minor : improve C++ and Python style (#768)

* use some STL functions

* use self.field than setattr, use pathlib.Path

* recover some format

* const some iter

* Keep the original

* 2 space
This commit is contained in:
AsukaMinato 2023-04-29 16:06:25 +09:00 committed by GitHub
parent 4d89ee2e59
commit 94aa56f19e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 100 additions and 105 deletions

View File

@ -23,6 +23,7 @@ import json
import code import code
import torch import torch
import numpy as np import numpy as np
from pathlib import Path
from transformers import WhisperForConditionalGeneration from transformers import WhisperForConditionalGeneration
@ -75,16 +76,13 @@ if len(sys.argv) < 4:
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n") print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
sys.exit(1) sys.exit(1)
dir_model = sys.argv[1] dir_model = Path(sys.argv[1])
dir_whisper = sys.argv[2] dir_whisper = Path(sys.argv[2])
dir_out = sys.argv[3] dir_out = Path(sys.argv[3])
with open(dir_model + "/vocab.json", "r", encoding="utf8") as f: encoder = json.load((dir_model / "vocab.json").open("r", encoding="utf8"))
encoder = json.load(f) encoder_added = json.load((dir_model / "added_tokens.json").open( "r", encoding="utf8"))
with open(dir_model + "/added_tokens.json", "r", encoding="utf8") as f: hparams = json.load((dir_model / "config.json").open("r", encoding="utf8") )
encoder_added = json.load(f)
with open(dir_model + "/config.json", "r", encoding="utf8") as f:
hparams = json.load(f)
model = WhisperForConditionalGeneration.from_pretrained(dir_model) model = WhisperForConditionalGeneration.from_pretrained(dir_model)
@ -96,16 +94,15 @@ with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as
dir_tokenizer = dir_model dir_tokenizer = dir_model
fname_out = dir_out + "/ggml-model.bin" fname_out = dir_out / "ggml-model.bin"
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f: tokens = json.load(open(dir_tokenizer / "vocab.json", "r", encoding="utf8"))
tokens = json.load(f)
# use 16-bit or 32-bit floats # use 16-bit or 32-bit floats
use_f16 = True use_f16 = True
if len(sys.argv) > 4: if len(sys.argv) > 4:
use_f16 = False use_f16 = False
fname_out = dir_out + "/ggml-model-f32.bin" fname_out = dir_out / "ggml-model-f32.bin"
fout = open(fname_out, "wb") fout = open(fname_out, "wb")
@ -171,10 +168,9 @@ for name in list_vars.keys():
data = data.astype(np.float16) data = data.astype(np.float16)
# reshape conv bias from [n] to [n, 1] # reshape conv bias from [n] to [n, 1]
if name == "encoder.conv1.bias" or \ if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
name == "encoder.conv2.bias":
data = data.reshape(data.shape[0], 1) data = data.reshape(data.shape[0], 1)
print(" Reshaped variable: " + name + " to shape: ", data.shape) print(" Reshaped variable: " , name , " to shape: ", data.shape)
n_dims = len(data.shape) n_dims = len(data.shape)
print(name, n_dims, data.shape) print(name, n_dims, data.shape)
@ -182,7 +178,7 @@ for name in list_vars.keys():
# looks like the whisper models are in f16 by default # looks like the whisper models are in f16 by default
# so we need to convert the small tensors to f32 until we fully support f16 in ggml # so we need to convert the small tensors to f32 until we fully support f16 in ggml
# ftype == 0 -> float32, ftype == 1 -> float16 # ftype == 0 -> float32, ftype == 1 -> float16
ftype = 1; ftype = 1
if use_f16: if use_f16:
if n_dims < 2 or \ if n_dims < 2 or \
name == "encoder.conv1.bias" or \ name == "encoder.conv1.bias" or \
@ -197,16 +193,16 @@ for name in list_vars.keys():
ftype = 0 ftype = 0
# header # header
str = name.encode('utf-8') str_ = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype)) fout.write(struct.pack("iii", n_dims, len(str_), ftype))
for i in range(n_dims): for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str); fout.write(str_)
# data # data
data.tofile(fout) data.tofile(fout)
fout.close() fout.close()
print("Done. Output file: " + fname_out) print("Done. Output file: " , fname_out)
print("") print("")

View File

@ -40,7 +40,7 @@ import code
import torch import torch
import numpy as np import numpy as np
import base64 import base64
from pathlib import Path
#from transformers import GPTJForCausalLM #from transformers import GPTJForCausalLM
#from transformers import GPT2TokenizerFast #from transformers import GPT2TokenizerFast
@ -194,17 +194,17 @@ if len(sys.argv) < 4:
print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n") print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n")
sys.exit(1) sys.exit(1)
fname_inp = sys.argv[1] fname_inp = Path(sys.argv[1])
dir_whisper = sys.argv[2] dir_whisper = Path(sys.argv[2])
dir_out = sys.argv[3] dir_out = Path(sys.argv[3])
# try to load PyTorch binary data # try to load PyTorch binary data
try: try:
model_bytes = open(fname_inp, "rb").read() model_bytes = open(fname_inp, "rb").read()
with io.BytesIO(model_bytes) as fp: with io.BytesIO(model_bytes) as fp:
checkpoint = torch.load(fp, map_location="cpu") checkpoint = torch.load(fp, map_location="cpu")
except: except Exception:
print("Error: failed to load PyTorch model file: %s" % fname_inp) print("Error: failed to load PyTorch model file:" , fname_inp)
sys.exit(1) sys.exit(1)
hparams = checkpoint["dims"] hparams = checkpoint["dims"]
@ -218,17 +218,17 @@ list_vars = checkpoint["model_state_dict"]
# load mel filters # load mel filters
n_mels = hparams["n_mels"] n_mels = hparams["n_mels"]
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f: with np.load(dir_whisper / "whisper" / "assets" / "mel_filters.npz") as f:
filters = torch.from_numpy(f[f"mel_{n_mels}"]) filters = torch.from_numpy(f[f"mel_{n_mels}"])
#print (filters) #print (filters)
#code.interact(local=locals()) #code.interact(local=locals())
multilingual = hparams["n_vocab"] == 51865 multilingual = hparams["n_vocab"] == 51865
tokenizer = os.path.join(dir_whisper, "whisper/assets", multilingual and "multilingual.tiktoken" or "gpt2.tiktoken") tokenizer = dir_whisper / "whisper" / "assets" / (multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
# output in the same directory as the model # output in the same directory as the model
fname_out = dir_out + "/ggml-model.bin" fname_out = dir_out / "ggml-model.bin"
with open(tokenizer, "rb") as f: with open(tokenizer, "rb") as f:
contents = f.read() contents = f.read()
@ -238,9 +238,9 @@ with open(tokenizer, "rb") as f:
use_f16 = True use_f16 = True
if len(sys.argv) > 4: if len(sys.argv) > 4:
use_f16 = False use_f16 = False
fname_out = dir_out + "/ggml-model-f32.bin" fname_out = dir_out / "ggml-model-f32.bin"
fout = open(fname_out, "wb") fout = fname_out.open("wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["n_vocab"])) fout.write(struct.pack("i", hparams["n_vocab"]))
@ -273,20 +273,19 @@ for key in tokens:
for name in list_vars.keys(): for name in list_vars.keys():
data = list_vars[name].squeeze().numpy() data = list_vars[name].squeeze().numpy()
print("Processing variable: " + name + " with shape: ", data.shape) print("Processing variable: " , name , " with shape: ", data.shape)
# reshape conv bias from [n] to [n, 1] # reshape conv bias from [n] to [n, 1]
if name == "encoder.conv1.bias" or \ if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
name == "encoder.conv2.bias":
data = data.reshape(data.shape[0], 1) data = data.reshape(data.shape[0], 1)
print(" Reshaped variable: " + name + " to shape: ", data.shape) print(f" Reshaped variable: {name} to shape: ", data.shape)
n_dims = len(data.shape); n_dims = len(data.shape)
# looks like the whisper models are in f16 by default # looks like the whisper models are in f16 by default
# so we need to convert the small tensors to f32 until we fully support f16 in ggml # so we need to convert the small tensors to f32 until we fully support f16 in ggml
# ftype == 0 -> float32, ftype == 1 -> float16 # ftype == 0 -> float32, ftype == 1 -> float16
ftype = 1; ftype = 1
if use_f16: if use_f16:
if n_dims < 2 or \ if n_dims < 2 or \
name == "encoder.conv1.bias" or \ name == "encoder.conv1.bias" or \
@ -307,16 +306,16 @@ for name in list_vars.keys():
# data = data.transpose() # data = data.transpose()
# header # header
str = name.encode('utf-8') str_ = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype)) fout.write(struct.pack("iii", n_dims, len(str_), ftype))
for i in range(n_dims): for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str); fout.write(str_)
# data # data
data.tofile(fout) data.tofile(fout)
fout.close() fout.close()
print("Done. Output file: " + fname_out) print("Done. Output file: " , fname_out)
print("") print("")

View File

@ -20,7 +20,7 @@ def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict,
""" """
for k in state_dict: for k in state_dict:
is_attention = all(substr in k for substr in ['attn', '.weight']) is_attention = all(substr in k for substr in ['attn', '.weight'])
is_mlp = any([k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight']]) is_mlp = any(k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight'])
if (is_attention or is_mlp) and len(state_dict[k].shape) == 2: if (is_attention or is_mlp) and len(state_dict[k].shape) == 2:
state_dict[k] = state_dict[k][:, :, None, None] state_dict[k] = state_dict[k][:, :, None, None]
@ -42,11 +42,10 @@ class LayerNormANE(LayerNormANEBase):
class MultiHeadAttentionANE(MultiHeadAttention): class MultiHeadAttentionANE(MultiHeadAttention):
def __init__(self, n_state: int, n_head: int): def __init__(self, n_state: int, n_head: int):
super().__init__(n_state, n_head) super().__init__(n_state, n_head)
self.query = nn.Conv2d(n_state, n_state, kernel_size=1)
setattr(self, 'query', nn.Conv2d(n_state, n_state, kernel_size=1)) self.key = nn.Conv2d(n_state, n_state, kernel_size=1, bias=False)
setattr(self, 'key', nn.Conv2d(n_state, n_state, kernel_size=1, bias=False)) self.value = nn.Conv2d(n_state, n_state, kernel_size=1)
setattr(self, 'value', nn.Conv2d(n_state, n_state, kernel_size=1)) self.out = nn.Conv2d(n_state, n_state, kernel_size=1)
setattr(self, 'out', nn.Conv2d(n_state, n_state, kernel_size=1))
def forward(self, def forward(self,
x: Tensor, x: Tensor,
@ -104,30 +103,28 @@ class MultiHeadAttentionANE(MultiHeadAttention):
class ResidualAttentionBlockANE(ResidualAttentionBlock): class ResidualAttentionBlockANE(ResidualAttentionBlock):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False): def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
super().__init__(n_state, n_head, cross_attention) super().__init__(n_state, n_head, cross_attention)
self.attn = MultiHeadAttentionANE(n_state, n_head)
setattr(self, 'attn', MultiHeadAttentionANE(n_state, n_head)) self.attn_ln = LayerNormANE(n_state)
setattr(self, 'attn_ln', LayerNormANE(n_state)) self.cross_attn = MultiHeadAttentionANE(n_state, n_head) if cross_attention else None
self.cross_attn_ln = LayerNormANE(n_state) if cross_attention else None
setattr(self, 'cross_attn', MultiHeadAttentionANE(n_state, n_head) if cross_attention else None)
setattr(self, 'cross_attn_ln', LayerNormANE(n_state) if cross_attention else None)
n_mlp = n_state * 4 n_mlp = n_state * 4
setattr(self, 'mlp', nn.Sequential( self.mlp = nn.Sequential(
nn.Conv2d(n_state, n_mlp, kernel_size=1), nn.Conv2d(n_state, n_mlp, kernel_size=1),
nn.GELU(), nn.GELU(),
nn.Conv2d(n_mlp, n_state, kernel_size=1) nn.Conv2d(n_mlp, n_state, kernel_size=1)
)) )
setattr(self, 'mlp_ln', LayerNormANE(n_state)) self.mlp_ln = LayerNormANE(n_state)
class AudioEncoderANE(AudioEncoder): class AudioEncoderANE(AudioEncoder):
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
super().__init__(n_mels, n_ctx, n_state, n_head, n_layer) super().__init__(n_mels, n_ctx, n_state, n_head, n_layer)
setattr(self, 'blocks', nn.ModuleList( self.blocks = nn.ModuleList(
[ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)] [ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)]
)) )
setattr(self, 'ln_post', LayerNormANE(n_state)) self.ln_post = LayerNormANE(n_state)
def forward(self, x: Tensor): def forward(self, x: Tensor):
""" """
@ -168,10 +165,10 @@ class TextDecoderANE(TextDecoder):
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int): def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer) super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer)
setattr(self, 'blocks', nn.ModuleList( self.blocks= nn.ModuleList(
[ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)] [ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
)) )
setattr(self, 'ln', LayerNormANE(n_state)) self.ln= LayerNormANE(n_state)
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None): def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
""" """
@ -213,20 +210,20 @@ class WhisperANE(Whisper):
def __init__(self, dims: ModelDimensions): def __init__(self, dims: ModelDimensions):
super().__init__(dims) super().__init__(dims)
setattr(self, 'encoder', AudioEncoderANE( self.encoder = AudioEncoderANE(
self.dims.n_mels, self.dims.n_mels,
self.dims.n_audio_ctx, self.dims.n_audio_ctx,
self.dims.n_audio_state, self.dims.n_audio_state,
self.dims.n_audio_head, self.dims.n_audio_head,
self.dims.n_audio_layer, self.dims.n_audio_layer,
)) )
setattr(self, 'decoder', TextDecoderANE( self.decoder = TextDecoderANE(
self.dims.n_vocab, self.dims.n_vocab,
self.dims.n_text_ctx, self.dims.n_text_ctx,
self.dims.n_text_state, self.dims.n_text_state,
self.dims.n_text_head, self.dims.n_text_head,
self.dims.n_text_layer, self.dims.n_text_layer,
)) )
self._register_load_state_dict_pre_hook(linear_to_conv2d_map) self._register_load_state_dict_pre_hook(linear_to_conv2d_map)

View File

@ -2356,11 +2356,7 @@ static void log_mel_spectrogram_worker_thread(int ith, const std::vector<float>
sum += fft_out[k] * filters.data[j * n_fft + k]; sum += fft_out[k] * filters.data[j * n_fft + k];
} }
if (sum < 1e-10) { sum = log10(std::max(sum, 1e-10));
sum = 1e-10;
}
sum = log10(sum);
mel.data[j * mel.n_len + i] = sum; mel.data[j * mel.n_len + i] = sum;
} }
@ -2602,7 +2598,6 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
} }
struct whisper_context * whisper_init_from_file_no_state(const char * path_model) { struct whisper_context * whisper_init_from_file_no_state(const char * path_model) {
whisper_model_loader loader = {};
fprintf(stderr, "%s: loading model from '%s'\n", __func__, path_model); fprintf(stderr, "%s: loading model from '%s'\n", __func__, path_model);
@ -2612,22 +2607,27 @@ struct whisper_context * whisper_init_from_file_no_state(const char * path_model
return nullptr; return nullptr;
} }
loader.context = &fin; whisper_model_loader loader = {
.context = &fin,
loader.read = [](void * ctx, void * output, size_t read_size) { .read =
std::ifstream * fin = (std::ifstream*)ctx; [](void *ctx, void *output, size_t read_size) {
fin->read((char *)output, read_size); std::ifstream *fin = (std::ifstream *)ctx;
return read_size; fin->read((char *)output, read_size);
}; return read_size;
},
loader.eof = [](void * ctx) { .eof =
std::ifstream * fin = (std::ifstream*)ctx; [](void *ctx) {
return fin->eof(); std::ifstream *fin = (std::ifstream *)ctx;
}; return fin->eof();
},
loader.close = [](void * ctx) { .close =
std::ifstream * fin = (std::ifstream*)ctx; [](void *ctx) {
fin->close(); std::ifstream *fin = (std::ifstream *)ctx;
fin->close();
}
}; };
auto ctx = whisper_init_no_state(&loader); auto ctx = whisper_init_no_state(&loader);
@ -2647,30 +2647,34 @@ struct whisper_context * whisper_init_from_buffer_no_state(void * buffer, size_t
}; };
buf_context ctx = { reinterpret_cast<uint8_t*>(buffer), buffer_size, 0 }; buf_context ctx = { reinterpret_cast<uint8_t*>(buffer), buffer_size, 0 };
whisper_model_loader loader = {};
fprintf(stderr, "%s: loading model from buffer\n", __func__); fprintf(stderr, "%s: loading model from buffer\n", __func__);
loader.context = &ctx; whisper_model_loader loader = {
.context = &ctx,
loader.read = [](void * ctx, void * output, size_t read_size) { .read =
buf_context * buf = reinterpret_cast<buf_context *>(ctx); [](void *ctx, void *output, size_t read_size) {
buf_context *buf = reinterpret_cast<buf_context *>(ctx);
size_t size_to_copy = buf->current_offset + read_size < buf->size ? read_size : buf->size - buf->current_offset; size_t size_to_copy = buf->current_offset + read_size < buf->size
? read_size
: buf->size - buf->current_offset;
memcpy(output, buf->buffer + buf->current_offset, size_to_copy); memcpy(output, buf->buffer + buf->current_offset, size_to_copy);
buf->current_offset += size_to_copy; buf->current_offset += size_to_copy;
return size_to_copy; return size_to_copy;
}; },
loader.eof = [](void * ctx) { .eof =
buf_context * buf = reinterpret_cast<buf_context *>(ctx); [](void *ctx) {
buf_context *buf = reinterpret_cast<buf_context *>(ctx);
return buf->current_offset >= buf->size; return buf->current_offset >= buf->size;
}; },
loader.close = [](void * /*ctx*/) { }; .close = [](void * /*ctx*/) {}};
return whisper_init_no_state(&loader); return whisper_init_no_state(&loader);
} }
@ -2909,7 +2913,6 @@ int whisper_lang_id(const char * lang) {
fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang); fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang);
return -1; return -1;
} }
return g_lang.at(lang).first; return g_lang.at(lang).first;
} }
@ -3303,15 +3306,15 @@ static void whisper_exp_compute_token_level_timestamps(
// trim from start (in place) // trim from start (in place)
static inline void ltrim(std::string &s) { static inline void ltrim(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](unsigned char ch) { s.erase(s.begin(), std::find_if_not(s.begin(), s.end(), [](unsigned char ch) {
return !std::isspace(ch); return std::isspace(ch);
})); }));
} }
// trim from end (in place) // trim from end (in place)
static inline void rtrim(std::string &s) { static inline void rtrim(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(), [](unsigned char ch) { s.erase(std::find_if_not(s.rbegin(), s.rend(), [](unsigned char ch) {
return !std::isspace(ch); return std::isspace(ch);
}).base(), s.end()); }).base(), s.end());
} }