mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-28 08:48:51 +01:00
talk-llama : sync llama.cpp
This commit is contained in:
parent
c615f2c335
commit
f001a3b7b6
@ -574,6 +574,9 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
|||||||
{ LLM_TENSOR_OUTPUT, "output" },
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
@ -1263,7 +1266,7 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_g
|
|||||||
struct llama_state {
|
struct llama_state {
|
||||||
llama_state() {
|
llama_state() {
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
ggml_metal_log_set_callback(log_callback, log_callback_user_data);
|
ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -3676,8 +3679,19 @@ static bool llm_load_tensors(
|
|||||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||||||
|
|
||||||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
|
||||||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
|
||||||
|
|
||||||
|
if (layer.wqkv == nullptr) {
|
||||||
|
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||||||
|
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
||||||
|
|
||||||
|
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||||
|
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
||||||
|
|
||||||
|
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||||||
|
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
||||||
|
}
|
||||||
|
|
||||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||||||
@ -5637,15 +5651,25 @@ struct llm_build_context {
|
|||||||
|
|
||||||
// self-attention
|
// self-attention
|
||||||
{
|
{
|
||||||
|
struct ggml_tensor * Qcur = nullptr;
|
||||||
|
struct ggml_tensor * Kcur = nullptr;
|
||||||
|
struct ggml_tensor * Vcur = nullptr;
|
||||||
|
|
||||||
|
if (model.layers[il].wqkv) {
|
||||||
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
|
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
|
||||||
cb(cur, "wqkv", il);
|
cb(cur, "wqkv", il);
|
||||||
|
|
||||||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||||||
cb(cur, "bqkv", il);
|
cb(cur, "bqkv", il);
|
||||||
|
|
||||||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||||||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||||||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||||||
|
} else {
|
||||||
|
Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
|
||||||
|
Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
|
||||||
|
Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
|
||||||
|
}
|
||||||
|
|
||||||
cb(Qcur, "Qcur", il);
|
cb(Qcur, "Qcur", il);
|
||||||
cb(Kcur, "Kcur", il);
|
cb(Kcur, "Kcur", il);
|
||||||
@ -9355,12 +9379,8 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
||||||
}
|
}
|
||||||
|
|
||||||
// resized during inference
|
// resized during inference, reserve maximum
|
||||||
if (params.logits_all) {
|
ctx->logits.reserve(hparams.n_vocab*cparams.n_batch);
|
||||||
ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab);
|
|
||||||
} else {
|
|
||||||
ctx->logits.reserve(hparams.n_vocab);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.embedding){
|
if (params.embedding){
|
||||||
ctx->embedding.resize(hparams.n_embd);
|
ctx->embedding.resize(hparams.n_embd);
|
||||||
@ -9707,8 +9727,8 @@ size_t llama_get_state_size(const struct llama_context * ctx) {
|
|||||||
// for reference, std::mt19937(1337) serializes to 6701 bytes.
|
// for reference, std::mt19937(1337) serializes to 6701 bytes.
|
||||||
const size_t s_rng_size = sizeof(size_t);
|
const size_t s_rng_size = sizeof(size_t);
|
||||||
const size_t s_rng = LLAMA_MAX_RNG_STATE;
|
const size_t s_rng = LLAMA_MAX_RNG_STATE;
|
||||||
const size_t s_logits_capacity = sizeof(size_t);
|
|
||||||
const size_t s_logits_size = sizeof(size_t);
|
const size_t s_logits_size = sizeof(size_t);
|
||||||
|
// assume worst case for logits although only currently set ones are serialized
|
||||||
const size_t s_logits = ctx->logits.capacity() * sizeof(float);
|
const size_t s_logits = ctx->logits.capacity() * sizeof(float);
|
||||||
const size_t s_embedding_size = sizeof(size_t);
|
const size_t s_embedding_size = sizeof(size_t);
|
||||||
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
|
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
|
||||||
@ -9719,7 +9739,6 @@ size_t llama_get_state_size(const struct llama_context * ctx) {
|
|||||||
const size_t s_total = (
|
const size_t s_total = (
|
||||||
+ s_rng_size
|
+ s_rng_size
|
||||||
+ s_rng
|
+ s_rng
|
||||||
+ s_logits_capacity
|
|
||||||
+ s_logits_size
|
+ s_logits_size
|
||||||
+ s_logits
|
+ s_logits
|
||||||
+ s_embedding_size
|
+ s_embedding_size
|
||||||
@ -9788,37 +9807,27 @@ struct llama_data_file_context : llama_data_context {
|
|||||||
static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
|
static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
|
||||||
// copy rng
|
// copy rng
|
||||||
{
|
{
|
||||||
std::stringstream rng_ss;
|
std::ostringstream rng_ss;
|
||||||
rng_ss << ctx->rng;
|
rng_ss << ctx->rng;
|
||||||
|
|
||||||
const size_t rng_size = rng_ss.str().size();
|
const std::string & rng_str = rng_ss.str();
|
||||||
char rng_buf[LLAMA_MAX_RNG_STATE];
|
const size_t rng_size = rng_str.size();
|
||||||
|
|
||||||
memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
|
GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
|
||||||
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
|
|
||||||
|
|
||||||
data_ctx->write(&rng_size, sizeof(rng_size));
|
data_ctx->write(&rng_size, sizeof(rng_size));
|
||||||
data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
|
data_ctx->write(rng_str.data(), rng_size);
|
||||||
}
|
}
|
||||||
|
|
||||||
// copy logits
|
// copy logits
|
||||||
{
|
{
|
||||||
const size_t logits_cap = ctx->logits.capacity();
|
|
||||||
const size_t logits_size = ctx->logits.size();
|
const size_t logits_size = ctx->logits.size();
|
||||||
|
|
||||||
data_ctx->write(&logits_cap, sizeof(logits_cap));
|
|
||||||
data_ctx->write(&logits_size, sizeof(logits_size));
|
data_ctx->write(&logits_size, sizeof(logits_size));
|
||||||
|
|
||||||
if (logits_size) {
|
if (logits_size) {
|
||||||
data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
|
data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
|
||||||
}
|
}
|
||||||
|
|
||||||
// If there is a gap between the size and the capacity, write padding
|
|
||||||
size_t padding_size = (logits_cap - logits_size) * sizeof(float);
|
|
||||||
if (padding_size > 0) {
|
|
||||||
std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
|
|
||||||
data_ctx->write(padding.data(), padding_size);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// copy embeddings
|
// copy embeddings
|
||||||
@ -9901,13 +9910,13 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
|||||||
// set rng
|
// set rng
|
||||||
{
|
{
|
||||||
size_t rng_size;
|
size_t rng_size;
|
||||||
char rng_buf[LLAMA_MAX_RNG_STATE];
|
|
||||||
|
|
||||||
memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
|
memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
|
||||||
memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
|
|
||||||
|
|
||||||
std::stringstream rng_ss;
|
GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
|
||||||
rng_ss.str(std::string(&rng_buf[0], rng_size));
|
|
||||||
|
std::string rng_str((char *)inp, rng_size); inp += rng_size;
|
||||||
|
|
||||||
|
std::istringstream rng_ss(rng_str);
|
||||||
rng_ss >> ctx->rng;
|
rng_ss >> ctx->rng;
|
||||||
|
|
||||||
GGML_ASSERT(!rng_ss.fail());
|
GGML_ASSERT(!rng_ss.fail());
|
||||||
@ -9915,20 +9924,18 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
|||||||
|
|
||||||
// set logits
|
// set logits
|
||||||
{
|
{
|
||||||
size_t logits_cap;
|
|
||||||
size_t logits_size;
|
size_t logits_size;
|
||||||
|
|
||||||
memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
|
|
||||||
memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
|
memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
|
||||||
|
|
||||||
GGML_ASSERT(ctx->logits.capacity() == logits_cap);
|
GGML_ASSERT(ctx->logits.capacity() >= logits_size);
|
||||||
|
|
||||||
if (logits_size) {
|
if (logits_size) {
|
||||||
ctx->logits.resize(logits_size);
|
ctx->logits.resize(logits_size);
|
||||||
memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
|
|
||||||
}
|
|
||||||
|
|
||||||
inp += logits_cap * sizeof(float);
|
memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
|
||||||
|
inp += logits_size * sizeof(float);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// set embeddings
|
// set embeddings
|
||||||
@ -10298,6 +10305,8 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token
|
|||||||
if (0 <= token && token < llama_n_vocab(model)) {
|
if (0 <= token && token < llama_n_vocab(model)) {
|
||||||
switch (llama_vocab_get_type(model->vocab)) {
|
switch (llama_vocab_get_type(model->vocab)) {
|
||||||
case LLAMA_VOCAB_TYPE_SPM: {
|
case LLAMA_VOCAB_TYPE_SPM: {
|
||||||
|
// NOTE: we accept all unsupported token types,
|
||||||
|
// suppressing them like CONTROL tokens.
|
||||||
if (llama_is_normal_token(model->vocab, token)) {
|
if (llama_is_normal_token(model->vocab, token)) {
|
||||||
std::string result = model->vocab.id_to_token[token].text;
|
std::string result = model->vocab.id_to_token[token].text;
|
||||||
llama_unescape_whitespace(result);
|
llama_unescape_whitespace(result);
|
||||||
@ -10306,6 +10315,13 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token
|
|||||||
}
|
}
|
||||||
memcpy(buf, result.c_str(), result.length());
|
memcpy(buf, result.c_str(), result.length());
|
||||||
return result.length();
|
return result.length();
|
||||||
|
} else if (llama_is_user_defined_token(model->vocab, token)) {
|
||||||
|
std::string result = model->vocab.id_to_token[token].text;
|
||||||
|
if (length < (int) result.length()) {
|
||||||
|
return -result.length();
|
||||||
|
}
|
||||||
|
memcpy(buf, result.c_str(), result.length());
|
||||||
|
return result.length();
|
||||||
} else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
|
} else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
|
||||||
if (length < 3) {
|
if (length < 3) {
|
||||||
return -3;
|
return -3;
|
||||||
@ -10320,14 +10336,12 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token
|
|||||||
}
|
}
|
||||||
buf[0] = llama_token_to_byte(model->vocab, token);
|
buf[0] = llama_token_to_byte(model->vocab, token);
|
||||||
return 1;
|
return 1;
|
||||||
} else {
|
|
||||||
// TODO: for now we accept all unsupported token types,
|
|
||||||
// suppressing them like CONTROL tokens.
|
|
||||||
// GGML_ASSERT(false);
|
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
case LLAMA_VOCAB_TYPE_BPE: {
|
case LLAMA_VOCAB_TYPE_BPE: {
|
||||||
|
// NOTE: we accept all unsupported token types,
|
||||||
|
// suppressing them like CONTROL tokens.
|
||||||
if (llama_is_normal_token(model->vocab, token)) {
|
if (llama_is_normal_token(model->vocab, token)) {
|
||||||
std::string result = model->vocab.id_to_token[token].text;
|
std::string result = model->vocab.id_to_token[token].text;
|
||||||
result = llama_decode_text(result);
|
result = llama_decode_text(result);
|
||||||
@ -10336,12 +10350,15 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token
|
|||||||
}
|
}
|
||||||
memcpy(buf, result.c_str(), result.length());
|
memcpy(buf, result.c_str(), result.length());
|
||||||
return result.length();
|
return result.length();
|
||||||
|
} else if (llama_is_user_defined_token(model->vocab, token)) {
|
||||||
|
std::string result = model->vocab.id_to_token[token].text;
|
||||||
|
if (length < (int) result.length()) {
|
||||||
|
return -result.length();
|
||||||
|
}
|
||||||
|
memcpy(buf, result.c_str(), result.length());
|
||||||
|
return result.length();
|
||||||
} else if (llama_is_control_token(model->vocab, token)) {
|
} else if (llama_is_control_token(model->vocab, token)) {
|
||||||
;
|
;
|
||||||
} else {
|
|
||||||
// TODO: for now we accept all unsupported token types,
|
|
||||||
// suppressing them like CONTROL tokens.
|
|
||||||
// GGML_ASSERT(false);
|
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
@ -10453,7 +10470,7 @@ void llama_log_set(ggml_log_callback log_callback, void * user_data) {
|
|||||||
g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
|
g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
|
||||||
g_state.log_callback_user_data = user_data;
|
g_state.log_callback_user_data = user_data;
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
ggml_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
|
ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -43,7 +43,7 @@
|
|||||||
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
|
||||||
|
|
||||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||||
#define LLAMA_SESSION_VERSION 3
|
#define LLAMA_SESSION_VERSION 4
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
|
||||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||||
|
Loading…
Reference in New Issue
Block a user