whisper : use ggml-cuda in mel calc, set appropriate device (#2236)

* whisper : use ggml-cuda in mel calc, set appropriate device

* whisper : forbid cuda mel calc on devices with compute < 600, workaround for #2230
This commit is contained in:
Borislav Stanimirov 2024-06-13 13:16:07 +03:00 committed by GitHub
parent 420b6abc54
commit b29b3b2924
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 37 additions and 31 deletions

View File

@ -2,6 +2,9 @@
#include "whisper-mel-cuda.hpp"
#include "whisper.h"
#include <ggml-cuda/common.cuh>
#include <ggml-backend-impl.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cufft.h>
@ -16,16 +19,9 @@
#pragma warning(disable: 4324) // added padding
#endif
#ifndef NDEBUG
# define DO_CHECKS 1
#else
# define DO_CHECKS 0
#endif
namespace {
#if DO_CHECKS
const char* cufftGetErrorString(cufftResult_t res) {
static const char* cufftGetErrorString(cufftResult_t res) {
switch (res) {
case CUFFT_SUCCESS: return "The cuFFT operation was successful";
case CUFFT_INVALID_PLAN: return "cuFFT was passed an invalid plan handle";
@ -48,19 +44,6 @@ const char* cufftGetErrorString(cufftResult_t res) {
}
}
# define CUDA_CHECK_GEN(err, success, error_fn) \
do { \
auto err_ = (err); \
if (err_ != (success)) { \
fprintf(stderr, "%s %s:%d - %s\n", #err, __FILE__, __LINE__, error_fn(err_)); \
} \
} while (0)
#else
# define CUDA_CHECK_GEN(err, success, error_fn) err
#endif
#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublasGetStatusString)
#define CUFFT_CHECK(err) CUDA_CHECK_GEN(err, CUFFT_SUCCESS, cufftGetErrorString)
__global__ void k_fill_stft_input(
@ -81,7 +64,7 @@ __global__ void k_fill_stft_input(
}
__global__ void k_calc_magnitudes(
const cuComplex* stft_out,
const cuComplex * stft_out,
const int n_frames,
float * magnitudes
) {
@ -133,7 +116,7 @@ void fill_stft_input(
}
void calc_magnitudes(
const cuComplex* stft_out,
const cuComplex * stft_out,
int n_frames,
float * magnitudes,
cudaStream_t stream
@ -169,6 +152,7 @@ class mel_calc_cuda : public whisper_mel_calc {
const int m_n_mel;
ggml_backend_t m_backend = nullptr;
int m_device = -1;
cudaStream_t m_stream = nullptr;
cublasHandle_t m_cublas_handle = nullptr;
@ -190,6 +174,18 @@ public:
: m_n_mel(filters.n_mel)
, m_backend(backend)
{
ggml_backend_cuda_context* cuda_ctx = (ggml_backend_cuda_context*)m_backend->context;
m_device = cuda_ctx->device;
if (ggml_cuda_info().devices[m_device].cc < 600) {
// we've only tesed on 6.0 and higher and we've had reports of crashes on 5.0:
// https://github.com/ggerganov/whisper.cpp/issues/2230
// to be safe forbid anything below 6.0
throw std::runtime_error("CUDA compute capability 6.0 or higher is required");
}
ggml_cuda_set_device(m_device);
if (filters.n_fft != WHISPER_N_FFT_HALF) {
throw std::invalid_argument("MelFilters n_frames must be WHISPER_N_FFT_HALF");
}
@ -219,6 +215,7 @@ public:
}
~mel_calc_cuda() {
ggml_cuda_set_device(m_device);
CUDA_CHECK(cudaStreamSynchronize(m_stream));
CUDA_CHECK(cudaStreamDestroy(m_stream));
CUDA_CHECK(cudaFree(m_hann_window));
@ -268,6 +265,7 @@ public:
}
virtual whisper_mel calculate(whisper_span<const float> samples, int /*n_threads*/) override {
ggml_cuda_set_device(m_device);
ensure_working_areas(samples.len);
const size_t mirror_pad = WHISPER_N_FFT / 2;
@ -356,8 +354,11 @@ public:
}
whisper_mel_calc * whisper_mel_calc_create_cuda(ggml_backend_t backend, const whisper_filters & filters) {
if (filters.n_fft != WHISPER_N_FFT_HALF) {
try {
return new mel_calc_cuda(backend, filters);
}
catch (...) {
// TODO: log error (but for this we would have to expose the log state to be accessible here)
return nullptr;
}
return new mel_calc_cuda(backend, filters);
}

View File

@ -3170,13 +3170,18 @@ whisper_mel_calc * whisper_mel_calc_create(ggml_backend_t backend, const whisper
#if defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS)
if (ggml_backend_is_cuda(backend)) {
auto ret = whisper_mel_calc_create_cuda(backend, filters);
// run a warmup to avoid the first kernel launch overhead (thus we get the best perf even on the first run)
const float warmup[256] = {0};
ret->calculate({warmup, 256}, 1);
return ret;
} else
if (ret) {
// run a warmup to avoid the first kernel launch overhead (thus we get the best perf even on the first run)
const float warmup[256] = { 0 };
ret->calculate({ warmup, 256 }, 1);
return ret;
}
}
#endif
return new mel_calc_cpu(backend, filters);
// a specialized mel_calc could not be created
// fall back to CPU
return new mel_calc_cpu(backend, filters);
}
// split text into tokens