From bfc73f1fa292d47675f3133f63a38faa734b7500 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Fri, 8 Sep 2023 15:01:26 +0300 Subject: [PATCH] sync : ggml (CUDA faster rope) --- ggml-cuda.cu | 32 ++++++++++++++------------------ 1 file changed, 14 insertions(+), 18 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index d2dbf824..00e9bbea 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -4086,7 +4086,8 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco dst[i + ncols/2] = x0*sin_theta + x1*cos_theta; } -static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) { +static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p0, + const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx) { const int col = blockDim.x*blockIdx.x + threadIdx.x; const int half_n_dims = ncols/4; @@ -4098,8 +4099,9 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol const int i = row*ncols + col; const float col_theta_scale = powf(theta_scale, col); + const float p = p0 + p_delta*(row/p_delta_rows); - const float theta = p*col_theta_scale; + const float theta = min(p, p_delta*(n_ctx - 2))*col_theta_scale; const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); @@ -4109,7 +4111,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol dst[i + 0] = x0*cos_theta - x1*sin_theta; dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta; - const float block_theta = block_p*col_theta_scale; + const float block_theta = max(p - p_delta*(n_ctx - 2), 0.f)*col_theta_scale; const float sin_block_theta = sinf(block_theta); const float cos_block_theta = cosf(block_theta); @@ -4984,12 +4986,13 @@ static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, co rope_neox_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale); } -static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) { - GGML_ASSERT(nrows % 4 == 0); - const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1); - const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE); +static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, + const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) { + GGML_ASSERT(ncols % 4 == 0); + const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1); + const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE; const dim3 block_nums(num_blocks_x, nrows, 1); - rope_glm_f32<<>>(x, dst, ncols, p, block_p, theta_scale); + rope_glm_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale, n_ctx); } static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, @@ -5723,22 +5726,18 @@ inline void ggml_cuda_op_rope( memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); const float theta_scale = powf(freq_base, -2.0f/n_dims); + const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; const bool is_neox = mode & 2; const bool is_glm = mode & 4; // compute if (is_glm) { - const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale; - const float id_p = min(p, n_ctx - 2.f); - const float block_p = max(p - (n_ctx - 2.f), 0.f); - rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main); + rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, n_ctx, cudaStream_main); } else if (is_neox) { GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet"); - const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; rope_neox_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main); } else { - const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main); } @@ -6400,10 +6399,7 @@ void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_ten GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented - const int mode = ((int32_t *) dst->op_params)[2]; - const bool is_glm = mode & 4; - - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, true); } void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {