whisper : reorganize source code + improve CMake (#2256)

* scripts : update sync [no ci]

* files : reorganize [no ci]

* sync : llama.cpp

* cmake : link math library

* cmake : build normal ggml library

* files : move headers to include

* objc : fix path to ggml-metal.h

* ci : fix WHISPER_CUDA -> GGML_CUDA

* scripts : sync LICENSE [no ci]
This commit is contained in:
Georgi Gerganov
2024-06-26 19:34:09 +03:00
committed by GitHub
parent bf4cb4abad
commit e30c679928
361 changed files with 176536 additions and 20466 deletions

File diff suppressed because it is too large Load Diff

View File

@ -174,6 +174,7 @@ extern "C" {
LLAMA_POOLING_TYPE_NONE = 0,
LLAMA_POOLING_TYPE_MEAN = 1,
LLAMA_POOLING_TYPE_CLS = 2,
LLAMA_POOLING_TYPE_LAST = 3,
};
enum llama_split_mode {
@ -293,7 +294,6 @@ extern "C" {
enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
// (ignored if no pooling layer)
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
float rope_freq_base; // RoPE base frequency, 0 = from model
@ -786,6 +786,10 @@ extern "C" {
// Get the number of threads used for prompt and batch processing (multiple token).
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
// Set whether the model is in embeddings mode or not
// If true, embeddings will be returned but logits will not
LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
// Set whether to use causal attention or not
// If set to true, the model will only attend to the past tokens
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);

View File

@ -16,7 +16,7 @@
#include <regex>
#include <sstream>
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
static std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
auto * model = llama_get_model(ctx);
// upper limit for the number of tokens
@ -33,7 +33,7 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
return result;
}
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
if (n_tokens < 0) {
@ -83,7 +83,7 @@ struct whisper_params {
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
@ -168,7 +168,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "\n");
}
std::string transcribe(
static std::string transcribe(
whisper_context * ctx,
const whisper_params & params,
const std::vector<float> & pcmf32,
@ -235,7 +235,7 @@ std::string transcribe(
return result;
}
std::vector<std::string> get_words(const std::string &txt) {
static std::vector<std::string> get_words(const std::string &txt) {
std::vector<std::string> words;
std::istringstream iss(txt);

File diff suppressed because it is too large Load Diff

View File

@ -226,8 +226,9 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
assert(offset_end <= cpts.size());
start = offset_end;
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
@ -309,7 +310,7 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
@ -344,8 +345,9 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
assert(offset_end <= cpts.size());
start = offset_end;
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
@ -450,7 +452,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
@ -594,6 +596,7 @@ std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & c
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
std::vector<uint32_t> result;
result.reserve(utf8.size());
size_t offset = 0;
while (offset < utf8.size()) {
result.push_back(unicode_cpt_from_utf8(utf8, offset));
@ -679,10 +682,14 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
continue;
}
const int cpt_flag = unicode_cpt_flags(cpts[i]).category_flag();
const auto flags = unicode_cpt_flags(cpts[i]);
if (k_ucat_cpt.find(cpt_flag) != k_ucat_cpt.end()) {
text_collapsed[i] = k_ucat_cpt.at(cpt_flag);
if (flags.is_whitespace) {
//NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
//text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback
text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback
} else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) {
text_collapsed[i] = k_ucat_cpt.at(flags.category_flag());
} else {
text_collapsed[i] = (char) 0xD0; // fallback
}
@ -766,9 +773,16 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
} else {
// no unicode category used, we can use std::wregex directly
const std::wstring wtext = unicode_wstring_from_utf8(text);
const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
// std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
std::wstring wtext(cpts.begin(), cpts.end());
for (size_t i = 0; i < wtext.size(); ++i) {
if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) {
wtext[i] = 0x0B;
}
}
//printf("text: %s\n", text.c_str());
//printf("regex_expr: %s\n", regex_expr.c_str());
bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);