diff --git a/ggml-cuda/fattn-tile-f16.cu b/ggml-cuda/fattn-tile-f16.cu new file mode 100644 index 00000000..d2a1077e --- /dev/null +++ b/ggml-cuda/fattn-tile-f16.cu @@ -0,0 +1,395 @@ +#include "common.cuh" +#include "fattn-common.cuh" +#include "fattn-tile-f16.cuh" + +#define FATTN_KQ_STRIDE_TILE_F16 64 + +template // D == head size +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(nwarps*WARP_SIZE, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_tile_ext_f16( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { +#if FP16_AVAILABLE + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); + const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); + const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape + const half * maskh = (const half *) mask + ne11*ic0; + + const int stride_KV2 = nb11 / sizeof(half2); + + half slopeh = __float2half(1.0f); + + // ALiBi + if (max_bias > 0.0f) { + const uint32_t h = blockIdx.y; + + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slopeh = __float2half(powf(base, exph)); + } + + static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); + + __shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16]; + half2 * KQ2 = (half2 *) KQ; + + __shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts. + + half kqmax[ncols/nwarps]; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + kqmax[j0/nwarps] = -HALF_MAX_HALF; + } + half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}}; + + half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}}; + + // Convert Q to half2 and store in registers: + __shared__ half2 Q_h2[ncols][D/2]; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i]; + Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); + } + } + + __syncthreads(); + + const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F16; + for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F16) { + // Calculate KQ tile and keep track of new maximum KQ values: + + half kqmax_new[ncols/nwarps]; +#pragma unroll + for (int j = 0; j < ncols/nwarps; ++j) { + kqmax_new[j] = kqmax[j]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) { + const int i_KQ = i_KQ_0 + threadIdx.y; + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { + const int k_KQ = k_KQ_0 + threadIdx.x; + + KV_tmp[i_KQ][k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; + } + } + + __syncthreads(); + + half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}}; + +#pragma unroll + for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) { + half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE]; + half2 Q_k[ncols/nwarps]; + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { + const int i_KQ = i_KQ_0 + threadIdx.x; + + K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ]; + } +#pragma unroll + for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { + const int j_KQ = j_KQ_0 + threadIdx.y; + + Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { +#pragma unroll + for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { + sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps]; + } + } + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) { + const int i_KQ = i_KQ_0 + threadIdx.x; + +#pragma unroll + for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { + const int j_KQ = j_KQ_0 + threadIdx.y; + + half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); + sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); + + kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum); + + KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum; + } + } + + __syncthreads(); + +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]); + const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps])); + kqmax[j0/nwarps] = kqmax_new[j0/nwarps]; + +#pragma unroll + for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]); + const half2 val = h2exp(diff); + kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val; + KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val; + } + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale; + } + } + + __syncthreads(); + +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) { + const int k = k0 + threadIdx.y; + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + KV_tmp[k][i] = V_h2[(k_VKQ_0 + k)*stride_KV2 + i]; + } + } + + __syncthreads(); + +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) { + half2 V_k[(D/2)/WARP_SIZE][2]; + half2 KQ_k[ncols/nwarps]; + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i]; + V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i]; + } +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2]; + } + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]); + VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]); + } + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { + const int j_VKQ = j_VKQ_0 + threadIdx.y; + + half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]); + kqsum_j = warp_reduce_sum(kqsum_j); + +#pragma unroll + for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) { + const int i0 = i00 + 2*threadIdx.x; + + half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)]; + if (parallel_blocks == 1) { + dst_val /= __half2half2(kqsum_j); + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = __low2float(dst_val); + dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = __high2float(dst_val); + } + + if (parallel_blocks != 1 && threadIdx.x == 0) { + dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j); + } + } +#else + NO_DEVICE_CODE; +#endif // FP16_AVAILABLE +} + +template void launch_fattn_tile_f16( + const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, + ggml_cuda_pool & pool, cudaStream_t main_stream +) { + ggml_cuda_pool_alloc dst_tmp(pool); + ggml_cuda_pool_alloc dst_tmp_meta(pool); + + if (parallel_blocks > 1) { + dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); + dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); + } + + constexpr int nwarps = 8; + const dim3 block_dim(WARP_SIZE, nwarps, 1); + const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]); + const int shmem = 0; + + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); + + const uint32_t n_head = Q->ne[2]; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + flash_attn_tile_ext_f16 + <<>> ( + (const char *) Q->data, + (const char *) K->data, + (const char *) V->data, + mask ? ((const char *) mask->data) : nullptr, + parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, + scale, max_bias, m0, m1, n_head_log2, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + CUDA_CHECK(cudaGetLastError()); + + if (parallel_blocks == 1) { + return; + } + + const dim3 block_dim_combine(D, 1, 1); + const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); + const int shmem_combine = 0; + + flash_attn_combine_results + <<>> + (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); + CUDA_CHECK(cudaGetLastError()); +} + +void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + const ggml_tensor * K = dst->src[1]; + const ggml_tensor * V = dst->src[2]; + + const ggml_tensor * mask = dst->src[3]; + + ggml_tensor * KQV = dst; + + const int32_t precision = KQV->op_params[2]; + GGML_ASSERT(precision == GGML_PREC_DEFAULT); + GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128."); + + if (Q->ne[1] <= 16) { + constexpr int cols_per_block = 16; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 32) { + constexpr int cols_per_block = 32; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + constexpr int cols_per_block = 32; + constexpr int parallel_blocks = 1; + switch (Q->ne[0]) { + case 64: + launch_fattn_tile_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_tile_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } +} diff --git a/ggml-cuda/fattn-tile-f16.cuh b/ggml-cuda/fattn-tile-f16.cuh new file mode 100644 index 00000000..ffc58784 --- /dev/null +++ b/ggml-cuda/fattn-tile-f16.cuh @@ -0,0 +1,3 @@ +#include "common.cuh" + +void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml-cuda/fattn-tile-f32.cu b/ggml-cuda/fattn-tile-f32.cu new file mode 100644 index 00000000..176895ed --- /dev/null +++ b/ggml-cuda/fattn-tile-f32.cu @@ -0,0 +1,393 @@ +#include "common.cuh" +#include "fattn-common.cuh" +#include "fattn-tile-f32.cuh" + +#define FATTN_KQ_STRIDE_TILE_F32 32 + +template // D == head size +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +__launch_bounds__(nwarps*WARP_SIZE, 1) +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) +static __global__ void flash_attn_tile_ext_f32( + const char * __restrict__ Q, + const char * __restrict__ K, + const char * __restrict__ V, + const char * __restrict__ mask, + float * __restrict__ dst, + float2 * __restrict__ dst_meta, + const float scale, + const float max_bias, + const float m0, + const float m1, + const uint32_t n_head_log2, + const int ne00, + const int ne01, + const int ne02, + const int ne03, + const int ne10, + const int ne11, + const int ne12, + const int ne13, + const int ne31, + const int nb31, + const int nb01, + const int nb02, + const int nb03, + const int nb11, + const int nb12, + const int nb13, + const int ne0, + const int ne1, + const int ne2, + const int ne3) { + //In this kernel Q, K, V are matrices while i, j, k are matrix indices. + + const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. + const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. + + const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. + const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); + const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); + const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape + const half * maskh = (const half *) mask + ne11*ic0; + + const int stride_KV2 = nb11 / sizeof(half2); + + float slope = 1.0f; + + // ALiBi + if (max_bias > 0.0f) { + const uint32_t h = blockIdx.y; + + const float base = h < n_head_log2 ? m0 : m1; + const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = powf(base, exph); + } + + static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); + + __shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32]; + + __shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts. + float2 * KV_tmp2 = (float2 *) KV_tmp; + + float kqmax[ncols/nwarps]; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + kqmax[j0/nwarps] = -FLT_MAX/2.0f; + } + float kqsum[ncols/nwarps] = {0.0f}; + + float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}}; + + // Convert Q to half2 and store in registers: + __shared__ float Q_f[ncols][D]; +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + +#pragma unroll + for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) { + float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x]; + Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale; + Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale; + } + } + + __syncthreads(); + + const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32; + for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) { + // Calculate KQ tile and keep track of new maximum KQ values: + + float kqmax_new[ncols/nwarps]; +#pragma unroll + for (int j = 0; j < ncols/nwarps; ++j) { + kqmax_new[j] = kqmax[j]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) { + const int i_KQ = i_KQ_0 + threadIdx.y; + +#pragma unroll + for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) { + const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x]; + KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp); + KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp); + } + } + + __syncthreads(); + + float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}}; + +#pragma unroll + for (int k_KQ = 0; k_KQ < D; ++k_KQ) { + float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE]; + float Q_k[ncols/nwarps]; + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { + const int i_KQ = i_KQ_0 + threadIdx.x; + + K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ]; + } +#pragma unroll + for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { + const int j_KQ = j_KQ_0 + threadIdx.y; + + Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ]; + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { +#pragma unroll + for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { + sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps]; + } + } + } + +#pragma unroll + for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) { + const int i_KQ = i_KQ_0 + threadIdx.x; + +#pragma unroll + for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) { + const int j_KQ = j_KQ_0 + threadIdx.y; + + sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; + + kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]); + + KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]; + } + } + + __syncthreads(); + +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]); + const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]); + kqmax[j0/nwarps] = kqmax_new[j0/nwarps]; + + float kqsum_add = 0.0f; +#pragma unroll + for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps]; + const float val = expf(diff); + kqsum_add += val; + KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val; + } + kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add; + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale; + VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale; + } + } + + __syncthreads(); + +#pragma unroll + for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) { + const int k = k0 + threadIdx.y; + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); + KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]); + } + } + + __syncthreads(); + +#pragma unroll + for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) { + float2 V_k[(D/2)/WARP_SIZE]; + float KQ_k[ncols/nwarps]; + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { + const int i = i0 + threadIdx.x; + + V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i]; + } +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + const int j = j0 + threadIdx.y; + + KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k]; + } + +#pragma unroll + for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { +#pragma unroll + for (int j0 = 0; j0 < ncols; j0 += nwarps) { + VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps]; + VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps]; + } + } + } + + __syncthreads(); + } + +#pragma unroll + for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) { + const int j_VKQ = j_VKQ_0 + threadIdx.y; + + float kqsum_j = kqsum[j_VKQ_0/nwarps]; + kqsum_j = warp_reduce_sum(kqsum_j); + +#pragma unroll + for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) { + const int i0 = i00 + 2*threadIdx.x; + + float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)]; + if (parallel_blocks == 1) { + dst_val.x /= kqsum_j; + dst_val.y /= kqsum_j; + } + const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; + dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x; + dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y; + } + + if (parallel_blocks != 1 && threadIdx.x == 0) { + dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j); + } + } +} + +template void launch_fattn_tile_f32( + const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, + ggml_cuda_pool & pool, cudaStream_t main_stream +) { + ggml_cuda_pool_alloc dst_tmp(pool); + ggml_cuda_pool_alloc dst_tmp_meta(pool); + + if (parallel_blocks > 1) { + dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); + dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); + } + + constexpr int nwarps = 8; + const dim3 block_dim(WARP_SIZE, nwarps, 1); + const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]); + const int shmem = 0; + + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); + + const uint32_t n_head = Q->ne[2]; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + flash_attn_tile_ext_f32 + <<>> ( + (const char *) Q->data, + (const char *) K->data, + (const char *) V->data, + mask ? ((const char *) mask->data) : nullptr, + parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, + scale, max_bias, m0, m1, n_head_log2, + Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], + K->ne[0], K->ne[1], K->ne[2], K->ne[3], + mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, + Q->nb[1], Q->nb[2], Q->nb[3], + K->nb[1], K->nb[2], K->nb[3], + KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] + ); + CUDA_CHECK(cudaGetLastError()); + + if (parallel_blocks == 1) { + return; + } + + const dim3 block_dim_combine(D, 1, 1); + const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); + const int shmem_combine = 0; + + flash_attn_combine_results + <<>> + (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); + CUDA_CHECK(cudaGetLastError()); +} + +void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * Q = dst->src[0]; + const ggml_tensor * K = dst->src[1]; + const ggml_tensor * V = dst->src[2]; + + const ggml_tensor * mask = dst->src[3]; + + ggml_tensor * KQV = dst; + + const int32_t precision = KQV->op_params[2]; + GGML_ASSERT(precision == GGML_PREC_DEFAULT); + GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128."); + + if (Q->ne[1] <= 16) { + constexpr int cols_per_block = 16; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + if (Q->ne[1] <= 32) { + constexpr int cols_per_block = 32; + constexpr int parallel_blocks = 4; + switch (Q->ne[0]) { + case 64: + launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } + return; + } + + constexpr int cols_per_block = 32; + constexpr int parallel_blocks = 1; + switch (Q->ne[0]) { + case 64: + launch_fattn_tile_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + case 128: + launch_fattn_tile_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); + break; + default: + GGML_ASSERT(false); + break; + } +} diff --git a/ggml-cuda/fattn-tile-f32.cuh b/ggml-cuda/fattn-tile-f32.cuh new file mode 100644 index 00000000..b1c546c8 --- /dev/null +++ b/ggml-cuda/fattn-tile-f32.cuh @@ -0,0 +1,3 @@ +#include "common.cuh" + +void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml-cuda/fattn.cu b/ggml-cuda/fattn.cu index 419f8e75..a1918e25 100644 --- a/ggml-cuda/fattn.cu +++ b/ggml-cuda/fattn.cu @@ -1,5 +1,7 @@ #include "common.cuh" #include "fattn-common.cuh" +#include "fattn-tile-f16.cuh" +#include "fattn-tile-f32.cuh" #include "fattn-vec-f16.cuh" #include "fattn-vec-f32.cuh" #include "fattn.cuh" @@ -88,7 +90,7 @@ static __global__ void flash_attn_ext_f16( // ALiBi if (max_bias > 0.0f) { - const int h = blockIdx.y; + const uint32_t h = blockIdx.y; const float base = h < n_head_log2 ? m0 : m1; const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; @@ -541,13 +543,31 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst const int32_t precision = KQV->op_params[2]; + // On AMD the tile kernels perform poorly, use the vec kernel instead: + if (cc >= CC_OFFSET_AMD) { + if (precision == GGML_PREC_DEFAULT) { + ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst); + } else { + ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); + } + return; + } + if (!fast_fp16_available(cc)) { - ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); + if (Q->ne[1] <= 8) { + ggml_cuda_flash_attn_ext_vec_f32(ctx, dst); + } else { + ggml_cuda_flash_attn_ext_tile_f32(ctx, dst); + } return; } if (!fp16_mma_available(cc)) { - ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst); + if (Q->ne[1] <= 8) { + ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst); + } else { + ggml_cuda_flash_attn_ext_tile_f16(ctx, dst); + } return; }