From b4bb9b90367e486018146aa1cfd336c7645610d3 Mon Sep 17 00:00:00 2001 From: 0cc4m Date: Sat, 18 May 2024 08:10:58 +0200 Subject: [PATCH] Update and fix Vulkan soft_max and argsort implementations (llama/7237) * Update and fix Vulkan softmax implementation * Update and fix Vulkan argsort implementation --- ggml-vulkan.cpp | 194 ++++++++++++++++-------------------------------- 1 file changed, 65 insertions(+), 129 deletions(-) diff --git a/ggml-vulkan.cpp b/ggml-vulkan.cpp index b9449be0..d1ba47ac 100644 --- a/ggml-vulkan.cpp +++ b/ggml-vulkan.cpp @@ -294,7 +294,6 @@ struct vk_op_rope_neox_push_constants { struct vk_op_soft_max_push_constants { uint32_t KX; uint32_t KY; - uint32_t KZ; float scale; float max_bias; float m0; @@ -304,7 +303,8 @@ struct vk_op_soft_max_push_constants { struct vk_op_argsort_push_constants { uint32_t ncols; - bool ascending; + uint32_t ncols_pad; + int32_t order; }; // Allow pre-recording command buffers @@ -1501,8 +1501,8 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) { ggml_vk_create_pipeline(ctx, ctx->device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1); - ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1); - ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1); + ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1); + ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1); @@ -3752,7 +3752,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx } -static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) { +static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) { switch (op) { case GGML_OP_ADD: if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { @@ -3834,7 +3834,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_soft_max_f32; } - if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && src2->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { + if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { return ctx->device->pipeline_soft_max_f32_f16; } return nullptr; @@ -3900,15 +3900,12 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) { } template -static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) { +static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) { #ifdef GGML_VULKAN_DEBUG std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3]; if (src1 != nullptr) { std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3]; } - if (src2 != nullptr) { - std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", backend=" << src2->backend << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3]; - } std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl; #endif GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT @@ -3929,10 +3926,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c const uint64_t nb2 = dst->nb[2]; const uint64_t nb3 = dst->nb[3]; - const bool use_src2 = src2 != nullptr; - const uint64_t ne2 = use_src2 ? src2->ne[0] * src2->ne[1] : 0; - - vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op); + vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op); ggml_vk_func_t op_func; if (pipeline == nullptr) { @@ -3955,18 +3949,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra; ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra; ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr; - ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr; vk_buffer d_X = nullptr; size_t x_buf_offset = 0; vk_buffer d_Y = nullptr; size_t y_buf_offset = 0; vk_buffer d_Z = nullptr; - size_t z_buf_offset = 0; bool src0_uma = false; bool src1_uma = false; - bool src2_uma = false; if (ctx->device->uma) { ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset); @@ -3975,15 +3966,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset); src1_uma = d_Y != nullptr; } - if (use_src2) { - ggml_vk_host_get(ctx, src1->data, d_Z, z_buf_offset); - src2_uma = d_Z != nullptr; - } } uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment); uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0; - uint64_t z_sz = use_src2 ? ggml_vk_align_size(ggml_type_size(src2->type) * ne2, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0; uint64_t d_sz = ggml_type_size(dst->type) * ne0; vk_buffer d_D = extra->buffer_gpu.lock(); @@ -4007,12 +3993,6 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c GGML_ASSERT(d_Y != nullptr); } - if (use_src2 && !src2_uma) { - d_Z = extra_src2->buffer_gpu.lock(); - z_buf_offset = extra_src2->offset; - GGML_ASSERT(d_Z != nullptr); - } - if (op_supports_incontiguous) { x_sz = ggml_nbytes(src0); y_sz = use_src1 ? ggml_nbytes(src1) : 0; @@ -4046,7 +4026,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 }; break; case GGML_OP_GET_ROWS: - elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; + elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) }; + break; + case GGML_OP_ARGSORT: + elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 }; break; default: elements = { (uint32_t)ggml_nelements(src0), 1, 1 }; @@ -4066,7 +4049,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c } if (op == GGML_OP_SOFT_MAX) { - // Empty src1 and src2 are possible on soft_max, but the shader needs buffers + // Empty src1 is possible on soft_max, but the shader needs a buffer vk_subbuffer subbuf_y; if (use_src1) { subbuf_y = { d_Y, y_buf_offset, y_sz }; @@ -4074,15 +4057,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c subbuf_y = { d_X, 0, d_X->size }; } - vk_subbuffer subbuf_z; - if (use_src2) { - subbuf_z = { d_Z, z_buf_offset, z_sz }; - } else { - subbuf_z = { d_X, 0, d_X->size }; - } - ggml_vk_sync_buffers(subctx); - ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); + ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); } else if (use_src1) { ggml_vk_sync_buffers(subctx); ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements); @@ -4099,13 +4075,13 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c } } else { GGML_ASSERT(op != GGML_OP_SOFT_MAX); + GGML_ASSERT(op != GGML_OP_ARGSORT); ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03); switch (dst->op) { case GGML_OP_NORM: case GGML_OP_RMS_NORM: - case GGML_OP_SOFT_MAX: elements = { (uint32_t)ne01, 1, 1 }; break; case GGML_OP_DIAG_MASK_INF: @@ -4145,7 +4121,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c } static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { - ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f }); } static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { @@ -4153,7 +4129,7 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, { + ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, @@ -4168,7 +4144,7 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, { + ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_ADD, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, @@ -4183,7 +4159,7 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons const uint32_t src1_type_size = ggml_type_size(src1->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, { + ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_MUL, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size, @@ -4198,7 +4174,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, @@ -4211,7 +4187,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, @@ -4225,7 +4201,7 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co const uint32_t src0_type_size = ggml_type_size(src0->type); const uint32_t dst_type_size = ggml_type_size(dst->type); - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, @@ -4240,7 +4216,7 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons const uint32_t dst_type_size = ggml_type_size(dst->type); const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, { + ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, { (uint32_t)ggml_nelements(src0), (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size, (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size, @@ -4252,24 +4228,24 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); } static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }); } static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }); } static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { int32_t * op_params = (int32_t *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); + ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }); } -static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) { +static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { float * op_params = (float *)dst->op_params; float scale = op_params[0]; @@ -4285,13 +4261,9 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); -#pragma message("TODO: src2 is no longer used in soft_max - should be removed and ALiBi calculation should be updated") -#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192") - - ggml_vk_op_f32(ctx, subctx, src0, src1, src2, dst, GGML_OP_SOFT_MAX, { + ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, { ncols, src1 != nullptr ? nrows_y : (uint32_t)0, - src2 != nullptr ? (uint32_t)1 : (uint32_t)0, scale, max_bias, m0, m1, n_head_log2, @@ -4321,15 +4293,39 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con if (is_neox) { const float theta_scale = powf(freq_base, -2.0f/n_dims); const float inv_ndims = -1.0f / n_dims; - ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims }); + ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { + (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], + freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims + }); } else { - ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f} }); + ggml_vk_op_f32(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, { + (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], + freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f} + }); } } static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) { int32_t * op_params = (int32_t *)dst->op_params; - ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, { (uint32_t)src0->ne[0], ((ggml_sort_order) op_params[0]) == GGML_SORT_ORDER_ASC }); + + uint32_t ncols = src0->ne[0]; + + uint32_t ncols_pad = 1; + while (ncols_pad < ncols) { + ncols_pad *= 2; + } + + GGML_ASSERT(ncols_pad <= 1024); + + std::cerr << "ncols=" << ncols << " ncols_pad=" << ncols_pad << " ascending=" << op_params[0] << std::endl; + + std::cerr << ((ggml_sort_order) op_params[0]) << " " << GGML_SORT_ORDER_ASC << std::endl; + + ggml_vk_op_f32(ctx, subctx, src0, nullptr, dst, GGML_OP_ARGSORT, { + ncols, + ncols_pad, + op_params[0], + }); } #ifdef GGML_VULKAN_RUN_TESTS @@ -5432,7 +5428,6 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod const ggml_tensor * src0 = node->src[0]; const ggml_tensor * src1 = node->src[1]; - const ggml_tensor * src2 = node->src[2]; ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra; @@ -5547,7 +5542,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod break; case GGML_OP_SOFT_MAX: - ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, src2, node); + ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, node); break; case GGML_OP_ROPE: @@ -6548,7 +6543,7 @@ static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vectortype != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) { + if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_I32) { return; } i0 = std::max(i0, 5); @@ -6569,6 +6564,8 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); } else if (tensor->type == GGML_TYPE_F16) { val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0])); + } else if (tensor->type == GGML_TYPE_I32) { + val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]); } else { GGML_ASSERT(false); } @@ -6671,7 +6668,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ ggml_tensor * src0 = tensor->src[0]; ggml_tensor * src1 = tensor->src[1]; - ggml_tensor * src2 = tensor->src[2]; struct ggml_init_params iparams = { /*.mem_size =*/ 1024*1024*1024, @@ -6798,66 +6794,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone); } - if (src2 != nullptr) { - src2_clone = ggml_dup_tensor(ggml_ctx, src2); - - src2_size = ggml_nbytes(src2); - - src2_buffer = malloc(src2_size); - src2_clone->data = src2_buffer; - if (src2->backend == GGML_BACKEND_TYPE_CPU) { - memcpy(src2_clone->data, src2->data, src2_size); - memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS); - } else if (src2->backend == GGML_BACKEND_TYPE_GPU) { - ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra; - vk_buffer buf = extra->buffer_gpu.lock(); - uint64_t offset = extra->offset; - if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) { - for (int i3 = 0; i3 < src2->ne[3]; i3++) { - for (int i2 = 0; i2 < src2->ne[2]; i2++) { - const int idx = i3*src2->ne[2] + i2; - ggml_vk_buffer_read(ctx, buf, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]); - } - } - - src2_clone->nb[0] = src2->nb[0]; - src2_clone->nb[1] = src2->nb[1]; - for (int i = 2; i < GGML_MAX_DIMS; i++) { - src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1]; - } - } else { - if (offset + src2_size >= buf->size) { - src2_size = buf->size - offset; - } - ggml_vk_buffer_read(ctx, buf, offset, src2_clone->data, src2_size); - memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS); - } - } else { - GGML_ASSERT(false); - } - - if (vk_output_tensor > 0 && vk_output_tensor == check_counter) { - ggml_vk_print_tensor(ctx, src2, "src2"); - std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl; - std::cerr << "src2_clone=" << tensor << " src2_clone->backend: " << src2_clone->backend << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl; - if (src2->src[0] != nullptr) { - std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " backend=" << src2->src[0]->backend << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl; - } - if (src2->src[1] != nullptr) { - std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " backend=" << src2->src[1]->backend << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl; - } - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0); - std::cerr << std::endl; - std::cerr << std::endl << "Result:" << std::endl; - ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0); - std::cerr << std::endl; - std::vector done; - ggml_vk_print_graph_origin(src2_clone, done); - } - - ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src2", src2_clone); - } if (tensor->op == GGML_OP_MUL_MAT) { tensor_clone = ggml_mul_mat(ggml_ctx, src0_clone, src1_clone); @@ -6877,7 +6813,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params); } else if (tensor->op == GGML_OP_SOFT_MAX) { if (src1 != nullptr) { - tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); + tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]); } else { tensor_clone = ggml_soft_max(ggml_ctx, src0_clone); } @@ -6964,9 +6900,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_ if (src1 != nullptr) { free(src1_buffer); } - if (src2 != nullptr) { - free(src2_buffer); - } ggml_free(ggml_ctx); } @@ -7026,8 +6959,11 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_ } else if (tensor->type == GGML_TYPE_F16) { correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0])); result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0])); + } else if (tensor->type == GGML_TYPE_I32) { + correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]); + result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]); } else { - std::cerr << "comp_size=" << comp_size << " but required is " << (i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]) << std::endl; + std::cerr << "Results check not implemented for type " << ggml_type_name(tensor->type) << std::endl; } } else { std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;