mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-08-18 12:30:59 +02:00
whisper : reorganize source code + improve CMake (#2256)
* scripts : update sync [no ci] * files : reorganize [no ci] * sync : llama.cpp * cmake : link math library * cmake : build normal ggml library * files : move headers to include * objc : fix path to ggml-metal.h * ci : fix WHISPER_CUDA -> GGML_CUDA * scripts : sync LICENSE [no ci]
This commit is contained in:
142
src/CMakeLists.txt
Normal file
142
src/CMakeLists.txt
Normal file
@@ -0,0 +1,142 @@
|
||||
# TODO: should not use this
|
||||
if (WIN32)
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML)
|
||||
find_library(FOUNDATION_FRAMEWORK Foundation)
|
||||
find_library(COREML_FRAMEWORK CoreML)
|
||||
|
||||
if (COREML_FRAMEWORK)
|
||||
message(STATUS "CoreML framework found")
|
||||
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
|
||||
else()
|
||||
message(FATAL_ERROR "CoreML framework not found")
|
||||
endif()
|
||||
|
||||
if (WHISPER_COREML_ALLOW_FALLBACK)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_COREML_ALLOW_FALLBACK)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_OPENVINO)
|
||||
find_package(OpenVINO REQUIRED COMPONENTS Runtime)
|
||||
endif()
|
||||
|
||||
#
|
||||
# libraries
|
||||
#
|
||||
|
||||
# whisper.coreml
|
||||
|
||||
if (WHISPER_COREML)
|
||||
set(TARGET whisper.coreml)
|
||||
|
||||
add_library(${TARGET}
|
||||
coreml/whisper-encoder.h
|
||||
coreml/whisper-encoder.mm
|
||||
coreml/whisper-encoder-impl.h
|
||||
coreml/whisper-encoder-impl.m
|
||||
)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
|
||||
|
||||
set_target_properties(${TARGET} PROPERTIES
|
||||
COMPILE_FLAGS "-fobjc-arc"
|
||||
)
|
||||
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
|
||||
endif()
|
||||
|
||||
if (WHISPER_OPENVINO)
|
||||
set(TARGET whisper.openvino)
|
||||
|
||||
add_library(${TARGET} OBJECT
|
||||
openvino/whisper-openvino-encoder.h
|
||||
openvino/whisper-openvino-encoder.cpp
|
||||
)
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC
|
||||
.
|
||||
)
|
||||
|
||||
set_property(TARGET ${TARGET} PROPERTY POSITION_INDEPENDENT_CODE ON)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_OPENVINO)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE openvino::runtime)
|
||||
set_target_properties(${TARGET} PROPERTIES FOLDER "libs")
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "CUDA found")
|
||||
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# 52 == lowest CUDA 12 standard
|
||||
# 60 == f16 CUDA intrinsics
|
||||
# 61 == integer CUDA intrinsics
|
||||
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
||||
enable_language(CUDA)
|
||||
else()
|
||||
message(WARNING "CUDA not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# whisper
|
||||
|
||||
add_library(whisper
|
||||
../include/whisper.h
|
||||
whisper.cpp
|
||||
whisper-mel.hpp
|
||||
)
|
||||
|
||||
if (GGML_CUDA)
|
||||
target_sources(whisper PRIVATE whisper-mel-cuda.cu)
|
||||
|
||||
target_link_libraries(whisper PRIVATE CUDA::cufft)
|
||||
endif()
|
||||
|
||||
# Set the version numbers
|
||||
set_target_properties(whisper PROPERTIES
|
||||
VERSION ${PROJECT_VERSION}
|
||||
SOVERSION ${SOVERSION}
|
||||
)
|
||||
|
||||
target_include_directories(whisper PUBLIC . ../include)
|
||||
target_compile_features (whisper PUBLIC cxx_std_11) # don't bump
|
||||
|
||||
target_link_libraries(whisper PUBLIC ggml)
|
||||
|
||||
if (WHISPER_COREML)
|
||||
target_link_libraries(whisper PRIVATE whisper.coreml)
|
||||
endif()
|
||||
|
||||
if (WHISPER_OPENVINO)
|
||||
target_link_libraries(whisper PRIVATE whisper.openvino)
|
||||
endif()
|
||||
|
||||
if (WHISPER_MKL)
|
||||
target_link_libraries(whisper PRIVATE MKL::MKL)
|
||||
endif()
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(whisper PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(whisper PRIVATE WHISPER_SHARED WHISPER_BUILD)
|
||||
endif()
|
146
src/coreml/whisper-decoder-impl.h
Normal file
146
src/coreml/whisper-decoder-impl.h
Normal file
@@ -0,0 +1,146 @@
|
||||
//
|
||||
// whisper-decoder-impl.h
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <CoreML/CoreML.h>
|
||||
#include <stdint.h>
|
||||
#include <os/log.h>
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
|
||||
/// Model Prediction Input Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_implInput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// token_data as 1 by 1 matrix of 32-bit integers
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * token_data;
|
||||
|
||||
/// audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * audio_data;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Model Prediction Output Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_implOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// var_1346 as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * var_1346;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Class for model loading and prediction
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_decoder_impl : NSObject
|
||||
@property (readonly, nonatomic, nullable) MLModel * model;
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_decoder_implInput to predict from
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_decoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_decoder_implInput to predict from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_decoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the convenience interface
|
||||
@param token_data as 1 by 1 matrix of 32-bit integers:
|
||||
@param audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats:
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_decoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Batch prediction
|
||||
@param inputArray array of whisper_decoder_implInput instances to obtain predictions from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the predictions as NSArray<whisper_decoder_implOutput *>
|
||||
*/
|
||||
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
201
src/coreml/whisper-decoder-impl.m
Normal file
201
src/coreml/whisper-decoder-impl.m
Normal file
@@ -0,0 +1,201 @@
|
||||
//
|
||||
// whisper-decoder-impl.m
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-decoder-impl.h"
|
||||
|
||||
@implementation whisper_decoder_implInput
|
||||
|
||||
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_token_data = token_data;
|
||||
_audio_data = audio_data;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"token_data", @"audio_data"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"token_data"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.token_data];
|
||||
}
|
||||
if ([featureName isEqualToString:@"audio_data"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.audio_data];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_decoder_implOutput
|
||||
|
||||
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_var_1346 = var_1346;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"var_1346"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"var_1346"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.var_1346];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_decoder_impl
|
||||
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle {
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_decoder_impl" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-decoder-impl.mlmodelc in the bundle resource"); return nil; }
|
||||
return [NSURL fileURLWithPath:assetPath];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model {
|
||||
self = [super init];
|
||||
if (!self) { return nil; }
|
||||
_model = model;
|
||||
if (_model == nil) { return nil; }
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_decoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
|
||||
configuration:configuration
|
||||
completionHandler:handler];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[MLModel loadContentsOfURL:modelURL
|
||||
configuration:configuration
|
||||
completionHandler:^(MLModel *model, NSError *error) {
|
||||
if (model != nil) {
|
||||
whisper_decoder_impl *typedModel = [[whisper_decoder_impl alloc] initWithMLModel:model];
|
||||
handler(typedModel, nil);
|
||||
} else {
|
||||
handler(nil, error);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[outFeatures featureValueForName:@"var_1346"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
whisper_decoder_implInput *input_ = [[whisper_decoder_implInput alloc] initWithToken_data:token_data audio_data:audio_data];
|
||||
return [self predictionFromFeatures:input_ error:error];
|
||||
}
|
||||
|
||||
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
|
||||
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
|
||||
if (!outBatch) { return nil; }
|
||||
NSMutableArray<whisper_decoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
whisper_decoder_implOutput * result = [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[resultProvider featureValueForName:@"var_1346"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
@end
|
142
src/coreml/whisper-encoder-impl.h
Normal file
142
src/coreml/whisper-encoder-impl.h
Normal file
@@ -0,0 +1,142 @@
|
||||
//
|
||||
// whisper-encoder-impl.h
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <CoreML/CoreML.h>
|
||||
#include <stdint.h>
|
||||
#include <os/log.h>
|
||||
|
||||
NS_ASSUME_NONNULL_BEGIN
|
||||
|
||||
|
||||
/// Model Prediction Input Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_encoder_implInput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// logmel_data as 1 × 80 × 3000 3-dimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * logmel_data;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Model Prediction Output Type
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_encoder_implOutput : NSObject<MLFeatureProvider>
|
||||
|
||||
/// output as multidimensional array of floats
|
||||
@property (readwrite, nonatomic, strong) MLMultiArray * output;
|
||||
- (instancetype)init NS_UNAVAILABLE;
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
@end
|
||||
|
||||
|
||||
/// Class for model loading and prediction
|
||||
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
|
||||
@interface whisper_encoder_impl : NSObject
|
||||
@property (readonly, nonatomic, nullable) MLModel * model;
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_encoder_implInput to predict from
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_encoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the standard interface
|
||||
@param input an instance of whisper_encoder_implInput to predict from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_encoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Make a prediction using the convenience interface
|
||||
@param logmel_data as 1 × n_mel × 3000 3-dimensional array of floats:
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the prediction as whisper_encoder_implOutput
|
||||
*/
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
|
||||
/**
|
||||
Batch prediction
|
||||
@param inputArray array of whisper_encoder_implInput instances to obtain predictions from
|
||||
@param options prediction options
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
@return the predictions as NSArray<whisper_encoder_implOutput *>
|
||||
*/
|
||||
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
|
||||
@end
|
||||
|
||||
NS_ASSUME_NONNULL_END
|
197
src/coreml/whisper-encoder-impl.m
Normal file
197
src/coreml/whisper-encoder-impl.m
Normal file
@@ -0,0 +1,197 @@
|
||||
//
|
||||
// whisper-encoder-impl.m
|
||||
//
|
||||
// This file was automatically generated and should not be edited.
|
||||
//
|
||||
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-encoder-impl.h"
|
||||
|
||||
@implementation whisper_encoder_implInput
|
||||
|
||||
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_logmel_data = logmel_data;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"logmel_data"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"logmel_data"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.logmel_data];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_encoder_implOutput
|
||||
|
||||
- (instancetype)initWithOutput:(MLMultiArray *)output {
|
||||
self = [super init];
|
||||
if (self) {
|
||||
_output = output;
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
- (NSSet<NSString *> *)featureNames {
|
||||
return [NSSet setWithArray:@[@"output"]];
|
||||
}
|
||||
|
||||
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
|
||||
if ([featureName isEqualToString:@"output"]) {
|
||||
return [MLFeatureValue featureValueWithMultiArray:self.output];
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
@end
|
||||
|
||||
@implementation whisper_encoder_impl
|
||||
|
||||
|
||||
/**
|
||||
URL of the underlying .mlmodelc directory.
|
||||
*/
|
||||
+ (nullable NSURL *)URLOfModelInThisBundle {
|
||||
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_encoder_impl" ofType:@"mlmodelc"];
|
||||
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-encoder-impl.mlmodelc in the bundle resource"); return nil; }
|
||||
return [NSURL fileURLWithPath:assetPath];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from an existing MLModel object.
|
||||
|
||||
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
|
||||
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
|
||||
*/
|
||||
- (instancetype)initWithMLModel:(MLModel *)model {
|
||||
self = [super init];
|
||||
if (!self) { return nil; }
|
||||
_model = model;
|
||||
if (_model == nil) { return nil; }
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
*/
|
||||
- (nullable instancetype)init {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance with the model in this bundle.
|
||||
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Initialize whisper_encoder_impl instance from the model URL.
|
||||
|
||||
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
|
||||
@param configuration The model configuration object
|
||||
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
|
||||
*/
|
||||
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
|
||||
if (model == nil) { return nil; }
|
||||
return [self initWithMLModel:model];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with configuration.
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
|
||||
configuration:configuration
|
||||
completionHandler:handler];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
|
||||
|
||||
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
|
||||
|
||||
@param modelURL The model URL.
|
||||
@param configuration The model configuration
|
||||
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
|
||||
*/
|
||||
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
|
||||
[MLModel loadContentsOfURL:modelURL
|
||||
configuration:configuration
|
||||
completionHandler:^(MLModel *model, NSError *error) {
|
||||
if (model != nil) {
|
||||
whisper_encoder_impl *typedModel = [[whisper_encoder_impl alloc] initWithMLModel:model];
|
||||
handler(typedModel, nil);
|
||||
} else {
|
||||
handler(nil, error);
|
||||
}
|
||||
}];
|
||||
}
|
||||
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
|
||||
}
|
||||
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
|
||||
if (!outFeatures) { return nil; }
|
||||
return [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
|
||||
}
|
||||
|
||||
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
whisper_encoder_implInput *input_ = [[whisper_encoder_implInput alloc] initWithLogmel_data:logmel_data];
|
||||
return [self predictionFromFeatures:input_ error:error];
|
||||
}
|
||||
|
||||
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
|
||||
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
|
||||
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
|
||||
if (!outBatch) { return nil; }
|
||||
NSMutableArray<whisper_encoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
|
||||
for (NSInteger i = 0; i < outBatch.count; i++) {
|
||||
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
|
||||
whisper_encoder_implOutput * result = [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
|
||||
[results addObject:result];
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
@end
|
26
src/coreml/whisper-encoder.h
Normal file
26
src/coreml/whisper-encoder.h
Normal file
@@ -0,0 +1,26 @@
|
||||
// Wrapper of the Core ML Whisper Encoder model
|
||||
//
|
||||
// Code is derived from the work of Github user @wangchou
|
||||
// ref: https://github.com/wangchou/callCoreMLFromCpp
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context;
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model);
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx);
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
int64_t n_ctx,
|
||||
int64_t n_mel,
|
||||
float * mel,
|
||||
float * out);
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
73
src/coreml/whisper-encoder.mm
Normal file
73
src/coreml/whisper-encoder.mm
Normal file
@@ -0,0 +1,73 @@
|
||||
#if !__has_feature(objc_arc)
|
||||
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
|
||||
#endif
|
||||
|
||||
#import "whisper-encoder.h"
|
||||
#import "whisper-encoder-impl.h"
|
||||
|
||||
#import <CoreML/CoreML.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_coreml_context {
|
||||
const void * data;
|
||||
};
|
||||
|
||||
struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
|
||||
NSString * path_model_str = [[NSString alloc] initWithUTF8String:path_model];
|
||||
|
||||
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
|
||||
|
||||
// select which device to run the Core ML model on
|
||||
MLModelConfiguration *config = [[MLModelConfiguration alloc] init];
|
||||
// config.computeUnits = MLComputeUnitsCPUAndGPU;
|
||||
//config.computeUnits = MLComputeUnitsCPUAndNeuralEngine;
|
||||
config.computeUnits = MLComputeUnitsAll;
|
||||
|
||||
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model configuration:config error:nil]);
|
||||
|
||||
if (data == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
whisper_coreml_context * ctx = new whisper_coreml_context;
|
||||
|
||||
ctx->data = data;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_free(struct whisper_coreml_context * ctx) {
|
||||
CFRelease(ctx->data);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
void whisper_coreml_encode(
|
||||
const whisper_coreml_context * ctx,
|
||||
int64_t n_ctx,
|
||||
int64_t n_mel,
|
||||
float * mel,
|
||||
float * out) {
|
||||
MLMultiArray * inMultiArray = [
|
||||
[MLMultiArray alloc] initWithDataPointer: mel
|
||||
shape: @[@1, @(n_mel), @(n_ctx)]
|
||||
dataType: MLMultiArrayDataTypeFloat32
|
||||
strides: @[@(n_ctx*n_mel), @(n_ctx), @1]
|
||||
deallocator: nil
|
||||
error: nil
|
||||
];
|
||||
|
||||
@autoreleasepool {
|
||||
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
|
||||
|
||||
memcpy(out, outCoreML.output.dataPointer, outCoreML.output.count * sizeof(float));
|
||||
}
|
||||
}
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
108
src/openvino/whisper-openvino-encoder.cpp
Normal file
108
src/openvino/whisper-openvino-encoder.cpp
Normal file
@@ -0,0 +1,108 @@
|
||||
#include "openvino/whisper-openvino-encoder.h"
|
||||
#include "ggml.h"
|
||||
#include <openvino/openvino.hpp>
|
||||
#include <iostream>
|
||||
|
||||
struct whisper_openvino_context {
|
||||
ov::InferRequest inferRequest;
|
||||
};
|
||||
|
||||
struct whisper_openvino_context * whisper_openvino_init(const char* path_model,
|
||||
const char* device,
|
||||
const char* cache_dir)
|
||||
{
|
||||
if (!path_model || !device) {
|
||||
fprintf(stderr, "%s: path_model and/or device is null\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: path_model = %s, device = %s, cache_dir = %s\n",
|
||||
__func__, path_model, device, cache_dir ? cache_dir : "(not set)");
|
||||
|
||||
whisper_openvino_context *context = new whisper_openvino_context;
|
||||
try {
|
||||
ov::Core core;
|
||||
|
||||
if (cache_dir) {
|
||||
// enables caching of device-specific 'blobs' during core.compile_model
|
||||
// routine. This speeds up calls to compile_model for successive runs.
|
||||
core.set_property(ov::cache_dir(cache_dir));
|
||||
}
|
||||
|
||||
//Read the OpenVINO encoder IR (.xml/.bin) from disk, producing an ov::Model object.
|
||||
std::shared_ptr<ov::Model> model = core.read_model(path_model);
|
||||
|
||||
// Produce a compiled-model object, given the device ("CPU", "GPU", etc.)
|
||||
auto compiledModel = core.compile_model(model, device);
|
||||
|
||||
// From the compiled model object, create an infer request. This is the thing that we
|
||||
// we will use later on to trigger inference execution.
|
||||
context->inferRequest = compiledModel.create_infer_request();
|
||||
}
|
||||
catch (const std::exception& error) {
|
||||
std::cout << "in openvino encoder compile routine: exception: " << error.what() << std::endl;
|
||||
delete context;
|
||||
context = nullptr;
|
||||
}
|
||||
|
||||
return context;
|
||||
}
|
||||
|
||||
void whisper_openvino_free(struct whisper_openvino_context * ctx) {
|
||||
if( ctx ) {
|
||||
delete ctx;
|
||||
}
|
||||
}
|
||||
|
||||
int whisper_openvino_encode(
|
||||
whisper_openvino_context* ctx,
|
||||
ggml_tensor* mel,
|
||||
ggml_tensor* out) {
|
||||
|
||||
if (!ctx || !mel || !out) {
|
||||
fprintf(stderr, "%s: Error! ctx / mel / out is null\n", __func__);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (ggml_n_dims(mel) != 2) {
|
||||
fprintf(stderr, "%s: Error! mel ggml_tensor expected to have n_dims=2, but it has n_dims=%d\n",
|
||||
__func__, ggml_n_dims(mel));
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (ggml_n_dims(out) != 2) {
|
||||
fprintf(stderr, "%s: Error! out ggml_tensor expected to have n_dims=2, but it has n_dims=%d\n",
|
||||
__func__, ggml_n_dims(out));
|
||||
return 0;
|
||||
}
|
||||
|
||||
try {
|
||||
|
||||
//wrap the passed-in mel ggml_tensor as an OpenVINO Tensor object, and set as input tensor to infer request
|
||||
{
|
||||
// note, we populate shape & stride dimensions in opposite order from how they are listed in ne / nb arrays
|
||||
ov::Shape input_shape = { 1, (unsigned long long)mel->ne[1], (unsigned long long)mel->ne[0] };
|
||||
ov::Strides input_strides = { mel->nb[2], mel->nb[1], mel->nb[0] };
|
||||
ov::Tensor input_tensor(ov::element::f32, input_shape, mel->data, input_strides);
|
||||
ctx->inferRequest.set_input_tensor(input_tensor);
|
||||
}
|
||||
|
||||
//wrap the passed-in out ggml_tensor as an OpenVINO Tensor object, and set as output tensor to infer request
|
||||
{
|
||||
// note, we populate shape & stride dimensions in opposite order from how they are listed in ne / nb arrays
|
||||
ov::Shape output_shape = { 1, (unsigned long long)out->ne[1], (unsigned long long)out->ne[0] };
|
||||
ov::Strides output_strides = { out->nb[2], out->nb[1], out->nb[0] };
|
||||
ov::Tensor out_tensor(ov::element::f32, output_shape, out->data, output_strides);
|
||||
ctx->inferRequest.set_output_tensor(out_tensor);
|
||||
}
|
||||
|
||||
//run inference
|
||||
ctx->inferRequest.infer();
|
||||
}
|
||||
catch (const std::exception& error) {
|
||||
std::cout << "in openvino encode inference execution routine: exception: " << error.what() << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
31
src/openvino/whisper-openvino-encoder.h
Normal file
31
src/openvino/whisper-openvino-encoder.h
Normal file
@@ -0,0 +1,31 @@
|
||||
// Wrapper of the OpenVINO Whisper Encoder model
|
||||
//
|
||||
|
||||
#if __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct whisper_openvino_context;
|
||||
|
||||
// initialize openvino encoder, given path to model xml, device ("CPU", "GPU", etc.), and
|
||||
// path to cache_dir. Returns null upon failure.
|
||||
struct whisper_openvino_context * whisper_openvino_init(const char * path_model,
|
||||
const char * device,
|
||||
const char * cache_dir);
|
||||
|
||||
// clean up a ctx previously returned from whisper_openvino_init()
|
||||
void whisper_openvino_free(struct whisper_openvino_context * ctx);
|
||||
|
||||
struct ggml_tensor;
|
||||
|
||||
// Perform encode using OpenVINO.
|
||||
// Returns 1 on success
|
||||
// Returns 0 on failure
|
||||
int whisper_openvino_encode(
|
||||
whisper_openvino_context* ctx,
|
||||
ggml_tensor* mel,
|
||||
ggml_tensor* out);
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
364
src/whisper-mel-cuda.cu
Normal file
364
src/whisper-mel-cuda.cu
Normal file
@@ -0,0 +1,364 @@
|
||||
#define CUB_IGNORE_DEPRECATED_CPP_DIALECT
|
||||
#include "whisper-mel-cuda.hpp"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <ggml-cuda/common.cuh>
|
||||
#include <ggml-backend-impl.h>
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <cufft.h>
|
||||
#include <cublas_v2.h>
|
||||
#include <cuComplex.h>
|
||||
#include <cub/device/device_reduce.cuh>
|
||||
#include <device_launch_parameters.h>
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4324) // added padding
|
||||
#endif
|
||||
|
||||
namespace {
|
||||
|
||||
static const char* cufftGetErrorString(cufftResult_t res) {
|
||||
switch (res) {
|
||||
case CUFFT_SUCCESS: return "The cuFFT operation was successful";
|
||||
case CUFFT_INVALID_PLAN: return "cuFFT was passed an invalid plan handle";
|
||||
case CUFFT_ALLOC_FAILED: return "cuFFT failed to allocate GPU or CPU memory";
|
||||
case CUFFT_INVALID_TYPE: return "No longer used";
|
||||
case CUFFT_INVALID_VALUE: return "User specified an invalid pointer or parameter";
|
||||
case CUFFT_INTERNAL_ERROR: return "Driver or internal cuFFT library error";
|
||||
case CUFFT_EXEC_FAILED: return "Failed to execute an FFT on the GPU";
|
||||
case CUFFT_SETUP_FAILED: return "The cuFFT library failed to initialize";
|
||||
case CUFFT_INVALID_SIZE: return "User specified an invalid transform size";
|
||||
case CUFFT_UNALIGNED_DATA: return "No longer used";
|
||||
case CUFFT_INCOMPLETE_PARAMETER_LIST: return "Missing parameters in call";
|
||||
case CUFFT_INVALID_DEVICE: return "Execution of a plan was on different GPU than plan creation";
|
||||
case CUFFT_PARSE_ERROR: return "Internal plan database error";
|
||||
case CUFFT_NO_WORKSPACE: return "No workspace has been provided prior to plan execution";
|
||||
case CUFFT_NOT_IMPLEMENTED: return "Function does not implement functionality for parameters given.";
|
||||
case CUFFT_LICENSE_ERROR: return "Used in previous versions.";
|
||||
case CUFFT_NOT_SUPPORTED: return "Operation is not supported for parameters given.";
|
||||
default: return "Unknown error";
|
||||
}
|
||||
}
|
||||
|
||||
#define CUFFT_CHECK(err) CUDA_CHECK_GEN(err, CUFFT_SUCCESS, cufftGetErrorString)
|
||||
|
||||
__global__ void k_fill_stft_input(
|
||||
const float * padded_samples,
|
||||
const int n_frames,
|
||||
const float * hann_window,
|
||||
float * stft_in
|
||||
) {
|
||||
auto y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
// if (y >= n_frames) return;
|
||||
auto x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
// if (x >= WHISPER_N_FFT) return;
|
||||
|
||||
auto line = padded_samples + y * WHISPER_HOP_LENGTH;
|
||||
auto outLine = stft_in + y * WHISPER_N_FFT;
|
||||
|
||||
outLine[x] = line[x] * hann_window[x];
|
||||
}
|
||||
|
||||
__global__ void k_calc_magnitudes(
|
||||
const cuComplex * stft_out,
|
||||
const int n_frames,
|
||||
float * magnitudes
|
||||
) {
|
||||
auto y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
// if (y >= n_frames) return;
|
||||
auto x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
// if (x >= WHISPER_N_FFT_HALF) return;
|
||||
|
||||
auto idx = y * WHISPER_N_FFT_HALF + x;
|
||||
|
||||
auto r = stft_out[idx].x;
|
||||
auto i = stft_out[idx].y;
|
||||
magnitudes[idx] = r * r + i * i;
|
||||
}
|
||||
|
||||
__global__ void k_calc_log_mel(
|
||||
const float * mel_data,
|
||||
const int n_mel,
|
||||
const float * max_val,
|
||||
float * log_mel
|
||||
) {
|
||||
auto x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (x >= n_mel) return;
|
||||
|
||||
float val = mel_data[x];
|
||||
|
||||
constexpr float e = 1e-10f;
|
||||
if (val < e) val = e;
|
||||
|
||||
val = log10(val);
|
||||
|
||||
const float max = log10(*max_val) - 8.f;
|
||||
if (val < max) val = max;
|
||||
|
||||
log_mel[x] = (val + 4) / 4;
|
||||
}
|
||||
|
||||
static void fill_stft_input(
|
||||
const float * padded_samples,
|
||||
int n_frames,
|
||||
const float * hann_window,
|
||||
float * stft_in,
|
||||
cudaStream_t stream
|
||||
) {
|
||||
dim3 block(WHISPER_N_FFT, 1);
|
||||
dim3 grid(1, n_frames);
|
||||
|
||||
k_fill_stft_input<<<grid, block, 0, stream>>>(padded_samples, n_frames, hann_window, stft_in);
|
||||
}
|
||||
|
||||
static void calc_magnitudes(
|
||||
const cuComplex * stft_out,
|
||||
int n_frames,
|
||||
float * magnitudes,
|
||||
cudaStream_t stream
|
||||
) {
|
||||
dim3 block(WHISPER_N_FFT_HALF, 1);
|
||||
dim3 grid(1, n_frames);
|
||||
k_calc_magnitudes<<<grid, block, 0, stream>>>(stft_out, n_frames, magnitudes);
|
||||
}
|
||||
|
||||
constexpr auto LOG_MEL_PREFIX_SIZE = 256;
|
||||
|
||||
static void calc_log_mel(
|
||||
const float * mel_data,
|
||||
int n_mel,
|
||||
void * tempStorage,
|
||||
int tempStorageSize,
|
||||
float * log_mel,
|
||||
cudaStream_t stream
|
||||
) {
|
||||
float * max_val = reinterpret_cast<float *>(tempStorage);
|
||||
void * maxTemp = reinterpret_cast<char*>(tempStorage) + LOG_MEL_PREFIX_SIZE;
|
||||
|
||||
size_t nbytes = size_t(tempStorageSize - LOG_MEL_PREFIX_SIZE);
|
||||
cub::DeviceReduce::Max(maxTemp, nbytes, mel_data, max_val, n_mel, stream);
|
||||
|
||||
int block = 256;
|
||||
int grid = (n_mel + block - 1) / block;
|
||||
|
||||
k_calc_log_mel<<<grid, block, 0, stream>>>(mel_data, n_mel, max_val, log_mel);
|
||||
}
|
||||
|
||||
class mel_calc_cuda : public whisper_mel_calc {
|
||||
const int m_n_mel;
|
||||
|
||||
ggml_backend_t m_backend = nullptr;
|
||||
int m_device = -1;
|
||||
|
||||
cudaStream_t m_stream = nullptr;
|
||||
cublasHandle_t m_cublas_handle = nullptr;
|
||||
|
||||
float * m_hann_window = nullptr;
|
||||
|
||||
float * m_filters = nullptr;
|
||||
|
||||
// max samples for which we have allocated memory for the temp working areas below (cufft, log_mel)
|
||||
int m_n_max_samples = 0;
|
||||
|
||||
size_t m_cufft_workspace_size = 0;
|
||||
void * m_cufft_workspace = nullptr;
|
||||
|
||||
size_t m_log_mel_temp_storage_size = 0;
|
||||
void * m_log_mel_temp_storage = nullptr;
|
||||
public:
|
||||
mel_calc_cuda(ggml_backend_t backend, const whisper_filters & filters)
|
||||
: m_n_mel(filters.n_mel)
|
||||
, m_backend(backend)
|
||||
{
|
||||
ggml_backend_cuda_context* cuda_ctx = (ggml_backend_cuda_context*)m_backend->context;
|
||||
m_device = cuda_ctx->device;
|
||||
|
||||
if (ggml_cuda_info().devices[m_device].cc < 600) {
|
||||
// we've only tesed on 6.0 and higher and we've had reports of crashes on 5.0:
|
||||
// https://github.com/ggerganov/whisper.cpp/issues/2230
|
||||
// to be safe forbid anything below 6.0
|
||||
throw std::runtime_error("CUDA compute capability 6.0 or higher is required");
|
||||
}
|
||||
|
||||
ggml_cuda_set_device(m_device);
|
||||
|
||||
if (filters.n_fft != WHISPER_N_FFT_HALF) {
|
||||
throw std::invalid_argument("MelFilters n_frames must be WHISPER_N_FFT_HALF");
|
||||
}
|
||||
assert(filters.data.size() == filters.n_mel * WHISPER_N_FFT_HALF);
|
||||
|
||||
CUDA_CHECK(cudaStreamCreate(&m_stream));
|
||||
CUBLAS_CHECK(cublasCreate(&m_cublas_handle));
|
||||
CUBLAS_CHECK(cublasSetMathMode(m_cublas_handle, CUBLAS_TF32_TENSOR_OP_MATH));
|
||||
CUBLAS_CHECK(cublasSetStream(m_cublas_handle, m_stream));
|
||||
|
||||
// create Hann window
|
||||
{
|
||||
auto hw = whisper_mel_calc::hann_window();
|
||||
CUDA_CHECK(cudaMallocAsync(&m_hann_window, hw.len * sizeof(float), m_stream));
|
||||
CUDA_CHECK(cudaMemcpyAsync(m_hann_window, hw.data, hw.len * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
||||
}
|
||||
|
||||
// fill filters
|
||||
{
|
||||
auto& f = filters.data;
|
||||
CUDA_CHECK(cudaMallocAsync(&m_filters, f.size() * sizeof(float), m_stream));
|
||||
CUDA_CHECK(cudaMemcpyAsync(m_filters, f.data(), f.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
||||
}
|
||||
|
||||
// preallocate working areas enough for the most common cases (<= 30s)
|
||||
ensure_working_areas(WHISPER_N_SAMPLES);
|
||||
}
|
||||
|
||||
~mel_calc_cuda() {
|
||||
ggml_cuda_set_device(m_device);
|
||||
CUDA_CHECK(cudaStreamSynchronize(m_stream));
|
||||
CUDA_CHECK(cudaStreamDestroy(m_stream));
|
||||
CUDA_CHECK(cudaFree(m_hann_window));
|
||||
CUDA_CHECK(cudaFree(m_cufft_workspace));
|
||||
CUDA_CHECK(cudaFree(m_filters));
|
||||
CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
|
||||
}
|
||||
|
||||
void ensure_working_areas(int n_samples) {
|
||||
if (n_samples <= m_n_max_samples) {
|
||||
return;
|
||||
}
|
||||
|
||||
const auto max_padded_samples = n_samples + WHISPER_N_SAMPLES + WHISPER_N_FFT;
|
||||
const auto max_frames = 1 + (max_padded_samples - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
||||
|
||||
// cufft workspace
|
||||
{
|
||||
if (m_cufft_workspace) {
|
||||
CUDA_CHECK(cudaFree(m_cufft_workspace));
|
||||
m_cufft_workspace_size = 0;
|
||||
m_cufft_workspace = nullptr;
|
||||
}
|
||||
CUFFT_CHECK(cufftEstimate1d(WHISPER_N_FFT, CUFFT_R2C, max_frames, &m_cufft_workspace_size));
|
||||
CUDA_CHECK(cudaMallocAsync(&m_cufft_workspace, m_cufft_workspace_size, m_stream));
|
||||
}
|
||||
|
||||
// device reduce working area
|
||||
{
|
||||
if (m_log_mel_temp_storage) {
|
||||
CUDA_CHECK(cudaFree(m_log_mel_temp_storage));
|
||||
m_log_mel_temp_storage_size = 0;
|
||||
m_log_mel_temp_storage = nullptr;
|
||||
}
|
||||
|
||||
const auto max_mels = 160;
|
||||
|
||||
size_t nbytes = 0;
|
||||
float* temp = nullptr;
|
||||
cub::DeviceReduce::Max(nullptr, nbytes, temp, temp, max_frames * max_mels);
|
||||
m_log_mel_temp_storage_size = nbytes + LOG_MEL_PREFIX_SIZE;
|
||||
|
||||
CUDA_CHECK(cudaMallocAsync(&m_log_mel_temp_storage, m_log_mel_temp_storage_size, m_stream));
|
||||
}
|
||||
|
||||
m_n_max_samples = n_samples;
|
||||
}
|
||||
|
||||
virtual whisper_mel calculate(whisper_span<const float> samples, int /*n_threads*/) override {
|
||||
ggml_cuda_set_device(m_device);
|
||||
ensure_working_areas(samples.len);
|
||||
|
||||
const size_t mirror_pad = WHISPER_N_FFT / 2;
|
||||
const size_t padded_size = samples.len + WHISPER_N_SAMPLES + WHISPER_N_FFT;
|
||||
|
||||
// pad
|
||||
std::vector<float> padded_samples(padded_size);
|
||||
std::reverse_copy(samples.data + 1, samples.data + 1 + mirror_pad, padded_samples.begin()); // reflect
|
||||
std::copy(samples.data, samples.data + samples.len, padded_samples.begin() + mirror_pad); // copy
|
||||
|
||||
// fill the rest of the data
|
||||
// it should canonically be mirrored at the end as well,
|
||||
// but we just assume the last MEL_FRAME_SIZE/2 samples are zeros
|
||||
std::fill(padded_samples.begin() + mirror_pad + samples.len, padded_samples.end(), 0.f);
|
||||
|
||||
const auto n_frames = 1 + (padded_samples.size() - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
||||
|
||||
float * cu_padded_samples = nullptr;
|
||||
CUDA_CHECK(cudaMallocAsync(&cu_padded_samples, padded_samples.size() * sizeof(float), m_stream));
|
||||
CUDA_CHECK(cudaMemcpyAsync(cu_padded_samples, padded_samples.data(), padded_samples.size() * sizeof(float), cudaMemcpyHostToDevice, m_stream));
|
||||
|
||||
float * stft_in = nullptr; // contiguous buffer for stft input
|
||||
CUDA_CHECK(cudaMallocAsync(&stft_in, n_frames * WHISPER_N_FFT * sizeof(float), m_stream));
|
||||
|
||||
fill_stft_input(cu_padded_samples, int(n_frames), m_hann_window, stft_in, m_stream);
|
||||
|
||||
cufftComplex* stft_out;
|
||||
CUDA_CHECK(cudaMallocAsync(&stft_out, n_frames * WHISPER_N_FFT_HALF * sizeof(cufftComplex), m_stream));
|
||||
|
||||
cufftHandle plan;
|
||||
CUFFT_CHECK(cufftCreate(&plan));
|
||||
CUFFT_CHECK(cufftSetAutoAllocation(plan, 0));
|
||||
{
|
||||
size_t waSize;
|
||||
CUFFT_CHECK(cufftMakePlan1d(plan, WHISPER_N_FFT, CUFFT_R2C, int(n_frames), &waSize));
|
||||
assert(waSize <= m_cufft_workspace_size);
|
||||
CUFFT_CHECK(cufftSetWorkArea(plan, m_cufft_workspace));
|
||||
CUFFT_CHECK(cufftSetStream(plan, m_stream));
|
||||
}
|
||||
CUFFT_CHECK(cufftExecR2C(plan, stft_in, stft_out));
|
||||
|
||||
const auto n_mag_frames = n_frames - 1; // drop last frame
|
||||
float * magnitudes;
|
||||
CUDA_CHECK(cudaMallocAsync(&magnitudes, n_mag_frames * WHISPER_N_FFT_HALF * sizeof(float), m_stream));
|
||||
calc_magnitudes(stft_out, int(n_mag_frames), magnitudes, m_stream);
|
||||
|
||||
float * mel_data = nullptr;
|
||||
CUDA_CHECK(cudaMallocAsync(&mel_data, m_n_mel * n_mag_frames * sizeof(float), m_stream));
|
||||
|
||||
const float fone = 1.0f, fzero = 0.0f;
|
||||
CUBLAS_CHECK(cublasSgemm(m_cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
int(n_mag_frames), m_n_mel, WHISPER_N_FFT_HALF,
|
||||
&fone,
|
||||
magnitudes, WHISPER_N_FFT_HALF,
|
||||
m_filters, WHISPER_N_FFT_HALF,
|
||||
&fzero,
|
||||
mel_data, int(n_mag_frames)));
|
||||
|
||||
whisper_mel ret;
|
||||
// Calculate semi-padded sample length to ensure compatibility
|
||||
int n_len_org = 1 + int(samples.len + mirror_pad - WHISPER_N_FFT) / WHISPER_HOP_LENGTH;
|
||||
whisper_mel_init(ret, m_backend, int(n_mag_frames), n_len_org, m_n_mel);
|
||||
assert(ggml_nbytes(ret.tensor) == m_n_mel * n_mag_frames * sizeof(float));
|
||||
|
||||
float* log_mels = reinterpret_cast<float*>(ret.tensor->data);
|
||||
|
||||
calc_log_mel(
|
||||
mel_data, int(m_n_mel * n_mag_frames),
|
||||
m_log_mel_temp_storage , int(m_log_mel_temp_storage_size),
|
||||
log_mels, m_stream);
|
||||
|
||||
CUDA_CHECK(cudaStreamSynchronize(m_stream));
|
||||
|
||||
// cleanup
|
||||
CUFFT_CHECK(cufftDestroy(plan));
|
||||
CUDA_CHECK(cudaFreeAsync(mel_data, m_stream));
|
||||
CUDA_CHECK(cudaFreeAsync(magnitudes, m_stream));
|
||||
CUDA_CHECK(cudaFreeAsync(stft_out, m_stream));
|
||||
CUDA_CHECK(cudaFreeAsync(stft_in, m_stream));
|
||||
CUDA_CHECK(cudaFreeAsync(cu_padded_samples, m_stream));
|
||||
|
||||
return ret;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
whisper_mel_calc * whisper_mel_calc_create_cuda(ggml_backend_t backend, const whisper_filters & filters) {
|
||||
try {
|
||||
return new mel_calc_cuda(backend, filters);
|
||||
}
|
||||
catch (...) {
|
||||
// TODO: log error (but for this we would have to expose the log state to be accessible here)
|
||||
return nullptr;
|
||||
}
|
||||
}
|
3
src/whisper-mel-cuda.hpp
Normal file
3
src/whisper-mel-cuda.hpp
Normal file
@@ -0,0 +1,3 @@
|
||||
#include "whisper-mel.hpp"
|
||||
|
||||
whisper_mel_calc * whisper_mel_calc_create_cuda(ggml_backend_t backend, const whisper_filters & filters);
|
34
src/whisper-mel.hpp
Normal file
34
src/whisper-mel.hpp
Normal file
@@ -0,0 +1,34 @@
|
||||
#pragma once
|
||||
#include "ggml-backend.h"
|
||||
#include <vector>
|
||||
|
||||
struct whisper_mel {
|
||||
int n_len_org = 0;
|
||||
|
||||
ggml_context * ctx = nullptr;
|
||||
ggml_tensor * tensor = nullptr;
|
||||
ggml_backend_buffer_t buffer = nullptr;
|
||||
};
|
||||
|
||||
void whisper_mel_init(whisper_mel & mel, ggml_backend_t backend, int n_len, int n_len_org, int n_mel);
|
||||
|
||||
void whisper_mel_free(whisper_mel & mel);
|
||||
|
||||
struct whisper_filters {
|
||||
int32_t n_mel;
|
||||
int32_t n_fft;
|
||||
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct whisper_span {
|
||||
T * data;
|
||||
int len;
|
||||
};
|
||||
|
||||
struct whisper_mel_calc {
|
||||
virtual ~whisper_mel_calc();
|
||||
virtual whisper_mel calculate(whisper_span<const float> samples, int n_threads) = 0;
|
||||
static whisper_span<const float> hann_window();
|
||||
};
|
7443
src/whisper.cpp
Normal file
7443
src/whisper.cpp
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user