talk-llama : sync llama.cpp

This commit is contained in:
Georgi Gerganov 2024-02-22 23:30:53 +02:00
parent 7b1ff212d9
commit a2506909b1
No known key found for this signature in database
GPG Key ID: 449E073F9DC10735
2 changed files with 267 additions and 36 deletions

View File

@ -208,6 +208,7 @@ enum llm_arch {
LLM_ARCH_ORION, LLM_ARCH_ORION,
LLM_ARCH_INTERNLM2, LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM, LLM_ARCH_MINICPM,
LLM_ARCH_GEMMA,
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
}; };
@ -234,6 +235,7 @@ static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_ORION, "orion" }, { LLM_ARCH_ORION, "orion" },
{ LLM_ARCH_INTERNLM2, "internlm2" }, { LLM_ARCH_INTERNLM2, "internlm2" },
{ LLM_ARCH_MINICPM, "minicpm" }, { LLM_ARCH_MINICPM, "minicpm" },
{ LLM_ARCH_GEMMA, "gemma" },
}; };
enum llm_kv { enum llm_kv {
@ -760,6 +762,22 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
}, },
}, },
{
LLM_ARCH_GEMMA,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{ {
LLM_ARCH_UNKNOWN, LLM_ARCH_UNKNOWN,
{ {
@ -2527,6 +2545,7 @@ struct llama_model_loader {
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
default: default:
{ {
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
@ -2772,13 +2791,7 @@ struct llama_model_loader {
std::vector<no_init<uint8_t>> read_buf; std::vector<no_init<uint8_t>> read_buf;
for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
if (!cur) {
// some tensors may be allocated in a different context
continue;
}
if (progress_callback) { if (progress_callback) {
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
return false; return false;
@ -2877,6 +2890,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small"; case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small";
case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
default: return "unknown, may not work"; default: return "unknown, may not work";
} }
@ -3241,6 +3255,16 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN; default: model.type = e_model::MODEL_UNKNOWN;
} }
} break; } break;
case LLM_ARCH_GEMMA:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 18: model.type = e_model::MODEL_2B; break;
case 28: model.type = e_model::MODEL_7B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0; default: (void)0;
} }
@ -3692,7 +3716,7 @@ static bool llm_load_tensors(
} }
// create one context per buffer type // create one context per buffer type
size_t ctx_size = ggml_tensor_overhead()*ml.n_tensors; size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
for (auto & it : buft_layer_count) { for (auto & it : buft_layer_count) {
struct ggml_init_params params = { struct ggml_init_params params = {
@ -3830,6 +3854,7 @@ static bool llm_load_tensors(
} else { } else {
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
ml.n_created--; // artificial tensor ml.n_created--; // artificial tensor
ml.size_data += ggml_nbytes(model.output);
} }
} }
@ -4029,6 +4054,8 @@ static bool llm_load_tensors(
// output // output
{ {
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
} }
@ -4039,13 +4066,22 @@ static bool llm_load_tensors(
auto & layer = model.layers[i]; auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
// AWQ ScaleActivation layer // AWQ ScaleActivation layer
layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false); layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
@ -4358,6 +4394,40 @@ static bool llm_load_tensors(
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
} }
} break; } break;
case LLM_ARCH_GEMMA:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
ml.n_created--; // artificial tensor
ml.size_data += ggml_nbytes(model.output);
const int64_t n_ff = hparams.n_ff;
const int64_t n_embd_head_k = hparams.n_embd_head_k;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
for (uint32_t i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
}
} break;
default: default:
throw std::runtime_error("unknown architecture"); throw std::runtime_error("unknown architecture");
} }
@ -6112,7 +6182,7 @@ struct llm_build_context {
attn_norm = llm_build_norm(ctx0, inpL, hparams, attn_norm = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, model.layers[il].attn_norm,
NULL, model.layers[il].attn_norm_b,
LLM_NORM, cb, il); LLM_NORM, cb, il);
cb(attn_norm, "attn_norm", il); cb(attn_norm, "attn_norm", il);
@ -6123,6 +6193,11 @@ struct llm_build_context {
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
cb(cur, "wqkv", il); cb(cur, "wqkv", il);
if (model.layers[il].bqkv){
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
if (hparams.f_clamp_kqv > 0.0f) { if (hparams.f_clamp_kqv > 0.0f) {
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(cur, "wqkv_clamped", il); cb(cur, "wqkv_clamped", il);
@ -6139,7 +6214,7 @@ struct llm_build_context {
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL, model.layers[il].wo, model.layers[il].bo,
Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
cb(cur, "kqv_out", il); cb(cur, "kqv_out", il);
} }
@ -6152,13 +6227,13 @@ struct llm_build_context {
{ {
cur = llm_build_norm(ctx0, ffn_inp, hparams, cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, model.layers[il].ffn_norm,
NULL, model.layers[il].ffn_norm_b,
LLM_NORM, cb, il); LLM_NORM, cb, il);
cb(cur, "ffn_norm", il); cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, cur, cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, model.layers[il].ffn_up_b,
NULL, NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b,
model.layers[il].ffn_act, model.layers[il].ffn_act,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
@ -6175,7 +6250,7 @@ struct llm_build_context {
cur = llm_build_norm(ctx0, cur, hparams, cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, model.output_norm,
NULL, model.output_norm_b,
LLM_NORM, cb, -1); LLM_NORM, cb, -1);
cb(cur, "result_norm", -1); cb(cur, "result_norm", -1);
@ -7364,6 +7439,116 @@ struct llm_build_context {
return gf; return gf;
} }
struct ggml_cgraph * build_gemma() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
const int64_t n_embd_head_k = hparams.n_embd_head_k;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
cb(inpL, "inp_embd", -1);
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
cb(inp_pos, "inp_pos", -1);
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
cb(KQ_mask, "KQ_mask", -1);
// shift the entire K-cache if needed
if (do_rope_shift) {
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
}
for (int il = 0; il < n_layer; ++il) {
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
cb(Qcur, "Qcur_scaled", il);
Kcur = ggml_rope_custom(
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Kcur, "Kcur", il);
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
model.layers[il].wo, NULL,
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
cb(cur, "kqv_out", il);
}
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = llm_build_norm(ctx0, sa_out, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, sa_out);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams,
model.output_norm, NULL,
LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}
}; };
static struct ggml_cgraph * llama_build_graph( static struct ggml_cgraph * llama_build_graph(
@ -7472,6 +7657,10 @@ static struct ggml_cgraph * llama_build_graph(
{ {
result = llm.build_minicpm(); result = llm.build_minicpm();
} break; } break;
case LLM_ARCH_GEMMA:
{
result = llm.build_gemma();
} break;
default: default:
GGML_ASSERT(false); GGML_ASSERT(false);
} }
@ -10309,7 +10498,10 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
return std::make_pair(i_layer, n_layer); return std::make_pair(i_layer, n_layer);
}; };
if (name == tn(LLM_TENSOR_OUTPUT, "weight")) { // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
// with the quantization of the output tensor
if (name == tn(LLM_TENSOR_OUTPUT, "weight") ||
(LLM_TENSOR_NAMES.at(arch).find(LLM_TENSOR_OUTPUT) == LLM_TENSOR_NAMES.at(arch).end() && name == "token_embd.weight")) {
int nx = tensor->ne[0]; int nx = tensor->ne[0];
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
new_type = GGML_TYPE_Q8_0; new_type = GGML_TYPE_Q8_0;
@ -10354,6 +10546,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
} }
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && qs.model.hparams.n_gqa() >= 4) {
new_type = GGML_TYPE_Q5_K;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
@ -10406,6 +10601,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
} }
} }
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && !qs.has_imatrix) {
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
new_type = GGML_TYPE_Q5_K; new_type = GGML_TYPE_Q5_K;
@ -10422,7 +10620,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
if (arch != LLM_ARCH_FALCON) { if (arch != LLM_ARCH_FALCON) {
if (qs.model.hparams.n_expert == 8) { if (qs.model.hparams.n_expert == 8) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
new_type = GGML_TYPE_Q5_K; new_type = GGML_TYPE_Q5_K;
} }
@ -10489,8 +10687,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_S:
case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break; case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break; case GGML_TYPE_Q3_K: new_type = GGML_TYPE_IQ4_NL; break;
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
@ -10532,6 +10730,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_IQ2_XS: quantized_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_XS: quantized_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S; break; case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S; break;
case LLAMA_FTYPE_MOSTLY_IQ4_NL: quantized_type = GGML_TYPE_IQ4_NL; break;
default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
} }
@ -11995,18 +12194,19 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
data_ctx->write(&kv_used, sizeof(kv_used)); data_ctx->write(&kv_used, sizeof(kv_used));
if (kv_buf_size) { if (kv_buf_size) {
const size_t elt_size = ggml_element_size(kv_self.k_l[0]);
std::vector<uint8_t> tmp_buf; std::vector<uint8_t> tmp_buf;
for (int il = 0; il < (int) n_layer; ++il) { for (int il = 0; il < (int) n_layer; ++il) {
tmp_buf.resize(elt_size*n_embd_k_gqa*kv_head); size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
tmp_buf.resize(k_size);
ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size()); ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
data_ctx->write(tmp_buf.data(), tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size());
// v is not contiguous, copy row by row // v is not contiguous, copy row by row
tmp_buf.resize(elt_size*kv_head); size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx);
tmp_buf.resize(v_row_size);
for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*elt_size*n_ctx, tmp_buf.size()); ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
data_ctx->write(tmp_buf.data(), tmp_buf.size()); data_ctx->write(tmp_buf.data(), tmp_buf.size());
} }
} }
@ -12108,17 +12308,16 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
if (kv_buf_size) { if (kv_buf_size) {
GGML_ASSERT(kv_self.total_size() == kv_buf_size); GGML_ASSERT(kv_self.total_size() == kv_buf_size);
const size_t elt_size = ggml_element_size(kv_self.k_l[0]);
for (int il = 0; il < (int) n_layer; ++il) { for (int il = 0; il < (int) n_layer; ++il) {
size_t k_size = elt_size*n_embd_k_gqa*kv_head; size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size); ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
inp += k_size; inp += k_size;
// v is not contiguous, copy row by row // v is not contiguous, copy row by row
size_t v_row_size = elt_size*kv_head; size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx);
for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*elt_size*n_ctx, v_row_size); ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
inp += v_row_size; inp += v_row_size;
} }
} }
@ -12580,6 +12779,37 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) { if (add_ass) {
ss << "<|assistant|>\n"; ss << "<|assistant|>\n";
} }
} else if (tmpl.find("bos_token + message['role']") != std::string::npos) {
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
for (auto message : chat) {
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
ss << bos << message->role << "\n" << message->content << "</s>\n";
}
if (add_ass) {
ss << "<s>assistant\n";
}
} else if (tmpl.find("<start_of_turn>") != std::string::npos) {
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
system_prompt = trim(message->content);
continue;
}
// in gemma, "assistant" is "model"
role = role == "assistant" ? "model" : message->role;
ss << "<start_of_turn>" << role << "\n";
if (!system_prompt.empty() && role != "model") {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << trim(message->content) << "<end_of_turn>\n";
}
if (add_ass) {
ss << "<start_of_turn>model\n";
}
} else { } else {
// template not supported // template not supported
return -1; return -1;
@ -12602,7 +12832,7 @@ LLAMA_API int32_t llama_chat_apply_template(
// load template from model // load template from model
std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
std::string template_key = "tokenizer.chat_template"; std::string template_key = "tokenizer.chat_template";
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), curr_tmpl.size()); int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
if (res < 0) { if (res < 0) {
// worst case: there is no information about template, we will use chatml by default // worst case: there is no information about template, we will use chatml by default
curr_tmpl = "<|im_start|>"; // see llama_chat_apply_template_internal curr_tmpl = "<|im_start|>"; // see llama_chat_apply_template_internal

View File

@ -101,6 +101,7 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
}; };
@ -707,7 +708,7 @@ extern "C" {
/// Apply chat template. Inspired by hf apply_chat_template() on python. /// Apply chat template. Inspired by hf apply_chat_template() on python.
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model" /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
/// NOTE: This function only support some known jinja templates. It is not a jinja parser. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
/// @param tmpl A Jinja template to use for this chat. If this is nullptr, the models default chat template will be used instead. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the models default chat template will be used instead.
/// @param chat Pointer to a list of multiple llama_chat_message /// @param chat Pointer to a list of multiple llama_chat_message
/// @param n_msg Number of llama_chat_message in this chat /// @param n_msg Number of llama_chat_message in this chat