After the barrier in last iteration is executed, still the loop termination
condition will be executed. However main thread can destroy the cgraph object
and its nodes already, then another thread will access it, but the thing is already gone.
Also trouble can happen when n_nodes == 0 or abort is called, but I'm not sure if the
prior situation is possible.
Last syncronization should be done after the loop to ensure the cgraph/cplan won't be
accessed after the main thread exits from the function.
* ggml : optimize convert f32<->f16 for loongarch_asx
* ggml : optimize loongarch_asx extend i16,i8,u8 to i32,i16
* ggml : Fix warnings when run cpu CI locally on LoongArch
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl
Shaders are based on cpy.cu.
* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32
* ggml: copy q->f32 assumes some contiguity in the destination
* more perfo with llamafile tinyblas on x86_64.
- add bf16 suport
- change dispache strategie (thanks:
https://github.com/ikawrakow/ik_llama.cpp/pull/71 )
- reduce memory bandwidth
simple tinyblas dispache and more cache freindly
* tinyblas dynamic dispaching
* sgemm: add M blocs.
* - git 2.47 use short id of len 9.
- show-progress is not part of GNU Wget2
* remove not stable test
* rename ggml-cpu-aarch64.c to .cpp
* reformat extra cpu backend.
- clean Q4_0_N_M and IQ4_0_N_M
- remove from "file" tensor type
- allow only with dynamic repack
- extract cpu extra bufts and convert to C++
- hbm
- "aarch64"
- more generic use of extra buffer
- generalise extra_supports_op
- new API for "cpu-accel":
- amx
- aarch64
* clang-format
* Clean Q4_0_N_M ref
Enable restrict on C++
* add op GGML_OP_MUL_MAT_ID for Q4_0_N_M with runtime repack
* added/corrected control on tensor size for Q4 repacking.
* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add debug logs on repacks.
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* ggml_pad_reflect_1d defined in header
* implemented on CPU
* called the forward pass
* impl Metal kernel
* added Metal kernel
* added OP_PAD_REFLECT_1D in test-backend-ops.cpp
* add test-pad-reflect-1d test case
* test case support multiple backend
* ggml: new optimization interface
remove test2.c, test3.c
store adamw params in tensor
move grads from tensor to graph
* avoid segfault upon API misuse
* add ggml-opt.h to public headers
* remove dependence of ggml-opt.cpp on ggml-cpu.h
* use 128 bit loads (i've tried 256->128 to death and its slower)
* double accumulator
* avx bf16 vec dot
* +3% q4_0 inference
* +7% tg +5% pp compared to master
* slower f16c version, kep for reference
* 256b version, also slow. i tried :)
* revert f16
* faster with madd
* split to functions
* Q8_0 and IQ4_NL, 5-7% faster
* fix potential overflow (performance reduced)
* 16 bit add for q4_0 only
* merge