SYCL: Add mrope kernel (llama/13755)

* SYCL: Add mrope kernel

* feat: Optimize rope operations with vectorization

Uses `sycl::vec` to load and store two elements at a time,
significantly improving performance in `rope_norm`,
`rope_neox`, and `rope_multi`. This reduces the number of memory
accesses and leverages SIMD instructions for faster execution.

* Use ceil_div
This commit is contained in:
Akarshan Biswas 2025-05-30 19:40:57 +05:30 committed by Georgi Gerganov
parent 1893359cfd
commit f7f92d0aab
2 changed files with 118 additions and 19 deletions

View File

@ -4257,14 +4257,6 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
return true; return true;
case GGML_OP_ROPE: case GGML_OP_ROPE:
{
const int mode = ((const int32_t *) op->op_params)[2];
// mode is not used as a bitmask in practice, the various rope type modes are independent implementations
if (mode == GGML_ROPE_TYPE_MROPE) {
return false;
}
return true;
}
case GGML_OP_IM2COL: case GGML_OP_IM2COL:
return true; return true;
case GGML_OP_UPSCALE: case GGML_OP_UPSCALE:

View File

@ -49,10 +49,7 @@ static void rope_norm(const T * x, T * dst, const int ne0, const int ne1, const
if (i0 >= n_dims) { if (i0 >= n_dims) {
const int i = row * ne0 + i0; const int i = row * ne0 + i0;
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return; return;
} }
@ -93,10 +90,7 @@ static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const
if (i0 >= n_dims) { if (i0 >= n_dims) {
const int i = row * ne0 + i0; const int i = row * ne0 + i0;
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return; return;
} }
@ -122,6 +116,63 @@ static void rope_neox(const T * x, T * dst, const int ne0, const int ne1, const
dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta; dst[i + n_dims / 2] = x0 * sin_theta + x1 * cos_theta;
} }
template <typename T, bool has_ff>
static void rope_multi(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections,
const sycl::nd_item<3> & item_ct1) {
// get index pos
const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
if (i0 >= ne0) {
return;
}
const int row_dst = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
if (i0 >= n_dims) {
const int i = row_dst*ne0 + i0;
*reinterpret_cast<sycl::vec<T, 2> *>(dst + i) = *reinterpret_cast<const sycl::vec<T, 2> *>(x + i);
return;
}
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = (row_dst * ne0) + (i0 / 2);
const size_t ix = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0;
if (sector < sections.v[0]) {
theta_base = pos[channel_x]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[channel_x + ne2 * 1]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 2]*sycl::pow(theta_scale, i0/2.0f);
}
else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 3]*sycl::pow(theta_scale, i0/2.0f);
}
const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims/2];
// store results in dst
dst[idst + 0] = x0 * cos_theta - x1 * sin_theta;
dst[idst + n_dims/2] = x0 * sin_theta + x1 * cos_theta;
}
template <typename T, bool has_ff> template <typename T, bool has_ff>
static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale, const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
@ -171,7 +222,7 @@ static void rope_norm_sycl(const T * x, T * dst, const int ne0, const int ne1, c
const float * freq_factors, queue_ptr stream) { const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0); GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE); const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr); const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims); const float theta_scale = powf(freq_base, -2.0f / n_dims);
@ -208,7 +259,7 @@ static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, c
const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) { const rope_corr_dims corr_dims, const float * freq_factors, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0); GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE); const int num_blocks_x = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> block_nums(1, num_blocks_x, nr); const sycl::range<3> block_nums(1, num_blocks_x, nr);
const float theta_scale = powf(freq_base, -2.0f / n_dims); const float theta_scale = powf(freq_base, -2.0f / n_dims);
@ -228,6 +279,40 @@ static void rope_neox_sycl(const T * x, T * dst, const int ne0, const int ne1, c
} }
} }
template <typename T>
static void rope_multi_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
const size_t s2, const int n_dims, const int nr, const int32_t * pos,
const float freq_scale, const float freq_base, const float ext_factor,
const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
// Add FP16 capability check if T could be sycl::half
if constexpr (std::is_same_v<T, sycl::half>) {
dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
}
// launch kernel
if (freq_factors == nullptr) {
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
} else {
stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
rope_multi<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
corr_dims, theta_scale, freq_factors, sections, item_ct1);
});
}
}
// rope vision // rope vision
template <typename T> template <typename T>
static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1, static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
@ -237,7 +322,7 @@ static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1,
const mrope_sections sections, queue_ptr stream) { const mrope_sections sections, queue_ptr stream) {
GGML_ASSERT(ne0 % 2 == 0); GGML_ASSERT(ne0 % 2 == 0);
const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1); const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
const int n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE); const int n_blocks_y = ceil_div(ne0, (2 * SYCL_ROPE_BLOCK_SIZE));
const sycl::range<3> grid_dims(1, n_blocks_y, nr); const sycl::range<3> grid_dims(1, n_blocks_y, nr);
const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims); const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
@ -298,8 +383,17 @@ inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
memcpy(&sections.v, (int32_t *) dst->op_params + 11, sizeof(int)*4); memcpy(&sections.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX; const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION; const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne00/2);
}
const int32_t * pos = (const int32_t *) dst->src[1]->data; const int32_t * pos = (const int32_t *) dst->src[1]->data;
const float * freq_factors = nullptr; const float * freq_factors = nullptr;
@ -326,6 +420,19 @@ inline void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
} else { } else {
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
} else if (is_mrope && !is_vision) {
GGML_SYCL_DEBUG("%s: mrope path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) {
rope_multi_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01,
s02, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, sections, main_stream);
} else if (dst->src[0]->type == GGML_TYPE_F32) {
rope_multi_sycl((const float *) dst->src[0]->data, (float *) dst->data, ne00, ne01, ne02, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections,
main_stream);
} else {
GGML_ABORT("Fatal error: Tensor type unsupported!");
}
} else if (is_vision) { } else if (is_vision) {
GGML_SYCL_DEBUG("%s: vision path\n", __func__); GGML_SYCL_DEBUG("%s: vision path\n", __func__);
if (dst->src[0]->type == GGML_TYPE_F16) { if (dst->src[0]->type == GGML_TYPE_F16) {