llama : add gpt-oss (llama/15091)

* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (llama/7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (llama/1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (llama/11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (llama/6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (llama/13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
Georgi Gerganov
2025-08-05 22:10:36 +03:00
parent 6558022873
commit d3aab3efde
58 changed files with 2019 additions and 144 deletions

View File

@@ -304,6 +304,16 @@
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_TENSOR_TERNARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
GGML_TENSOR_LOCALS(int64_t, ne2, src2, ne) \
GGML_TENSOR_LOCALS(size_t, nb2, src2, nb) \
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
@@ -395,7 +405,8 @@ extern "C" {
// GGML_TYPE_IQ4_NL_4_4 = 36,
// GGML_TYPE_IQ4_NL_4_8 = 37,
// GGML_TYPE_IQ4_NL_8_8 = 38,
GGML_TYPE_COUNT = 39,
GGML_TYPE_MXFP4 = 39, // MXFP4 (1 block)
GGML_TYPE_COUNT = 40,
};
// precision
@@ -430,6 +441,7 @@ extern "C" {
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
GGML_FTYPE_MOSTLY_MXFP4 = 25, // except 1d tensors
};
// available tensor operations:
@@ -438,6 +450,7 @@ extern "C" {
GGML_OP_DUP,
GGML_OP_ADD,
GGML_OP_ADD_ID,
GGML_OP_ADD1,
GGML_OP_ACC,
GGML_OP_SUB,
@@ -557,6 +570,7 @@ extern "C" {
GGML_GLU_OP_REGLU,
GGML_GLU_OP_GEGLU,
GGML_GLU_OP_SWIGLU,
GGML_GLU_OP_SWIGLU_OAI,
GGML_GLU_OP_GEGLU_ERF,
GGML_GLU_OP_GEGLU_QUICK,
@@ -831,6 +845,13 @@ extern "C" {
struct ggml_tensor * b,
enum ggml_type type);
// dst[i0, i1, i2] = a[i0, i1, i2] + b[i0, ids[i1, i2]]
GGML_API struct ggml_tensor * ggml_add_id(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * ids);
GGML_API struct ggml_tensor * ggml_add1(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -1198,6 +1219,13 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_swiglu_oai(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float alpha,
float limit);
// normalize along rows
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
@@ -1570,6 +1598,10 @@ extern "C" {
float scale,
float max_bias);
GGML_API void ggml_soft_max_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks);
GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -2052,6 +2084,10 @@ extern "C" {
GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
const struct ggml_tensor * a);
GGML_API void ggml_flash_attn_ext_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks);
// TODO: needs to be adapted to ggml_flash_attn_ext
GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,

View File

@@ -29,6 +29,7 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:

View File

@@ -2340,6 +2340,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
memcpy(&bias, (float*)op->op_params + 1, sizeof(float));
return bias == 0.0f; // TODO: support bias != 0.0f
case GGML_OP_SOFT_MAX:
// TODO: support attention sinks [TAG_ATTN_SINKS]
if (op->src[2]) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
@@ -2354,6 +2358,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
if(op->type != GGML_TYPE_F16 && op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_BF16){
return false;
}
// TODO: support attention sinks [TAG_ATTN_SINKS]
if (op->src[4]) {
return false;
}
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
// different head sizes of K and V are not supported yet
return false;

View File

@@ -99,6 +99,9 @@ typedef sycl::half2 ggml_half2;
#define QI4_1 (QK4_1 / (4 * QR4_1))
#define QR4_1 2
#define QI_MXFP4 (QK_MXFP4 / (4 * QR_MXFP4))
#define QR_MXFP4 2
#define QI5_0 (QK5_0 / (4 * QR5_0))
#define QR5_0 2
@@ -184,6 +187,13 @@ typedef struct {
} block_q4_1;
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_half) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK_MXFP4 32
typedef struct {
uint8_t e; // E8M0
uint8_t qs[QK_MXFP4/2];
} block_mxfp4;
static_assert(sizeof(block_mxfp4) == sizeof(uint8_t) + QK_MXFP4/2, "wrong mxfp4 block size/padding");
#define QK5_0 32
typedef struct {
ggml_half d; // delta
@@ -1074,10 +1084,17 @@ GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512)
0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101,
GGML_TABLE_END()
// TODO: fix name to kvalues_iq4_nl
GGML_TABLE_BEGIN(int8_t, kvalues_iq4nl, 16)
-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113,
GGML_TABLE_END()
// e2m1 values (doubled)
// ref: https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
GGML_TABLE_BEGIN(int8_t, kvalues_mxfp4, 16)
0, 1, 2, 3, 4, 6, 8, 12, 0, -1, -2, -3, -4, -6, -8, -12,
GGML_TABLE_END()
#define NGRID_IQ1S 2048
#define IQ1S_DELTA 0.125f
#define IQ1M_DELTA 0.125f

View File

@@ -13,6 +13,7 @@
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
#define ggml_vec_dot_q8_0_q8_0_generic ggml_vec_dot_q8_0_q8_0
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
@@ -68,6 +69,7 @@
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
@@ -90,6 +92,7 @@
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
@@ -120,6 +123,7 @@
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
@@ -149,6 +153,7 @@
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
@@ -179,6 +184,7 @@
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_iq4_nl_q8_0_generic ggml_vec_dot_iq4_nl_q8_0
#define ggml_vec_dot_iq4_xs_q8_K_generic ggml_vec_dot_iq4_xs_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8

View File

@@ -589,6 +589,67 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
*s = sumf;
}
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
assert(n % QK_MXFP4 == 0);
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
const block_mxfp4 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
const int nb = n / QK_MXFP4;
int ib = 0;
float sumf = 0;
#if defined __ARM_NEON
const int8x16_t values = vld1q_s8(kvalues_mxfp4);
const uint8x16_t m4b = vdupq_n_u8(0x0f);
uint8x16x2_t q4bits;
int8x16x4_t q4b;
int8x16x4_t q8b;
int32x4_t prod_1;
int32x4_t prod_2;
for (; ib + 1 < nb; ib += 2) {
q4bits.val[0] = vld1q_u8(x[ib + 0].qs);
q4bits.val[1] = vld1q_u8(x[ib + 1].qs);
q8b.val[0] = vld1q_s8(y[ib + 0].qs);
q8b.val[1] = vld1q_s8(y[ib + 0].qs + 16);
q8b.val[2] = vld1q_s8(y[ib + 1].qs);
q8b.val[3] = vld1q_s8(y[ib + 1].qs + 16);
q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
sumf +=
GGML_E8M0_TO_FP32_HALF(x[ib + 0].e) * GGML_CPU_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
GGML_E8M0_TO_FP32_HALF(x[ib + 1].e) * GGML_CPU_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
}
#endif
for (; ib < nb; ++ib) {
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
int sumi1 = 0;
int sumi2 = 0;
for (int j = 0; j < QK_MXFP4/2; ++j) {
sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf];
sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4];
}
sumf += d * (sumi1 + sumi2);
}
*s = sumf;
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;

View File

@@ -66,6 +66,12 @@ static inline int hsum_i32_4(const __m128i a) {
}
#if defined(__AVX2__) || defined(__AVX512F__)
static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
const __m256i ax = _mm256_sign_epi8(x, x);
const __m256i sy = _mm256_sign_epi8(y, x);
return _mm256_maddubs_epi16(ax, sy);
}
// spread 32 bits to 32 bytes { 0x00, 0xFF }
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
uint32_t x32;
@@ -261,6 +267,11 @@ static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const
return _mm256_set_m128(_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x1) * GGML_CPU_FP16_TO_FP32(y1)),
_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x0) * GGML_CPU_FP16_TO_FP32(y0)));
}
static inline __m256 quad_mx_delta_float(const int8_t x0, const float y0, const int8_t x1, const float y1) {
return _mm256_set_m128(_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)),
_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0)));
}
#endif
#elif defined(__SSSE3__)
// horizontally add 4x4 floats
@@ -746,6 +757,91 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
#endif
}
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
assert(n % QK_MXFP4 == 0);
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
const block_mxfp4 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
const int nb = n / QK_MXFP4;
int ib = 0;
float sumf = 0;
#if defined __AVX2__
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_mxfp4);
const __m128i m4b = _mm_set1_epi8(0x0f);
const __m256i mone = _mm256_set1_epi16(1);
__m256 accum1 = _mm256_setzero_ps();
__m256 accum2 = _mm256_setzero_ps();
for (; ib + 1 < nb; ib += 2) {
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[ib + 0].qs);
const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[ib + 1].qs);
const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
_mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 0].e)),
_mm256_cvtepi32_ps(p_1), accum1);
accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 1].e)),
_mm256_cvtepi32_ps(p_2), accum2);
}
sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
#elif defined __AVX__
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_mxfp4);
const __m128i m4b = _mm_set1_epi8(0x0f);
__m256 accum = _mm256_setzero_ps();
for (; ib + 1 < nb; ib += 2) {
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
const __m256 p = mul_sum_i8_quad_float(q4b_1_0, q4b_1_1, q4b_2_0, q4b_2_1, q8b_1_0, q8b_1_1, q8b_2_0, q8b_2_1);
const __m256 deltas = quad_mx_delta_float(x[ib].e, y[ib].d, x[ib + 1].e, y[ib + 1].d);
accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
}
sumf = hsum_float_8(accum);
#endif
for (; ib < nb; ++ib) {
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
int sumi1 = 0;
int sumi2 = 0;
for (int j = 0; j < QK_MXFP4/2; ++j) {
sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf];
sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4];
}
sumf += d * (sumi1 + sumi2);
}
*s = sumf;
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;
@@ -3206,14 +3302,6 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
#endif
}
#if defined(__AVX2__)
static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
const __m256i ax = _mm256_sign_epi8(x, x);
const __m256i sy = _mm256_sign_epi8(y, x);
return _mm256_maddubs_epi16(ax, sy);
}
#endif
void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(n % QK_K == 0);
assert(nrc == 1);

View File

@@ -253,6 +253,12 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
.vec_dot_type = GGML_TYPE_Q8_1,
.nrows = 1,
},
[GGML_TYPE_MXFP4] = {
.from_float = quantize_row_mxfp4,
.vec_dot = ggml_vec_dot_mxfp4_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
.nrows = 1,
},
[GGML_TYPE_Q2_K] = {
.from_float = quantize_row_q2_K,
.vec_dot = ggml_vec_dot_q2_K_q8_K,
@@ -1670,6 +1676,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_add(params, tensor);
} break;
case GGML_OP_ADD_ID:
{
ggml_compute_forward_add_id(params, tensor);
} break;
case GGML_OP_ADD1:
{
ggml_compute_forward_add1(params, tensor);
@@ -1924,7 +1934,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
ggml_compute_forward_flash_attn_ext(params, tensor);
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
@@ -2111,6 +2121,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_DUP:
case GGML_OP_CONT:
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_ADD1:
case GGML_OP_ACC:
{
@@ -2172,6 +2183,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
{
@@ -2673,6 +2685,7 @@ struct ggml_cplan ggml_graph_plan(
}
} break;
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_ADD1:
{
if (ggml_is_quantized(node->src[0]->type)) {

View File

@@ -8,6 +8,7 @@
#include "vec.h"
#include <float.h>
#include <algorithm>
// ggml_compute_forward_dup
@@ -1283,6 +1284,7 @@ void ggml_compute_forward_add(
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@@ -1309,6 +1311,77 @@ void ggml_compute_forward_add(
}
}
// ggml_compute_forward_add_id
static void ggml_compute_forward_add_id_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src2->type == GGML_TYPE_I32);
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_TERNARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
// src1 indices
const int i11 = *(int32_t *) ((char *) src2->data + i1*nb20 + i2*nb21);
GGML_ASSERT(i11 >= 0 && i11 < ne11);
ggml_vec_add_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
(float *) ((char *) src1->data + i11*nb11));
}
}
void ggml_compute_forward_add_id(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add_id_f32(params, dst);
} break;
default:
{
GGML_ABORT("unsupported type for ggml_compute_forward_add_id: %s", ggml_type_name(src0->type));
}
}
}
// ggml_compute_forward_add1
static void ggml_compute_forward_add1_f32(
@@ -1660,6 +1733,7 @@ void ggml_compute_forward_add1(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@@ -1787,6 +1861,7 @@ void ggml_compute_forward_acc(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@@ -3614,6 +3689,93 @@ static void ggml_compute_forward_swiglu(
}
}
// ggml_compute_forward_swiglu_oai
static void ggml_compute_forward_swiglu_oai_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
char * src0_d = (char *) src0->data;
char * src1_d = (char *) (src1 ? src1->data : src0->data);
const size_t src0_o = src0->nb[1];
const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
const int nr = ggml_nrows(src0);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == nr);
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
const float alpha = ggml_get_op_params_f32(dst, 2);
const float limit = ggml_get_op_params_f32(dst, 3);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * src0_p = (float *) (src0_d + i1*src0_o);
float * src1_p = (float *) (src1_d + i1*src1_o);
float * dst_p = (float *) ((char *) dst->data + i1*(dst->nb[1]));
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
for (int k = 0; k < nc; k++) {
const float x = std::min(src0_p[k], limit);
const float y = std::clamp(src1_p[k], -limit, limit);
const float out_glu = x / (1.f + expf(alpha * (-x)));
dst_p[k] = out_glu * (y + 1.f);
}
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = dst_p[k];
GGML_UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_swiglu_oai(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_swiglu_oai_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_geglu_erf
static void ggml_compute_forward_geglu_erf_f32(
@@ -4599,6 +4761,7 @@ void ggml_compute_forward_out_prod(
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@@ -4873,6 +5036,7 @@ void ggml_compute_forward_set(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@@ -5134,6 +5298,7 @@ void ggml_compute_forward_get_rows(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@@ -5523,6 +5688,7 @@ static void ggml_compute_forward_soft_max_f32(
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
assert(ggml_is_contiguous(dst));
assert(ggml_are_same_shape(src0, dst));
@@ -5557,6 +5723,9 @@ static void ggml_compute_forward_soft_max_f32(
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
// sinks
const float * sk = src2 ? (float *)((char *) src2->data) : nullptr;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
@@ -5599,9 +5768,18 @@ static void ggml_compute_forward_soft_max_f32(
float max = -INFINITY;
ggml_vec_max_f32(ne00, &max, wp);
// if we have sinks, make a correction as if they were included in the softmax
if (sk) {
max = MAX(max, sk[i02]);
}
ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
assert(sum > 0.0);
if (sk) {
sum += (ggml_float) expf(sk[i02] - max);
}
sum = 1.0/sum;
ggml_vec_scale_f32(ne00, dp, sum);
@@ -5836,6 +6014,7 @@ void ggml_compute_forward_clamp(
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@@ -7989,12 +8168,14 @@ void ggml_compute_forward_argsort(
static void ggml_compute_forward_flash_attn_ext_f16(
const ggml_compute_params * params,
const ggml_tensor * q,
const ggml_tensor * k,
const ggml_tensor * v,
const ggml_tensor * mask,
ggml_tensor * dst) {
const ggml_tensor * q = dst->src[0];
const ggml_tensor * k = dst->src[1];
const ggml_tensor * v = dst->src[2];
const ggml_tensor * mask = dst->src[3];
const ggml_tensor * sinks = dst->src[4];
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
@@ -8189,6 +8370,23 @@ static void ggml_compute_forward_flash_attn_ext_f16(
}
}
// sinks
if (sinks) {
const float s = ((float *)((char *) sinks->data))[h];
float ms = 1.0f;
float vs = 1.0f;
if (s > M) {
ms = expf(M - s);
ggml_vec_scale_f32(DV, VKQ32, ms);
} else {
vs = expf(s - M);
}
S = S*ms + vs;
}
// V /= S
const float S_inv = 1.0f/S;
ggml_vec_scale_f32(DV, VKQ32, S_inv);
@@ -8208,17 +8406,13 @@ static void ggml_compute_forward_flash_attn_ext_f16(
void ggml_compute_forward_flash_attn_ext(
const ggml_compute_params * params,
const ggml_tensor * q,
const ggml_tensor * k,
const ggml_tensor * v,
const ggml_tensor * mask,
ggml_tensor * dst) {
switch (dst->op_params[3]) {
case GGML_PREC_DEFAULT:
case GGML_PREC_F32:
{
// uses F32 accumulators
ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
ggml_compute_forward_flash_attn_ext_f16(params, dst);
} break;
default:
{
@@ -9080,6 +9274,10 @@ void ggml_compute_forward_glu(
{
ggml_compute_forward_swiglu(params, dst);
} break;
case GGML_GLU_OP_SWIGLU_OAI:
{
ggml_compute_forward_swiglu_oai(params, dst);
} break;
case GGML_GLU_OP_GEGLU_ERF:
{
ggml_compute_forward_geglu_erf(params, dst);

View File

@@ -29,6 +29,7 @@ extern "C" {
void ggml_compute_forward_dup(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add_id(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_acc(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_sum(const struct ggml_compute_params * params, struct ggml_tensor * dst);
@@ -82,13 +83,7 @@ void ggml_compute_forward_arange(const struct ggml_compute_params * params, stru
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_leaky_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_flash_attn_ext(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst);
void ggml_compute_forward_flash_attn_ext(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_flash_attn_back(
const struct ggml_compute_params * params,
const bool masked,

View File

@@ -46,6 +46,10 @@ void quantize_row_q8_1_generic(const float * GGML_RESTRICT x, void * GGML_RESTRI
quantize_row_q8_1_ref(x, y, k);
}
void quantize_row_mxfp4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) {
quantize_row_mxfp4_ref(x, y, k);
}
//
// 2-6 bit quantization in super-blocks
//
@@ -181,6 +185,37 @@ void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
*s = sumf;
}
void ggml_vec_dot_mxfp4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
assert(n % QK_MXFP4 == 0);
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
const block_mxfp4 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
const int nb = n / QK_MXFP4;
int ib = 0;
float sumf = 0;
for (; ib < nb; ++ib) {
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
int sumi1 = 0;
int sumi2 = 0;
for (int j = 0; j < QK_MXFP4/2; ++j) {
sumi1 += y[ib].qs[j + 0] * kvalues_mxfp4[x[ib].qs[j] & 0xf];
sumi2 += y[ib].qs[j + QK_MXFP4/2] * kvalues_mxfp4[x[ib].qs[j] >> 4];
}
sumf += d * (sumi1 + sumi2);
}
*s = sumf;
}
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;

View File

@@ -19,6 +19,8 @@ void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_mxfp4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
@@ -39,6 +41,8 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
@@ -67,8 +71,12 @@ void ggml_vec_dot_q4_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, c
void ggml_vec_dot_q5_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q5_1_q8_1_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q8_0_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_mxfp4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_tq1_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_tq2_0_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q2_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q3_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
void ggml_vec_dot_q4_K_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);

View File

@@ -55,7 +55,22 @@ inline static void ggml_vec_cpy_i32(const int n, int32_t * y, const int32_t * x)
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const ggml_fp16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) {
int i = 0;
#if defined(__AVX2__)
for (; i + 7 < n; i += 8) {
__m256 vx = _mm256_loadu_ps(x + i);
__m256 vy = _mm256_loadu_ps(y + i);
__m256 vz = _mm256_add_ps(vx, vy);
_mm256_storeu_ps(z + i, vz);
}
#endif
for (; i < n; ++i) {
z[i] = x[i] + y[i];
}
}
inline static void ggml_vec_add_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
for (int i = 0; i < n; ++i) {
z[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(x[i]) + GGML_CPU_FP16_TO_FP32(y[i]));
@@ -992,9 +1007,9 @@ void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float *
inline static void ggml_vec_swiglu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const ggml_fp16_t * g) {
for (int i = 0; i < n; ++i) {
float v = GGML_CPU_FP16_TO_FP32(x[i]);
float w = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16((v/(1.0f + expf(-v))) * w);
float xi = GGML_CPU_FP16_TO_FP32(x[i]);
float gi = GGML_CPU_FP16_TO_FP32(g[i]);
y[i] = GGML_CPU_FP32_TO_FP16((xi/(1.0f + expf(-xi))) * gi);
}
}

View File

@@ -0,0 +1,58 @@
#include "add-id.cuh"
static __global__ void add_id_kernel(
const float * src0, const float * src1, const int32_t * src2, float * dst,
int64_t ne0, int64_t ne1,
size_t nb01, size_t nb02,
size_t nb11,
size_t nb21
) {
const int64_t i1 = blockIdx.x;
const int64_t i2 = blockIdx.y;
const int i11 = *(int32_t *) ((char *) src2 + i1*sizeof(int32_t) + i2*nb21);
const size_t nb1 = ne0 * sizeof(float);
const size_t nb2 = ne1 * nb1;
float * dst_row = (float *)((char *)dst + i1*nb1 + i2*nb2);
const float * src0_row = (const float *)((char *)src0 + i1*nb01 + i2*nb02);
const float * src1_row = (const float *)((char *)src1 + i11*nb11);
for (int64_t i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
dst_row[i0] = src0_row[i0] + src1_row[i0];
}
}
void ggml_cuda_op_add_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
GGML_TENSOR_TERNARY_OP_LOCALS
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(src2->type == GGML_TYPE_I32);
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
GGML_ASSERT(nb20 == sizeof(int32_t));
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
const int32_t * src2_d = (const int32_t *)src2->data;
float * dst_d = (float *)dst->data;
int threads = std::min((int)ne00, 768); // cols
dim3 blocks(ne01, ne02); // n_experts_used, n_tokens
add_id_kernel<<<blocks, threads, 0, ctx.stream()>>>(
src0_d, src1_d, src2_d, dst_d,
ne0, ne1,
nb01, nb02,
nb11,
nb21
);
}

View File

@@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_op_add_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -1,6 +1,7 @@
#pragma once
#include "ggml.h"
#include "ggml-impl.h"
#include "ggml-cuda.h"
#include <cstdint>
@@ -549,6 +550,24 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#endif // defined(GGML_USE_HIP)
}
static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
#if CUDART_VERSION >= 12080
const nv_bfloat16 e = __nv_cvt_e8m0_to_bf16raw(x);
return (float) e;
#else
uint32_t bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = (uint32_t) x << 23;
}
float result;
memcpy(&result, &bits, sizeof(float));
return result;
#endif // CUDART_VERSION >= 12050
}
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
static __device__ __forceinline__ float get_alibi_slope(
@@ -607,6 +626,13 @@ struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
static constexpr int qi = QI8_0;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_MXFP4> {
static constexpr int qk = QK_MXFP4;
static constexpr int qr = QR_MXFP4;
static constexpr int qi = QI_MXFP4;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
static constexpr int qk = QK_K;

View File

@@ -465,6 +465,24 @@ static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst
}
}
template<typename dst_t>
static __global__ void dequantize_block_mxfp4(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int64_t i = blockIdx.x;
const block_mxfp4 * x = (const block_mxfp4 *) vx + i*(QK_K/QK_MXFP4);
const int64_t tid = threadIdx.x;
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
const uint8_t * q4 = x[ib].qs + 4*il;
const float d = ggml_cuda_e8m0_to_fp32(x[ib].e);
for (int j = 0; j < 4; ++j) {
y[j+ 0] = d * kvalues_mxfp4[q4[j] & 0xf]*0.5f;
y[j+16] = d * kvalues_mxfp4[q4[j] >> 4]*0.5f;
}
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void dequantize_block_cuda(const void * vx, dst_t * y,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
@@ -588,6 +606,12 @@ static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
}
template<typename dst_t>
static void dequantize_row_mxfp4_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
const int nb = (k + QK_K - 1) / QK_K;
dequantize_block_mxfp4<<<nb, 32, 0, stream>>>(vx, y);
}
template <typename src_t, typename dst_t>
static __global__ void convert_unary(
const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01, const int64_t ne02,
@@ -677,6 +701,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
return dequantize_row_iq4_xs_cuda;
case GGML_TYPE_IQ3_S:
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_MXFP4:
return dequantize_row_mxfp4_cuda;
case GGML_TYPE_F32:
return convert_unary_cont_cuda<float>;
case GGML_TYPE_BF16:
@@ -726,6 +752,8 @@ to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
return dequantize_row_iq4_xs_cuda;
case GGML_TYPE_IQ3_S:
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_MXFP4:
return dequantize_row_mxfp4_cuda;
case GGML_TYPE_F16:
return convert_unary_cont_cuda<half>;
case GGML_TYPE_BF16:

View File

@@ -15,6 +15,7 @@ typedef void (* fattn_kernel_t)(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@@ -737,6 +738,7 @@ void launch_fattn(
GGML_ASSERT(V || is_mla);
const ggml_tensor * mask = dst->src[3];
const ggml_tensor * sinks = dst->src[4];
ggml_tensor * KQV = dst;
@@ -940,6 +942,7 @@ void launch_fattn(
K_data,
V_data,
mask ? ((const char *) mask->data) : nullptr,
sinks ? ((const char *) sinks->data) : nullptr,
KV_max.ptr,
!stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2, logit_softcap,

View File

@@ -1206,6 +1206,7 @@ static __global__ void flash_attn_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@@ -1267,6 +1268,7 @@ static __global__ void flash_attn_ext_f16(
// kb0 == k start index when in the output tile.
int kb0_start = kbc % iter_k;
int kb0_stop = min(iter_k, kb0_start + kbc_stop - kbc);
while (kbc < kbc_stop && kb0_stop == iter_k) {
const int sequence = kbc / (iter_k*iter_j*(ne02/ncols2));
const int head = (kbc - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
@@ -1340,7 +1342,7 @@ static __global__ void flash_attn_ext_f16(
(Q_f2, K_h2, V_h2, mask_h2, dstk, dst_meta, scale, slope, logit_softcap,
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);

View File

@@ -13,6 +13,7 @@ static __global__ void flash_attn_tile_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@@ -272,7 +273,7 @@ static __global__ void flash_attn_tile_ext_f16(
}
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);

View File

@@ -13,6 +13,7 @@ static __global__ void flash_attn_tile_ext_f32(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@@ -37,7 +38,7 @@ static __global__ void flash_attn_tile_ext_f32(
return;
#endif // FP16_MMA_AVAILABLE
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);

View File

@@ -16,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@@ -62,6 +63,7 @@ static __global__ void flash_attn_vec_ext_f16(
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
@@ -75,11 +77,12 @@ static __global__ void flash_attn_vec_ext_f16(
half2 * KQ2 = (half2 *) KQ;
half kqmax[ncols];
half kqsum[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax[j] = -HALF_MAX_HALF;
kqsum[j] = 0.0f;
}
half kqsum[ncols] = {0.0f};
__shared__ half kqmax_shared[ncols][WARP_SIZE];
__shared__ half kqsum_shared[ncols][WARP_SIZE];
@@ -283,6 +286,39 @@ static __global__ void flash_attn_vec_ext_f16(
__syncthreads();
}
if (sinksf && blockIdx.y == 0) {
const half sink = __float2half(sinksf[head]);
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = fmaxf(kqmax[j], sink);
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const half val = hexp(sink - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale;
if (tid == 0) {
kqsum[j] += val;
}
VKQ[j] *= __half2half2(KQ_max_scale);
}
__syncthreads();
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqsum[j] = warp_reduce_sum((float)kqsum[j]);
@@ -313,7 +349,7 @@ static __global__ void flash_attn_vec_ext_f16(
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);

View File

@@ -16,6 +16,7 @@ static __global__ void flash_attn_vec_ext_f32(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@@ -73,6 +74,7 @@ static __global__ void flash_attn_vec_ext_f32(
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
@@ -88,11 +90,12 @@ static __global__ void flash_attn_vec_ext_f32(
}
float kqmax[ncols];
float kqsum[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax[j] = -FLT_MAX/2.0f;
kqsum[j] = 0.0f;
}
float kqsum[ncols] = {0.0f};
__shared__ float kqmax_shared[ncols][WARP_SIZE];
__shared__ float kqsum_shared[ncols][WARP_SIZE];
@@ -279,6 +282,39 @@ static __global__ void flash_attn_vec_ext_f32(
__syncthreads();
}
if (sinksf && blockIdx.y == 0) {
const float sink = sinksf[head];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = fmaxf(kqmax[j], sink);
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const float val = expf(sink - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale;
if (tid == 0) {
kqsum[j] += val;
}
VKQ[j] *= KQ_max_scale;
}
__syncthreads();
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqsum[j] = warp_reduce_sum(kqsum[j]);

View File

@@ -29,6 +29,7 @@ static __global__ void flash_attn_ext_f16(
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
@@ -423,7 +424,7 @@ static __global__ void flash_attn_ext_f16(
dst_meta[j_dst_unrolled] = dst_meta_val;
}
#else
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);

View File

@@ -274,12 +274,23 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const ggml_tensor * mask = dst->src[3];
const ggml_tensor * sinks = dst->src[4];
ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int warp_size = ggml_cuda_info().devices[ggml_cuda_get_device()].warp_size;
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
// TODO: currently only vec implementation for sinks is supported [TAG_ATTN_SINKS]
if (sinks) {
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
} else {
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
}
return;
}
#if defined(GGML_HIP_ROCWMMA_FATTN)
if (GGML_CUDA_CC_IS_AMD(cc) && fp16_mma_available(cc)) {
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);

View File

@@ -4,6 +4,7 @@
#include "ggml-cuda/common.cuh"
#include "ggml-cuda/acc.cuh"
#include "ggml-cuda/add-id.cuh"
#include "ggml-cuda/arange.cuh"
#include "ggml-cuda/argmax.cuh"
#include "ggml-cuda/argsort.cuh"
@@ -2259,6 +2260,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_ADD1: // TODO: more efficient implementation
ggml_cuda_op_add(ctx, dst);
break;
case GGML_OP_ADD_ID:
ggml_cuda_op_add_id(ctx, dst);
break;
case GGML_OP_SUB:
ggml_cuda_op_sub(ctx, dst);
break;
@@ -2333,6 +2337,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_GLU_OP_SWIGLU:
ggml_cuda_op_swiglu(ctx, dst);
break;
case GGML_GLU_OP_SWIGLU_OAI:
ggml_cuda_op_swiglu_oai(ctx, dst);
break;
case GGML_GLU_OP_GEGLU_ERF:
ggml_cuda_op_geglu_erf(ctx, dst);
break;
@@ -2607,6 +2614,9 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected";
const std::string gemma3n_per_layer_proj_src1_name = "per_layer_proj";
const std::string ffn_moe_gate_bias_prefix = "ffn_moe_gate_biased";
const std::string ffn_moe_up_bias_prefix = "ffn_moe_up_biased";
const std::string ffn_moe_down_bias_prefix = "ffn_moe_down_biased";
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@@ -2629,7 +2639,13 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
#endif
}
if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1 && (node->src[0] ? node->src[0]->name != gemma3n_per_layer_proj_src0_name : true) && (node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true)) {
if (node->op == GGML_OP_ADD &&
node->src[1] && node->src[1]->ne[1] > 1 &&
(node->src[0] ? node->src[0]->name != gemma3n_per_layer_proj_src0_name : true) &&
(node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true) &&
strncmp(node->name, ffn_moe_gate_bias_prefix.c_str(), ffn_moe_gate_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_up_bias_prefix.c_str(), ffn_moe_up_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_down_bias_prefix.c_str(), ffn_moe_down_bias_prefix.size()) != 0) {
// disable CUDA graphs for batch size > 1 for now while excluding the matrix-matrix addition as part of Gemma3n's `project_per_layer_input` operation
// by means of matching node names. See
// https://github.com/ggml-org/llama.cpp/blob/f9a31eea06a859e34cecb88b4d020c7f03d86cc4/src/llama-model.cpp#L10199-L10241 and
@@ -3227,6 +3243,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]);
@@ -3277,6 +3294,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
@@ -3423,6 +3441,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:
@@ -3503,6 +3522,10 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
const int gqa_ratio = op->src[0]->ne[2] / op->src[1]->ne[2];
return op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512 && op->src[3] && gqa_ratio % 16 == 0;
}
// TODO: more general-purpose attention sink support [TAG_ATTN_SINKS]
if (op->src[4] && op->src[0]->ne[0] != 64 && op->src[0]->ne[0] != 128) { // currently only sinks for head_size 64 and 128 are supported
return false;
}
if (op->src[0]->ne[0] == 192) {
return false;
}

View File

@@ -1,7 +1,5 @@
#include "im2col.cuh"
#define MIN(a, b) (a) < (b) ? (a) : (b)
#define MAX_GRIDDIM_Z 65535
template <typename T>
@@ -38,6 +36,9 @@ static __global__ void im2col_kernel(
dst[offset_dst] = x[offset_src + iih * IW + iiw];
}
}
GGML_UNUSED(IC);
GGML_UNUSED(KH);
}
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]

View File

@@ -20,6 +20,9 @@ static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, con
case GGML_TYPE_Q8_0:
mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
break;
case GGML_TYPE_MXFP4:
mul_mat_q_case<GGML_TYPE_MXFP4>(ctx, args, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
break;
@@ -282,6 +285,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_MXFP4:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:

View File

@@ -58,6 +58,8 @@ static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) {
return MMQ_Q8_1_DS_LAYOUT_DS4;
case GGML_TYPE_Q8_0:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_MXFP4:
return MMQ_Q8_1_DS_LAYOUT_D4;
case GGML_TYPE_Q2_K:
return MMQ_Q8_1_DS_LAYOUT_D2S6;
case GGML_TYPE_Q3_K:
@@ -170,6 +172,7 @@ static constexpr __host__ __device__ tile_x_sizes mmq_get_dp4a_tile_x_sizes(ggml
case GGML_TYPE_Q5_0: return MMQ_DP4A_TXS_Q8_0;
case GGML_TYPE_Q5_1: return MMQ_DP4A_TXS_Q8_1;
case GGML_TYPE_Q8_0: return MMQ_DP4A_TXS_Q8_0;
case GGML_TYPE_MXFP4: return MMQ_DP4A_TXS_Q8_1;
case GGML_TYPE_Q2_K: return MMQ_DP4A_TXS_Q2_K;
case GGML_TYPE_Q3_K: return MMQ_DP4A_TXS_Q3_K;
case GGML_TYPE_Q4_K: return MMQ_DP4A_TXS_Q4_K;
@@ -206,6 +209,7 @@ static constexpr __host__ __device__ int mmq_get_mma_tile_x_k(ggml_type type) {
case GGML_TYPE_Q5_0: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_Q5_1: return MMQ_MMA_TILE_X_K_Q8_1;
case GGML_TYPE_Q8_0: return MMQ_MMA_TILE_X_K_Q8_0;
case GGML_TYPE_MXFP4: return MMQ_MMA_TILE_X_K_Q8_1;
case GGML_TYPE_Q2_K: return MMQ_MMA_TILE_X_K_Q2_K;
case GGML_TYPE_Q3_K: return MMQ_MMA_TILE_X_K_Q3_K;
case GGML_TYPE_Q4_K: return MMQ_MMA_TILE_X_K_Q8_1;
@@ -692,6 +696,71 @@ template <int mmq_y, bool need_check> static __device__ __forceinline__ void loa
}
}
template <int mmq_y, bool need_check> static __device__ __forceinline__ void load_tiles_mxfp4(
const char * __restrict__ x, int * __restrict__ x_tile, const int kbx0, const int i_max, const int stride) {
constexpr int nwarps = mmq_get_nwarps_device();
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + MMQ_TILE_NE_K*2);
#else
constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_MXFP4, mmq_y);
int * x_qs = (int *) x_tile;
float * x_df = (float *) (x_qs + txs.qs);
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
constexpr int threads_per_row = MMQ_ITER_K / (4 * QR_MXFP4);
constexpr int nrows = warp_size / threads_per_row;
const int txi = warp_size > threads_per_row ? threadIdx.x % threads_per_row : threadIdx.x;
const int kbx = txi / QI_MXFP4;
const int kqsx = txi % QI_MXFP4;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nrows*nwarps) {
int i = i0 + (nrows == 1 ? threadIdx.y : threadIdx.y*nrows + threadIdx.x/threads_per_row);
if (need_check) {
i = min(i, i_max);
}
const block_mxfp4 * bxi = (const block_mxfp4 *) x + kbx0 + i*stride + kbx;
const int aux_q4 = get_int_b1(bxi->qs, kqsx);
const int2 v = get_int_from_table_16(aux_q4, kvalues_mxfp4);
const int k0 = kbx * (2 * QI_MXFP4) + kqsx;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + k0 + 0] = v.x;
x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + k0 + QI_MXFP4] = v.y;
#else
x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0 + 0] = v.x;
x_qs[i*(2*MMQ_TILE_NE_K + 1) + k0 + QI_MXFP4] = v.y;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
constexpr int blocks_per_tile_x_row = MMQ_TILE_NE_K / QI_MXFP4;
constexpr int rows_per_warp = warp_size / blocks_per_tile_x_row;
const int kbxd = threadIdx.x % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * rows_per_warp) {
int i = i0 + threadIdx.y * rows_per_warp + threadIdx.x / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_mxfp4 * bxi = (const block_mxfp4 *) x + kbx0 + i*stride + kbxd;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
x_df[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = ggml_cuda_e8m0_to_fp32(bxi->e)*0.5f;
#else
x_df[i*(MMQ_TILE_NE_K/QI_MXFP4) + i/QI_MXFP4 + kbxd] = ggml_cuda_e8m0_to_fp32(bxi->e)*0.5f;
#endif // defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
}
}
template <int mmq_x, int mmq_y>
static __device__ __forceinline__ void vec_dot_q8_0_q8_1_dp4a(
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int k00) {
@@ -2268,7 +2337,7 @@ template <int mmq_y, bool need_check> static __device__ __forceinline__ void loa
const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbx;
const int aux_q4 = get_int_b2(bxi->qs, kqsx);
const int2 v = get_int_from_table_16(aux_q4);
const int2 v = get_int_from_table_16(aux_q4, kvalues_iq4nl);
const int k0 = kbx * (2 * QI4_NL) + kqsx;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
@@ -2707,7 +2776,7 @@ template <int mmq_y, bool need_check> static __device__ __forceinline__ void loa
const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride;
const int aux_q4 = get_int_b4(bxi->qs, kqsx);
const int2 v = get_int_from_table_16(aux_q4);
const int2 v = get_int_from_table_16(aux_q4, kvalues_iq4nl);
const int k0 = 8 * (kqsx / 4) + kqsx % 4;
#if defined(AMD_MFMA_AVAILABLE) || defined(NEW_MMA_AVAILABLE)
@@ -2863,6 +2932,14 @@ struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q8_0> {
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_MXFP4> {
static constexpr int vdr = VDR_MXFP4_Q8_1_MMQ;
static constexpr load_tiles_mmq_t load_tiles = load_tiles_mxfp4<mmq_y, need_check>;
static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, MMQ_Q8_1_DS_LAYOUT_D4>;
static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y>;
};
template <int mmq_x, int mmq_y, bool need_check>
struct mmq_type_traits<mmq_x, mmq_y, need_check, GGML_TYPE_Q2_K> {
static constexpr int vdr = VDR_Q2_K_Q8_1_MMQ;
@@ -3642,6 +3719,7 @@ extern DECL_MMQ_CASE(GGML_TYPE_Q4_1);
extern DECL_MMQ_CASE(GGML_TYPE_Q5_0);
extern DECL_MMQ_CASE(GGML_TYPE_Q5_1);
extern DECL_MMQ_CASE(GGML_TYPE_Q8_0);
extern DECL_MMQ_CASE(GGML_TYPE_MXFP4);
extern DECL_MMQ_CASE(GGML_TYPE_Q2_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q3_K);
extern DECL_MMQ_CASE(GGML_TYPE_Q4_K);

View File

@@ -13,6 +13,7 @@ static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type)
case GGML_TYPE_Q5_0: return vec_dot_q5_0_q8_1;
case GGML_TYPE_Q5_1: return vec_dot_q5_1_q8_1;
case GGML_TYPE_Q8_0: return vec_dot_q8_0_q8_1;
case GGML_TYPE_MXFP4: return vec_dot_mxfp4_q8_1;
case GGML_TYPE_Q2_K: return vec_dot_q2_K_q8_1;
case GGML_TYPE_Q3_K: return vec_dot_q3_K_q8_1;
case GGML_TYPE_Q4_K: return vec_dot_q4_K_q8_1;
@@ -38,6 +39,7 @@ static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
case GGML_TYPE_Q5_0: return VDR_Q5_0_Q8_1_MMVQ;
case GGML_TYPE_Q5_1: return VDR_Q5_1_Q8_1_MMVQ;
case GGML_TYPE_Q8_0: return VDR_Q8_0_Q8_1_MMVQ;
case GGML_TYPE_MXFP4: return VDR_MXFP4_Q8_1_MMVQ;
case GGML_TYPE_Q2_K: return VDR_Q2_K_Q8_1_MMVQ;
case GGML_TYPE_Q3_K: return VDR_Q3_K_Q8_1_MMVQ;
case GGML_TYPE_Q4_K: return VDR_Q4_K_Q8_1_MMVQ;
@@ -384,6 +386,13 @@ static void mul_mat_vec_q_switch_type(
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_MXFP4:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_MXFP4>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q2_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,

View File

@@ -45,7 +45,7 @@ struct soft_max_params {
#endif // __clang__
template <bool use_shared, int ncols_template, int block_size_template, typename T>
static __global__ void soft_max_f32(
const float * x, const T * mask, float * dst, const soft_max_params p) {
const float * x, const T * mask, const float * sinks, float * dst, const soft_max_params p) {
const int ncols = ncols_template == 0 ? p.ncols : ncols_template;
const int tid = threadIdx.x;
@@ -77,7 +77,7 @@ static __global__ void soft_max_f32(
// shared memory buffer to cache values between iterations:
float * vals = use_shared ? buf_iw + WARP_SIZE : dst;
float max_val = -INFINITY;
float max_val = sinks ? sinks[i02] : -INFINITY;
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
@@ -143,6 +143,10 @@ static __global__ void soft_max_f32(
tmp = warp_reduce_sum(tmp);
}
if (sinks) {
tmp += expf(sinks[i02] - max_val);
}
const float inv_sum = 1.0f / tmp;
#pragma unroll
@@ -183,7 +187,7 @@ static __global__ void soft_max_back_f32(
}
template<int... Ns, typename T>
static void launch_soft_max_kernels(const float * x, const T * mask, float * dst,
static void launch_soft_max_kernels(const float * x, const T * mask, const float * sinks, float * dst,
const soft_max_params & p, cudaStream_t stream, dim3 block_dims, dim3 block_nums, size_t nbytes_shared)
{
const int id = ggml_cuda_get_device();
@@ -196,7 +200,7 @@ static void launch_soft_max_kernels(const float * x, const T * mask, float * dst
if (p.ncols == ncols) {
CUDA_SET_SHARED_MEMORY_LIMIT((soft_max_f32<true, ncols, block, T>), smpbo);
soft_max_f32<true, ncols, block><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, p);
(x, mask, sinks, dst, p);
return true;
}
return false;
@@ -209,12 +213,12 @@ static void launch_soft_max_kernels(const float * x, const T * mask, float * dst
//default case
CUDA_SET_SHARED_MEMORY_LIMIT((soft_max_f32<true, 0, 0, T>), smpbo);
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>(x, mask, dst, p);
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>(x, mask, sinks, dst, p);
}
template<typename T>
static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const soft_max_params & params, cudaStream_t stream) {
static void soft_max_f32_cuda(const float * x, const T * mask, const float * sinks, float * dst, const soft_max_params & params, cudaStream_t stream) {
int nth = WARP_SIZE;
const int64_t ncols_x = params.ncols;
@@ -230,10 +234,10 @@ static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, cons
if (nbytes_shared <= smpbo) {
launch_soft_max_kernels<32, 64, 128, 256, 512, 1024, 2048, 4096>(x, mask, dst, params, stream, block_dims, block_nums, nbytes_shared);
launch_soft_max_kernels<32, 64, 128, 256, 512, 1024, 2048, 4096>(x, mask, sinks, dst, params, stream, block_dims, block_nums, nbytes_shared);
} else {
const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, dst, params);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, sinks, dst, params);
}
}
@@ -249,9 +253,11 @@ static void soft_max_back_f32_cuda(
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
const float * src0_d = (const float *) src0->data;
const void * src1_d = src1 ? (const void *) src1->data : nullptr;
const void * src2_d = src2 ? (const void *) src2->data : nullptr;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
@@ -309,9 +315,9 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
params.m1 = m1;
if (use_f16) {
soft_max_f32_cuda(src0_d, (const half *) src1_d, dst_d, params, stream);
soft_max_f32_cuda(src0_d, (const half *) src1_d, (const float *) src2_d, dst_d, params, stream);
} else {
soft_max_f32_cuda(src0_d, (const float *) src1_d, dst_d, params, stream);
soft_max_f32_cuda(src0_d, (const float *) src1_d, (const float *) src2_d, dst_d, params, stream);
}
}

View File

@@ -0,0 +1,5 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../mmq.cuh"
DECL_MMQ_CASE(GGML_TYPE_MXFP4);

View File

@@ -300,6 +300,81 @@ void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst
ggml_cuda_op_unary_gated<op_gelu_quick>(ctx, dst);
}
// swiglu_oai
template <typename T>
static __global__ void swiglu_oai_kernel(const T * x, const T * g, T * dst, const int64_t k, const int64_t n, const int64_t o0, const int64_t o1, float alpha, float limit) {
const int64_t i = int64_t(blockDim.x)*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
// perform base op and multiply with gate (either offset in same tensor or a separate one)
const int64_t j0 = (i / n) * o0 + (i % n);
const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
float xi = x[j0];
float gi = g[j1];
xi = fminf(xi, limit);
gi = fmaxf(fminf(gi, limit), -limit);
float out_glu = xi / (1.0f + expf(-xi * alpha));
out_glu = out_glu * (1.0f + gi);
dst[i] = out_glu;
}
template <typename T>
static void swiglu_oai_cuda(const T * x, const T * g, T * dst, const int64_t k, const int64_t n, const int64_t o0, const int64_t o1, const float alpha, const float limit, cudaStream_t stream) {
const int64_t num_blocks = (k + CUDA_GLU_BLOCK_SIZE - 1) / CUDA_GLU_BLOCK_SIZE;
swiglu_oai_kernel<<<num_blocks, CUDA_GLU_BLOCK_SIZE, 0, stream>>>(x, g, dst, k, n, o0, o1, alpha, limit);
}
void ggml_cuda_op_swiglu_oai(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
void * src0_d = src0->data;
void * src1_d = src1 ? src1->data : src0->data;
const int64_t src0_o = src0->nb[1];
const int64_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
void * dst_d = dst->data;
const int64_t nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(src0->nb[0] == ggml_element_size(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->type == dst->type);
GGML_ASSERT(dst->ne[0] == nc);
GGML_ASSERT(ggml_nrows(dst) == ggml_nrows(src0));
if (src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
GGML_ASSERT(src1->ne[0] == nc);
GGML_ASSERT(src0->type == src1->type);
}
//const int32_t swapped = ((const int32_t *) dst->op_params)[1];
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
const float alpha = ggml_get_op_params_f32(dst, 2);
const float limit = ggml_get_op_params_f32(dst, 3);
float * src0_p = (float *) src0_d;
float * src1_p = (float *) src1_d;
if (!src1) {
src0_p += swapped ? nc : 0;
src1_p += swapped ? 0 : nc;
}
swiglu_oai_cuda(src0_p, src1_p, (float *)dst_d, ggml_nelements(dst), nc, src0_o / sizeof(float), src1_o / sizeof(float), alpha, limit, stream);
}
/* silu_back */
static __device__ __forceinline__ float op_silu_back(float grad, float x) {

View File

@@ -67,6 +67,8 @@ void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_swiglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_swiglu_oai(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -1,8 +1,20 @@
#pragma once
#include "common.cuh"
#include <cstdint>
static __device__ __forceinline__ int get_int_b1(const void * x, const int & i32) {
const uint8_t * x8 = (const uint8_t *) x;
int x32 = x8[4*i32 + 0] << 0;
x32 |= x8[4*i32 + 1] << 8;
x32 |= x8[4*i32 + 2] << 16;
x32 |= x8[4*i32 + 3] << 24;
return x32;
}
static __device__ __forceinline__ int get_int_b2(const void * x, const int & i32) {
const uint16_t * x16 = (const uint16_t *) x; // assume at least 2 byte alignment
@@ -16,6 +28,20 @@ static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32
return ((const int *) x)[i32]; // assume at least 4 byte alignment
}
static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4, const int8_t * table) {
const int q0_32 = (q4 >> 0) & 0x0F0F0F0F;
const int8_t * q0_8 = (const int8_t *) &q0_32;
const char4 val0_8 = make_char4(
table[q0_8[0]], table[q0_8[1]], table[q0_8[2]], table[q0_8[3]]);
const int q1_32 = (q4 >> 4) & 0x0F0F0F0F;
const int8_t * q1_8 = (const int8_t *) &q1_32;
const char4 val1_8 = make_char4(
table[q1_8[0]], table[q1_8[1]], table[q1_8[2]], table[q1_8[3]]);
return make_int2(*((const int *) &val0_8), *((const int *) &val1_8));
}
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
@@ -211,6 +237,30 @@ template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_16_q8_1_
return d8_1*sumf;
}
#define VDR_MXFP4_Q8_1_MMVQ 2
#define VDR_MXFP4_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_mxfp4_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_mxfp4 * bq4 = (const block_mxfp4 *) vbq + kbx;
const int * q8 = (const int *) bq8_1->qs + iqs;
int sumi = 0;
#pragma unroll
for (int l = 0; l < VDR_MXFP4_Q8_1_MMVQ; ++l) {
const int aux_q4 = get_int_b1(bq4->qs, iqs + l);
const int2 v = get_int_from_table_16(aux_q4, kvalues_mxfp4);
sumi = ggml_cuda_dp4a(v.x, q8[l + 0], sumi);
sumi = ggml_cuda_dp4a(v.y, q8[l + 4], sumi);
}
const float d = ggml_cuda_e8m0_to_fp32(bq4->e) * 0.5f * __low2float(bq8_1->ds);
return d * sumi;
}
#define VDR_Q2_K_Q8_1_MMVQ 1
#define VDR_Q2_K_Q8_1_MMQ 4
@@ -1068,20 +1118,6 @@ static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
return d * ((sumi[0] + sumf[0]) * sc0 + (sumi[1] + sumf[1]) * sc1);
}
static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4) {
const int q0_32 = (q4 >> 0) & 0x0F0F0F0F;
const int8_t * q0_8 = (const int8_t *) &q0_32;
const char4 val0_8 = make_char4(
kvalues_iq4nl[q0_8[0]], kvalues_iq4nl[q0_8[1]], kvalues_iq4nl[q0_8[2]], kvalues_iq4nl[q0_8[3]]);
const int q1_32 = (q4 >> 4) & 0x0F0F0F0F;
const int8_t * q1_8 = (const int8_t *) &q1_32;
const char4 val1_8 = make_char4(
kvalues_iq4nl[q1_8[0]], kvalues_iq4nl[q1_8[1]], kvalues_iq4nl[q1_8[2]], kvalues_iq4nl[q1_8[3]]);
return make_int2(*((const int *) &val0_8), *((const int *) &val1_8));
}
#define VDR_IQ4_NL_Q8_1_MMVQ 2
#define VDR_IQ4_NL_Q8_1_MMQ 4
@@ -1096,7 +1132,7 @@ static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
#pragma unroll
for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
const int aux_q4 = get_int_b2(bq4->qs, iqs + l);
const int2 v = get_int_from_table_16(aux_q4);
const int2 v = get_int_from_table_16(aux_q4, kvalues_iq4nl);
sumi = ggml_cuda_dp4a(v.x, q8[l + 0], sumi);
sumi = ggml_cuda_dp4a(v.y, q8[l + 4], sumi);
@@ -1118,7 +1154,7 @@ static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
#pragma unroll
for (int j = 0; j < 4; ++j) {
const int aux_q4 = get_int_b4(bq4->qs, iqs + j);
const int2 v = get_int_from_table_16(aux_q4);
const int2 v = get_int_from_table_16(aux_q4, kvalues_iq4nl);
const int u0 = get_int_b4(bq8_1[iqs/4].qs, j + 0);
const int u1 = get_int_b4(bq8_1[iqs/4].qs, j + 4);

View File

@@ -6,6 +6,10 @@
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#if CUDART_VERSION >= 12050
#include <cuda_fp8.h>
#endif // CUDART_VERSION >= 12050
#if CUDART_VERSION < 11020
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
#define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH

View File

@@ -410,6 +410,67 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_e8m0_to_fp32(uint8_t x) {
uint32_t bits; // Stores the raw bit representation of the float
// Handle special case for minimum exponent (denormalized float)
if (x == 0) {
// Bit pattern for 2^(-127):
// - Sign bit: 0 (positive)
// - Exponent: 0 (denormalized number)
// - Mantissa: 0x400000 (0.5 in fractional form)
// Value = 0.5 * 2^(-126) = 2^(-127)
bits = 0x00400000;
}
// note: disabled as we don't need to handle NaNs
//// Handle special case for NaN (all bits set)
//else if (x == 0xFF) {
// // Standard quiet NaN pattern:
// // - Sign bit: 0
// // - Exponent: all 1s (0xFF)
// // - Mantissa: 0x400000 (quiet NaN flag)
// bits = 0x7FC00000;
//}
// Normalized values (most common case)
else {
// Construct normalized float by shifting exponent into position:
// - Exponent field: 8 bits (positions 30-23)
// - Mantissa: 0 (implicit leading 1)
// Value = 2^(x - 127)
bits = (uint32_t) x << 23;
}
float result; // Final float value
// Safely reinterpret bit pattern as float without type-punning issues
memcpy(&result, &bits, sizeof(float));
return result;
}
// Equal to ggml_e8m0_to_fp32/2
// Useful with MXFP4 quantization since the E0M2 values are doubled
static inline float ggml_e8m0_to_fp32_half(uint8_t x) {
uint32_t bits;
// For x < 2: use precomputed denormal patterns
if (x < 2) {
// 0x00200000 = 2^(-128), 0x00400000 = 2^(-127)
bits = 0x00200000 << x;
}
// For x >= 2: normalized exponent adjustment
else {
// 0.5 * 2^(x-127) = 2^(x-128) = normalized with exponent (x-1)
bits = (uint32_t)(x - 1) << 23;
}
// Note: NaNs are not handled here
float result;
memcpy(&result, &bits, sizeof(float));
return result;
}
#define GGML_E8M0_TO_FP32(x) ggml_e8m0_to_fp32(x)
#define GGML_E8M0_TO_FP32_HALF(x) ggml_e8m0_to_fp32_half(x)
/**
* Converts brain16 to float32.
*

View File

@@ -23,6 +23,9 @@
#define N_R0_Q8_0 4
#define N_SG_Q8_0 2
#define N_R0_MXFP4 2
#define N_SG_MXFP4 2
#define N_R0_Q2_K 4
#define N_SG_Q2_K 2
@@ -129,6 +132,15 @@ typedef struct {
uint64_t o1[8];
} ggml_metal_kargs_bin;
typedef struct {
int64_t ne0;
int64_t ne1;
size_t nb01;
size_t nb02;
size_t nb11;
size_t nb21;
} ggml_metal_kargs_add_id;
typedef struct {
int32_t ne00;
int32_t ne01;
@@ -444,6 +456,8 @@ typedef struct{
uint64_t nb1;
int32_t i00;
int32_t i10;
float alpha;
float limit;
} ggml_metal_kargs_glu;
typedef struct {

View File

@@ -195,6 +195,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_ROW_C4,
GGML_METAL_KERNEL_TYPE_DIV,
GGML_METAL_KERNEL_TYPE_DIV_ROW_C4,
GGML_METAL_KERNEL_TYPE_ADD_ID,
GGML_METAL_KERNEL_TYPE_REPEAT_F32,
GGML_METAL_KERNEL_TYPE_REPEAT_F16,
GGML_METAL_KERNEL_TYPE_REPEAT_I32,
@@ -234,6 +235,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,
GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,
@@ -286,6 +288,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4,
@@ -310,6 +313,10 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3,
GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4,
@@ -351,6 +358,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,
@@ -373,6 +381,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,
@@ -397,6 +406,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16,
@@ -579,6 +589,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_REGLU,
GGML_METAL_KERNEL_TYPE_GEGLU,
GGML_METAL_KERNEL_TYPE_SWIGLU,
GGML_METAL_KERNEL_TYPE_SWIGLU_OAI,
GGML_METAL_KERNEL_TYPE_GEGLU_ERF,
GGML_METAL_KERNEL_TYPE_GEGLU_QUICK,
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
@@ -1199,6 +1210,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW_C4, mul_row_c4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW_C4, div_row_c4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ID, add_id, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true);
@@ -1238,6 +1250,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4, get_rows_mxfp4, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true);
@@ -1290,6 +1303,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32, mul_mv_mxfp4_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_2, mul_mv_ext_f16_f32_r1_2, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_3, mul_mv_ext_f16_f32_r1_3, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_F16_F32_R1_4, mul_mv_ext_f16_f32_r1_4, has_simdgroup_reduction);
@@ -1314,6 +1328,10 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_3, mul_mv_ext_q8_0_f32_r1_3, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_4, mul_mv_ext_q8_0_f32_r1_4, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5, mul_mv_ext_q8_0_f32_r1_5, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2, mul_mv_ext_mxfp4_f32_r1_2, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3, mul_mv_ext_mxfp4_f32_r1_3, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4, mul_mv_ext_mxfp4_f32_r1_4, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5, mul_mv_ext_mxfp4_f32_r1_5, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2, mul_mv_ext_q4_K_f32_r1_2, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_3, mul_mv_ext_q4_K_f32_r1_3, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_4, mul_mv_ext_q4_K_f32_r1_4, has_simdgroup_reduction);
@@ -1355,6 +1373,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32, mul_mv_id_mxfp4_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, has_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, has_simdgroup_reduction);
@@ -1377,6 +1396,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32, mul_mm_mxfp4_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32, mul_mm_mxfp4_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, has_simdgroup_mm);
@@ -1401,6 +1422,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16, mul_mm_id_q5_0_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16, mul_mm_id_q5_1_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16, mul_mm_id_q8_0_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16, mul_mm_id_mxfp4_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16, mul_mm_id_q2_K_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16, mul_mm_id_q3_K_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16, mul_mm_id_q4_K_f16, has_simdgroup_mm);
@@ -1583,6 +1605,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REGLU, reglu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU, geglu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SWIGLU, swiglu, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SWIGLU_OAI, swiglu_oai, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_ERF, geglu_erf, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GEGLU_QUICK, geglu_quick, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
@@ -1774,6 +1797,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous_1(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
@@ -1791,6 +1815,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ACC:
case GGML_OP_REPEAT:
@@ -2042,6 +2067,7 @@ static int ggml_metal_encode_node(
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT;
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
size_t offs_src0 = 0;
@@ -2291,6 +2317,38 @@ static int ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
} break;
case GGML_OP_ADD_ID:
{
GGML_ASSERT(src0t == GGML_TYPE_F32);
GGML_ASSERT(src1t == GGML_TYPE_F32);
GGML_ASSERT(src2t == GGML_TYPE_I32);
GGML_ASSERT(dstt == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous_rows(src0));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ID].pipeline;
ggml_metal_kargs_add_id args = {
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb11 =*/ nb11,
/*.nb21 =*/ nb21,
};
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_REPEAT:
{
id<MTLComputePipelineState> pipeline;
@@ -2710,6 +2768,9 @@ static int ggml_metal_encode_node(
case GGML_GLU_OP_SWIGLU:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SWIGLU].pipeline;
break;
case GGML_GLU_OP_SWIGLU_OAI:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SWIGLU_OAI].pipeline;
break;
case GGML_GLU_OP_GEGLU_ERF:
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GEGLU_ERF].pipeline;
break;
@@ -2720,7 +2781,9 @@ static int ggml_metal_encode_node(
GGML_ABORT("fatal error");
}
const int32_t swp = ((const int32_t *) dst->op_params)[1];
const int32_t swp = ggml_get_op_params_i32(dst, 1);
const float alpha = ggml_get_op_params_f32(dst, 2);
const float limit = ggml_get_op_params_f32(dst, 3);
const int32_t i00 = swp ? ne0 : 0;
const int32_t i10 = swp ? 0 : ne0;
@@ -2734,6 +2797,8 @@ static int ggml_metal_encode_node(
/*.nb1 =*/ nb1,
/*.i00 =*/ src1 ? 0 : i00,
/*.i10 =*/ src1 ? 0 : i10,
/*.alpha=*/ alpha,
/*.limit=*/ limit
};
[encoder setComputePipelineState:pipeline];
@@ -2992,8 +3057,13 @@ static int ggml_metal_encode_node(
} else {
[encoder setBuffer:h_src0 offset:offs_src0 atIndex:1];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&args length:sizeof(args) atIndex:3];
if (id_src2) {
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
} else {
[encoder setBuffer:h_src0 offset:offs_src0 atIndex:2];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
[encoder setBytes:&args length:sizeof(args) atIndex:4];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
@@ -3291,6 +3361,7 @@ static int ggml_metal_encode_node(
src0t == GGML_TYPE_Q5_0 ||
src0t == GGML_TYPE_Q5_1 ||
src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_MXFP4 ||
src0t == GGML_TYPE_IQ4_NL ||
false) && (ne11 >= 2 && ne11 <= 8)
) ||
@@ -3383,6 +3454,14 @@ static int ggml_metal_encode_node(
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q8_0_F32_R1_5].pipeline; break;
default: GGML_ABORT("not implemented");
} break;
case GGML_TYPE_MXFP4:
switch (r1ptg) {
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_2].pipeline; break;
case 3: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_3].pipeline; break;
case 4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_4].pipeline; break;
case 5: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_MXFP4_F32_R1_5].pipeline; break;
default: GGML_ABORT("not implemented");
} break;
case GGML_TYPE_Q4_K:
switch (r1ptg) {
case 2: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_EXT_Q4_K_F32_R1_2].pipeline; break;
@@ -3481,6 +3560,7 @@ static int ggml_metal_encode_node(
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break;
case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_MXFP4_F32 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break;
@@ -3623,6 +3703,13 @@ static int ggml_metal_encode_node(
nr0 = N_R0_Q8_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline;
} break;
case GGML_TYPE_MXFP4:
{
nsg = N_SG_MXFP4;
nr0 = N_R0_MXFP4;
smem = 32*sizeof(float);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_MXFP4_F32].pipeline;
} break;
case GGML_TYPE_Q2_K:
{
nsg = N_SG_Q2_K;
@@ -3756,8 +3843,6 @@ static int ggml_metal_encode_node(
case GGML_OP_MUL_MAT_ID:
{
// src2 = ids
const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
GGML_ASSERT(src2t == GGML_TYPE_I32);
GGML_ASSERT(!ggml_is_transposed(src0));
@@ -3883,6 +3968,7 @@ static int ggml_metal_encode_node(
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16 ].pipeline; break;
case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MXFP4_F16 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16 ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16 ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16 ].pipeline; break;
@@ -4018,6 +4104,13 @@ static int ggml_metal_encode_node(
nr0 = N_R0_Q8_0;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline;
} break;
case GGML_TYPE_MXFP4:
{
nsg = N_SG_MXFP4;
nr0 = N_R0_MXFP4;
smem = 32*sizeof(float);
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_MXFP4_F32].pipeline;
} break;
case GGML_TYPE_Q2_K:
{
nsg = N_SG_Q2_K;
@@ -4170,6 +4263,7 @@ static int ggml_metal_encode_node(
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break;
case GGML_TYPE_MXFP4: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_MXFP4 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break;
@@ -4980,11 +5074,14 @@ static int ggml_metal_encode_node(
GGML_ASSERT(ne11 == ne21);
GGML_ASSERT(ne12 == ne22);
struct ggml_tensor * src3 = node->src[3];
struct ggml_tensor * src3 = node->src[3]; // mask
struct ggml_tensor * src4 = node->src[4]; // sinks
size_t offs_src3 = 0;
size_t offs_src4 = 0;
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16);
GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
@@ -5000,8 +5097,6 @@ static int ggml_metal_encode_node(
const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32);
const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33);
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
float scale;
float max_bias;
float logit_softcap;
@@ -5389,7 +5484,12 @@ static int ggml_metal_encode_node(
} else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:4];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:5];
if (id_src4) {
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:5];
} else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:5];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
if (!use_vec_kernel) {
// half8x8 kernel

View File

@@ -35,6 +35,10 @@ constexpr constant static float kvalues_iq4nl_f[16] = {
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
};
constexpr constant static float kvalues_mxfp4_f[16] = {
0, .5f, 1.f, 1.5f, 2.f, 3.f, 4.f, 6.f, -0, -.5f, -1.f, -1.5f, -2.f, -3.f, -4.f, -6.f
};
static inline int best_index_int8(int n, constant float * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
@@ -46,6 +50,18 @@ static inline int best_index_int8(int n, constant float * val, float x) {
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
static inline float e8m0_to_fp32(uint8_t x) {
uint32_t bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = (uint32_t) x << 23;
}
return as_type<float>(bits);
}
// NOTE: this is not dequantizing - we are simply fitting the template
template <typename type4x4>
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
@@ -242,6 +258,27 @@ void quantize_q5_1(device const float * src, device block_q5_1 & dst) {
}
}
void quantize_q8_0(device const float * src, device block_q8_0 & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = src[j];
amax = MAX(amax, fabs(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
dst.d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = src[j]*id;
dst.qs[j] = round(x0);
}
}
void quantize_iq4_nl(device const float * src, device block_iq4_nl & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
@@ -462,25 +499,34 @@ void dequantize_q8_0_t4(device const block_q8_0 *xb, short il, thread type4 & re
}
}
void quantize_q8_0(device const float * src, device block_q8_0 & dst) {
#pragma METAL fp math_mode(safe)
float amax = 0.0f; // absolute max
template <typename type4x4>
void dequantize_mxfp4(device const block_mxfp4 * xb, short il, thread type4x4 & reg) {
device const uint8_t * q2 = (device const uint8_t *)xb->qs;
for (int j = 0; j < QK8_0; j++) {
const float v = src[j];
amax = MAX(amax, fabs(v));
const float d = e8m0_to_fp32(xb->e);
const uint8_t shr = il >= 1 ? 4 : 0;
for (int i = 0; i < 4; ++i) {
reg[i][0] = d * kvalues_mxfp4_f[(q2[4*i + 0] >> shr) & 0x0F];
reg[i][1] = d * kvalues_mxfp4_f[(q2[4*i + 1] >> shr) & 0x0F];
reg[i][2] = d * kvalues_mxfp4_f[(q2[4*i + 2] >> shr) & 0x0F];
reg[i][3] = d * kvalues_mxfp4_f[(q2[4*i + 3] >> shr) & 0x0F];
}
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
template <typename type4>
void dequantize_mxfp4_t4(device const block_mxfp4 * xb, short il, thread type4 & reg) {
device const uint8_t * q2 = (device const uint8_t *)xb->qs;
dst.d = d;
const float d = e8m0_to_fp32(xb->e);
const short il4 = il%4;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = src[j]*id;
const uint8_t shr = il >= 4 ? 4 : 0;
dst.qs[j] = round(x0);
}
reg[0] = d * kvalues_mxfp4_f[(q2[4*il4 + 0] >> shr) & 0x0F];
reg[1] = d * kvalues_mxfp4_f[(q2[4*il4 + 1] >> shr) & 0x0F];
reg[2] = d * kvalues_mxfp4_f[(q2[4*il4 + 2] >> shr) & 0x0F];
reg[3] = d * kvalues_mxfp4_f[(q2[4*il4 + 3] >> shr) & 0x0F];
}
template <typename type4x4>
@@ -960,6 +1006,32 @@ kernel void kernel_div(
}
}
kernel void kernel_add_id(
constant ggml_metal_kargs_add_id & args,
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i1 = tgpig.x;
const int i2 = tgpig.y;
const int i11 = *((device const int32_t *) (src2 + i1*sizeof(int32_t) + i2*args.nb21));
const size_t nb1 = args.ne0 * sizeof(float);
const size_t nb2 = args.ne1 * nb1;
device float * dst_row = (device float *)((device char *)dst + i1*nb1 + i2*nb2);
device const float * src0_row = (device const float *)((device char *)src0 + i1*args.nb01 + i2*args.nb02);
device const float * src1_row = (device const float *)((device char *)src1 + i11*args.nb11);
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
dst_row[i0] = src0_row[i0] + src1_row[i0];
}
}
template<typename T>
kernel void kernel_repeat(
constant ggml_metal_kargs_repeat & args,
@@ -1431,6 +1503,32 @@ kernel void kernel_swiglu(
}
}
kernel void kernel_swiglu_oai(
device const char * src0,
device const char * src1,
device char * dst,
constant ggml_metal_kargs_glu & args,
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * src0_row = (device const float *) ((device const char *) src0 + tgpig*args.nb01) + args.i00;
device const float * src1_row = (device const float *) ((device const char *) src1 + tgpig*args.nb11) + args.i10;
device float * dst_row = (device float *) ((device char *) dst + tgpig*args.nb1);
for (int i0 = tpitg; i0 < args.ne0; i0 += ntg) {
float x0 = src0_row[i0];
float x1 = src1_row[i0];
x0 = min(x0, args.limit);
x1 = max(min(x1, args.limit), -args.limit);
float out_glu = x0 / (1.0f + exp(-x0 * args.alpha));
out_glu = out_glu * (1.0f + x1);
dst_row[i0] = out_glu;
}
}
kernel void kernel_geglu_erf(
device const char * src0,
device const char * src1,
@@ -1534,6 +1632,7 @@ template<typename T>
kernel void kernel_soft_max(
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
constant ggml_metal_kargs_soft_max & args,
threadgroup float * buf [[threadgroup(0)]],
@@ -1552,6 +1651,7 @@ kernel void kernel_soft_max(
device const float * psrc0 = (device const float *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
device const float * psrc2 = src2 != src0 ? (device const float *) (src2) : nullptr;
device float * pdst = (device float *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
float slope = 1.0f;
@@ -1567,7 +1667,7 @@ kernel void kernel_soft_max(
}
// parallel max
float lmax = -INFINITY;
float lmax = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
lmax = MAX(lmax, psrc0[i00]*args.scale + (pmask ? slope*pmask[i00] : 0.0f));
@@ -1623,6 +1723,10 @@ kernel void kernel_soft_max(
sum = simd_sum(sum);
}
if (psrc2) {
sum += exp(psrc2[i02] - max_val);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg.x; i00 < args.ne00; i00 += tptg.x) {
@@ -1634,6 +1738,7 @@ template<typename T>
kernel void kernel_soft_max_4(
device const char * src0,
device const char * src1,
device const char * src2,
device char * dst,
constant ggml_metal_kargs_soft_max & args,
threadgroup float * buf [[threadgroup(0)]],
@@ -1652,6 +1757,7 @@ kernel void kernel_soft_max_4(
device const float4 * psrc4 = (device const float4 *) (src0 + i01*args.nb01 + i02*args.nb02 + i03*args.nb03);
device const T * pmask = src1 != src0 ? (device const T * ) (src1 + i11*args.nb11 + i12*args.nb12 + i13*args.nb13) : nullptr;
device const float * psrc2 = src2 != src0 ? (device const float * ) (src2) : nullptr;
device float4 * pdst4 = (device float4 *) (dst + i01*args.nb1 + i02*args.nb2 + i03*args.nb3);
float slope = 1.0f;
@@ -1666,7 +1772,7 @@ kernel void kernel_soft_max_4(
}
// parallel max
float4 lmax4 = -INFINITY;
float4 lmax4 = psrc2 ? psrc2[i02] : -INFINITY;
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
lmax4 = fmax(lmax4, psrc4[i00]*args.scale + (float4)((pmask ? slope*pmask[i00] : 0.0f)));
@@ -1725,6 +1831,10 @@ kernel void kernel_soft_max_4(
sum = simd_sum(sum);
}
if (psrc2) {
sum += exp(psrc2[i02] - max_val);
}
const float inv_sum = 1.0f/sum;
for (int i00 = tpitg.x; i00 < args.ne00/4; i00 += tptg.x) {
@@ -3106,6 +3216,11 @@ template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_3")]] kernel mul_mv_ext_q4
template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_q8_0, 32, dequantize_q8_0_t4>;
template [[host_name("kernel_mul_mv_ext_q8_0_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_q8_0, 32, dequantize_q8_0_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_mxfp4_f32_r1_5")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<5, block_mxfp4, 32, dequantize_mxfp4_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_2")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<2, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_3")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<3, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
template [[host_name("kernel_mul_mv_ext_iq4_nl_f32_r1_4")]] kernel mul_mv_ext_q4_f32_t kernel_mul_mv_ext_q4_f32_disp<4, block_iq4_nl, 32, dequantize_iq4_nl_t4>;
@@ -4092,6 +4207,7 @@ kernel void kernel_flash_attn_ext(
device const char * k,
device const char * v,
device const char * mask,
device const char * sinks,
device char * dst,
threadgroup half * shmem_f16 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
@@ -4407,6 +4523,35 @@ kernel void kernel_flash_attn_ext(
}
}
if (sinks != q && sgitg == 0) {
for (ushort j = 0; j < Q; ++j) {
const float m = M[j];
const float s = tiisg == 0 ? ((device const float *) sinks)[iq2] : -FLT_MAX/2;
M[j] = simd_max(max(M[j], s));
const float ms = exp(m - M[j]);
const float vs = exp(s - M[j]);
S[j] = S[j]*ms + simd_sum(vs);
if (tiisg == j) {
ss[j*TS + 2*C + j] = ms;
}
}
// O = diag(ms)*O
{
s8x8_t ms;
simdgroup_load(ms, ss + 2*C, TS, 0, false);
#pragma unroll(DV8)
for (short i = 0; i < DV8; ++i) {
simdgroup_multiply(lo[i], ms, lo[i]);
}
}
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
for (short j = tiisg; j < Q; j += NW) {
ss[j*TS + 0] = S[j];
@@ -4618,6 +4763,7 @@ kernel void kernel_flash_attn_ext_vec(
device const char * k,
device const char * v,
device const char * mask,
device const char * sinks,
device char * dst,
threadgroup half * shmem_f16 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
@@ -4835,6 +4981,23 @@ kernel void kernel_flash_attn_ext_vec(
}
}
if (sinks != q && sgitg == 0) {
const float m = M;
const float s = tiisg == 0 ? ((device const float *) sinks)[iq2] : -FLT_MAX/2;
M = simd_max(max(M, s));
const float ms = exp(m - M);
const float vs = exp(s - M);
S = S*ms + simd_sum(vs);
#pragma unroll(DV4/NL)
for (short ii = 0; ii < DV4; ii += NL) {
lo[ii/NL] *= ms;
}
}
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
if (tiisg == 0) {
ss[0] = (s_t) S;
@@ -6940,6 +7103,95 @@ kernel void kernel_mul_mv_iq4_xs_f32(
kernel_mul_mv_iq4_xs_f32_impl<N_R0_IQ4_XS, N_SG_IQ4_XS, N_SIMDWIDTH, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<int nr0, int nsg, int nw, typename args_t>
void kernel_mul_mv_mxfp4_f32_impl(
args_t args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem,
uint3 tgpig,
ushort tiisg,
ushort sgitg) {
threadgroup float * shmem_f32 = (threadgroup float *) shmem;
const int nb = args.ne00/QK_MXFP4;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = (r0 * nsg + sgitg) * nr0;
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
const uint64_t offset0 = first_row*args.nb01 + (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const uint64_t offset1 = r1*args.nb11 + (i12 )*args.nb12 + (i13 )*args.nb13;
device const block_mxfp4 * x = (device const block_mxfp4 *) (src0 + offset0);
device const float * y = (device const float *) (src1 + offset1);
const short ix = tiisg/2; // 0...15
const short it = tiisg%2; // 0 or 1
shmem_f32[tiisg] = kvalues_mxfp4_f[tiisg%16];
threadgroup_barrier(mem_flags::mem_threadgroup);
float4 yl[4];
float sumf[nr0]={0.f};
device const float * yb = y + ix * QK_MXFP4 + it * 8;
for (int ib = ix; ib < nb; ib += 16) {
device const float4 * y4 = (device const float4 *)yb;
yl[0] = y4[0];
yl[1] = y4[4];
yl[2] = y4[1];
yl[3] = y4[5];
#pragma unroll(nr0)
for (short row = 0; row < nr0; row++) {
device const block_mxfp4 & xb = x[row*nb + ib];
device const uint8_t * q2 = (device const uint8_t *)(xb.qs + 8*it);
float4 acc1 = yl[0]*float4(shmem_f32[q2[0] & 0x0F], shmem_f32[q2[1] & 0x0F], shmem_f32[q2[2] & 0x0F], shmem_f32[q2[3] & 0x0F]);
float4 acc2 = yl[1]*float4(shmem_f32[q2[0] >> 4 ], shmem_f32[q2[1] >> 4 ], shmem_f32[q2[2] >> 4 ], shmem_f32[q2[3] >> 4 ]);
float4 acc3 = yl[2]*float4(shmem_f32[q2[4] & 0x0F], shmem_f32[q2[5] & 0x0F], shmem_f32[q2[6] & 0x0F], shmem_f32[q2[7] & 0x0F]);
float4 acc4 = yl[3]*float4(shmem_f32[q2[4] >> 4 ], shmem_f32[q2[5] >> 4 ], shmem_f32[q2[6] >> 4 ], shmem_f32[q2[7] >> 4 ]);
acc1 = (acc1 + acc3) + (acc2 + acc4);
sumf[row] += e8m0_to_fp32(xb.e) * ((acc1[0] + acc1[1]) + (acc1[2] + acc1[3]));
}
yb += 16 * QK_MXFP4;
}
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < nr0 && first_row + row < args.ne0; ++row) {
float sum_all = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = sum_all;
}
}
}
[[host_name("kernel_mul_mv_mxfp4_f32")]]
kernel void kernel_mul_mv_mxfp4_f32(
constant ggml_metal_kargs_mul_mv & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
kernel_mul_mv_mxfp4_f32_impl<N_R0_MXFP4, N_SG_MXFP4, N_SIMDWIDTH, constant ggml_metal_kargs_mul_mv &>(args, src0, src1, dst, shmem, tgpig, tiisg, sgitg);
}
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
kernel void kernel_get_rows_q(
constant ggml_metal_kargs_get_rows & args,
@@ -7475,6 +7727,7 @@ template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_q_t kernel_get
template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_get_rows_mxfp4")]] kernel get_rows_q_t kernel_get_rows_q<block_mxfp4, 2, dequantize_mxfp4>;
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_K, QK_NL, dequantize_q4_K>;
@@ -7527,6 +7780,7 @@ template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mul_mm_t kernel_mul_m
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_mxfp4_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_mxfp4, 2, dequantize_mxfp4>;
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>;
@@ -7558,6 +7812,7 @@ template [[host_name("kernel_mul_mm_id_q4_1_f16")]] kernel mul_mm_id kernel_m
template [[host_name("kernel_mul_mm_id_q5_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_mul_mm_id_q5_1_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_mul_mm_id_q8_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_id_mxfp4_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_mxfp4, 2, dequantize_mxfp4>;
template [[host_name("kernel_mul_mm_id_q2_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_id_q3_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_mul_mm_id_q4_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>;
@@ -7703,6 +7958,8 @@ template [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel kernel_mul_mv_id_t
template [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_0, N_R0_Q5_0, N_SG_Q5_0, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_1, N_R0_Q5_1, N_SG_Q5_1, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_mxfp4_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_mxfp4_f32_impl<N_R0_MXFP4, N_SG_MXFP4, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q2_K_f32_impl <N_R0_Q2_K, N_SG_Q2_K, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q3_K_f32_impl <N_R0_Q3_K, N_SG_Q3_K, N_SIMDWIDTH>>>;
template [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q4_K_f32_impl <N_R0_Q4_K, N_SG_Q4_K, N_SIMDWIDTH>>>;

View File

@@ -2497,6 +2497,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SOFT_MAX:
// TODO: support attention sinks [TAG_ATTN_SINKS]
return op->src[2] == nullptr;
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return true;

View File

@@ -21,6 +21,17 @@
#define UNUSED GGML_UNUSED
static inline int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
int ml = 0, mu = n-1;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < val[mav]) mu = mav; else ml = mav;
}
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
// reference implementation for deterministic creation of model files
void quantize_row_q4_0_ref(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k) {
static const int qk = QK4_0;
@@ -246,6 +257,53 @@ void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_REST
}
}
static inline int best_index_mxfp4(float x, float e) {
int best_index = 0;
float best_err = fabsf(kvalues_mxfp4[0]*e - x);
for (int i = 1; i < 16; i++) {
float err = fabsf(kvalues_mxfp4[i]*e - x);
if (err < best_err) {
best_index = i;
best_err = err;
}
}
return best_index;
}
void quantize_row_mxfp4_ref(const float * GGML_RESTRICT x, block_mxfp4 * GGML_RESTRICT y, int64_t k) {
static const int qk = QK_MXFP4;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (amax < fabsf(v)) {
amax = fabsf(v);
}
}
const uint8_t e = (uint8_t) (floorf(log2f(amax)) - 2 + 127);
const float d = GGML_E8M0_TO_FP32_HALF(e);
y[i].e = e;
for (int j = 0; j < qk/2; ++j) {
const uint8_t x0 = best_index_mxfp4(x[i*qk + 0 + j], d);
const uint8_t x1 = best_index_mxfp4(x[i*qk + qk/2 + j], d);
y[i].qs[j] = x0;
y[i].qs[j] |= x1 << 4;
}
}
}
void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) {
static const int qk = QK4_0;
@@ -356,6 +414,26 @@ void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRI
}
}
void dequantize_row_mxfp4(const block_mxfp4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k) {
static const int qk = QK_MXFP4;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = GGML_E8M0_TO_FP32_HALF(x[i].e);
for (int j = 0; j < qk/2; ++j) {
const int8_t x0 = kvalues_mxfp4[x[i].qs[j] & 0x0F];
const int8_t x1 = kvalues_mxfp4[x[i].qs[j] >> 4];
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
}
}
//
// 2-6 bit quantization in super-blocks
//
@@ -2014,6 +2092,12 @@ size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst,
return nrow * row_size;
}
size_t quantize_mxfp4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
GGML_UNUSED(quant_weights);
quantize_row_mxfp4_ref(src, dst, (int64_t)nrow*n_per_row);
return nrow * ggml_row_size(GGML_TYPE_MXFP4, n_per_row);
}
// ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs)
void quantize_row_tq1_0_ref(const float * GGML_RESTRICT x, block_tq1_0 * GGML_RESTRICT y, int64_t k) {
@@ -4551,17 +4635,6 @@ size_t quantize_iq1_m(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst,
// ============================ 4-bit non-linear quants
static inline int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
int ml = 0, mu = n-1;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < val[mav]) mu = mav; else ml = mav;
}
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * GGML_RESTRICT x,
ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
float * scales, float * weight, uint8_t * L,
@@ -4961,6 +5034,15 @@ static bool validate_fp16(ggml_fp16_t f, size_t i) {
return true;
}
static bool validate_e_e8m0(uint8_t e, size_t i) {
if (e == 0xff) {
fprintf(stderr, "ggml_validate_row_data: found invalid e value %d at block %zu\n", e, i);
return false;
}
return true;
}
#define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
@@ -4977,6 +5059,14 @@ static bool validate_fp16(ggml_fp16_t f, size_t i) {
} \
}
#define VALIDATE_ROW_DATA_E_E8M0_IMPL(type, data, nb) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
if (!validate_e_e8m0(q[i].e, i)) { \
return false; \
} \
}
#define VALIDATE_ROW_DATA_DVEC_F16_IMPL(type, data, nb, nr) \
const type * q = (const type *) (data); \
for (size_t i = 0; i < (nb); ++i) { \
@@ -5130,6 +5220,10 @@ bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbyte
{
VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
} break;
case GGML_TYPE_MXFP4:
{
VALIDATE_ROW_DATA_E_E8M0_IMPL(block_mxfp4, data, nb);
} break;
case GGML_TYPE_Q2_K:
{
VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);

View File

@@ -21,6 +21,8 @@ GGML_API void quantize_row_q5_1_ref(const float * GGML_RESTRICT x, block_q5_1 *
GGML_API void quantize_row_q8_0_ref(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_q8_1_ref(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_mxfp4_ref(const float * GGML_RESTRICT x, block_mxfp4 * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_q2_K_ref(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_q3_K_ref(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k);
GGML_API void quantize_row_q4_K_ref(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k);
@@ -45,6 +47,8 @@ GGML_API void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GG
GGML_API void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
//GGML_API void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
GGML_API void dequantize_row_mxfp4(const block_mxfp4 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
GGML_API void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
GGML_API void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
GGML_API void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
@@ -90,6 +94,8 @@ GGML_API size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTR
GGML_API size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
GGML_API size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
GGML_API size_t quantize_mxfp4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
GGML_API void iq2xs_init_impl(enum ggml_type type);
GGML_API void iq2xs_free_impl(enum ggml_type type);
GGML_API void iq3xs_init_impl(int grid_size);

View File

@@ -4193,15 +4193,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
{
struct ggml_tensor * a;
struct ggml_tensor * b;
if (op->op == GGML_OP_MUL_MAT) {
a = op->src[0];
b = op->src[1];
} else {
a = op->src[2];
b = op->src[1];
}
struct ggml_tensor * a = op->src[0];
struct ggml_tensor * b = op->src[1];
if (a->ne[3] != b->ne[3]) {
return false;
}
@@ -4216,7 +4210,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
}
}
ggml_type src0_type = op->src[0]->type;
if (src0_type == GGML_TYPE_BF16) {
if (src0_type == GGML_TYPE_BF16 || src0_type == GGML_TYPE_MXFP4) {
// TODO: support MXFP4
// FIXME: keep a list of supported types to avoid breaking the backend when a new type is added
return false;
}
return true;
@@ -4361,6 +4357,10 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
if (op->src[0]->ne[3] != 1) {
return false;
}
// TODO: support attention sinks [TAG_ATTN_SINKS]
if (op->src[2]) {
return false;
}
// TODO: support broadcast
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);

View File

@@ -449,6 +449,8 @@ struct vk_device_struct {
vk_pipeline pipeline_div[2][2][2];
vk_pipeline pipeline_div_norepeat[2][2][2];
vk_pipeline pipeline_add_id_f32;
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
vk_pipeline pipeline_upscale_nearest_f32, pipeline_upscale_bilinear_f32, pipeline_upscale_bilinear_ac_f32;
vk_pipeline pipeline_scale_f32;
@@ -483,6 +485,7 @@ struct vk_device_struct {
vk_pipeline pipeline_geglu[2];
vk_pipeline pipeline_reglu[2];
vk_pipeline pipeline_swiglu[2];
vk_pipeline pipeline_swiglu_oai[2];
vk_pipeline pipeline_geglu_erf[2];
vk_pipeline pipeline_geglu_quick[2];
@@ -705,6 +708,8 @@ struct vk_op_glu_push_constants {
uint32_t ne00;
uint32_t ne20;
uint32_t mode; // 0: default, 1: swapped, 2: split
float alpha; // for swiglu_oai
float limit;
};
struct vk_op_unary_push_constants {
@@ -794,6 +799,15 @@ struct vk_op_binary_push_constants {
float param1; float param2; int32_t param3;
};
struct vk_op_add_id_push_constants {
uint32_t ne0;
uint32_t ne1;
uint32_t s01;
uint32_t s02;
uint32_t s11;
uint32_t s21;
};
struct vk_op_diag_mask_push_constants {
uint32_t ncols;
uint32_t rows_per_channel;
@@ -835,6 +849,7 @@ struct vk_op_soft_max_push_constants {
float m1;
uint32_t n_head_log2;
uint32_t nrows_x;
uint32_t has_sinks;
};
struct vk_op_argsort_push_constants {
@@ -1977,6 +1992,7 @@ static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vec
break;
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_MXFP4:
lut_size = 4*16;
break;
default:
@@ -2353,6 +2369,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ3_S], matmul_iq3_s_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_XS], matmul_iq4_xs_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL], matmul_iq4_nl_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_MXFP4], matmul_mxfp4_f16, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
@@ -2379,6 +2396,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f16acc, matmul_id_iq3_s_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f16acc, matmul_id_iq4_xs_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f16acc, matmul_id_mxfp4_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
#undef CREATE_MM
#undef CREATE_MM2
} else
@@ -2440,6 +2458,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S], matmul_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS], matmul_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL], matmul_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4], matmul_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
} else {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@@ -2461,6 +2480,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f32acc, matmul_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f32acc, matmul_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4].f32acc, matmul_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
}
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
@@ -2493,6 +2513,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f16acc, matmul_id_iq3_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f16acc, matmul_id_iq4_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f16acc, matmul_id_mxfp4_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
} else {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@@ -2514,6 +2535,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f16acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f16acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f16acc, matmul_id_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
}
#undef CREATE_MM2
#undef CREATE_MM
@@ -2581,6 +2603,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S], matmul_iq3_s_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS], matmul_iq4_xs_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL], matmul_iq4_nl_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4], matmul_mxfp4_f32, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (device->integer_dot_product) {
@@ -2618,6 +2641,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f16acc, matmul_id_iq3_s_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f16acc, matmul_id_iq4_xs_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f16acc, matmul_id_mxfp4_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
#undef CREATE_MM2
#undef CREATE_MMQ
#undef CREATE_MM
@@ -2672,6 +2696,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ3_S].f32acc, matmul_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_XS].f32acc, matmul_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat[GGML_TYPE_MXFP4].f32acc, matmul_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (device->integer_dot_product) {
@@ -2709,6 +2734,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_MXFP4, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_MXFP4].f32acc, matmul_id_mxfp4_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
}
// reusing CREATE_MM from the fp32 path
if ((device->coopmat2 || device->coopmat_support)
@@ -2767,6 +2793,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq3_s_f32_f32_len, mul_mat_vec_iq3_s_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq4_xs_f32_f32_len, mul_mat_vec_iq4_xs_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f32_f32_"+std::to_string(i+1), mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f32_f32_"+std::to_string(i+1), mul_mat_vec_mxfp4_f32_f32_len, mul_mat_vec_mxfp4_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32_"+std::to_string(i+1), mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32_"+std::to_string(i+1), mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
@@ -2790,6 +2817,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ3_S][i], "mul_mat_vec_iq3_s_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq3_s_f16_f32_len, mul_mat_vec_iq3_s_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_XS][i], "mul_mat_vec_iq4_xs_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq4_xs_f16_f32_len, mul_mat_vec_iq4_xs_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL][i], "mul_mat_vec_iq4_nl_f16_f32_"+std::to_string(i+1), mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_MXFP4][i], "mul_mat_vec_mxfp4_f16_f32_"+std::to_string(i+1), mul_mat_vec_mxfp4_f16_f32_len, mul_mat_vec_mxfp4_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq, i+1}, 1, true);
}
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
@@ -2814,6 +2842,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ3_S], "mul_mat_vec_id_iq3_s_f32", mul_mat_vec_id_iq3_s_f32_len, mul_mat_vec_id_iq3_s_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_XS], "mul_mat_vec_id_iq4_xs_f32", mul_mat_vec_id_iq4_xs_f32_len, mul_mat_vec_id_iq4_xs_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_MXFP4], "mul_mat_vec_id_mxfp4_f32", mul_mat_vec_id_mxfp4_f32_len, mul_mat_vec_id_mxfp4_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {rm_iq, 1, 1}, {subgroup_size_16, rm_iq}, 1, true);
// dequant shaders
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
@@ -2836,6 +2865,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ3_S], "dequant_iq3_s", dequant_iq3_s_len, dequant_iq3_s_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ4_XS], "dequant_iq4_xs", dequant_iq4_xs_len, dequant_iq4_xs_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ4_NL], "dequant_iq4_nl", dequant_iq4_nl_len, dequant_iq4_nl_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_MXFP4], "dequant_mxfp4", dequant_mxfp4_len, dequant_mxfp4_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
// get_rows
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
@@ -2855,6 +2885,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ3_S], "get_rows_iq3_s", get_rows_iq3_s_len, get_rows_iq3_s_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_XS], "get_rows_iq4_xs", get_rows_iq4_xs_len, get_rows_iq4_xs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl", get_rows_iq4_nl_len, get_rows_iq4_nl_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_MXFP4], "get_rows_mxfp4", get_rows_mxfp4_len, get_rows_mxfp4_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
@@ -2873,6 +2904,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ3_S], "get_rows_iq3_s_f32", get_rows_iq3_s_f32_len, get_rows_iq3_s_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ4_XS], "get_rows_iq4_xs_f32", get_rows_iq4_xs_f32_len, get_rows_iq4_xs_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl_f32", get_rows_iq4_nl_f32_len, get_rows_iq4_nl_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_MXFP4], "get_rows_mxfp4_f32", get_rows_mxfp4_f32_len, get_rows_mxfp4_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_split_k_reduce, "fa_split_k_reduce", fa_split_k_reduce_len, fa_split_k_reduce_data, "main", 2, 4 * sizeof(uint32_t), {1, device->subgroup_size, 1}, {device->subgroup_size}, 1, true);
@@ -2976,6 +3008,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_BINARY(div, _norepeat, {1})
#undef CREATE_BINARY
ggml_vk_create_pipeline(device, device->pipeline_add_id_f32, "add_id_f32", add_id_f32_len, add_id_f32_data, "main", 4, sizeof(vk_op_add_id_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
@@ -3026,6 +3060,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_GLU(geglu)
CREATE_GLU(reglu)
CREATE_GLU(swiglu)
CREATE_GLU(swiglu_oai)
CREATE_GLU(geglu_erf)
CREATE_GLU(geglu_quick)
#undef CREATE_GLU
@@ -3035,10 +3070,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {1, 512, 1}, {}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_wg512, "soft_max_f32_wg512", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_wg512, "soft_max_f32_wg512", soft_max_f32_len, soft_max_f32_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_back_f32, "soft_max_back_f32", soft_max_back_f32_len, soft_max_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
@@ -4244,6 +4279,7 @@ static vk_pipeline ggml_vk_get_to_fp16(ggml_backend_vk_context * ctx, ggml_type
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_MXFP4:
break;
default:
return nullptr;
@@ -4314,6 +4350,7 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_MXFP4:
break;
default:
return nullptr;
@@ -4357,6 +4394,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_MXFP4:
break;
default:
return nullptr;
@@ -4411,6 +4449,7 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_MXFP4:
break;
default:
return nullptr;
@@ -4446,6 +4485,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_MXFP4:
break;
default:
return nullptr;
@@ -4631,6 +4671,7 @@ static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context&
std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))");
GGML_ASSERT(ctx->descriptor_set_idx < ctx->descriptor_sets.size());
GGML_ASSERT(descriptor_buffer_infos.size() <= MAX_PARAMETER_COUNT);
GGML_ASSERT(pipeline->parameter_count == descriptor_buffer_infos.size());
vk::DescriptorSet& descriptor_set = ctx->descriptor_sets[ctx->descriptor_set_idx++];
vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() };
@@ -6847,6 +6888,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
break;
}
return nullptr;
case GGML_OP_ADD_ID:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && src2->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_add_id_f32;
}
return nullptr;
case GGML_OP_CONCAT:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_concat_f32;
@@ -6992,6 +7038,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_reglu[dst->type == GGML_TYPE_F16];
case GGML_GLU_OP_SWIGLU:
return ctx->device->pipeline_swiglu[dst->type == GGML_TYPE_F16];
case GGML_GLU_OP_SWIGLU_OAI:
return ctx->device->pipeline_swiglu_oai[dst->type == GGML_TYPE_F16];
case GGML_GLU_OP_GEGLU_ERF:
return ctx->device->pipeline_geglu_erf[dst->type == GGML_TYPE_F16];
case GGML_GLU_OP_GEGLU_QUICK:
@@ -7007,6 +7055,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return nullptr;
case GGML_OP_SOFT_MAX:
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
GGML_ASSERT(!src2 || src2->type == GGML_TYPE_F32);
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32;
@@ -7177,6 +7226,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD_ID:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SQR:
@@ -7523,6 +7573,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
elements = { ne, 1, 1 };
}
} break;
case GGML_OP_ADD_ID:
{
elements = { (uint32_t)ne01, (uint32_t)ne02, 1 };
} break;
case GGML_OP_SET_ROWS:
{
uint32_t ne = ggml_nelements(src0);
@@ -7562,8 +7616,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
}
if (op == GGML_OP_SOFT_MAX || op == GGML_OP_GLU) {
// Empty src1 is possible in soft_max, but the shader needs a buffer
if (op == GGML_OP_GLU) {
// Empty src1 is possible in glu, but the shader needs a buffer
vk_subbuffer subbuf_y;
if (use_src1) {
subbuf_y = { d_Y, y_buf_offset, y_sz };
@@ -7573,6 +7627,24 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (op == GGML_OP_SOFT_MAX) {
// Empty src1 and src2 is possible in soft_max, but the shader needs a buffer
vk_subbuffer subbuf_y;
if (use_src1) {
subbuf_y = { d_Y, y_buf_offset, y_sz };
} else {
subbuf_y = { d_X, 0, x_sz };
}
vk_subbuffer subbuf_z;
if (use_src2) {
subbuf_z = { d_Z, z_buf_offset, z_sz };
} else {
subbuf_z = { d_X, 0, x_sz };
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, pc, elements);
} else if (op == GGML_OP_ROPE || op == GGML_OP_ROPE_BACK) {
// Empty src2 is possible in rope, but the shader needs a buffer
vk_subbuffer subbuf_z;
@@ -7701,6 +7773,21 @@ static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const
}, dryrun);
}
static void ggml_vk_add_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) {
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t src2_type_size = ggml_type_size(src2->type);
ggml_vk_op_f32<vk_op_add_id_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ADD_ID, {
(uint32_t)dst->ne[0],
(uint32_t)dst->ne[1],
(uint32_t)src0->nb[1] / src0_type_size,
(uint32_t)src0->nb[2] / src0_type_size,
(uint32_t)src1->nb[1] / src1_type_size,
(uint32_t)src2->nb[1] / src2_type_size,
}, dryrun);
}
static void ggml_vk_op_f32_wkv(ggml_backend_vk_context * ctx, vk_context& subctx, ggml_tensor * dst, const vk_op_rwkv_wkv6_push_constants&& pc, int version, bool dryrun = false) {
GGML_ASSERT(version == 6 || version == 7);
int num_srcs = version == 6 ? 6 : 7;
@@ -8119,8 +8206,12 @@ static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, con
}
static void ggml_vk_glu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
const float * op_params_f = (const float *)dst->op_params;
const bool swapped = (bool)dst->op_params[1];
const bool split = src1 != nullptr;
const float alpha = op_params_f[2];
const float limit = op_params_f[3];
GGML_ASSERT(ggml_is_contiguous(src0));
@@ -8134,7 +8225,15 @@ static void ggml_vk_glu(ggml_backend_vk_context * ctx, vk_context& subctx, const
const uint32_t mode = split ? 2 : (swapped ? 1 : 0);
ggml_vk_op_f32<vk_op_glu_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GLU, { (uint32_t)ggml_nelements(dst), (uint32_t)src0->ne[0], (uint32_t)dst->ne[0], mode }, dryrun);
ggml_vk_op_f32<vk_op_glu_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GLU,
{
(uint32_t)ggml_nelements(dst),
(uint32_t)src0->ne[0],
(uint32_t)dst->ne[0],
mode,
alpha,
limit
}, dryrun);
}
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
@@ -8142,7 +8241,7 @@ static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& sub
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }, dryrun);
}
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) {
float * op_params = (float *)dst->op_params;
float scale = op_params[0];
@@ -8164,7 +8263,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx,
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX, {
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_SOFT_MAX, {
ncols,
src1 != nullptr ? nrows_y : (uint32_t)0,
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],
@@ -8174,6 +8273,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx,
m0, m1,
n_head_log2,
nrows_x,
src2 != nullptr
}, dryrun);
}
@@ -9413,6 +9513,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
break;
@@ -9424,6 +9525,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_REPEAT_BACK:
case GGML_OP_GET_ROWS:
case GGML_OP_ADD:
case GGML_OP_ADD_ID:
case GGML_OP_ACC:
case GGML_OP_SUB:
case GGML_OP_MUL:
@@ -9578,6 +9680,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_DIV:
ggml_vk_div(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_ADD_ID:
ggml_vk_add_id(ctx, compute_ctx, src0, src1, src2, node, dryrun);
break;
case GGML_OP_CONCAT:
ggml_vk_concat(ctx, compute_ctx, src0, src1, node, dryrun);
@@ -9675,6 +9781,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
ggml_vk_glu(ctx, compute_ctx, src0, src1, node, dryrun);
@@ -9688,7 +9795,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
break;
case GGML_OP_SOFT_MAX:
ggml_vk_soft_max(ctx, compute_ctx, src0, src1, node, dryrun);
ggml_vk_soft_max(ctx, compute_ctx, src0, src1, src2, node, dryrun);
break;
case GGML_OP_SOFT_MAX_BACK:
@@ -9834,6 +9941,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD_ID:
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_SCALE:
@@ -9903,6 +10011,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
buf = tensor->buffer;
@@ -10752,6 +10861,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_SWIGLU_OAI:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return ggml_is_contiguous(op->src[0]) &&
@@ -10797,6 +10907,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_MXFP4:
break;
default:
return false;
@@ -10834,6 +10945,10 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
if (head_sizes == FA_HEAD_SIZE_UNSUPPORTED) {
return false;
}
// TODO: support attention sinks [TAG_ATTN_SINKS]
if (op->src[4]) {
return false;
}
if (op->src[0]->type != GGML_TYPE_F32) {
return false;
}
@@ -10906,6 +11021,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_MXFP4:
return true;
default:
return false;
@@ -11004,6 +11120,9 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
(op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16) &&
(op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->src[2]->type == GGML_TYPE_I32 &&
op->type == GGML_TYPE_F32;
case GGML_OP_SILU_BACK:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_SQR:

View File

@@ -0,0 +1,42 @@
#version 450
#extension GL_EXT_control_flow_attributes : require
#include "types.comp"
layout (push_constant) uniform parameter
{
uint ne0;
uint ne1;
uint s01;
uint s02;
uint s11;
uint s21;
} p;
#define BLOCK_SIZE 512
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
layout (binding = 2) readonly buffer Z {int32_t data_c[];};
layout (binding = 3) writeonly buffer D {D_TYPE data_d[];};
void main() {
const uint i1 = gl_WorkGroupID.x;
const uint i2 = gl_WorkGroupID.y;
const uint i11 = data_c[i1 + i2 * p.s21];
const uint s1 = p.ne0;
const uint s2 = p.ne0 * p.ne1;
const uint d0 = i1 * s1 + i2 * s2;
const uint a0 = i1 * p.s01 + i2 * p.s02;
const uint b0 = i11 * p.s11;
for (uint i0 = gl_LocalInvocationID.x; i0 < p.ne0; i0 += BLOCK_SIZE) {
data_d[d0 + i0] = data_a[a0 + i0] + data_b[b0 + i0];
}
}

View File

@@ -4,8 +4,8 @@
#include "generic_unary_head.comp"
#include "dequant_funcs.comp"
#if defined(DATA_A_IQ4_NL)
// 16 invocations needed for init_iq4nl_shmem
#if defined(DATA_A_IQ4_NL) || defined(DATA_A_MXFP4)
// 16 invocations needed for init_iq_shmem
layout(local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
#else
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;

View File

@@ -434,6 +434,18 @@ vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
}
#endif
#if defined(DATA_A_MXFP4)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return vec2(kvalues_mxfp4[vui & 0xF], kvalues_mxfp4[vui >> 4]);
}
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
vec2 v0 = dequantize(ib, iqs, a_offset);
vec2 v1 = dequantize(ib, iqs + 1, a_offset);
return vec4(v0.x, v0.y, v1.x, v1.y);
}
#endif
#if defined(DATA_A_F32) || defined(DATA_A_F16) || defined(DATA_A_BF16)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(0, 0);
@@ -455,6 +467,12 @@ vec2 get_dm(uint ib, uint a_offset) {
}
#endif
#if defined(DATA_A_MXFP4)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(e8m0_to_fp32(data_a[a_offset + ib].e), 0);
}
#endif
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(float(data_a[a_offset + ib].d), float(data_a[a_offset + ib].m));

View File

@@ -654,6 +654,25 @@ float16_t dequantFuncIQ4_NL(const in decodeBufIQ4_NL bl, const in uint blockCoor
}
#endif
#if defined(DATA_A_MXFP4)
layout(buffer_reference, std430, buffer_reference_align = 2) buffer decodeBufMXFP4 {
block_mxfp4 block;
};
float16_t dequantFuncMXFP4(const in decodeBufMXFP4 bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
const float d = e8m0_to_fp32(bl.block.e);
const uint idx = coordInBlock[1];
const uint iqs = idx & 0xF;
const uint shift = (idx & 0x10) >> 2;
uint32_t qs = bl.block.qs[iqs];
qs >>= shift;
qs &= 0xF;
float16_t ret = float16_t(kvalues_mxfp4[qs] * d);
return ret;
}
#endif
#if defined(DATA_A_Q4_0)
#define dequantFuncA dequantFuncQ4_0
#elif defined(DATA_A_Q4_1)
@@ -696,4 +715,6 @@ float16_t dequantFuncIQ4_NL(const in decodeBufIQ4_NL bl, const in uint blockCoor
#define dequantFuncA dequantFuncIQ4_XS
#elif defined(DATA_A_IQ4_NL)
#define dequantFuncA dequantFuncIQ4_NL
#elif defined(DATA_A_MXFP4)
#define dequantFuncA dequantFuncMXFP4
#endif

View File

@@ -0,0 +1,32 @@
#version 450
#include "dequant_head.comp"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {block_mxfp4 data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
init_iq_shmem(gl_WorkGroupSize);
const uint tid = gl_LocalInvocationID.x % 64;
const uint il = tid/32;
const uint ir = tid%32;
const uint ib = 32*i + ir;
if (ib >= p.nel / 32) {
return;
}
const uint q_idx = 8*il;
const uint b_idx = 1024*i + 32*ir + q_idx;
const float d = e8m0_to_fp32(data_a[ib].e);
[[unroll]] for (uint l = 0; l < 8; ++l) {
data_b[b_idx + l + 0] = D_TYPE(d * kvalues_mxfp4[data_a[ib].qs[q_idx + l] & 0xF]);
data_b[b_idx + l + 16] = D_TYPE(d * kvalues_mxfp4[data_a[ib].qs[q_idx + l] >> 4]);
}
}

View File

@@ -14,4 +14,6 @@ layout (push_constant) uniform parameter
uint ne00;
uint ne20;
uint mode;
float alpha;
float limit;
} p;

View File

@@ -747,6 +747,21 @@ void main() {
buf_a[buf_idx + 1 ] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 8, 4)]) * d;
buf_a[buf_idx + 16] = FLOAT_TYPE(kvalues_iq4nl[bitfieldExtract(vui, 4, 4)]) * d;
buf_a[buf_idx + 17] = FLOAT_TYPE(kvalues_iq4nl[vui >> 12]) * d;
#elif defined(DATA_A_MXFP4)
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 2 * loadr_a;
const uint ib = idx / 8;
const uint iqs = (idx & 0x07) * 2;
const float d = e8m0_to_fp32(data_a[ib].e);
const uint vui = uint(data_a[ib].qs[iqs]);
const uint vui2 = uint(data_a[ib].qs[iqs+1]);
buf_a[buf_idx ] = FLOAT_TYPE(kvalues_mxfp4[vui & 0xF] * d);
buf_a[buf_idx + 16] = FLOAT_TYPE(kvalues_mxfp4[vui >> 4] * d);
buf_a[buf_idx + 1] = FLOAT_TYPE(kvalues_mxfp4[vui2 & 0xF] * d);
buf_a[buf_idx + 17] = FLOAT_TYPE(kvalues_mxfp4[vui2 >> 4] * d);
#endif
}
[[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {

View File

@@ -92,6 +92,12 @@ FLOAT_TYPE get_d(uint ib) {
}
#endif
#if defined(DATA_A_MXFP4)
FLOAT_TYPE get_d(uint ib) {
return FLOAT_TYPE(e8m0_to_fp32(data_a[ib].e));
}
#endif
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
FLOAT_TYPE_VEC2 get_dm(uint ib) {
return FLOAT_TYPE_VEC2(data_a_packed32[ib].dm);

View File

@@ -20,6 +20,7 @@ layout (push_constant) uniform parameter
float m1;
uint n_head_log2;
uint nrows_x;
uint has_sinks;
} p;
#include "types.comp"
@@ -29,7 +30,8 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
layout (binding = 2) buffer D {D_TYPE data_d[];};
layout (binding = 2) readonly buffer Z {float data_c[];};
layout (binding = 3) buffer D {D_TYPE data_d[];};
shared FLOAT_TYPE vals[BLOCK_SIZE];
@@ -66,7 +68,7 @@ void soft_max(uint num_iters) {
}
// Find max
FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000);
FLOAT_TYPE max_val = p.has_sinks == 0 ? uintBitsToFloat(0xFF800000) : data_c[i02];
// Cache values while we compute the max, so we don't need to read them
// again when we're ready to compute exp(x-max).
@@ -148,6 +150,10 @@ void soft_max(uint num_iters) {
}
sum = vals[0];
if (p.has_sinks != 0) {
sum += FLOAT_TYPE(exp(FLOAT_TYPE(data_c[i02]) - max_val));
}
FLOAT_TYPE rcpdivisor = 1.0/sum;
[[unroll]] for (uint col0 = 0, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {

View File

@@ -0,0 +1,14 @@
#version 450
#include "glu_head.comp"
float op(float a, float b) {
float xi = min(a, p.limit);
float gi = max(min(b, p.limit), -p.limit);
float out_glu = xi / (1.0f + exp(-xi * p.alpha));
out_glu = out_glu * (1.0f + gi);
return out_glu;
}
#include "glu_main.comp"

View File

@@ -1337,6 +1337,29 @@ struct block_iq4_nl_packed16
#define A_TYPE_PACKED16 block_iq4_nl_packed16
#endif
#define QUANT_K_MXFP4 32
#define QUANT_R_MXFP4 2
struct block_mxfp4
{
uint8_t e;
uint8_t qs[QUANT_K_MXFP4/2];
};
//struct block_mxfp4_packed16
//{
// uint8_t e;
// uint16_t qs[QUANT_K_MXFP4/2/2];
//};
#if defined(DATA_A_MXFP4)
#define QUANT_K QUANT_K_MXFP4
#define QUANT_R QUANT_R_MXFP4
#define QUANT_AUXF 1
#define A_TYPE block_mxfp4
//#define A_TYPE_PACKED16 block_mxfp4_packed16
#endif
#if defined(DATA_A_IQ4_NL) || defined(DATA_A_IQ4_XS)
const int8_t kvalues_iq4nl_const[16] = {
int8_t(-127), int8_t(-104), int8_t(-83), int8_t(-65), int8_t(-49), int8_t(-35), int8_t(-22), int8_t(-10),
@@ -1356,6 +1379,25 @@ void init_iq_shmem(uvec3 wgsize)
}
#endif
#if defined(DATA_A_MXFP4)
const FLOAT_TYPE kvalues_mxfp4_const[16] = {
FLOAT_TYPE(0.0f), FLOAT_TYPE(0.5f), FLOAT_TYPE(1.0f), FLOAT_TYPE(1.5f), FLOAT_TYPE(2.0f), FLOAT_TYPE(3.0f), FLOAT_TYPE(4.0f), FLOAT_TYPE(6.0f),
FLOAT_TYPE(-0.0f), FLOAT_TYPE(-0.5f), FLOAT_TYPE(-1.0f), FLOAT_TYPE(-1.5f), FLOAT_TYPE(-2.0f), FLOAT_TYPE(-3.0f), FLOAT_TYPE(-4.0f), FLOAT_TYPE(-6.0f)
};
shared FLOAT_TYPE kvalues_mxfp4[16];
#define NEEDS_INIT_IQ_SHMEM
void init_iq_shmem(uvec3 wgsize)
{
// copy the table into shared memory and sync
for (uint i = gl_LocalInvocationIndex.x; i < kvalues_mxfp4.length(); i += wgsize.x) {
kvalues_mxfp4[i] = kvalues_mxfp4_const[i];
}
barrier();
}
#endif
// returns the bfloat value in the low 16b.
// See ggml_compute_fp32_to_bf16
uint32_t fp32_to_bf16(float f)
@@ -1370,4 +1412,17 @@ float bf16_to_fp32(uint32_t u)
return uintBitsToFloat(u << 16);
}
float e8m0_to_fp32(uint8_t x) {
uint32_t bits;
if (x == 0) {
bits = 0x00400000;
} else {
bits = x;
bits = bits << 23;
}
return uintBitsToFloat(bits);
}
#endif // !defined(GGML_TYPES_COMP)

View File

@@ -64,6 +64,7 @@ const std::vector<std::string> type_names = {
"iq3_s",
"iq4_xs",
"iq4_nl",
"mxfp4",
"bf16",
};
@@ -362,7 +363,7 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
std::string load_vec_quant = "2";
if ((tname == "q4_0") || (tname == "q4_1") || (tname == "iq1_s") || (tname == "iq1_m") || (tname == "iq2_xxs") || (tname == "iq2_xs") || (tname == "iq2_s"))
load_vec_quant = "8";
else if ((tname == "q5_0") || (tname == "q5_1") || (tname == "q8_0") || (tname == "iq3_xxs") || (tname == "iq3_s") || (tname == "iq4_nl"))
else if ((tname == "q5_0") || (tname == "q5_1") || (tname == "q8_0") || (tname == "iq3_xxs") || (tname == "iq3_s") || (tname == "iq4_nl") || (tname == "mxfp4"))
load_vec_quant = "4";
if (tname == "bf16") {
@@ -602,6 +603,8 @@ void process_shaders() {
string_to_spv("reglu_f32" + suffix, "reglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("swiglu_f16" + suffix, "swiglu.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("swiglu_f32" + suffix, "swiglu.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("swiglu_oai_f16" + suffix, "swiglu_oai.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("swiglu_oai_f32" + suffix, "swiglu_oai.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("geglu_erf_f16" + suffix, "geglu_erf.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("geglu_erf_f32" + suffix, "geglu_erf.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}, {"RTE16", rte ? "1" : "0"}});
string_to_spv("geglu_quick_f16" + suffix,"geglu_quick.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"RTE16", rte ? "1" : "0"}});
@@ -671,6 +674,8 @@ void process_shaders() {
string_to_spv("roll_f32", "roll.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("add_id_f32", "add_id.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
for (auto &c : compiles) {
c.wait();
}

View File

@@ -582,9 +582,6 @@ FILE * ggml_fopen(const char * fname, const char * mode) {
#endif
}
static void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc);
static void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc);
static void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc);
static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
[GGML_TYPE_I8] = {
@@ -690,6 +687,14 @@ static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
.is_quantized = true,
.from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
},
[GGML_TYPE_MXFP4] = {
.type_name = "mxfp4",
.blck_size = QK_MXFP4,
.type_size = sizeof(block_mxfp4),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_mxfp4,
.from_float_ref = (ggml_from_float_t)quantize_row_mxfp4_ref,
},
[GGML_TYPE_Q2_K] = {
.type_name = "q2_K",
.blck_size = QK_K,
@@ -917,6 +922,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"DUP",
"ADD",
"ADD_ID",
"ADD1",
"ACC",
"SUB",
@@ -1010,13 +1016,14 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"GLU",
};
static_assert(GGML_OP_COUNT == 86, "GGML_OP_COUNT != 86");
static_assert(GGML_OP_COUNT == 87, "GGML_OP_COUNT != 87");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
"x",
"x+y",
"x[i]+y",
"x+y",
"view(x,nb,offset)+=y->x",
"x-y",
@@ -1110,7 +1117,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"glu(x)",
};
static_assert(GGML_OP_COUNT == 86, "GGML_OP_COUNT != 86");
static_assert(GGML_OP_COUNT == 87, "GGML_OP_COUNT != 87");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@@ -1140,11 +1147,12 @@ static const char * GGML_GLU_OP_NAME[GGML_GLU_OP_COUNT] = {
"REGLU",
"GEGLU",
"SWIGLU",
"SWIGLU_OAI",
"GEGLU_ERF",
"GEGLU_QUICK",
};
static_assert(GGML_GLU_OP_COUNT == 5, "GGML_GLU_OP_COUNT != 5");
static_assert(GGML_GLU_OP_COUNT == 6, "GGML_GLU_OP_COUNT != 6");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
@@ -1312,6 +1320,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
case GGML_FTYPE_MOSTLY_MXFP4: wtype = GGML_TYPE_MXFP4; break;
case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
@@ -1962,6 +1971,27 @@ struct ggml_tensor * ggml_add_cast(
return ggml_add_cast_impl(ctx, a, b, type);
}
struct ggml_tensor * ggml_add_id(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * ids) {
GGML_ASSERT(a->ne[0] == b->ne[0]);
GGML_ASSERT(a->ne[1] == ids->ne[0]);
GGML_ASSERT(a->ne[2] == ids->ne[1]);
GGML_ASSERT(ids->type == GGML_TYPE_I32);
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
result->op = GGML_OP_ADD_ID;
result->src[0] = a;
result->src[1] = b;
result->src[2] = ids;
return result;
}
// ggml_add1
static struct ggml_tensor * ggml_add1_impl(
@@ -2812,6 +2842,19 @@ struct ggml_tensor * ggml_geglu_quick_split(
return ggml_glu_impl(ctx, a, b, GGML_GLU_OP_GEGLU_QUICK, false);
}
struct ggml_tensor * ggml_swiglu_oai(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float alpha,
float limit) {
struct ggml_tensor * result = ggml_glu_impl(ctx, a, b, GGML_GLU_OP_SWIGLU_OAI, false);
ggml_set_op_params_f32(result, 2, alpha);
ggml_set_op_params_f32(result, 3, limit);
return result;
}
// ggml_norm
static struct ggml_tensor * ggml_norm_impl(
@@ -3779,6 +3822,22 @@ struct ggml_tensor * ggml_soft_max_ext(
return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
}
void ggml_soft_max_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks) {
if (!sinks) {
a->src[2] = NULL;
return;
}
GGML_ASSERT(a->op == GGML_OP_SOFT_MAX);
GGML_ASSERT(a->src[2] == NULL);
GGML_ASSERT(a->src[0]->ne[2] == sinks->ne[0]);
GGML_ASSERT(sinks->type == GGML_TYPE_F32);
a->src[2] = sinks;
}
// ggml_soft_max_ext_back
static struct ggml_tensor * ggml_soft_max_ext_back_impl(
@@ -4812,6 +4871,22 @@ enum ggml_prec ggml_flash_attn_ext_get_prec(
return (enum ggml_prec) prec_i32;
}
void ggml_flash_attn_ext_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks) {
if (!sinks) {
a->src[4] = NULL;
return;
}
GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
GGML_ASSERT(a->src[4] == NULL);
GGML_ASSERT(a->src[0]->ne[2] == sinks->ne[0]);
GGML_ASSERT(sinks->type == GGML_TYPE_F32);
a->src[4] = sinks;
}
// ggml_flash_attn_back
struct ggml_tensor * ggml_flash_attn_back(
@@ -6872,6 +6947,7 @@ size_t ggml_quantize_chunk(
case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_MXFP4: result = quantize_mxfp4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;