vad : revisit timestamp alignment/mapping (#3173)

* vad : revisit timestamp alignment/mapping

This commit improving the timestamp alignment by introducing a mapping
table, adding intermediate reference points for longer segments, and
binary search for lookups.

The motivation for this changes is to address issues with the currently
solution where zero-length segments are possible, and also to improve
the precision of the VAD timestamps.

Refs: https://github.com/ggml-org/whisper.cpp/issues/3162

* vad : use uint64_t for time mapping

This commit changes the type of the `processed_time` and `original_time`
fields in the `vad_time_mapping` struct from `double` to `uint64_t`.

The motivation for this change is made to improve precision and avoid
floating-point inaccuracies and also be consistent with other part of
the code base that use `uint64_t` for time representation.

This is a part of a refactoring where I'm also going to change the
vad_segment_info struct to use `uint64_t` for the start and end times.
This is the reason for the not so pleasant conversion and casts in the
code at the moment.

* vad : change vad_segment_info and whisper_vad_segment to use uint64_t

* vad : use int64_t instead of uint64_t for timestamps

To be consistent with other timestamps in the codebase.

* vad : add centisecond conversion functions

* vad : extract vad processing from whisper_full_with_state

This commit extracts the VAD processing from the
`whisper_full_with_state` function into the `whisper_full` and
`whisper_full_parallel` functions.

The motivation for this is that I did not take into account that when
`whisper_full_parallel` is called with `n_processors > 1`, then the
vad processing would not be applied correctly. Instead the VAD
processing should be done prior to processing in the case of
`whisper_full_parallel`.

* vad : remove filtered_n_samples from whisper_vad

The commit removes the parameter `filtered_n_samples` from the
`whisper_vad` function signature and its usage, as it is no longer
needed since filtered samples is now a vector (previously it was a
float*)

The motivation for this is to simplify the usage of this function.

* vad : remove vad_mapping_table_initialized flag

* vad : fix leaning (none) of pointer/references
This commit is contained in:
Daniel Bevenius 2025-05-30 06:28:46 +02:00 committed by GitHub
parent e5e900dd00
commit 98dfe8dc26
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -859,6 +859,11 @@ struct whisper_aheads_masks {
ggml_backend_buffer_t buffer = nullptr;
};
struct vad_time_mapping {
int64_t processed_time; // Time in processed (VAD) audio
int64_t original_time; // Corresponding time in original audio
};
struct whisper_state {
int64_t t_sample_us = 0;
int64_t t_encode_us = 0;
@ -948,13 +953,15 @@ struct whisper_state {
whisper_vad_context * vad_context = nullptr;
struct vad_segment_info {
float orig_start;
float orig_end;
float vad_start;
float vad_end;
int64_t orig_start;
int64_t orig_end;
int64_t vad_start;
int64_t vad_end;
};
std::vector<vad_segment_info> vad_segments;
bool has_vad_segments = false;
std::vector<vad_time_mapping> vad_mapping_table;
};
struct whisper_context {
@ -4407,8 +4414,8 @@ struct whisper_vad_model {
};
struct whisper_vad_segment {
float start; // Start time in seconds
float end; // End time in seconds
int64_t start;
int64_t end;
};
struct whisper_vad_segments {
@ -4456,6 +4463,15 @@ struct whisper_vad_params whisper_vad_default_params(void) {
return result;
}
// Time conversion utility functions for whisper VAD
static int cs_to_samples(int64_t cs) {
return (int)((cs / 100.0) * WHISPER_SAMPLE_RATE + 0.5);
}
static int64_t samples_to_cs(int samples) {
return (int64_t)((samples / (double)WHISPER_SAMPLE_RATE) * 100.0 + 0.5);
}
static bool weight_buft_supported(const whisper_vad_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
bool op_supported = true;
@ -5400,12 +5416,12 @@ struct whisper_vad_segments * whisper_vad_segments_from_probs(
(speeches[i].end + speech_pad_samples) : audio_length_samples;
}
// Convert from samples to seconds and copy to final segments
segments[i].start = (float)speeches[i].start / sample_rate;
segments[i].end = (float)speeches[i].end / sample_rate;
// Convert from samples to centiseconds
segments[i].start = samples_to_cs(speeches[i].start);
segments[i].end = samples_to_cs(speeches[i].end);
WHISPER_LOG_INFO("%s: VAD segment %d: start = %.2f, end = %.2f (duration: %.2f)\n",
__func__, i, segments[i].start, segments[i].end, segments[i].end - segments[i].start);
__func__, i, segments[i].start/100.0, segments[i].end/100.0, (segments[i].end - segments[i].start)/100.0);
}
whisper_vad_segments * vad_segments = new whisper_vad_segments;
@ -6602,10 +6618,13 @@ static bool whisper_vad(
struct whisper_full_params params,
const float * samples,
int n_samples,
std::vector<float> & filtered_samples,
int & filtered_n_samples) {
WHISPER_LOG_INFO("%s: VAD is enabled, processing speach segments only\n", __func__);
filtered_n_samples = 0;
std::vector<float> & filtered_samples) {
WHISPER_LOG_INFO("%s: VAD is enabled, processing speech segments only\n", __func__);
int filtered_n_samples = 0;
// Clear any existing mapping table
state->vad_mapping_table.clear();
state->has_vad_segments = false;
if (state->vad_context == nullptr) {
struct whisper_vad_context_params vad_ctx_params = whisper_vad_default_context_params();
@ -6627,13 +6646,17 @@ static bool whisper_vad(
ctx->state->vad_segments.clear();
ctx->state->vad_segments.reserve(vad_segments->data.size());
// Initialize the time mapping table
state->vad_mapping_table.clear();
state->vad_mapping_table.reserve(vad_segments->data.size() * 4);
WHISPER_LOG_INFO("%s: detected %d speech segments\n", __func__, (int)vad_segments->data.size());
float overlap_seconds = vad_params.samples_overlap;
int overlap_samples = overlap_seconds * WHISPER_SAMPLE_RATE;
for (int i = 0; i < (int)vad_segments->data.size(); i++) {
int segment_start_samples = vad_segments->data[i].start * WHISPER_SAMPLE_RATE;
int segment_end_samples = vad_segments->data[i].end * WHISPER_SAMPLE_RATE;
int segment_start_samples = cs_to_samples(vad_segments->data[i].start);
int segment_end_samples = cs_to_samples(vad_segments->data[i].end);
if (i < (int)vad_segments->data.size() - 1) {
segment_end_samples += overlap_samples;
@ -6642,9 +6665,9 @@ static bool whisper_vad(
filtered_n_samples += (segment_end_samples - segment_start_samples);
WHISPER_LOG_INFO("%s: Including segment %d: %.2f - %.2f (duration: %.2f)\n",
__func__, i, vad_segments->data[i].start,
vad_segments->data[i].end + (i < (int)vad_segments->data.size() - 1 ? overlap_seconds : 0),
(vad_segments->data[i].end - vad_segments->data[i].start) +
__func__, i, vad_segments->data[i].start/100.0,
(vad_segments->data[i].end/100.0 + (i < (int)vad_segments->data.size() - 1 ? overlap_seconds : 0)),
(vad_segments->data[i].end - vad_segments->data[i].start)/100.0 +
(i < (int)vad_segments->data.size() - 1 ? overlap_seconds : 0));
}
@ -6666,8 +6689,8 @@ static bool whisper_vad(
int offset = 0;
for (int i = 0; i < (int)vad_segments->data.size(); i++) {
int segment_start_samples = vad_segments->data[i].start * WHISPER_SAMPLE_RATE;
int segment_end_samples = vad_segments->data[i].end * WHISPER_SAMPLE_RATE;
int segment_start_samples = cs_to_samples(vad_segments->data[i].start);
int segment_end_samples = cs_to_samples(vad_segments->data[i].end);
if (i < (int)vad_segments->data.size() - 1) {
segment_end_samples += overlap_samples;
@ -6676,18 +6699,47 @@ static bool whisper_vad(
segment_start_samples = std::min(segment_start_samples, n_samples - 1);
segment_end_samples = std::min(segment_end_samples, n_samples);
int segment_length = segment_end_samples - segment_start_samples;
if (segment_length > 0) {
whisper_state::vad_segment_info segment;
segment.orig_start = vad_segments->data[i].start;
segment.orig_end = vad_segments->data[i].end;
segment.vad_start = offset / (float)WHISPER_SAMPLE_RATE;
segment.vad_end = (offset + segment_length) / (float)WHISPER_SAMPLE_RATE;
segment.vad_start = samples_to_cs(offset);
segment.vad_end = samples_to_cs(offset + segment_length);
// Add segment boundaries to mapping table
vad_time_mapping start_mapping = {segment.vad_start, segment.orig_start};
vad_time_mapping end_mapping = {segment.vad_end, segment.orig_end};
state->vad_mapping_table.push_back(start_mapping);
state->vad_mapping_table.push_back(end_mapping);
// Add intermediate points for longer segments to improve interpolation accuracy
const int64_t min_segment_length = 100; // 1 second
const int64_t point_interval = 20; // Add a point every 200ms
if (segment.vad_end - segment.vad_start > min_segment_length) {
int64_t segment_duration = segment.vad_end - segment.vad_start;
int num_points = (int)(segment_duration / point_interval) - 1;
for (int j = 1; j <= num_points; j++) {
int64_t vad_time = segment.vad_start + j * point_interval;
if (vad_time >= segment.vad_end) continue;
int64_t vad_elapsed = vad_time - segment.vad_start;
int64_t vad_total = segment.vad_end - segment.vad_start;
int64_t orig_total = segment.orig_end - segment.orig_start;
int64_t orig_time = segment.orig_start + (vad_elapsed * orig_total) / vad_total;
vad_time_mapping intermediate_mapping = {vad_time, orig_time};
state->vad_mapping_table.push_back(intermediate_mapping);
}
}
WHISPER_LOG_INFO("%s: vad_segment_info: orig_start: %.2f, orig_end: %.2f, vad_start: %.2f, vad_end: %.2f\n",
__func__, segment.orig_start, segment.orig_end, segment.vad_start, segment.vad_end);
__func__, segment.orig_start/100.0, segment.orig_end/100.0, segment.vad_start/100.0, segment.vad_end/100.0);
ctx->state->vad_segments.push_back(segment);
// Copy this speech segment
@ -6696,6 +6748,17 @@ static bool whisper_vad(
// Add silence after this segment (except after the last segment)
if (i < (int)vad_segments->data.size() - 1) {
// Calculate the start and end time of the silence gap in processed audio
int64_t silence_start_vad = samples_to_cs(offset);
int64_t silence_end_vad = samples_to_cs(offset + silence_samples);
// Calculate the corresponding original times
int64_t orig_silence_start = segment.orig_end;
int64_t orig_silence_end = vad_segments->data[i+1].start;
// Add mapping points for silence boundaries
state->vad_mapping_table.push_back({silence_start_vad, orig_silence_start});
state->vad_mapping_table.push_back({silence_end_vad, orig_silence_end});
// Fill with zeros (silence)
memset(filtered_samples.data() + offset, 0, silence_samples * sizeof(float));
offset += silence_samples;
@ -6703,6 +6766,24 @@ static bool whisper_vad(
}
}
// Sort the mapping table by processed time
std::sort(state->vad_mapping_table.begin(), state->vad_mapping_table.end(),
[](const vad_time_mapping& a, const vad_time_mapping& b) {
return a.processed_time < b.processed_time;
});
// Remove any duplicate processed times to ensure monotonicity which is
// needed for binary search and interpolation later.
if (!state->vad_mapping_table.empty()) {
auto last = std::unique(state->vad_mapping_table.begin(), state->vad_mapping_table.end(),
[](const vad_time_mapping& a, const vad_time_mapping& b) {
return a.processed_time == b.processed_time;
});
state->vad_mapping_table.erase(last, state->vad_mapping_table.end());
}
WHISPER_LOG_INFO("%s: Created time mapping table with %d points\n", __func__, (int)state->vad_mapping_table.size());
filtered_n_samples = offset;
WHISPER_LOG_INFO("%s: Reduced audio from %d to %d samples (%.1f%% reduction)\n",
__func__, n_samples, filtered_n_samples, 100.0f * (1.0f - (float)filtered_n_samples / n_samples));
@ -6722,27 +6803,9 @@ int whisper_full_with_state(
result_all.clear();
const float * process_samples = samples;
int n_process_samples = n_samples;
std::vector<float> vad_samples;
if (params.vad) {
WHISPER_LOG_INFO("%s: VAD is enabled, processing speech segments only\n", __func__);
int vad_n_samples;
if (!whisper_vad(ctx, state, params, samples, n_samples, vad_samples, vad_n_samples)) {
WHISPER_LOG_ERROR("%s: failed to compute VAD\n", __func__);
return -1;
}
if (vad_n_samples == 0) {
return 0;
}
process_samples = vad_samples.data();
n_process_samples = vad_n_samples;
}
if (n_process_samples > 0) {
if (n_samples > 0) {
// compute log mel spectrogram
if (whisper_pcm_to_mel_with_state(ctx, state, process_samples, n_process_samples, params.n_threads) != 0) {
if (whisper_pcm_to_mel_with_state(ctx, state, samples, n_samples, params.n_threads) != 0) {
WHISPER_LOG_ERROR("%s: failed to compute log mel spectrogram\n", __func__);
return -2;
}
@ -7652,6 +7715,20 @@ int whisper_full(
struct whisper_full_params params,
const float * samples,
int n_samples) {
std::vector<float> vad_samples;
if (params.vad) {
WHISPER_LOG_INFO("%s: VAD is enabled, processing speech segments only\n", __func__);
if (!whisper_vad(ctx, ctx->state, params, samples, n_samples, vad_samples)) {
WHISPER_LOG_ERROR("%s: failed to compute VAD\n", __func__);
return -1;
}
if (vad_samples.empty()) {
return 0;
}
samples = vad_samples.data();
n_samples = vad_samples.size();
}
return whisper_full_with_state(ctx, ctx->state, params, samples, n_samples);
}
@ -7661,9 +7738,24 @@ int whisper_full_parallel(
const float * samples,
int n_samples,
int n_processors) {
if (n_processors == 1) {
return whisper_full(ctx, params, samples, n_samples);
}
std::vector<float> vad_samples;
if (params.vad) {
WHISPER_LOG_INFO("%s: VAD is enabled, processing speech segments only\n", __func__);
if (!whisper_vad(ctx, ctx->state, params, samples, n_samples, vad_samples)) {
WHISPER_LOG_ERROR("%s: failed to compute VAD\n", __func__);
return -1;
}
if (vad_samples.empty()) {
return 0;
}
samples = vad_samples.data();
n_samples = vad_samples.size();
}
int ret = 0;
// prepare separate states for each thread
@ -7786,130 +7878,89 @@ int whisper_full_lang_id(struct whisper_context * ctx) {
return ctx->state->lang_id;
}
static int64_t map_processed_to_original_time(int64_t processed_time, const std::vector<vad_time_mapping> & mapping_table) {
if (mapping_table.empty()) {
return processed_time;
}
if (processed_time <= mapping_table.front().processed_time) {
return mapping_table.front().original_time; // Before first mapping point
}
if (processed_time >= mapping_table.back().processed_time) {
return mapping_table.back().original_time; // After last mapping point
}
// Binary search over the time map that finds the first entry that has a
// processed time greater than or equal to the current processed time.
auto upper = std::lower_bound(mapping_table.begin(), mapping_table.end(), processed_time,
[](const vad_time_mapping & entry, int64_t time) {
return entry.processed_time < time;
}
);
// If exact match found
if (upper->processed_time == processed_time) {
return upper->original_time;
}
// Need to interpolate between two points
auto lower = upper - 1;
int64_t processed_diff = upper->processed_time - lower->processed_time;
int64_t original_diff = upper->original_time - lower->original_time;
int64_t offset = processed_time - lower->processed_time;
if (processed_diff == 0) {
return lower->original_time;
}
// Perform linear interpolation
return lower->original_time + (offset * original_diff) / processed_diff;
}
// Function to get the starting timestamp of a segment
int64_t whisper_full_get_segment_t0_from_state(struct whisper_state * state, int i_segment) {
// If VAD wasn't used, return the original timestamp
if (!state->has_vad_segments || state->vad_segments.empty()) {
if (!state->has_vad_segments || state->vad_mapping_table.empty()) {
return state->result_all[i_segment].t0;
}
// Get the start timestamp produced by whisper_full. whisper_full processes
// only the speech segments in this case so we need to map these timestamps
// back to the original audio.
float t0 = state->result_all[i_segment].t0 / 100.0f;
// Get the processed timestamp
int64_t t0 = state->result_all[i_segment].t0;
// Find which VAD segment this timestamp belongs.
// TODO(danbev) This could be optimized by using a binary search if the number
// of segments exceed a certain limit. Also we might be able to assume that
// the access pattern is sequential and optimized for that too.
for (size_t i = 0; i < state->vad_segments.size(); i++) {
const auto & segment = state->vad_segments[i];
// Check if the timestamp falls within this segment.
if (t0 >= segment.vad_start && t0 <= segment.vad_end) {
float proportion = 0.0f;
if (segment.vad_end > segment.vad_start) {
proportion = (t0 - segment.vad_start) / (segment.vad_end - segment.vad_start);
}
float orig_t0 = segment.orig_start + proportion * (segment.orig_end - segment.orig_start);
return (int64_t)(orig_t0 * 100);
}
}
// Check if the timestamp falls between two segments.
for (size_t i = 0; i < state->vad_segments.size() - 1; i++) {
const auto & curr = state->vad_segments[i];
const auto & next = state->vad_segments[i + 1];
if (t0 > curr.vad_end && t0 < next.vad_start) {
// Calculate how far we are through the gap as a proportion
float gap_proportion = 0.0f;
if (next.vad_start > curr.vad_end) {
gap_proportion = (t0 - curr.vad_end) / (next.vad_start - curr.vad_end);
}
float orig_t0 = curr.orig_end + gap_proportion * (next.orig_start - curr.orig_end);
return (int64_t)(orig_t0 * 100);
}
}
// Handle the case where the timestamp is after the last segment.
if (t0 > state->vad_segments.back().vad_end) {
// For timestamps after the last segment, add the extra time to the end of the last segment
const auto& last = state->vad_segments.back();
// Calculate how far beyond the last segment
float extra_time = t0 - last.vad_end;
// Add this extra time to the original end time
float orig_t0 = last.orig_end + extra_time;
return (int64_t)(orig_t0 * 100);
}
WHISPER_LOG_WARN("%s: Could not map t0 = %f to a VAD segment\n", __func__, t0);
return t0;
}
int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) {
return whisper_full_get_segment_t0_from_state(ctx->state, i_segment);
// Map to original time using the mapping table
return map_processed_to_original_time(t0, state->vad_mapping_table);
}
// Function to get the ending timestamp of a segment
int64_t whisper_full_get_segment_t1_from_state(struct whisper_state * state, int i_segment) {
// If VAD wasn't used, return the original timestamp
if (!state->has_vad_segments || state->vad_segments.empty()) {
if (!state->has_vad_segments || state->vad_mapping_table.empty()) {
return state->result_all[i_segment].t1;
}
// Get the end timestamp produced by whisper_full. whisper_full processes
// only the speech segments in this case so we need to map these timestamps
// back to the original audio.
float t1 = state->result_all[i_segment].t1 / 100.0f;
// Get the processed timestamp
int64_t t1 = state->result_all[i_segment].t1;
// Find which VAD segment this timestamp belongs.
// TODO(danbev) This could be optimized by using a binary search if the number
// of segments exceed a certain limit. Also we might be able to assume that
// the access pattern is sequential and optimized for that too.
for (size_t i = 0; i < state->vad_segments.size(); i++) {
const auto& segment = state->vad_segments[i];
// Map to original time using the mapping table
int64_t orig_t1 = map_processed_to_original_time(t1, state->vad_mapping_table);
// Check if the timestamp falls within this segment.
if (t1 >= segment.vad_start && t1 <= segment.vad_end) {
// Calculate the proportion through the filtered segment.
float proportion = 0.0f;
if (segment.vad_end > segment.vad_start) {
proportion = (t1 - segment.vad_start) / (segment.vad_end - segment.vad_start);
}
float orig_t1 = segment.orig_start + proportion * (segment.orig_end - segment.orig_start);
return (int64_t)(orig_t1 * 100);
}
// Get the corresponding t0 for this segment
int64_t orig_t0 = whisper_full_get_segment_t0_from_state(state, i_segment);
// Ensure minimum duration to prevent zero-length segments
const int64_t min_duration = 10; // 10ms minimum
if (orig_t1 - orig_t0 < min_duration) {
orig_t1 = orig_t0 + min_duration;
}
// Check if the timestamp falls between two segments.
for (size_t i = 0; i < state->vad_segments.size() - 1; i++) {
const auto & curr = state->vad_segments[i];
const auto & next = state->vad_segments[i + 1];
if (t1 > curr.vad_end && t1 < next.vad_start) {
// Calculate how far we are through the gap as a proportion
float gap_proportion = 0.0f;
if (next.vad_start > curr.vad_end) {
gap_proportion = (t1 - curr.vad_end) / (next.vad_start - curr.vad_end);
}
// Map to the corresponding position in the original gap
float orig_t1 = curr.orig_end + gap_proportion * (next.orig_start - curr.orig_end);
return (int64_t)(orig_t1 * 100);
}
return orig_t1;
}
// Handle the case where the timestamp is after the last segment
if (t1 > state->vad_segments.back().vad_end) {
// For the last segment, use the end of the last VAD segment
const auto& last = state->vad_segments.back();
// Calculate how far beyond the last segment
float extra_time = t1 - last.vad_end;
// Add this extra time to the original end time
float orig_t1 = last.orig_end + extra_time;
return (int64_t)(orig_t1 * 100);
}
WHISPER_LOG_WARN("%s: Could not map t1 = %f to a VAD segment\n", __func__, t1);
return t1;
int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) {
return whisper_full_get_segment_t0_from_state(ctx->state, i_segment);
}
int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) {