == false) {
|
||||
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
||||
continue;
|
||||
}
|
||||
@ -427,7 +467,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct ggml_tensor * view_src = parent->view_src;
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
||||
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
||||
@ -453,7 +493,7 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||
}
|
||||
}
|
||||
|
||||
static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
static size_t ggml_allocr_alloc_graph_tensors_n(
|
||||
struct ggml_allocr * alloc,
|
||||
struct ggml_cgraph ** graphs, int n_graphs,
|
||||
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
||||
@ -469,7 +509,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
struct ggml_tensor * view_src = get_view_source(node);
|
||||
struct ggml_tensor * view_src = node->view_src;
|
||||
hash_get(ht, view_src)->n_views += 1;
|
||||
}
|
||||
|
||||
@ -531,11 +571,10 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
AT_PRINTF("\n");
|
||||
}
|
||||
|
||||
|
||||
// update parents
|
||||
// update immediately if there is no parse_seq
|
||||
// update only at barriers if there is parse_seq
|
||||
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] == -1) {
|
||||
if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
|
||||
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
|
||||
int update_end = alloc->parse_seq_len ? ind : ind + 1;
|
||||
for (int i = update_start; i < update_end; i++) {
|
||||
@ -554,17 +593,17 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
|
||||
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = get_view_source(parent);
|
||||
struct ggml_tensor * view_src = parent->view_src;
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, view_src);
|
||||
ggml_allocr_free_tensor(alloc, view_src);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parent->data != node->data) {
|
||||
ggml_allocator_free_tensor(alloc, parent);
|
||||
ggml_allocr_free_tensor(alloc, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -581,7 +620,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
for (int i = 0; outputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * output = outputs[g][i];
|
||||
AT_PRINTF("output: %s\n", output->name);
|
||||
ggml_allocator_free_tensor(alloc, output);
|
||||
ggml_allocr_free_tensor(alloc, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -590,5 +629,5 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
|
||||
}
|
||||
|
||||
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
||||
return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
||||
return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
||||
}
|
||||
|
107
ggml-metal.m
107
ggml-metal.m
@ -63,7 +63,10 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(relu);
|
||||
GGML_METAL_DECL_KERNEL(gelu);
|
||||
GGML_METAL_DECL_KERNEL(soft_max);
|
||||
GGML_METAL_DECL_KERNEL(soft_max_4);
|
||||
GGML_METAL_DECL_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_DECL_KERNEL(diag_mask_inf_8);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_f32);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
||||
@ -77,6 +80,7 @@ struct ggml_metal_context {
|
||||
GGML_METAL_DECL_KERNEL(norm);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
|
||||
@ -117,14 +121,17 @@ static NSString * const msl_library_source = @"see metal.metal";
|
||||
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
metal_printf("%s: allocating\n", __func__);
|
||||
|
||||
// Show all the Metal device instances in the system
|
||||
NSArray * devices = MTLCopyAllDevices();
|
||||
id <MTLDevice> device;
|
||||
NSString * s;
|
||||
|
||||
#if TARGET_OS_OSX
|
||||
// Show all the Metal device instances in the system
|
||||
NSArray * devices = MTLCopyAllDevices();
|
||||
for (device in devices) {
|
||||
s = [device name];
|
||||
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Pick and show default Metal device
|
||||
device = MTLCreateSystemDefaultDevice();
|
||||
@ -139,14 +146,22 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
ctx->n_buffers = 0;
|
||||
ctx->concur_list_len = 0;
|
||||
|
||||
ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
||||
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
||||
|
||||
#if 0
|
||||
// compile from source string and show compile log
|
||||
#ifdef GGML_SWIFT
|
||||
// load the default.metallib file
|
||||
{
|
||||
NSError * error = nil;
|
||||
|
||||
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
|
||||
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
||||
NSString * llamaBundlePath = [bundle pathForResource:@"llama_llama" ofType:@"bundle"];
|
||||
NSBundle * llamaBundle = [NSBundle bundleWithPath:llamaBundlePath];
|
||||
NSString * libPath = [llamaBundle pathForResource:@"default" ofType:@"metallib"];
|
||||
NSURL * libURL = [NSURL fileURLWithPath:libPath];
|
||||
|
||||
// Load the metallib file into a Metal library
|
||||
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
|
||||
|
||||
if (error) {
|
||||
metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||
return NULL;
|
||||
@ -161,7 +176,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
|
||||
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
|
||||
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
||||
NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
||||
NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
||||
metal_printf("%s: loading '%s'\n", __func__, [path UTF8String]);
|
||||
|
||||
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
|
||||
@ -207,7 +222,10 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(relu);
|
||||
GGML_METAL_ADD_KERNEL(gelu);
|
||||
GGML_METAL_ADD_KERNEL(soft_max);
|
||||
GGML_METAL_ADD_KERNEL(soft_max_4);
|
||||
GGML_METAL_ADD_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_ADD_KERNEL(diag_mask_inf_8);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_f32);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
||||
@ -221,6 +239,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(norm);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
|
||||
@ -247,13 +266,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
#undef GGML_METAL_ADD_KERNEL
|
||||
}
|
||||
|
||||
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
#if TARGET_OS_OSX
|
||||
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
if (ctx->device.maxTransferRate != 0) {
|
||||
metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||
} else {
|
||||
metal_printf("%s: maxTransferRate = built-in GPU\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
return ctx;
|
||||
}
|
||||
@ -273,7 +294,10 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(relu);
|
||||
GGML_METAL_DEL_KERNEL(gelu);
|
||||
GGML_METAL_DEL_KERNEL(soft_max);
|
||||
GGML_METAL_DEL_KERNEL(soft_max_4);
|
||||
GGML_METAL_DEL_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_DEL_KERNEL(diag_mask_inf_8);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_f32);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_f16);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
|
||||
@ -287,6 +311,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
||||
GGML_METAL_DEL_KERNEL(norm);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
|
||||
@ -365,6 +390,7 @@ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru
|
||||
for (int i = 0; i < ctx->n_buffers; ++i) {
|
||||
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
|
||||
|
||||
//metal_printf("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name);
|
||||
if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
|
||||
*offs = (size_t) ioffs;
|
||||
|
||||
@ -454,6 +480,7 @@ bool ggml_metal_add_buffer(
|
||||
}
|
||||
}
|
||||
|
||||
#if TARGET_OS_OSX
|
||||
metal_printf(", (%8.2f / %8.2f)",
|
||||
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
|
||||
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
@ -463,6 +490,9 @@ bool ggml_metal_add_buffer(
|
||||
} else {
|
||||
metal_printf("\n");
|
||||
}
|
||||
#else
|
||||
metal_printf(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
|
||||
#endif
|
||||
}
|
||||
|
||||
return true;
|
||||
@ -698,6 +728,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
|
||||
// utilize float4
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
@ -705,6 +736,7 @@ void ggml_metal_graph_compute(
|
||||
|
||||
if (ggml_nelements(src1) == ne10) {
|
||||
// src1 is a row
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
[encoder setComputePipelineState:ctx->pipeline_add_row];
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_add];
|
||||
@ -721,6 +753,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_MUL:
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
|
||||
// utilize float4
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
@ -728,6 +761,7 @@ void ggml_metal_graph_compute(
|
||||
|
||||
if (ggml_nelements(src1) == ne10) {
|
||||
// src1 is a row
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_row];
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul];
|
||||
@ -743,6 +777,8 @@ void ggml_metal_graph_compute(
|
||||
} break;
|
||||
case GGML_OP_SCALE:
|
||||
{
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const float scale = *(const float *) src1->data;
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_scale];
|
||||
@ -750,7 +786,7 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
const int64_t n = ggml_nelements(dst)/4;
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
@ -762,7 +798,7 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
const int64_t n = ggml_nelements(dst)/4;
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
@ -782,7 +818,7 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
const int64_t n = ggml_nelements(dst)/4;
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
@ -796,13 +832,16 @@ void ggml_metal_graph_compute(
|
||||
{
|
||||
const int nth = 32;
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
||||
if (ne00%4 == 0) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_soft_max_4];
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
||||
}
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
@ -810,14 +849,23 @@ void ggml_metal_graph_compute(
|
||||
{
|
||||
const int n_past = ((int32_t *)(dst->op_params))[0];
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
||||
if (ne00%8 == 0) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf_8];
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
||||
}
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
if (ne00%8 == 0) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
}
|
||||
else {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
@ -830,8 +878,8 @@ void ggml_metal_graph_compute(
|
||||
|
||||
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||
if (ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
if (!ggml_is_transposed(src0) &&
|
||||
!ggml_is_transposed(src1) &&
|
||||
src1t == GGML_TYPE_F32 &&
|
||||
[ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
||||
ne00%32 == 0 &&
|
||||
@ -856,14 +904,18 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
|
||||
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9];
|
||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:10];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
||||
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:13];
|
||||
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
} else {
|
||||
int nth0 = 32;
|
||||
int nth1 = 1;
|
||||
int nrows = 1;
|
||||
|
||||
// use custom matrix x vector kernel
|
||||
switch (src0t) {
|
||||
@ -873,8 +925,14 @@ void ggml_metal_graph_compute(
|
||||
nth1 = 1;
|
||||
if (ne11 * ne12 < 4) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
|
||||
//} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
||||
} else if (false) {
|
||||
// TODO: with ggml_mul_mat_pad this kernel no longer seems to be needed
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4];
|
||||
nrows = ne11;
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
|
||||
nrows = 4;
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
@ -995,7 +1053,7 @@ void ggml_metal_graph_compute(
|
||||
else if (src0t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
int64_t ny = (ne11 + 3)/4;
|
||||
int64_t ny = (ne11 + nrows - 1)/nrows;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
}
|
||||
@ -1003,6 +1061,7 @@ void ggml_metal_graph_compute(
|
||||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_get_rows_f32]; break;
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
||||
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
||||
@ -1018,9 +1077,9 @@ void ggml_metal_graph_compute(
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
|
||||
[encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
|
||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
|
||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:5];
|
||||
|
||||
const int64_t n = ggml_nelements(src1);
|
||||
|
||||
|
497
ggml-metal.metal
497
ggml-metal.metal
@ -38,7 +38,7 @@ kernel void kernel_add_row(
|
||||
device const float4 * src0,
|
||||
device const float4 * src1,
|
||||
device float4 * dst,
|
||||
constant int64_t & nb,
|
||||
constant int64_t & nb,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = src0[tpig] + src1[tpig % nb];
|
||||
}
|
||||
@ -63,18 +63,18 @@ kernel void kernel_mul_row(
|
||||
}
|
||||
|
||||
kernel void kernel_scale(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
device const float4 * src0,
|
||||
device float4 * dst,
|
||||
constant float & scale,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = src0[tpig] * scale;
|
||||
}
|
||||
|
||||
kernel void kernel_silu(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
device const float4 * src0,
|
||||
device float4 * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
float x = src0[tpig];
|
||||
device const float4 & x = src0[tpig];
|
||||
dst[tpig] = x / (1.0f + exp(-x));
|
||||
}
|
||||
|
||||
@ -89,10 +89,10 @@ constant float GELU_COEF_A = 0.044715f;
|
||||
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
|
||||
kernel void kernel_gelu(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
device const float4 * src0,
|
||||
device float4 * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
float x = src0[tpig];
|
||||
device const float4 & x = src0[tpig];
|
||||
|
||||
// BEWARE !!!
|
||||
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
|
||||
@ -107,7 +107,6 @@ kernel void kernel_soft_max(
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
threadgroup float * buf [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
@ -119,64 +118,70 @@ kernel void kernel_soft_max(
|
||||
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
// parallel max
|
||||
buf[tpitg[0]] = -INFINITY;
|
||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]);
|
||||
float lmax = psrc0[tpitg[0]];
|
||||
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
lmax = MAX(lmax, psrc0[i00]);
|
||||
}
|
||||
|
||||
// reduce
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
for (uint i = ntg[0]/2; i > 0; i /= 2) {
|
||||
if (tpitg[0] < i) {
|
||||
buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
//// broadcast - not needed. There is a threadgroup barrier above in the last iteration of
|
||||
// the loop, and when that is done, buf[0] has the correct (synchronized) value
|
||||
//if (tpitg[0] == 0) {
|
||||
// buf[0] = buf[0];
|
||||
//}
|
||||
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
const float max = buf[0];
|
||||
const float max = simd_max(lmax);
|
||||
|
||||
// parallel sum
|
||||
buf[tpitg[0]] = 0.0f;
|
||||
float lsum = 0.0f;
|
||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
const float exp_psrc0 = exp(psrc0[i00] - max);
|
||||
buf[tpitg[0]] += exp_psrc0;
|
||||
lsum += exp_psrc0;
|
||||
// Remember the result of exp here. exp is expensive, so we really do not
|
||||
// whish to compute it twice.
|
||||
pdst[i00] = exp_psrc0;
|
||||
}
|
||||
|
||||
// reduce
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
for (uint i = ntg[0]/2; i > 0; i /= 2) {
|
||||
if (tpitg[0] < i) {
|
||||
buf[tpitg[0]] += buf[tpitg[0] + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
// broadcast - not needed, see above
|
||||
//// broadcast
|
||||
//if (tpitg[0] == 0) {
|
||||
// buf[0] = buf[0];
|
||||
//}
|
||||
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
const float sum = buf[0];
|
||||
const float sum = simd_sum(lsum);
|
||||
|
||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
pdst[i00] /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_soft_max_4(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i03 = tgpig[2];
|
||||
const int64_t i02 = tgpig[1];
|
||||
const int64_t i01 = tgpig[0];
|
||||
|
||||
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
|
||||
// parallel max
|
||||
float4 lmax4 = psrc4[tpitg[0]];
|
||||
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||
lmax4 = fmax(lmax4, psrc4[i00]);
|
||||
}
|
||||
float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
|
||||
|
||||
const float max = simd_max(lmax);
|
||||
|
||||
// parallel sum
|
||||
float4 lsum4 = 0.0f;
|
||||
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||
const float4 exp_psrc4 = exp(psrc4[i00] - max);
|
||||
lsum4 += exp_psrc4;
|
||||
pdst4[i00] = exp_psrc4;
|
||||
}
|
||||
float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
|
||||
|
||||
const float sum = simd_sum(lsum);
|
||||
|
||||
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||
pdst4[i00] /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_diag_mask_inf(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
@ -192,6 +197,33 @@ kernel void kernel_diag_mask_inf(
|
||||
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
|
||||
} else {
|
||||
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_diag_mask_inf_8(
|
||||
device const float4 * src0,
|
||||
device float4 * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int & n_past,
|
||||
uint3 tpig[[thread_position_in_grid]]) {
|
||||
|
||||
const int64_t i = 2*tpig[0];
|
||||
|
||||
dst[i+0] = src0[i+0];
|
||||
dst[i+1] = src0[i+1];
|
||||
int64_t i4 = 4*i;
|
||||
const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
|
||||
const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
|
||||
const int64_t i00 = i4;
|
||||
for (int k = 3; k >= 0; --k) {
|
||||
if (i00 + 4 + k <= n_past + i01) {
|
||||
break;
|
||||
}
|
||||
dst[i+1][k] = -INFINITY;
|
||||
if (i00 + k > n_past + i01) {
|
||||
dst[i][k] = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -616,6 +648,49 @@ kernel void kernel_mul_mat_f16_f32(
|
||||
}
|
||||
}
|
||||
|
||||
// Assumes row size (ne00) is a multiple of 4
|
||||
kernel void kernel_mul_mat_f16_f32_l4(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
|
||||
const int nrows = ne11;
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t im = tgpig.z;
|
||||
|
||||
device const half4 * x4 = (device const half4 *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
|
||||
|
||||
for (int r1 = 0; r1 < nrows; ++r1) {
|
||||
device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00/4; i += 32) {
|
||||
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
|
||||
}
|
||||
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_alibi_f32(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
@ -1123,31 +1198,40 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
|
||||
device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
|
||||
|
||||
float yl[16];
|
||||
float yl[32];
|
||||
|
||||
const uint16_t kmask1 = 0x0303;
|
||||
const uint16_t kmask1 = 0x3030;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
|
||||
const int tid = tiisg/2;
|
||||
const int ix = tiisg%2;
|
||||
const int ip = tid/8; // 0 or 1
|
||||
const int il = tid/2 - 4*ip; // 0...3
|
||||
const int tid = tiisg/4;
|
||||
const int ix = tiisg%4;
|
||||
const int ip = tid/4; // 0 or 1
|
||||
const int il = 2*((tid%4)/2); // 0 or 2
|
||||
const int ir = tid%2;
|
||||
const int n = 8;
|
||||
const int l0 = n*ir;
|
||||
|
||||
const uint16_t m1 = 1 << (4*ip + il);
|
||||
const uint16_t m2 = m1 << 8;
|
||||
// One would think that the Metal compiler would figure out that ip and il can only have
|
||||
// 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
|
||||
// with these two tales.
|
||||
//
|
||||
// Possible masks for the high bit
|
||||
const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
|
||||
{0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
|
||||
{0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
|
||||
{0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
|
||||
|
||||
// Possible masks for the low 2 bits
|
||||
const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
|
||||
|
||||
const ushort4 hm = mm[2*ip + il/2];
|
||||
|
||||
const int shift = 2*il;
|
||||
const uint16_t qm1 = 0x0003 << shift;
|
||||
const uint16_t qm2 = 0x0300 << shift;
|
||||
const int32_t v1 = 4 << shift;
|
||||
const int32_t v2 = 1024 << shift;
|
||||
const float v1 = il == 0 ? 4.f : 64.f;
|
||||
const float v2 = 4.f * v1;
|
||||
|
||||
const uint16_t s_shift1 = 4*ip;
|
||||
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
|
||||
const int ik = 4 + (il%2);
|
||||
const uint16_t s_shift2 = s_shift1 + il;
|
||||
|
||||
const int q_offset = 32*ip + l0;
|
||||
const int y_offset = 128*ip + 32*il + l0;
|
||||
@ -1156,12 +1240,19 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||
|
||||
device const float * y1 = yy + ix*QK_K + y_offset;
|
||||
|
||||
float sumf1[2] = {0.f}, sumf2[2] = {0.f};
|
||||
for (int i = ix; i < nb; i += 2) {
|
||||
uint32_t scales32, aux32;
|
||||
thread uint16_t * scales16 = (thread uint16_t *)&scales32;
|
||||
thread const int8_t * scales = (thread const int8_t *)&scales32;
|
||||
|
||||
float sumf1[2] = {0.f};
|
||||
float sumf2[2] = {0.f};
|
||||
for (int i = ix; i < nb; i += 4) {
|
||||
|
||||
for (int l = 0; l < 8; ++l) {
|
||||
yl[l+0] = y1[l+ 0];
|
||||
yl[l+8] = y1[l+16];
|
||||
yl[l+ 0] = y1[l+ 0];
|
||||
yl[l+ 8] = y1[l+16];
|
||||
yl[l+16] = y1[l+32];
|
||||
yl[l+24] = y1[l+48];
|
||||
}
|
||||
|
||||
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
|
||||
@ -1172,27 +1263,43 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
|
||||
const float d_all = (float)dh[0];
|
||||
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
|
||||
|
||||
float s1 = 0, s2 = 0;
|
||||
for (int l = 0; l < n; l += 2) {
|
||||
const uint16_t qs = q[l/2];
|
||||
s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
|
||||
s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
|
||||
}
|
||||
float d = d_all * (s1 + 1.f/256.f * s2);
|
||||
sumf1[row] += d * scales[0];
|
||||
sumf2[row] += d;
|
||||
scales16[0] = a[4];
|
||||
scales16[1] = a[5];
|
||||
aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
|
||||
scales16[0] = a[il+0];
|
||||
scales16[1] = a[il+1];
|
||||
scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
|
||||
|
||||
s1 = s2 = 0;
|
||||
float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
|
||||
for (int l = 0; l < n; l += 2) {
|
||||
const uint16_t qs = q[l/2+8];
|
||||
s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
|
||||
s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
|
||||
const int32_t qs = q[l/2];
|
||||
s1 += yl[l+0] * (qs & qm[il/2][0]);
|
||||
s2 += yl[l+1] * (qs & qm[il/2][1]);
|
||||
s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
|
||||
s4 += yl[l+16] * (qs & qm[il/2][2]);
|
||||
s5 += yl[l+17] * (qs & qm[il/2][3]);
|
||||
s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
|
||||
}
|
||||
d = d_all * (s1 + 1.f/256.f * s2);
|
||||
sumf1[row] += d * scales[1];
|
||||
sumf2[row] += d;
|
||||
float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
|
||||
float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
|
||||
sumf1[row] += d1 * (scales[0] - 32);
|
||||
sumf2[row] += d2 * (scales[2] - 32);
|
||||
|
||||
s1 = s2 = s3 = s4 = s5 = s6 = 0;
|
||||
for (int l = 0; l < n; l += 2) {
|
||||
const int32_t qs = q[l/2+8];
|
||||
s1 += yl[l+8] * (qs & qm[il/2][0]);
|
||||
s2 += yl[l+9] * (qs & qm[il/2][1]);
|
||||
s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
|
||||
s4 += yl[l+24] * (qs & qm[il/2][2]);
|
||||
s5 += yl[l+25] * (qs & qm[il/2][3]);
|
||||
s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
|
||||
}
|
||||
d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
|
||||
d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
|
||||
sumf1[row] += d1 * (scales[1] - 32);
|
||||
sumf2[row] += d2 * (scales[3] - 32);
|
||||
|
||||
q += step;
|
||||
h += step;
|
||||
@ -1201,15 +1308,17 @@ kernel void kernel_mul_mat_q3_K_f32(
|
||||
|
||||
}
|
||||
|
||||
y1 += 2 * QK_K;
|
||||
y1 += 4 * QK_K;
|
||||
|
||||
}
|
||||
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
|
||||
const float tot = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = tot;
|
||||
const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
|
||||
sumf1[row] = simd_sum(sumf);
|
||||
}
|
||||
if (tiisg == 0) {
|
||||
for (int row = 0; row < 2; ++row) {
|
||||
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = sumf1[row];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1564,17 +1673,25 @@ kernel void kernel_mul_mat_q5_K_f32(
|
||||
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
|
||||
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
|
||||
|
||||
float4 acc = {0.f, 0.f, 0.f, 0.f};
|
||||
float4 acc1 = {0.f};
|
||||
float4 acc2 = {0.f};
|
||||
for (int l = 0; l < n; ++l) {
|
||||
uint8_t h = qh[l];
|
||||
acc[0] += yl[l+0] * ((uint16_t)(q1[l] & 0x0F) + (h & hm1 ? 16 : 0));
|
||||
acc[1] += yl[l+8] * ((uint16_t)(q1[l] & 0xF0) + (h & hm2 ? 256 : 0));
|
||||
acc[2] += yh[l+0] * ((uint16_t)(q2[l] & 0x0F) + (h & hm3 ? 16 : 0));
|
||||
acc[3] += yh[l+8] * ((uint16_t)(q2[l] & 0xF0) + (h & hm4 ? 256 : 0));
|
||||
acc1[0] += yl[l+0] * (q1[l] & 0x0F);
|
||||
acc1[1] += yl[l+8] * (q1[l] & 0xF0);
|
||||
acc1[2] += yh[l+0] * (q2[l] & 0x0F);
|
||||
acc1[3] += yh[l+8] * (q2[l] & 0xF0);
|
||||
acc2[0] += h & hm1 ? yl[l+0] : 0.f;
|
||||
acc2[1] += h & hm2 ? yl[l+8] : 0.f;
|
||||
acc2[2] += h & hm3 ? yh[l+0] : 0.f;
|
||||
acc2[3] += h & hm4 ? yh[l+8] : 0.f;
|
||||
}
|
||||
const float dall = dh[0];
|
||||
const float dmin = dh[1];
|
||||
sumf[row] += dall * (acc[0] * sc8[0] + acc[1] * sc8[1] * 1.f/16.f + acc[2] * sc8[4] + acc[3] * sc8[5] * 1.f/16.f) -
|
||||
sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
|
||||
sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
|
||||
sc8[4] * (acc1[2] + 16.f*acc2[2]) +
|
||||
sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
|
||||
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
|
||||
|
||||
q1 += step;
|
||||
@ -1747,6 +1864,15 @@ kernel void kernel_mul_mat_q6_K_f32(
|
||||
|
||||
//============================= templates and their specializations =============================
|
||||
|
||||
// NOTE: this is not dequantizing - we are simply fitting the template
|
||||
template <typename type4x4>
|
||||
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
|
||||
float4x4 temp = *(((device float4x4 *)src));
|
||||
for (int i = 0; i < 16; i++){
|
||||
reg[i/4][i%4] = temp[i/4][i%4];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
|
||||
half4x4 temp = *(((device half4x4 *)src));
|
||||
@ -1758,28 +1884,30 @@ void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg)
|
||||
template <typename type4x4>
|
||||
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
|
||||
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
|
||||
const half d = il ? (xb->d / 16.h) : xb->d;
|
||||
const half m = il ? ( -8.h * 16.h) : -8.h;
|
||||
const float d1 = il ? (xb->d / 16.h) : xb->d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float md = -8.h * xb->d;
|
||||
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
||||
const ushort mask1 = il ? 0xF000 : 0x0F00;
|
||||
const ushort mask1 = mask0 << 8;
|
||||
|
||||
for (int i=0;i<8;i++) {
|
||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) + m) * d;
|
||||
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) + m) * d;
|
||||
reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
|
||||
reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
|
||||
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
|
||||
const half d = il ? (xb->d / 16.h) : xb->d;
|
||||
const half m = xb->m;
|
||||
const float d1 = il ? (xb->d / 16.h) : xb->d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float m = xb->m;
|
||||
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
||||
const ushort mask1 = il ? 0xF000 : 0x0F00;
|
||||
const ushort mask1 = mask0 << 8;
|
||||
|
||||
for (int i=0;i<8;i++) {
|
||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) * d) + m;
|
||||
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) * d) + m;
|
||||
reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
|
||||
reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
|
||||
}
|
||||
}
|
||||
|
||||
@ -1815,7 +1943,7 @@ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
|
||||
const float d_all = (float)(xb->d);
|
||||
const half d_all = xb->d;
|
||||
device const uint8_t * q = (device const uint8_t *)xb->qs;
|
||||
device const uint8_t * h = (device const uint8_t *)xb->hmask;
|
||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||
@ -1828,16 +1956,18 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
||||
((il/4)>0 ? 12 : 3);
|
||||
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
|
||||
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
|
||||
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) : \
|
||||
(scale_2&kmask2) | ((scale_1&kmask1) << 4);
|
||||
float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
|
||||
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
|
||||
: (scale_2&kmask2) | ((scale_1&kmask1) << 4);
|
||||
half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h);
|
||||
const half ml = 4.h * dl;
|
||||
|
||||
il = (il/2)%4;
|
||||
float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
||||
uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
il = (il/2) & 3;
|
||||
const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
||||
const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
dl *= coef;
|
||||
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i] & m) ? 0 : 4.f/coef));
|
||||
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
|
||||
}
|
||||
#else
|
||||
float kcoef = il&1 ? 1.f/16.f : 1.f;
|
||||
@ -1852,26 +1982,31 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
|
||||
return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
|
||||
: uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
|
||||
device const uint8_t * q = xb->qs;
|
||||
device const uchar * q = xb->qs;
|
||||
|
||||
#if QK_K == 256
|
||||
const float d = (float)(xb->d);
|
||||
const float min = (float)(xb->dmin);
|
||||
short is = (il/4) * 2;
|
||||
q = q + (il/4) * 32 + 16 * (il&1);
|
||||
il = il%4;
|
||||
const uchar4 sc = get_scale_min_k4(is, xb->scales);
|
||||
const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h;
|
||||
const float ml = il<2 ? min * sc[1] : min * sc[3];
|
||||
il = il & 3;
|
||||
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
|
||||
const half d = il < 2 ? xb->d : xb->d / 16.h;
|
||||
const half min = xb->dmin;
|
||||
const half dl = d * sc[0];
|
||||
const half ml = min * sc[1];
|
||||
#else
|
||||
q = q + 16 * (il&1);
|
||||
device const uint8_t * s = xb->scales;
|
||||
device const half2 * dh = (device const half2 *)xb->d;
|
||||
const float2 d = (float2)dh[0];
|
||||
const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
|
||||
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1 ]* (s[1]>>4);
|
||||
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
|
||||
#endif
|
||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
@ -1885,19 +2020,19 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
||||
device const uint8_t * qh = xb->qh;
|
||||
|
||||
#if QK_K == 256
|
||||
const float d = (float)(xb->d);
|
||||
const float min = (float)(xb->dmin);
|
||||
short is = (il/4) * 2;
|
||||
q = q + 32 * (il/4) + 16 * (il&1);
|
||||
qh = qh + 16 * (il&1);
|
||||
uint8_t ul = 1 << (il/2);
|
||||
il = il%4;
|
||||
const uchar4 sc = get_scale_min_k4(is, xb->scales);
|
||||
const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h;
|
||||
const float ml = il<2 ? min * sc[1] : min * sc[3];
|
||||
il = il & 3;
|
||||
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
|
||||
const half d = il < 2 ? xb->d : xb->d / 16.h;
|
||||
const half min = xb->dmin;
|
||||
const half dl = d * sc[0];
|
||||
const half ml = min * sc[1];
|
||||
|
||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||
const float qh_val = il<2 ? 16.f : 256.f;
|
||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||
const half qh_val = il<2 ? 16.h : 256.h;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
|
||||
}
|
||||
@ -1916,7 +2051,7 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
|
||||
const float d_all = (float)(xb->d);
|
||||
const half d_all = xb->d;
|
||||
device const uint8_t * ql = (device const uint8_t *)xb->ql;
|
||||
device const uint8_t * qh = (device const uint8_t *)xb->qh;
|
||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||
@ -1924,19 +2059,21 @@ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg
|
||||
#if QK_K == 256
|
||||
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
||||
qh = qh + 32*(il/8) + 16*(il&1);
|
||||
float sc = scales[(il%2) + 2 * ((il/2))];
|
||||
il = (il/2)%4;
|
||||
half sc = scales[(il%2) + 2 * ((il/2))];
|
||||
il = (il/2) & 3;
|
||||
#else
|
||||
ql = ql + 16 * (il&1);
|
||||
float sc = scales[il];
|
||||
half sc = scales[il];
|
||||
#endif
|
||||
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
||||
const half coef = il>1 ? 1.f/16.h : 1.h;
|
||||
const half ml = d_all * sc * 32.h;
|
||||
const half dl = d_all * sc * coef;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
||||
const float coef = il>1 ? 1.f/16.f : 1.f;
|
||||
float q = il&1 ? ((ql[i]&kmask2)|((qh[i]&kmask1)<<2)) - 32.f/coef : \
|
||||
((ql[i]&kmask2)|((qh[i]&kmask1)<<4)) - 32.f/coef;
|
||||
reg[i/4][i%4] = d_all * sc * q * coef;
|
||||
const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
|
||||
: ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
|
||||
reg[i/4][i%4] = dl * q - ml;
|
||||
}
|
||||
}
|
||||
|
||||
@ -1976,22 +2113,25 @@ kernel void kernel_get_rows(
|
||||
// each block_q contains 16*nl weights
|
||||
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
|
||||
kernel void kernel_mul_mm(device const uchar * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & nb01,
|
||||
constant int64_t & nb02,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & gqa,
|
||||
threadgroup uchar * shared_memory [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
device const uchar * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & nb01,
|
||||
constant int64_t & nb02,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & nb10,
|
||||
constant int64_t & nb11,
|
||||
constant int64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & gqa,
|
||||
threadgroup uchar * shared_memory [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
threadgroup half * sa = ((threadgroup half *)shared_memory);
|
||||
threadgroup half * sa = (threadgroup half *)(shared_memory);
|
||||
threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
|
||||
|
||||
const uint r0 = tgpig.y;
|
||||
@ -2004,7 +2144,7 @@ kernel void kernel_mul_mm(device const uchar * src0,
|
||||
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
|
||||
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
|
||||
|
||||
simdgroup_half8x8 ma[4];
|
||||
simdgroup_half8x8 ma[4];
|
||||
simdgroup_float8x8 mb[2];
|
||||
simdgroup_float8x8 c_res[8];
|
||||
for (int i = 0; i < 8; i++){
|
||||
@ -2012,10 +2152,15 @@ kernel void kernel_mul_mm(device const uchar * src0,
|
||||
}
|
||||
|
||||
short il = (tiitg % THREAD_PER_ROW);
|
||||
uint offset0 = im/gqa*nb02; ushort offset1 = il/nl;
|
||||
device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
|
||||
device const float * y = src1 + (r1 * BLOCK_SIZE_N + thread_col) * ne00 \
|
||||
+ BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL) + im * ne00 * ne1;
|
||||
|
||||
uint offset0 = im/gqa*nb02;
|
||||
ushort offset1 = il/nl;
|
||||
|
||||
device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
|
||||
device const float * y = (device const float *)(src1
|
||||
+ nb12 * im
|
||||
+ nb11 * (r1 * BLOCK_SIZE_N + thread_col)
|
||||
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
|
||||
|
||||
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
|
||||
//load data and store to threadgroup memory
|
||||
@ -2095,6 +2240,7 @@ kernel void kernel_mul_mm(device const uchar * src0,
|
||||
typedef void (get_rows_t)(device const void *, device const int *, device float *, constant int64_t &, \
|
||||
constant uint64_t &, constant uint64_t &, uint, uint, uint);
|
||||
|
||||
template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows<float4x4, 1, dequantize_f32>;
|
||||
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
|
||||
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
|
||||
@ -2105,14 +2251,27 @@ template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows
|
||||
template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
|
||||
template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
|
||||
typedef void (mat_mm_t)(device const uchar *, device const float *, device float *, constant int64_t &,\
|
||||
constant int64_t &, constant int64_t &, constant int64_t &, constant int64_t &, \
|
||||
constant int64_t &, constant int64_t &, constant uint &, threadgroup uchar *, uint3, uint, uint);
|
||||
typedef void (mat_mm_t)(
|
||||
device const uchar * src0,
|
||||
device const uchar * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & nb01,
|
||||
constant int64_t & nb02,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & nb10,
|
||||
constant int64_t & nb11,
|
||||
constant int64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & gqa,
|
||||
threadgroup uchar *, uint3, uint, uint);
|
||||
|
||||
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
|
||||
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
|
||||
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
|
||||
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
|
||||
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
|
||||
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
|
||||
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
|
||||
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
|
||||
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
|
||||
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
|
||||
|
22
ggml.c
22
ggml.c
@ -4303,10 +4303,21 @@ int64_t ggml_nrows(const struct ggml_tensor * tensor) {
|
||||
}
|
||||
|
||||
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
||||
size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
|
||||
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
|
||||
size_t nbytes;
|
||||
size_t blck_size = ggml_blck_size(tensor->type);
|
||||
if (blck_size == 1) {
|
||||
nbytes = ggml_type_size(tensor->type);
|
||||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
|
||||
}
|
||||
}
|
||||
else {
|
||||
nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
|
||||
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
|
||||
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
|
||||
}
|
||||
}
|
||||
|
||||
return nbytes;
|
||||
}
|
||||
|
||||
@ -18345,10 +18356,11 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) {
|
||||
for (int i = 0; i < cgraph->n_leafs; i++) {
|
||||
struct ggml_tensor * node = cgraph->leafs[i];
|
||||
|
||||
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
|
||||
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
|
||||
i,
|
||||
node->ne[0], node->ne[1],
|
||||
ggml_op_name(node->op));
|
||||
ggml_op_name(node->op),
|
||||
ggml_get_name(node));
|
||||
}
|
||||
|
||||
for (int i = 0; i < GGML_OP_COUNT; i++) {
|
||||
|
2039
whisper.cpp
2039
whisper.cpp
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user