mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-07-01 23:10:47 +02:00
Compare commits
3 Commits
fix_vs_sdl
...
gg/reduce-
Author | SHA1 | Date | |
---|---|---|---|
552419f2c0 | |||
987f3145d0 | |||
3689d49b81 |
@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libsdl2-dev wget git
|
||||
apt-get install -y build-essential git cmake libsdl2-dev
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
@ -23,6 +23,6 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV GGML_CUDA=1
|
||||
|
||||
RUN make base.en
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT ["/app/main"]
|
||||
|
@ -17,7 +17,7 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
ENV GGML_CUDA=1
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential libsdl2-dev wget cmake git \
|
||||
apt-get install -y build-essential libsdl2-dev \
|
||||
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
|
||||
|
||||
# Ref: https://stackoverflow.com/a/53464012
|
||||
@ -25,7 +25,7 @@ ENV CUDA_MAIN_VERSION=12.3
|
||||
ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
|
||||
|
||||
COPY .. .
|
||||
RUN make base.en
|
||||
RUN make
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
ENV CUDA_MAIN_VERSION=12.3
|
||||
@ -33,7 +33,7 @@ ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y curl ffmpeg wget cmake git \
|
||||
apt-get install -y curl ffmpeg \
|
||||
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
|
||||
|
||||
COPY --from=build /app /app
|
||||
|
@ -2,17 +2,17 @@ FROM ubuntu:22.04 AS build
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential wget cmake git \
|
||||
apt-get install -y build-essential \
|
||||
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
|
||||
|
||||
COPY .. .
|
||||
RUN make base.en
|
||||
RUN make
|
||||
|
||||
FROM ubuntu:22.04 AS runtime
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y curl ffmpeg libsdl2-dev wget cmake git \
|
||||
apt-get install -y curl ffmpeg libsdl2-dev \
|
||||
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
|
||||
|
||||
COPY --from=build /app /app
|
||||
|
4
.github/workflows/bindings-go.yml
vendored
4
.github/workflows/bindings-go.yml
vendored
@ -10,8 +10,8 @@ on:
|
||||
- whisper.h
|
||||
|
||||
jobs:
|
||||
ubuntu-22:
|
||||
runs-on: ubuntu-22.04
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
|
86
.github/workflows/bindings-ruby.yml
vendored
86
.github/workflows/bindings-ruby.yml
vendored
@ -3,53 +3,73 @@ on:
|
||||
push:
|
||||
paths:
|
||||
- bindings/ruby/**
|
||||
- src/**/*.c
|
||||
- src/**/*.cpp
|
||||
- src/**/*.h
|
||||
- src/**/*.m
|
||||
- src/**/*.metal
|
||||
- include/**/*.c
|
||||
- include/**/*.cpp
|
||||
- include/**/*.h
|
||||
- include/**/*.m
|
||||
- include/**/*.metal
|
||||
- ggml/**/*.c
|
||||
- ggml/**/*.cpp
|
||||
- ggml/**/*.h
|
||||
- ggml/**/*.m
|
||||
- ggml/**/*.metal
|
||||
- src/whisper.cpp
|
||||
- include/whisper.h
|
||||
- ggml/src/ggml.c
|
||||
- ggml/src/ggml-impl.h
|
||||
- ggml/src/ggml-aarch64.h
|
||||
- ggml/src/ggml-aarch64.c
|
||||
- ggml/src/ggml-alloc.c
|
||||
- ggml/src/ggml-backend-impl.h
|
||||
- ggml/src/ggml-backend.cpp
|
||||
- ggml/src/ggml-common.h
|
||||
- ggml/src/ggml-quants.h
|
||||
- ggml/src/ggml-quants.c
|
||||
- ggml/src/ggml-cpu-impl.h
|
||||
- ggml/src/ggml-metal.m
|
||||
- ggml/src/ggml-metal.metal
|
||||
- ggml/src/ggml-blas.cpp
|
||||
- ggml/include/ggml.h
|
||||
- ggml/include/ggml-alloc.h
|
||||
- ggml/include/ggml-backend.h
|
||||
- ggml/include/ggml-cuda.h
|
||||
- ggml/include/ggml-kompute.h
|
||||
- ggml/include/ggml-metal.h
|
||||
- ggml/include/ggml-sycl.h
|
||||
- ggml/include/ggml-vulkan.h
|
||||
- ggml/include/ggml-blas.h
|
||||
- scripts/get-flags.mk
|
||||
- examples/dr_wav.h
|
||||
pull_request:
|
||||
paths:
|
||||
- bindings/ruby/**
|
||||
- src/**/*.c
|
||||
- src/**/*.cpp
|
||||
- src/**/*.h
|
||||
- src/**/*.m
|
||||
- src/**/*.metal
|
||||
- include/**/*.c
|
||||
- include/**/*.cpp
|
||||
- include/**/*.h
|
||||
- include/**/*.m
|
||||
- include/**/*.metal
|
||||
- ggml/**/*.c
|
||||
- ggml/**/*.cpp
|
||||
- ggml/**/*.h
|
||||
- ggml/**/*.m
|
||||
- ggml/**/*.metal
|
||||
- src/whisper.cpp
|
||||
- include/whisper.h
|
||||
- ggml/src/ggml.c
|
||||
- ggml/src/ggml-impl.h
|
||||
- ggml/src/ggml-aarch64.h
|
||||
- ggml/src/ggml-aarch64.c
|
||||
- ggml/src/ggml-alloc.c
|
||||
- ggml/src/ggml-backend-impl.h
|
||||
- ggml/src/ggml-backend.cpp
|
||||
- ggml/src/ggml-common.h
|
||||
- ggml/src/ggml-quants.h
|
||||
- ggml/src/ggml-quants.c
|
||||
- ggml/src/ggml-cpu-impl.h
|
||||
- ggml/src/ggml-metal.m
|
||||
- ggml/src/ggml-metal.metal
|
||||
- ggml/src/ggml-blas.cpp
|
||||
- ggml/include/ggml.h
|
||||
- ggml/include/ggml-alloc.h
|
||||
- ggml/include/ggml-backend.h
|
||||
- ggml/include/ggml-cuda.h
|
||||
- ggml/include/ggml-kompute.h
|
||||
- ggml/include/ggml-metal.h
|
||||
- ggml/include/ggml-sycl.h
|
||||
- ggml/include/ggml-vulkan.h
|
||||
- ggml/include/ggml-blas.h
|
||||
- scripts/get-flags.mk
|
||||
- examples/dr_wav.h
|
||||
|
||||
jobs:
|
||||
ubuntu-22:
|
||||
runs-on: ubuntu-22.04
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: bindings/ruby
|
||||
steps:
|
||||
- uses: ruby/setup-ruby@v1
|
||||
with:
|
||||
ruby-version: '3.1'
|
||||
ruby-version: '3.0'
|
||||
- uses: actions/checkout@v4
|
||||
- run: rake test
|
||||
|
344
.github/workflows/build.yml
vendored
344
.github/workflows/build.yml
vendored
@ -1,28 +1,17 @@
|
||||
name: CI
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
on: [push, pull_request]
|
||||
|
||||
env:
|
||||
ubuntu_image: "ubuntu:22.04"
|
||||
VCPKG_BINARY_SOURCES: "clear;x-gha,readwrite"
|
||||
|
||||
jobs:
|
||||
ubuntu-22:
|
||||
runs-on: ubuntu-22.04
|
||||
ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
arch: [linux/amd64, linux/ppc64le]
|
||||
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@ -38,61 +27,9 @@ jobs:
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
set -e
|
||||
apt update
|
||||
apt install -y build-essential libsdl2-dev cmake git
|
||||
cmake -B build
|
||||
cmake --build build --config Release -j $(nproc)'
|
||||
|
||||
ubuntu-22-arm64:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
arch: [linux/arm64]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
run: |
|
||||
docker run --platform ${{ matrix.arch }} --rm \
|
||||
-v ${{ github.workspace }}:/workspace \
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
set -e
|
||||
apt update
|
||||
apt install -y build-essential libsdl2-dev cmake git
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8-a
|
||||
cmake --build build --config Release -j $(nproc)'
|
||||
|
||||
ubuntu-22-arm-v7:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
arch: [linux/arm/v7]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
run: |
|
||||
docker run --platform ${{ matrix.arch }} --rm \
|
||||
-v ${{ github.workspace }}:/workspace \
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
set -e
|
||||
apt update
|
||||
apt install -y build-essential libsdl2-dev cmake git
|
||||
cmake -B build -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv7-a+fp
|
||||
cmake --build build --config Release -j $(nproc)'
|
||||
apt install -y build-essential libsdl2-dev
|
||||
make
|
||||
make stream'
|
||||
|
||||
macOS-latest:
|
||||
runs-on: macOS-latest
|
||||
@ -104,39 +41,39 @@ jobs:
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew update
|
||||
brew install sdl2 cmake
|
||||
brew install sdl2
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
make
|
||||
make stream
|
||||
|
||||
# freeBSD-latest:
|
||||
# runs-on: macos-12
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Build
|
||||
# uses: cross-platform-actions/action@v0.24.0
|
||||
# with:
|
||||
# operating_system: freebsd
|
||||
# version: '13.3'
|
||||
# run: |
|
||||
# sudo pkg update
|
||||
# sudo pkg install -y gmake sdl2 cmake
|
||||
# cmake -B build
|
||||
# cmake --build build --config Release
|
||||
freeBSD-latest:
|
||||
runs-on: macos-12
|
||||
|
||||
ubuntu-22-gcc:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
uses: cross-platform-actions/action@v0.24.0
|
||||
with:
|
||||
operating_system: freebsd
|
||||
version: '13.3'
|
||||
run: |
|
||||
sudo pkg update
|
||||
sudo pkg install -y gmake sdl2
|
||||
gmake
|
||||
gmake stream
|
||||
|
||||
ubuntu-latest-gcc:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
arch: [linux/amd64, linux/ppc64le]
|
||||
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@ -152,69 +89,13 @@ jobs:
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
set -e
|
||||
apt update
|
||||
apt install -y build-essential cmake libsdl2-dev git
|
||||
apt install -y build-essential cmake libsdl2-dev
|
||||
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
make
|
||||
ctest -L gh --output-on-failure'
|
||||
|
||||
ubuntu-22-gcc-arm64:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
arch: [linux/arm64]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
run: |
|
||||
docker run --platform ${{ matrix.arch }} --rm \
|
||||
-v ${{ github.workspace }}:/workspace \
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
set -e
|
||||
apt update
|
||||
apt install -y build-essential cmake libsdl2-dev git
|
||||
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8-a
|
||||
make
|
||||
ctest -L gh --output-on-failure'
|
||||
|
||||
ubuntu-22-gcc-arm-v7:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
build: [Debug, Release]
|
||||
arch: [linux/arm/v7]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
|
||||
- name: Build ${{ matrix.arch }}
|
||||
run: |
|
||||
docker run --platform ${{ matrix.arch }} --rm \
|
||||
-v ${{ github.workspace }}:/workspace \
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
set -e
|
||||
apt update
|
||||
apt install -y build-essential cmake libsdl2-dev git
|
||||
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv7-a+fp
|
||||
make
|
||||
ctest -L gh --output-on-failure'
|
||||
|
||||
ubuntu-22-clang:
|
||||
runs-on: ubuntu-22.04
|
||||
ubuntu-latest-clang:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
@ -239,13 +120,13 @@ jobs:
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
set -e
|
||||
apt update
|
||||
apt install -y clang build-essential cmake libsdl2-dev git
|
||||
apt install -y clang build-essential cmake libsdl2-dev
|
||||
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
|
||||
make
|
||||
ctest -L gh --output-on-failure'
|
||||
|
||||
ubuntu-22-gcc-sanitized:
|
||||
runs-on: ubuntu-22.04
|
||||
ubuntu-latest-gcc-sanitized:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
@ -267,7 +148,7 @@ jobs:
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
set -e
|
||||
apt update
|
||||
apt install -y build-essential cmake git
|
||||
apt install -y build-essential cmake
|
||||
cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
|
||||
make
|
||||
ctest -L gh --output-on-failure'
|
||||
@ -302,12 +183,12 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp git
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt install intel-oneapi-mkl-devel git
|
||||
sudo apt install intel-oneapi-mkl-devel
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
@ -352,7 +233,7 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp git
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
@ -393,16 +274,30 @@ jobs:
|
||||
msystem: ${{matrix.sys}}
|
||||
install: >-
|
||||
base-devel
|
||||
git
|
||||
mingw-w64-${{matrix.env}}-toolchain
|
||||
mingw-w64-${{matrix.env}}-cmake
|
||||
mingw-w64-${{matrix.env}}-SDL2
|
||||
mingw-w64-${{matrix.env}}-openblas
|
||||
|
||||
- name: Build using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make -j $(nproc)
|
||||
|
||||
- name: Clean after building using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make clean
|
||||
|
||||
- name: Build using make w/ OpenBLAS
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make GGML_OPENBLAS=1 -j $(nproc)
|
||||
|
||||
- name: Build using CMake
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
cmake -B build -DWHISPER_SDL2=ON
|
||||
cmake -B build
|
||||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
- name: Clean after building using CMake
|
||||
@ -413,7 +308,7 @@ jobs:
|
||||
- name: Build using CMake w/ OpenBLAS
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
|
||||
cmake -B build -DGGML_OPENBLAS=ON
|
||||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
windows:
|
||||
@ -487,8 +382,10 @@ jobs:
|
||||
sdl2: [ON]
|
||||
include:
|
||||
- arch: Win32
|
||||
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x86.zip
|
||||
s2arc: x86
|
||||
- arch: x64
|
||||
obzip: https://github.com/OpenMathLib/OpenBLAS/releases/download/v0.3.25/OpenBLAS-0.3.25-x64.zip
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.28.5
|
||||
@ -497,21 +394,17 @@ jobs:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Export GitHub Actions cache environment variables
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
core.exportVariable('ACTIONS_CACHE_URL', process.env.ACTIONS_CACHE_URL || '');
|
||||
core.exportVariable('ACTIONS_RUNTIME_TOKEN', process.env.ACTIONS_RUNTIME_TOKEN || '');
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v2
|
||||
|
||||
- name: Install OpenBLAS and pkgconfiglite
|
||||
- name: Fetch OpenBLAS
|
||||
if: matrix.blas == 'ON'
|
||||
run: |
|
||||
vcpkg install --triplet=${{ matrix.s2arc }}-windows openblas
|
||||
choco install pkgconfiglite
|
||||
C:/msys64/usr/bin/wget.exe -qO blas.zip ${{ matrix.obzip }}
|
||||
7z x blas.zip -oblas -y
|
||||
copy blas/include/cblas.h .
|
||||
copy blas/include/openblas_config.h .
|
||||
echo "OPENBLAS_PATH=$env:GITHUB_WORKSPACE/blas" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
@ -523,10 +416,9 @@ jobs:
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_TOOLCHAIN_FILE="$env:VCPKG_INSTALLATION_ROOT/scripts/buildsystems/vcpkg.cmake"
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DGGML_BLAS=${{ matrix.blas }}
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS
|
||||
-DGGML_OPENBLAS=${{ matrix.blas }}
|
||||
-DCMAKE_LIBRARY_PATH="$env:OPENBLAS_PATH/lib"
|
||||
-DWHISPER_SDL2=${{ matrix.sdl2 }}
|
||||
|
||||
- name: Build
|
||||
@ -534,9 +426,9 @@ jobs:
|
||||
cd ./build
|
||||
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
|
||||
|
||||
- name: Copy openblas.dll
|
||||
- name: Copy libopenblas.dll
|
||||
if: matrix.blas == 'ON'
|
||||
run: copy "C:/vcpkg/packages/openblas_${{ matrix.s2arc }}-windows/bin/openblas.dll" build/bin/${{ matrix.build }}
|
||||
run: copy "$env:OPENBLAS_PATH/bin/libopenblas.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
@ -551,6 +443,7 @@ jobs:
|
||||
|
||||
windows-cublas:
|
||||
runs-on: windows-2019
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
@ -560,10 +453,12 @@ jobs:
|
||||
cuda-toolkit: [12.2.0, 11.8.0]
|
||||
include:
|
||||
- arch: x64
|
||||
sdl2: ON
|
||||
sdl2_ver: 2.28.5
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.28.5
|
||||
|
||||
steps:
|
||||
- name: Clone repository
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
@ -575,50 +470,45 @@ jobs:
|
||||
with:
|
||||
cuda: '${{ matrix.cuda-toolkit }}'
|
||||
|
||||
- name: Install 7-Zip
|
||||
run: choco install 7zip -y
|
||||
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
Invoke-WebRequest -Uri https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.sdl2_ver }}/SDL2-devel-${{ matrix.sdl2_ver }}-VC.zip -OutFile sdl2.zip
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=${{ github.workspace }}\SDL2-${{ matrix.sdl2_ver }}\cmake" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "${{ github.workspace }}\SDL2-${{ matrix.sdl2_ver }}\cmake" > SDL2_PATH.txt
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Configure CMake
|
||||
shell: cmd
|
||||
run: |
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }} ^
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }} ^
|
||||
-DGGML_CUDA=${{ matrix.cublas }} ^
|
||||
-DCMAKE_CUDA_ARCHITECTURES=all ^
|
||||
-DWHISPER_SDL2=${{ matrix.sdl2 }} ^
|
||||
-DSDL2_DIR="%SDL2_DIR%"
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DGGML_CUDA=${{ matrix.cublas }}
|
||||
-DWHISPER_SDL2=${{ matrix.sdl2 }}
|
||||
|
||||
- name: Build Project
|
||||
shell: cmd
|
||||
- name: Build ${{ matrix.cuda-toolkit }}
|
||||
run: |
|
||||
cd ./build
|
||||
cmake --build . --config ${{ matrix.build }}
|
||||
|
||||
- name: Copy CUDA DLLs
|
||||
run: |
|
||||
Get-ChildItem "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/" -Filter "*.dll" |
|
||||
Copy-Item -Destination "build/bin/${{ matrix.build }}"
|
||||
run: >
|
||||
Copy-Item -PassThru
|
||||
-Path "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/*.dll"
|
||||
-Include cudart64_*,cublas64_*,cublasLt64_*
|
||||
-Destination build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.arch }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
|
||||
emscripten:
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@ -639,7 +529,7 @@ jobs:
|
||||
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
make
|
||||
|
||||
ios-xcode-build:
|
||||
ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
strategy:
|
||||
@ -647,7 +537,7 @@ jobs:
|
||||
build: [Release]
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Configure
|
||||
@ -655,37 +545,14 @@ jobs:
|
||||
cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
|
||||
mkdir models/ggml-base.en-encoder.mlmodelc
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DWHISPER_BUILD_EXAMPLES=OFF \
|
||||
-DWHISPER_BUILD_TESTS=OFF \
|
||||
-DWHISPER_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
|
||||
sudo cmake --install . --config Release
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
xcodebuild -scheme whisper-Package -destination 'generic/platform=iOS'
|
||||
|
||||
- name: Build objc example
|
||||
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphoneos CODE_SIGN_IDENTITY="" CODE_SIGNING_REQUIRED=NO build
|
||||
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build
|
||||
|
||||
- name: Build swiftui example
|
||||
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
|
||||
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphonesimulator build
|
||||
|
||||
android:
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@ -693,6 +560,12 @@ jobs:
|
||||
with:
|
||||
path: whisper
|
||||
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
repository: ggerganov/ggml
|
||||
path: ggml
|
||||
|
||||
- name: Install Java
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
@ -711,11 +584,11 @@ jobs:
|
||||
run: |
|
||||
export PATH_TO_GGML=$PWD/ggml
|
||||
cd whisper/examples/whisper.android
|
||||
./gradlew assembleRelease --no-daemon
|
||||
./gradlew assembleRelease --no-daemon -PGGML_HOME=$PATH_TO_GGML
|
||||
|
||||
# TODO: disable because of following fail: https://github.com/ggerganov/whisper.cpp/actions/runs/11019444420/job/30627193602
|
||||
# android_java:
|
||||
# runs-on: ubuntu-22.04
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
@ -784,7 +657,7 @@ jobs:
|
||||
# PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
|
||||
|
||||
quantize:
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@ -793,6 +666,5 @@ jobs:
|
||||
- name: Test quantize
|
||||
run: |
|
||||
./models/download-ggml-model.sh tiny.en
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
./build/bin/quantize models/ggml-tiny.en.bin models/ggml-tiny.en-q4_0.bin q4_0
|
||||
make quantize
|
||||
./quantize models/ggml-tiny.en.bin models/ggml-tiny.en-q4_0.bin q4_0
|
||||
|
8
.github/workflows/docker.yml
vendored
8
.github/workflows/docker.yml
vendored
@ -11,13 +11,13 @@ jobs:
|
||||
name: Push Docker image to Docker Hub
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
COMMIT_SHA: ${{ github.sha }}
|
||||
strategy:
|
||||
matrix:
|
||||
config:
|
||||
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64" }
|
||||
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64,linux/arm64" }
|
||||
#TODO: the cuda image keeps failing - disable for now
|
||||
# https://github.com/ggerganov/whisper.cpp/actions/runs/11019444428/job/30602020339
|
||||
#- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }
|
||||
@ -45,7 +45,7 @@ jobs:
|
||||
with:
|
||||
context: .
|
||||
push: true
|
||||
platforms: ${{ matrix.config.platform }}
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
@ -54,6 +54,6 @@ jobs:
|
||||
with:
|
||||
context: .
|
||||
push: ${{ github.event_name == 'push' }}
|
||||
platforms: ${{ matrix.config.platform }}
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
tags: "ghcr.io/${{ github.repository }}:${{ matrix.config.tag }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
6
.github/workflows/examples.yml
vendored
6
.github/workflows/examples.yml
vendored
@ -10,8 +10,8 @@ on:
|
||||
- whisper.h
|
||||
|
||||
jobs:
|
||||
addon_node-ubuntu-22:
|
||||
runs-on: ubuntu-22.04
|
||||
addon_node-ubuntu-latest:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
node-version: [ 16.x, 18.x ]
|
||||
@ -22,7 +22,7 @@ jobs:
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential git
|
||||
sudo apt-get install build-essential
|
||||
sudo apt-get install cmake
|
||||
sudo apt-get install libsdl2-dev
|
||||
|
||||
|
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,6 +1,5 @@
|
||||
*.o
|
||||
*.a
|
||||
*.d
|
||||
.cache/
|
||||
.coreml/
|
||||
.test/
|
||||
@ -20,9 +19,6 @@ build-*/
|
||||
.swiftpm
|
||||
*.metallib
|
||||
|
||||
ggml-metal-embed.metal
|
||||
ggml-metal-embed.metal.tmp
|
||||
|
||||
/main
|
||||
/stream
|
||||
/command
|
||||
|
211
AUTHORS
211
AUTHORS
@ -1,51 +1,34 @@
|
||||
# date: Tue Feb 4 13:03:35 EET 2025
|
||||
# date: Tue Apr 9 20:27:03 EEST 2024
|
||||
# this file is auto-generated by scripts/gen-authors.sh
|
||||
|
||||
0/0 <zero@imaskeleton.me>
|
||||
0cc4m <picard12@live.de>
|
||||
0xsourcecode <134374803+0xsourcecode@users.noreply.github.com>
|
||||
65a <10104049+65a@users.noreply.github.com>
|
||||
AIWintermuteAI <32562299+AIWintermuteAI@users.noreply.github.com>
|
||||
AT <manyoso@users.noreply.github.com>
|
||||
Aarni Koskela <akx@iki.fi>
|
||||
Aaron Pham <29749331+aarnphm@users.noreply.github.com>
|
||||
Aaron Taylor <aaron@exphat.com>
|
||||
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
|
||||
Abitofevrything <54505189+abitofevrything@users.noreply.github.com>
|
||||
Adam Jones <domdomegg+git@gmail.com>
|
||||
Adrien Gallouët <adrien@gallouet.fr>
|
||||
Adrien Gallouët <angt@huggingface.co>
|
||||
AfryMask <AfryMask@163.com>
|
||||
Ahmad Bilal <ahmad.bilal@empglabs.com>
|
||||
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
|
||||
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
|
||||
AidanBeltonS <aidan.belton@codeplay.com>
|
||||
Akarshan Biswas <akarshan.biswas@gmail.com>
|
||||
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
|
||||
Akash Mahajan <akash7190@gmail.com>
|
||||
Akash Mahajan <akashmjn@stanford.edu>
|
||||
Al Hoang <3811822-hoanga@users.noreply.gitlab.com>
|
||||
Alan <unknown>
|
||||
Albert Jin <albert.jin@gmail.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
|
||||
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
|
||||
Aleksander Andrzejewski <18704749+aleksanderandrzejewski@users.noreply.github.com>
|
||||
Alex Azarov <alex@azarov.by>
|
||||
Alex Bacart <13940752+alex-bacart@users.noreply.github.com>
|
||||
Alex Evgrashin <aevgrashin@yandex.ru>
|
||||
Alex O'Connell <35843486+acon96@users.noreply.github.com>
|
||||
Alexandr Graschenkov <alexandr.graschenkov91@gmail.com>
|
||||
Alexandru Mariuti <alex@mariuti.com>
|
||||
Alexey Kharlamov <alexey@kharlamov.biz>
|
||||
Alfredo Montesinos <alfredo.montesinos@g.austincc.edu>
|
||||
Ali Alameh <ali.alameh@isae.edu.lb>
|
||||
Alter <0x7c48@gmail.com>
|
||||
Ananta Bastola <anantarajbastola@gmail.com>
|
||||
Andreas Kieslinger <47689530+aendk@users.noreply.github.com>
|
||||
Andreas Lubbe <git@lubbe.org>
|
||||
Andreu Huguet <andreuhuguet@gmail.com>
|
||||
Andrew Huynh <a5thuynh@gmail.com>
|
||||
Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
|
||||
Andrew S <andrews54757@gmail.com>
|
||||
Andy Maloney <asmaloney@gmail.com>
|
||||
Anton Kostin <masguit42@users.noreply.github.com>
|
||||
@ -57,11 +40,8 @@ AustinMroz <austinmroz@utexas.edu>
|
||||
Avik Sengupta <avik@sengupta.net>
|
||||
Bader-eddine Ouaich <49657842+baderouaich@users.noreply.github.com>
|
||||
Baffin Lee <baffinlee@gmail.com>
|
||||
Ben Ashbaugh <ben.ashbaugh@intel.com>
|
||||
Ben Nortier <bjnortier@gmail.com>
|
||||
Benjamin Heiniger <benjamin.heiniger@bluewin.ch>
|
||||
Bernhard M. Wiedemann <githubbmwprimary@lsmod.de>
|
||||
Binozo <70137898+Binozo@users.noreply.github.com>
|
||||
Bo-Yi Wu <appleboy.tw@gmail.com>
|
||||
Boris Bliznioukov <blib@mail.com>
|
||||
Borislav Stanimirov <b.stanimirov@abv.bg>
|
||||
@ -69,86 +49,47 @@ Brad Murray <59848399+bradmurray-dt@users.noreply.github.com>
|
||||
Brian Murray <brian@bmurray.ca>
|
||||
CRD716 <crd716@gmail.com>
|
||||
Canis Lupus <Canis-UK@users.noreply.github.com>
|
||||
Carlos Zoido <mrgalleta@gmail.com>
|
||||
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
|
||||
CarterLi999 <664681047@qq.com>
|
||||
ChangSeok Oh <shivamidow@users.noreply.github.com>
|
||||
Changyeon Kim <cyzero.kim@samsung.com>
|
||||
Chaoqun <27287694+OpenWaygate@users.noreply.github.com>
|
||||
Charles Xu <63788048+chaxu01@users.noreply.github.com>
|
||||
Charles Xu <charles.xu@arm.com>
|
||||
Chen Xi <xi2.chen@intel.com>
|
||||
Chen Xi <xixichen08@foxmail.com>
|
||||
Chenguang Li <87689256+noemotiovon@users.noreply.github.com>
|
||||
Chia-Hsiang Cheng <88014292+garychia@users.noreply.github.com>
|
||||
Chidi Williams <williamschidi1@gmail.com>
|
||||
Chris Elrod <elrodc@gmail.com>
|
||||
Christian <12550267+iceychris@users.noreply.github.com>
|
||||
Christian Kastner <ckk@kvr.at>
|
||||
Clifford Heath <clifford.heath@gmail.com>
|
||||
Clint Herron <hanclinto@gmail.com>
|
||||
Colin <github@whoisc.cc>
|
||||
Conrad Kramer <conrad@conradkramer.com>
|
||||
Corey Earwood <iamcgn+github@gmail.com>
|
||||
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
|
||||
DAN™ <dranger003@gmail.com>
|
||||
DGdev91 <DGdev91@users.noreply.github.com>
|
||||
Damian Czaja <trojan295@protonmail.com>
|
||||
Dan Johansson <164997844+eddnjjn@users.noreply.github.com>
|
||||
Dan Johansson <dan.johansson@arm.com>
|
||||
Daniel Bevenius <daniel.bevenius@gmail.com>
|
||||
Daniel Valdivia <18384552+dvaldivia@users.noreply.github.com>
|
||||
Daniel Ziegenberg <daniel@ziegenberg.at>
|
||||
Daniele <57776841+daniandtheweb@users.noreply.github.com>
|
||||
Dave <dave-fl@users.noreply.github.com>
|
||||
Dave Airlie <airlied@gmail.com>
|
||||
Dave Airlie <airlied@redhat.com>
|
||||
Daven Sanassy <daven@vochlea.co.uk>
|
||||
David <dnhkng@gmail.com>
|
||||
David Thorpe <djt@mutablelogic.com>
|
||||
DavidKorczynski <david@adalogics.com>
|
||||
Davidson Francis <davidsondfgl@gmail.com>
|
||||
Dener Stassun <denerstassun@gmail.com>
|
||||
Dibakar Gope <dibakar.gope@arm.com>
|
||||
Didzis Gosko <didzis@users.noreply.github.com>
|
||||
Diego Devesa <slarengh@gmail.com>
|
||||
Digipom <admin@digipom.com>
|
||||
Dimo <dimo@ieee.org>
|
||||
Djip007 <3705339+Djip007@users.noreply.github.com>
|
||||
Djip007 <djip.perois@free.fr>
|
||||
Dody Suria Wijaya <dodysw@gmail.com>
|
||||
Dou Xinpeng <15529241576@163.com>
|
||||
Dou Xinpeng <81913537+Dou-Git@users.noreply.github.com>
|
||||
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
|
||||
Duncan McConnell <ddmcconnell4@gmail.com>
|
||||
Egor Egorov <me@egorfine.com>
|
||||
Elkana Bardugo <ttv200@gmail.com>
|
||||
Emmanuel Schmidbauer <eschmidbauer@gmail.com>
|
||||
Engininja2 <139037756+Engininja2@users.noreply.github.com>
|
||||
Eric Curtin <ericcurtin17@gmail.com>
|
||||
Eric Swanson <eswanson@alloscomp.com>
|
||||
Eric Tendian <erictendian@gmail.com>
|
||||
Eric Zhang <34133756+EZForever@users.noreply.github.com>
|
||||
Erik Scholz <Green-Sky@users.noreply.github.com>
|
||||
Evan Jones <evan.q.jones@gmail.com>
|
||||
Evan Martin <evan.martin@gmail.com>
|
||||
Eve <139727413+netrunnereve@users.noreply.github.com>
|
||||
Evgeny Kuznetsov <evgeny@kuznetsov.md>
|
||||
F1L1P <78918286+F1L1Pv2@users.noreply.github.com>
|
||||
Faisal Zaghloul <quic_fzaghlou@quicinc.com>
|
||||
Fangjun Kuang <csukuangfj@gmail.com>
|
||||
Felix <stenbackfelix@gmail.com>
|
||||
Finn Voorhees <finnvoorhees@gmail.com>
|
||||
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
|
||||
FlippFuzz <41221030+FlippFuzz@users.noreply.github.com>
|
||||
Frankie Robertson <frankier@users.noreply.github.com>
|
||||
Gang Chen <goncha@gmail.com>
|
||||
Gavin Cai <gavin1818@hotmail.com>
|
||||
George Hindle <george@georgehindle.com>
|
||||
Georgi Gerganov <ggerganov@gmail.com>
|
||||
Gilad S <7817232+giladgd@users.noreply.github.com>
|
||||
Gilad S <giladgd@users.noreply.github.com>
|
||||
Gilad S. <7817232+giladgd@users.noreply.github.com>
|
||||
GitAritron <103900385+GitAritron@users.noreply.github.com>
|
||||
GiviMAD <GiviMAD@users.noreply.github.com>
|
||||
Gleicon Moraes <gleicon@gmail.com>
|
||||
@ -157,66 +98,41 @@ Guillaume Wenzek <gwenzek@users.noreply.github.com>
|
||||
HY. Kelvin Lee <34256578+hykelvinlee42@users.noreply.github.com>
|
||||
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
|
||||
Hang <bebound@gmail.com>
|
||||
Haus1 <haus.xda@gmail.com>
|
||||
Herman Semenov <GermanAizek@yandex.ru>
|
||||
HimariO <dsfhe49854@gmail.com>
|
||||
Hong Bo PENG <penghb@cn.ibm.com>
|
||||
Hrishikesh Barman <geekodour@users.noreply.github.com>
|
||||
Hugo <hugo@whynothugo.nl>
|
||||
Ian Bicking <ian@ianbicking.org>
|
||||
Ian Bull <irbull@eclipsesource.com>
|
||||
Ihar Hrachyshka <ihrachys@redhat.com>
|
||||
Ikko Ashimine <eltociear@gmail.com>
|
||||
Ikko Eltociear Ashimine <eltociear@gmail.com>
|
||||
InconsolableCellist <23345188+InconsolableCellist@users.noreply.github.com>
|
||||
Ismatulla Mansurov <47342870+sapoepsilon@users.noreply.github.com>
|
||||
Ivan <nekotekina@gmail.com>
|
||||
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
|
||||
Ivan Gorin <ivangorin21@gmail.com>
|
||||
Ivo von Putzer Reibegg <ivo.putzer@gmail.com>
|
||||
JJ <103335846+computerscienceiscool@users.noreply.github.com>
|
||||
Jack Mousseau <jmousseau@users.noreply.github.com>
|
||||
JacobLinCool <jacoblincool@gmail.com>
|
||||
Jakub Ráček <blizzcz@gmail.com>
|
||||
Jared Van Bortel <jared@nomic.ai>
|
||||
Jay Binks <jaybinks@gmail.com>
|
||||
Jayant <jayantyadav202@gmail.com>
|
||||
Jeff Bolz <jbolz@nvidia.com>
|
||||
Jeroen Mostert <jeroen.mostert@cm.com>
|
||||
Jhen-Jie Hong <developer@jhen.me>
|
||||
Jhen-Jie Hong <iainst0409@gmail.com>
|
||||
JidongZhang-THU <1119708529@qq.com>
|
||||
Jo Liss <joliss42@gmail.com>
|
||||
Joe Todd <joe.todd@codeplay.com>
|
||||
Johan <jr.raffin@gmail.com>
|
||||
Johannes Gäßler <johannesg@5d6.de>
|
||||
John Balis <phobossystems@gmail.com>
|
||||
JohnnyB <jboero@users.noreply.github.com>
|
||||
Jonathan Soo <jcsoo@agora.com>
|
||||
Jonno <1160532+razodactyl@users.noreply.github.com>
|
||||
Joonas Pihlajamaa <joonas.pihlajamaa@iki.fi>
|
||||
Jose <34888496+Jerry-Master@users.noreply.github.com>
|
||||
Josh Bleecher Snyder <josharian@gmail.com>
|
||||
Josscii <jossciiweiyi@gmail.com>
|
||||
Judd <foldl@users.noreply.github.com>
|
||||
Jumper775 <78500318+jumpers775@users.noreply.github.com>
|
||||
Jun Hee Yoo <contact.jhyoo@gmail.com>
|
||||
Junil Kim <logyourself@gmail.com>
|
||||
Justina Cho <justcho5@gmail.com>
|
||||
Justine Tunney <jtunney@gmail.com>
|
||||
Justine Tunney <jtunney@mozilla.com>
|
||||
KITAITI Makoto <KitaitiMakoto@gmail.com>
|
||||
KP Kaiser <kirk@zothcorp.com>
|
||||
Kamilake <exjang0@gmail.com>
|
||||
Karol Kontny <82021046+kkontny@users.noreply.github.com>
|
||||
Karthick <j.karthic2004@gmail.com>
|
||||
Kartik Saranathan <278928+Kartiku@users.noreply.github.com>
|
||||
Kasumi <90275229+kasumi-1@users.noreply.github.com>
|
||||
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
|
||||
Kendrick Taylor <kendrick@circuitsix.com>
|
||||
Kevin Brothaler <admin@digipom.com>
|
||||
Kevin Gibbons <bakkot@gmail.com>
|
||||
Konosuke Sakai <konosuke@konosuke.work>
|
||||
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
|
||||
Kreijstal <rainb@tfwno.gf>
|
||||
Kylin <56434533+KyL0N@users.noreply.github.com>
|
||||
@ -231,110 +147,56 @@ Luis Herrera <herrera-luis@users.noreply.github.com>
|
||||
Lukas Rist <glaslos@gmail.com>
|
||||
M. A. Ali <73258591+MightyStud@users.noreply.github.com>
|
||||
M. Eren Akbiyik <erenakbiyik@gmail.com>
|
||||
Ma Mingfei <mingfei.ma@intel.com>
|
||||
Maciek <maciek.mab122@gmail.com>
|
||||
Mahesh Madhav <67384846+heshpdx@users.noreply.github.com>
|
||||
Marcin Mielniczuk <marmistrz.dev@zoho.eu>
|
||||
Mark Karpelès <MagicalTux@users.noreply.github.com>
|
||||
Mark Zhuang <zhuangqiubin@gmail.com>
|
||||
Markus Tavenrath <mtavenrath@users.noreply.github.com>
|
||||
Martin Delille <martin@delille.org>
|
||||
Martin Warnaar <martinwarnaar@gmail.com>
|
||||
Masaya, Kato <62578291+msy-kato@users.noreply.github.com>
|
||||
Matheus de Sousa <23645013+keyehzy@users.noreply.github.com>
|
||||
Mathieu Baudier <mbaudier@argeo.org>
|
||||
Mathijs de Bruin <mathijs@mathijsfietst.nl>
|
||||
Matija Pevec <mightymatth@users.noreply.github.com>
|
||||
Matt Stephenson <mstephenson6@users.noreply.github.com>
|
||||
Max Krasnyansky <max.krasnyansky@gmail.com>
|
||||
Max Krasnyansky <quic_maxk@quicinc.com>
|
||||
Maximiliano Levi <8160966+maxilevi@users.noreply.github.com>
|
||||
Meng, Hengyu <hengyu.meng@intel.com>
|
||||
Mengqing Cao <cmq0113@163.com>
|
||||
Michael Podvitskiy <podvitskiymichael@gmail.com>
|
||||
Michael Rienstra <mrienstra@gmail.com>
|
||||
Mikhail Grigorev <sleuthhound@gmail.com>
|
||||
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
|
||||
Mohit Agarwal <mohit@sdf.org>
|
||||
Molly Sophia <mollysophia379@gmail.com>
|
||||
Murilo Santana <mvrilo@gmail.com>
|
||||
NETZkultur GmbH <mulholland@netzkultur.de>
|
||||
Natsu <chino@hotococoa.moe>
|
||||
Neil Chudleigh <nchudleigh@users.noreply.github.com>
|
||||
Neo Zhang <14088817+arthw@users.noreply.github.com>
|
||||
Neo Zhang Jianyu <jianyu.zhang@intel.com>
|
||||
Neuman Vong <neuman.vong@gmail.com>
|
||||
Nicholai Tukanov <nicholaitukanov@gmail.com>
|
||||
Nicholas Albion <nalbion@yahoo.com>
|
||||
Nico Bosshard <nico@bosshome.ch>
|
||||
Nicolò Scipione <nicolo.scipione@codeplay.com>
|
||||
Niels Mayer <Niels.Mayer@gmail.com>
|
||||
Nikita Sarychev <42014488+sARY77@users.noreply.github.com>
|
||||
Nikolaj Olsson <nikse.dk@gmail.com>
|
||||
Okabintaro <103938900+Okabintaro@users.noreply.github.com>
|
||||
Oleg Sidorov <me@whitebox.io>
|
||||
Oleg Sidorov <oleg@sidorov.nl>
|
||||
Olivier Chafik <ochafik@users.noreply.github.com>
|
||||
Ondrej Kokes <ondrej.kokes@gmail.com>
|
||||
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
|
||||
PAB <pierreantoine.bannier@gmail.com>
|
||||
Paul Tsochantaris <ptsochantaris@icloud.com>
|
||||
Pedro Probst <pprobst@insiberia.net>
|
||||
Peng <hzp1024@qq.com>
|
||||
Peter <peter277@users.noreply.github.com>
|
||||
Philipp Zabel <philipp.zabel@gmail.com>
|
||||
Philippe Normand <phil@base-art.net>
|
||||
Philippe Normand <philn@igalia.com>
|
||||
Plamen Minev <pacominev@gmail.com>
|
||||
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
|
||||
Przemysław Pawełczyk <przemoc@gmail.com>
|
||||
Qianhe Chen <54462604+chenqianhe@users.noreply.github.com>
|
||||
R0CKSTAR <xiaodong.ye@mthreads.com>
|
||||
R0CKSTAR <yeahdongcn@gmail.com>
|
||||
Radoslav Gerganov <rgerganov@gmail.com>
|
||||
Radosław Gryta <radek.gryta@gmail.com>
|
||||
Rahul Vadhyar <107788610+RahulVadhyar@users.noreply.github.com>
|
||||
Raiya Araki <83504221+rai62@users.noreply.github.com>
|
||||
Reinforce-II <fate@eastal.com>
|
||||
Reinis Muiznieks <muiznieks.reinis@gmail.com>
|
||||
RelatedTitle <r3latedtitle@gmail.com>
|
||||
Rémy Oudompheng <oudomphe@phare.normalesup.org>
|
||||
RhinoDevel <RhinoDevel@users.noreply.github.com>
|
||||
Rich Jones <miserlou@gmail.com>
|
||||
Robert Ormandi <52251610+ormandi@users.noreply.github.com>
|
||||
Robin <robin.xw@hotmail.com>
|
||||
Roddur Dasgupta <roddurd@gmail.com>
|
||||
Roland Rabien <figbug@gmail.com>
|
||||
Romain Biessy <romain.biessy@codeplay.com>
|
||||
Ronsor <ronsor@ronsor.pw>
|
||||
Rotem Dan <rotemdan@gmail.com>
|
||||
Ryan Hitchman <hitchmanr@gmail.com>
|
||||
Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com>
|
||||
RyanChang <ftes90015@gmail.com>
|
||||
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
|
||||
SXX <sxx1136965276@gmail.com>
|
||||
Sacha Arbonel <sacha.arbonel@hotmail.fr>
|
||||
Salman Faroz <stsfaroz@gmail.com>
|
||||
Salvatore Mesoraca <s.mesoraca16@gmail.com>
|
||||
Sam <49637763+Onlyartist9@users.noreply.github.com>
|
||||
Sam Pullara <spullara@gmail.com>
|
||||
Samuel Durante <44513615+samueldurantes@users.noreply.github.com>
|
||||
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
|
||||
Sandro Hanea <40202887+sandrohanea@users.noreply.github.com>
|
||||
Sergio López <slp@redhat.com>
|
||||
Sergio López <slp@sinrega.org>
|
||||
Shanshan Shen <467638484@qq.com>
|
||||
Shijie <821898965@qq.com>
|
||||
Shupei Fan <dymarkfan@outlook.com>
|
||||
Siddharth Ramakrishnan <srr2141@columbia.edu>
|
||||
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
|
||||
Simon Moisselin <simon.moisstoll@gmail.com>
|
||||
Sindre Sorhus <sindresorhus@gmail.com>
|
||||
Slava Primenko <primenko.s@gmail.com>
|
||||
Srihari-mcw <96763064+Srihari-mcw@users.noreply.github.com>
|
||||
Stavros Panakakis <53979866+Stavrospanakakis@users.noreply.github.com>
|
||||
Stefan Sydow <s.sydow@heinlein-video.de>
|
||||
Stefan Sydow <stefan@sydow.email>
|
||||
Syahmi Azhar <prsyahmi@gmail.com>
|
||||
Syed Jafri <syedjafri97@gmail.com>
|
||||
Sơn Phan Trung <phantrungson17@gmail.com>
|
||||
@ -343,63 +205,37 @@ Takeshi Inoue <inoue.takeshi@gmail.com>
|
||||
Tamotsu Takahashi <ttakah+github@gmail.com>
|
||||
Taras Glek <taras@thegp.com>
|
||||
Tauseef Mohiuddin <35351464+tauseefmohammed2@users.noreply.github.com>
|
||||
Thamster <Thamster@users.noreply.github.com>
|
||||
Thijs Raymakers <thijs@raymakers.nl>
|
||||
Thomas Fitzsimmons <fitzsim@fitzsim.org>
|
||||
Tiago Fassoni <tiagofassoni@users.noreply.github.com>
|
||||
Tienshiao Ma <tienshiao@tienshiao.org>
|
||||
Tim Miller <drasticactions@users.noreply.github.com>
|
||||
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
|
||||
Tobrun <tobrun.van.nuland@gmail.com>
|
||||
Todd <taf2@users.noreply.github.com>
|
||||
Toliver <teejae@gmail.com>
|
||||
Tong Li <31761981+litongjava@users.noreply.github.com>
|
||||
Tony Wasserka <4840017+neobrain@users.noreply.github.com>
|
||||
Topping1 <78745143+Topping1@users.noreply.github.com>
|
||||
Travis Cline <travis.cline@gmail.com>
|
||||
UEXTM.com <84163508+uextm@users.noreply.github.com>
|
||||
UsernamesLame <156965854+UsernamesLame@users.noreply.github.com>
|
||||
Vadim Peretokin <vperetokin@hey.com>
|
||||
Valentin Gosu <1454649+valenting@users.noreply.github.com>
|
||||
Vin Misra <vinith@alum.mit.edu>
|
||||
Vulcan <93451215+trholding@users.noreply.github.com>
|
||||
WhiteOlivierus <36532695+WhiteOlivierus@users.noreply.github.com>
|
||||
William Tambellini <william.tambellini@gmail.com>
|
||||
William Tambellini <wtambellini@sdl.com>
|
||||
Wilson Silva <wilson.dsigns@gmail.com>
|
||||
Xiang (Kevin) Li <kevinli020508@gmail.com>
|
||||
Xiao-Yong Jin <jinxiaoyong@gmail.com>
|
||||
XiaotaoChen <chenxiaotao1234@gmail.com>
|
||||
Xingchen Song(宋星辰) <xingchensong1996@163.com>
|
||||
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
|
||||
Xuan Son Nguyen <thichthat@gmail.com>
|
||||
Yajing Tang <phillis@google.com>
|
||||
Yang Shen <aplshenyang@gmail.com>
|
||||
Yunès <jean.baptiste.yunes@free.fr>
|
||||
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
|
||||
Yusuf Redžić <48274562+redzic@users.noreply.github.com>
|
||||
ZaBlazzingZephyrus <119159668+blazingzephyr@users.noreply.github.com>
|
||||
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
|
||||
Zhiyuan Li <lizhiyuan@uniartisan.com>
|
||||
Zhiyuan Li <uniartisan2017@gmail.com>
|
||||
Zigfrid Zvezdin <ziggerZZ@gmail.com>
|
||||
Zollner <24618122+Zolliner@users.noreply.github.com>
|
||||
a3sh <38979186+A3shTnT@users.noreply.github.com>
|
||||
ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com>
|
||||
agray3 <agray3@users.noreply.github.com>
|
||||
ai-at-home <149282006+ai-at-home@users.noreply.github.com>
|
||||
aldorof <aldorof@users.noreply.github.com>
|
||||
alonfaraj <alonfaraj@gmail.com>
|
||||
amd-dwang <dong.wang@amd.com>
|
||||
amritahs-ibm <amritahs@linux.vnet.ibm.com>
|
||||
andypayne <apayne@gmail.com>
|
||||
ardfork <134447697+ardfork@users.noreply.github.com>
|
||||
arizhih <40765267+arizhih@users.noreply.github.com>
|
||||
automaticcat <daogiatuank54@gmail.com>
|
||||
bandoti <141645996+bandoti@users.noreply.github.com>
|
||||
be-next <jerome.ramette@gmail.com>
|
||||
bert hubert <bert@hubertnet.nl>
|
||||
billyct <billy_allen@126.com>
|
||||
bmwl <brian.marshall@tolko.com>
|
||||
bobqianic <129547291+bobqianic@users.noreply.github.com>
|
||||
bocytko <bocytko+github@gmail.com>
|
||||
@ -412,9 +248,7 @@ byte-6174 <88070277+byte-6174@users.noreply.github.com>
|
||||
cdosoftei <ciprian.dosoftei@gmail.com>
|
||||
clach04 <Chris.Clark@actian.com>
|
||||
compilade <113953597+compilade@users.noreply.github.com>
|
||||
compilade <git@compilade.net>
|
||||
conradg <conradjgodfrey@gmail.com>
|
||||
crummyh <elijah@crums.us>
|
||||
ddpasa <112642920+ddpasa@users.noreply.github.com>
|
||||
denersc <denerstassun@gmail.com>
|
||||
dscripka <dscripka@users.noreply.github.com>
|
||||
@ -422,55 +256,28 @@ duthils <duthils@duthils.net>
|
||||
ecneladis <ecneladis@users.noreply.github.com>
|
||||
faker <nspyia2002@gmail.com>
|
||||
fitzsim <fitzsim@fitzsim.org>
|
||||
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
|
||||
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
|
||||
genevera (she/her) <genevera@users.noreply.github.com>
|
||||
geniusnut <geniusnut@gmail.com>
|
||||
gilbertgong <gilbert.gong@gmail.com>
|
||||
gn64 <yukikaze.jp@gmail.com>
|
||||
goldwaving <77494627+goldwaving@users.noreply.github.com>
|
||||
greeshmay <greeshmay@gmail.com>
|
||||
haopeng <657407891@qq.com>
|
||||
hipudding <huafengchun@gmail.com>
|
||||
hsinhoyeh <yhh92u@gmail.com>
|
||||
hydai <z54981220@gmail.com>
|
||||
iamthad <thadeus.j.fleming@gmail.com>
|
||||
issixx <46835150+issixx@users.noreply.github.com>
|
||||
james wolf <contractorwolf@hotmail.com>
|
||||
jdomke <28772296+jdomke@users.noreply.github.com>
|
||||
jettoblack <jettoblack@gmail.com>
|
||||
jiez <373447296@qq.com>
|
||||
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
|
||||
jorismertz <35079666+jorismertz@users.noreply.github.com>
|
||||
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
|
||||
junkfood <69683722+JunkFood02@users.noreply.github.com>
|
||||
jwijffels <jwijffels@bnosac.be>
|
||||
k.h.lai <adrian.k.h.lai@outlook.com>
|
||||
kamranjon <kamranjon@gmail.com>
|
||||
katsu560 <katsu560oo-@docomo.ne.jp>
|
||||
kennethge <57784063+kenneth-ge@users.noreply.github.com>
|
||||
keyehzy <msamuel@aluno.puc-rio.br>
|
||||
kunnis <kunnis@users.noreply.github.com>
|
||||
l3utterfly <gc.pthzfoldr@gmail.com>
|
||||
leejet <leejet714@gmail.com>
|
||||
leo-pony <nengjunma@outlook.com>
|
||||
lhez <quic_lih@quicinc.com>
|
||||
litong <31761981+litongjava@users.noreply.github.com>
|
||||
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
|
||||
lnyan <lkwq007@gmail.com>
|
||||
luoyu-intel <yu.luo@intel.com>
|
||||
m.bell <m.bell@techsmith.com>
|
||||
mahorozte <41834471+mahorozte@users.noreply.github.com>
|
||||
mashizora <30516315+mashizora@users.noreply.github.com>
|
||||
matt23654 <matthew.webber@protonmail.com>
|
||||
matteo <matteogeniaccio@yahoo.it>
|
||||
mgrachten <maarten@grachten.eu>
|
||||
mkiol <mkiol@users.noreply.github.com>
|
||||
mky_coder <47767389+mkycoder@users.noreply.github.com>
|
||||
novag <7754358+novag@users.noreply.github.com>
|
||||
pajowu <pajowu@pajowu.de>
|
||||
pengxin99 <pengxin.yuan@intel.com>
|
||||
petterreinholdtsen <pere-github@hungry.com>
|
||||
polarmoon <90010972+polarmoon@users.noreply.github.com>
|
||||
rlapray <lapray.romain@gmail.com>
|
||||
sandrohanea <40202887+sandrohanea@users.noreply.github.com>
|
||||
@ -480,31 +287,15 @@ shikokuchuo <53399081+shikokuchuo@users.noreply.github.com>
|
||||
slaren <slarengh@gmail.com>
|
||||
slashlib <slashlib@users.noreply.github.com>
|
||||
snadampal <87143774+snadampal@users.noreply.github.com>
|
||||
someone13574 <81528246+someone13574@users.noreply.github.com>
|
||||
st-gr <38470677+st-gr@users.noreply.github.com>
|
||||
stduhpf <stephduh@live.fr>
|
||||
stormofice <58337328+stormofice@users.noreply.github.com>
|
||||
texmex76 <40733439+texmex76@users.noreply.github.com>
|
||||
thefinaldegree <thefinaldegree@gmail.com>
|
||||
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
|
||||
toboil-features <160222185+toboil-features@users.noreply.github.com>
|
||||
trixirt <trix@redhat.com>
|
||||
ulatekh <ulatekh@yahoo.com>
|
||||
undef <undefdev@gmail.com>
|
||||
uvos <devnull@uvos.xyz>
|
||||
uvos <philipp@uvos.xyz>
|
||||
valVk <valVk@users.noreply.github.com>
|
||||
venkr <venkateshrameshkumar+1@gmail.com>
|
||||
vicalloy <zbirder@gmail.com>
|
||||
wangshuai09 <391746016@qq.com>
|
||||
woachk <24752637+woachk@users.noreply.github.com>
|
||||
xctan <axunlei@gmail.com>
|
||||
xdrudis <xavierdrudis@yahoo.es>
|
||||
yuri@FreeBSD <yuri@FreeBSD>
|
||||
zhangjixiong <code.zjx@gmail.com>
|
||||
zhentaoyu <zhentao.yu@intel.com>
|
||||
zhouwg <6889919+zhouwg@users.noreply.github.com>
|
||||
zhouwg <zhouwg2000@gmail.com>
|
||||
谢乃闻 <sienaiwun@users.noreply.github.com>
|
||||
布客飞龙 <562826179@qq.com>
|
||||
Артём Земляк <azemlyak@smart-consulting.ru>
|
||||
|
@ -1,6 +1,6 @@
|
||||
cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories.
|
||||
project("whisper.cpp" C CXX)
|
||||
project("whisper.cpp" VERSION 1.7.4)
|
||||
project("whisper.cpp" VERSION 1.7.1)
|
||||
include(CheckIncludeFileCXX)
|
||||
|
||||
set(SOVERSION 1)
|
||||
|
@ -14,6 +14,47 @@ let package = Package(
|
||||
.library(name: "whisper", targets: ["whisper"]),
|
||||
],
|
||||
targets: [
|
||||
.systemLibrary(name: "whisper", pkgConfig: "whisper"),
|
||||
]
|
||||
.target(
|
||||
name: "whisper",
|
||||
path: ".",
|
||||
exclude: [
|
||||
"bindings",
|
||||
"cmake",
|
||||
"coreml",
|
||||
"examples",
|
||||
"extra",
|
||||
"models",
|
||||
"samples",
|
||||
"tests",
|
||||
"CMakeLists.txt",
|
||||
"Makefile"
|
||||
],
|
||||
sources: [
|
||||
"ggml/src/ggml.c",
|
||||
"src/whisper.cpp",
|
||||
"ggml/src/ggml-aarch64.c",
|
||||
"ggml/src/ggml-alloc.c",
|
||||
"ggml/src/ggml-backend.cpp",
|
||||
"ggml/src/ggml-quants.c",
|
||||
"ggml/src/ggml-metal.m"
|
||||
],
|
||||
resources: [.process("ggml-metal.metal")],
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
|
||||
.define("GGML_USE_ACCELERATE"),
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
.define("GGML_USE_METAL")
|
||||
// NOTE: NEW_LAPACK will required iOS version 16.4+
|
||||
// We should consider add this in the future when we drop support for iOS 14
|
||||
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
|
||||
// .define("ACCELERATE_NEW_LAPACK"),
|
||||
// .define("ACCELERATE_LAPACK_ILP64")
|
||||
],
|
||||
linkerSettings: [
|
||||
.linkedFramework("Accelerate")
|
||||
]
|
||||
)
|
||||
],
|
||||
cxxLanguageStandard: .cxx11
|
||||
)
|
||||
|
334
README.md
334
README.md
@ -7,19 +7,16 @@
|
||||
[](https://conan.io/center/whisper-cpp)
|
||||
[](https://www.npmjs.com/package/whisper.cpp/)
|
||||
|
||||
> [!NOTE]
|
||||
> New maintenance roadmap: https://github.com/ggerganov/whisper.cpp/discussions/2788
|
||||
|
||||
Stable: [v1.7.4](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.4) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
Stable: [v1.7.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
||||
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](#core-ml-support)
|
||||
- AVX intrinsics support for x86 architectures
|
||||
- [VSX intrinsics support for POWER architectures](#power-vsx-intrinsics)
|
||||
- VSX intrinsics support for POWER architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- [Integer quantization support](#quantization)
|
||||
- [4-bit and 5-bit integer quantization support](#quantization)
|
||||
- Zero memory allocations at runtime
|
||||
- [Vulkan support](#vulkan-gpu-support)
|
||||
- Support for CPU-only inference
|
||||
@ -56,6 +53,18 @@ On Apple Silicon, the inference runs fully on the GPU via Metal:
|
||||
|
||||
https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
|
||||
|
||||
Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
|
||||
|
||||
## Implementation details
|
||||
|
||||
- The core tensor operations are implemented in C ([ggml.h](ggml/include/ggml.h) / [ggml.c](ggml/src/ggml.c))
|
||||
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](include/whisper.h) / [whisper.cpp](src/whisper.cpp))
|
||||
- Sample usage is demonstrated in [main.cpp](examples/main)
|
||||
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
|
||||
- Various other examples are available in the [examples](examples) folder
|
||||
|
||||
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD intrinsics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
||||
|
||||
## Quick start
|
||||
|
||||
First clone the repository:
|
||||
@ -76,26 +85,134 @@ Then, download one of the Whisper [models](models/README.md) converted in [`ggml
|
||||
sh ./models/download-ggml-model.sh base.en
|
||||
```
|
||||
|
||||
Now build the [whisper-cli](examples/cli) example and transcribe an audio file like this:
|
||||
Now build the [main](examples/main) example and transcribe an audio file like this:
|
||||
|
||||
```bash
|
||||
# build the project
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
# build the main example
|
||||
make -j
|
||||
|
||||
# transcribe an audio file
|
||||
./build/bin/whisper-cli -f samples/jfk.wav
|
||||
./main -f samples/jfk.wav
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
For a quick demo, simply run `make base.en`.
|
||||
For a quick demo, simply run `make base.en`:
|
||||
|
||||
```text
|
||||
$ make -j base.en
|
||||
|
||||
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp -o whisper.o
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o ggml.o -o main -framework Accelerate
|
||||
./main -h
|
||||
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help [default] show this help message and exit
|
||||
-t N, --threads N [4 ] number of threads to use during computation
|
||||
-p N, --processors N [1 ] number of processors to use during computation
|
||||
-ot N, --offset-t N [0 ] time offset in milliseconds
|
||||
-on N, --offset-n N [0 ] segment index offset
|
||||
-d N, --duration N [0 ] duration of audio to process in milliseconds
|
||||
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
|
||||
-ml N, --max-len N [0 ] maximum segment length in characters
|
||||
-sow, --split-on-word [false ] split on word rather than on token
|
||||
-bo N, --best-of N [5 ] number of best candidates to keep
|
||||
-bs N, --beam-size N [5 ] beam size for beam search
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
|
||||
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
||||
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-di, --diarize [false ] stereo audio diarization
|
||||
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
|
||||
-nf, --no-fallback [false ] do not use temperature fallback while decoding
|
||||
-otxt, --output-txt [false ] output result in a text file
|
||||
-ovtt, --output-vtt [false ] output result in a vtt file
|
||||
-osrt, --output-srt [false ] output result in a srt file
|
||||
-olrc, --output-lrc [false ] output result in a lrc file
|
||||
-owts, --output-words [false ] output script for generating karaoke video
|
||||
-fp, --font-path [/System/Library/Fonts/Supplemental/Courier New Bold.ttf] path to a monospace font for karaoke video
|
||||
-ocsv, --output-csv [false ] output result in a CSV file
|
||||
-oj, --output-json [false ] output result in a JSON file
|
||||
-ojf, --output-json-full [false ] include more information in the JSON file
|
||||
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-pp, --print-progress [false ] print progress
|
||||
-nt, --no-timestamps [false ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
|
||||
-dl, --detect-language [false ] exit after automatically detecting language
|
||||
--prompt PROMPT [ ] initial prompt
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
|
||||
-ls, --log-score [false ] log best decoder scores of tokens
|
||||
-ng, --no-gpu [false ] disable GPU
|
||||
|
||||
|
||||
sh ./models/download-ggml-model.sh base.en
|
||||
Downloading ggml model base.en ...
|
||||
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
|
||||
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
|
||||
You can now use it like this:
|
||||
|
||||
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
|
||||
|
||||
===============================================
|
||||
Running base.en on all samples in ./samples ...
|
||||
===============================================
|
||||
|
||||
----------------------------------------------
|
||||
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
|
||||
----------------------------------------------
|
||||
|
||||
whisper_init_from_file: loading model from 'models/ggml-base.en.bin'
|
||||
whisper_model_load: loading model
|
||||
whisper_model_load: n_vocab = 51864
|
||||
whisper_model_load: n_audio_ctx = 1500
|
||||
whisper_model_load: n_audio_state = 512
|
||||
whisper_model_load: n_audio_head = 8
|
||||
whisper_model_load: n_audio_layer = 6
|
||||
whisper_model_load: n_text_ctx = 448
|
||||
whisper_model_load: n_text_state = 512
|
||||
whisper_model_load: n_text_head = 8
|
||||
whisper_model_load: n_text_layer = 6
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 2
|
||||
whisper_model_load: mem required = 215.00 MB (+ 6.00 MB per decoder)
|
||||
whisper_model_load: kv self size = 5.25 MB
|
||||
whisper_model_load: kv cross size = 17.58 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: model ctx = 140.60 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
|
||||
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||||
|
||||
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
|
||||
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
|
||||
|
||||
whisper_print_timings: fallbacks = 0 p / 0 h
|
||||
whisper_print_timings: load time = 113.81 ms
|
||||
whisper_print_timings: mel time = 15.40 ms
|
||||
whisper_print_timings: sample time = 11.58 ms / 27 runs ( 0.43 ms per run)
|
||||
whisper_print_timings: encode time = 266.60 ms / 1 runs ( 266.60 ms per run)
|
||||
whisper_print_timings: decode time = 66.11 ms / 27 runs ( 2.45 ms per run)
|
||||
whisper_print_timings: total time = 476.31 ms
|
||||
```
|
||||
|
||||
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
|
||||
|
||||
For detailed usage instructions, run: `./build/bin/whisper-cli -h`
|
||||
For detailed usage instructions, run: `./main -h`
|
||||
|
||||
Note that the [whisper-cli](examples/cli) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
|
||||
Note that the [main](examples/main) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
|
||||
For example, you can use `ffmpeg` like this:
|
||||
|
||||
```bash
|
||||
@ -139,20 +256,6 @@ make -j large-v3-turbo
|
||||
| medium | 1.5 GiB | ~2.1 GB |
|
||||
| large | 2.9 GiB | ~3.9 GB |
|
||||
|
||||
## POWER VSX Intrinsics
|
||||
|
||||
`whisper.cpp` supports POWER architectures and includes code which
|
||||
significantly speeds operation on Linux running on POWER9/10, making it
|
||||
capable of faster-than-realtime transcription on underclocked Raptor
|
||||
Talos II. Ensure you have a BLAS package installed, and replace the
|
||||
standard cmake setup with:
|
||||
|
||||
```bash
|
||||
# build with GGML_BLAS defined
|
||||
cmake -B build -DGGML_BLAS=1
|
||||
cmake --build build --config Release
|
||||
./build/bin/whisper-cli [ .. etc .. ]
|
||||
|
||||
## Quantization
|
||||
|
||||
`whisper.cpp` supports integer quantization of the Whisper `ggml` models.
|
||||
@ -162,12 +265,11 @@ Here are the steps for creating and using a quantized model:
|
||||
|
||||
```bash
|
||||
# quantize a model with Q5_0 method
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
./build/bin/quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
|
||||
make -j quantize
|
||||
./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
|
||||
|
||||
# run the examples as usual, specifying the quantized model file
|
||||
./build/bin/whisper-cli -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
|
||||
./main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
|
||||
```
|
||||
|
||||
## Core ML support
|
||||
@ -201,6 +303,10 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
||||
- Build `whisper.cpp` with Core ML support:
|
||||
|
||||
```bash
|
||||
# using Makefile
|
||||
make clean
|
||||
WHISPER_COREML=1 make -j
|
||||
|
||||
# using CMake
|
||||
cmake -B build -DWHISPER_COREML=1
|
||||
cmake --build build -j --config Release
|
||||
@ -209,7 +315,7 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
||||
- Run the examples as usual. For example:
|
||||
|
||||
```text
|
||||
$ ./build/bin/whisper-cli -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
|
||||
...
|
||||
|
||||
@ -293,7 +399,7 @@ This can result in significant speedup in encoder performance. Here are the inst
|
||||
- Run the examples as usual. For example:
|
||||
|
||||
```text
|
||||
$ ./build/bin/whisper-cli -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
|
||||
...
|
||||
|
||||
@ -310,7 +416,7 @@ This can result in significant speedup in encoder performance. Here are the inst
|
||||
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
|
||||
cached for the next run.
|
||||
|
||||
For more information about the OpenVINO implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
|
||||
For more information about the Core ML implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
|
||||
|
||||
## NVIDIA GPU support
|
||||
|
||||
@ -320,8 +426,8 @@ First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-do
|
||||
Now build `whisper.cpp` with CUDA support:
|
||||
|
||||
```
|
||||
cmake -B build -DGGML_CUDA=1
|
||||
cmake --build build -j --config Release
|
||||
make clean
|
||||
GGML_CUDA=1 make -j
|
||||
```
|
||||
|
||||
## Vulkan GPU support
|
||||
@ -330,8 +436,8 @@ First, make sure your graphics card driver provides support for Vulkan API.
|
||||
|
||||
Now build `whisper.cpp` with Vulkan support:
|
||||
```
|
||||
cmake -B build -DGGML_VULKAN=1
|
||||
cmake --build build -j --config Release
|
||||
make clean
|
||||
make GGML_VULKAN=1 -j
|
||||
```
|
||||
|
||||
## BLAS CPU support via OpenBLAS
|
||||
@ -342,13 +448,28 @@ First, make sure you have installed `openblas`: https://www.openblas.net/
|
||||
Now build `whisper.cpp` with OpenBLAS support:
|
||||
|
||||
```
|
||||
cmake -B build -DGGML_BLAS=1
|
||||
cmake --build build -j --config Release
|
||||
make clean
|
||||
GGML_OPENBLAS=1 make -j
|
||||
```
|
||||
|
||||
## BLAS CPU support via Intel MKL
|
||||
|
||||
Encoder processing can be accelerated on the CPU via the BLAS compatible interface of Intel's Math Kernel Library.
|
||||
First, make sure you have installed Intel's MKL runtime and development packages: https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
|
||||
|
||||
Now build `whisper.cpp` with Intel MKL BLAS support:
|
||||
|
||||
```
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DWHISPER_MKL=ON ..
|
||||
WHISPER_MKL=1 make -j
|
||||
```
|
||||
|
||||
## Ascend NPU support
|
||||
|
||||
Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores.
|
||||
Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores.
|
||||
|
||||
First, check if your Ascend NPU device is supported:
|
||||
|
||||
@ -362,14 +483,16 @@ Then, make sure you have installed [`CANN toolkit`](https://www.hiascend.com/en/
|
||||
Now build `whisper.cpp` with CANN support:
|
||||
|
||||
```
|
||||
cmake -B build -DGGML_CANN=1
|
||||
cmake --build build -j --config Release
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -D GGML_CANN=on
|
||||
make -j
|
||||
```
|
||||
|
||||
Run the inference examples as usual, for example:
|
||||
|
||||
```
|
||||
./build/bin/whisper-cli -f samples/jfk.wav -m models/ggml-base.en.bin -t 8
|
||||
./build/bin/main -f samples/jfk.wav -m models/ggml-base.en.bin -t 8
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
@ -423,6 +546,89 @@ For detailed instructions on how to use Conan, please refer to the [Conan docume
|
||||
|
||||
- Inference only
|
||||
|
||||
## Another example
|
||||
|
||||
Here is another example of transcribing a [3:24 min speech](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg)
|
||||
in about half a minute on a MacBook M1 Pro, using `medium.en` model:
|
||||
|
||||
<details>
|
||||
<summary>Expand to see the result</summary>
|
||||
|
||||
```text
|
||||
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
|
||||
|
||||
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
|
||||
whisper_model_load: loading model
|
||||
whisper_model_load: n_vocab = 51864
|
||||
whisper_model_load: n_audio_ctx = 1500
|
||||
whisper_model_load: n_audio_state = 1024
|
||||
whisper_model_load: n_audio_head = 16
|
||||
whisper_model_load: n_audio_layer = 24
|
||||
whisper_model_load: n_text_ctx = 448
|
||||
whisper_model_load: n_text_state = 1024
|
||||
whisper_model_load: n_text_head = 16
|
||||
whisper_model_load: n_text_layer = 24
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 4
|
||||
whisper_model_load: mem required = 1720.00 MB (+ 43.00 MB per decoder)
|
||||
whisper_model_load: kv self size = 42.00 MB
|
||||
whisper_model_load: kv cross size = 140.62 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: model ctx = 1462.35 MB
|
||||
whisper_model_load: model size = 1462.12 MB
|
||||
|
||||
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||||
|
||||
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
|
||||
[00:00:00.000 --> 00:00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
|
||||
[00:00:08.000 --> 00:00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
|
||||
[00:00:17.000 --> 00:00:23.000] A short time later, debris was seen falling from the skies above Texas.
|
||||
[00:00:23.000 --> 00:00:29.000] The Columbia's lost. There are no survivors.
|
||||
[00:00:29.000 --> 00:00:32.000] On board was a crew of seven.
|
||||
[00:00:32.000 --> 00:00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
|
||||
[00:00:39.000 --> 00:00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
|
||||
[00:00:48.000 --> 00:00:52.000] a colonel in the Israeli Air Force.
|
||||
[00:00:52.000 --> 00:00:58.000] These men and women assumed great risk in the service to all humanity.
|
||||
[00:00:58.000 --> 00:01:03.000] In an age when space flight has come to seem almost routine,
|
||||
[00:01:03.000 --> 00:01:07.000] it is easy to overlook the dangers of travel by rocket
|
||||
[00:01:07.000 --> 00:01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
|
||||
[00:01:12.000 --> 00:01:18.000] These astronauts knew the dangers, and they faced them willingly,
|
||||
[00:01:18.000 --> 00:01:23.000] knowing they had a high and noble purpose in life.
|
||||
[00:01:23.000 --> 00:01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
|
||||
[00:01:31.000 --> 00:01:36.000] All Americans today are thinking as well of the families of these men and women
|
||||
[00:01:36.000 --> 00:01:40.000] who have been given this sudden shock and grief.
|
||||
[00:01:40.000 --> 00:01:45.000] You're not alone. Our entire nation grieves with you,
|
||||
[00:01:45.000 --> 00:01:52.000] and those you love will always have the respect and gratitude of this country.
|
||||
[00:01:52.000 --> 00:01:56.000] The cause in which they died will continue.
|
||||
[00:01:56.000 --> 00:02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
|
||||
[00:02:04.000 --> 00:02:11.000] and the longing to understand. Our journey into space will go on.
|
||||
[00:02:11.000 --> 00:02:16.000] In the skies today, we saw destruction and tragedy.
|
||||
[00:02:16.000 --> 00:02:22.000] Yet farther than we can see, there is comfort and hope.
|
||||
[00:02:22.000 --> 00:02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
|
||||
[00:02:29.000 --> 00:02:35.000] who created all these. He who brings out the starry hosts one by one
|
||||
[00:02:35.000 --> 00:02:39.000] and calls them each by name."
|
||||
[00:02:39.000 --> 00:02:46.000] Because of His great power and mighty strength, not one of them is missing.
|
||||
[00:02:46.000 --> 00:02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
|
||||
[00:02:55.000 --> 00:03:01.000] The crew of the shuttle Columbia did not return safely to earth,
|
||||
[00:03:01.000 --> 00:03:05.000] yet we can pray that all are safely home.
|
||||
[00:03:05.000 --> 00:03:13.000] May God bless the grieving families, and may God continue to bless America.
|
||||
[00:03:13.000 --> 00:03:19.000] [Silence]
|
||||
|
||||
|
||||
whisper_print_timings: fallbacks = 1 p / 0 h
|
||||
whisper_print_timings: load time = 569.03 ms
|
||||
whisper_print_timings: mel time = 146.85 ms
|
||||
whisper_print_timings: sample time = 238.66 ms / 553 runs ( 0.43 ms per run)
|
||||
whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per run)
|
||||
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
|
||||
whisper_print_timings: total time = 32733.52 ms
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## Real-time audio input example
|
||||
|
||||
This is a naive example of performing real-time inference on audio from your microphone.
|
||||
@ -430,9 +636,8 @@ The [stream](examples/stream) tool samples the audio every half a second and run
|
||||
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||
|
||||
```bash
|
||||
cmake -B build -DWHISPER_SDL2=ON
|
||||
cmake --build build --config Release
|
||||
./build/bin/whisper-stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||
make stream -j
|
||||
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
|
||||
@ -443,7 +648,7 @@ Adding the `--print-colors` argument will print the transcribed text using an ex
|
||||
to highlight words with high or low confidence:
|
||||
|
||||
```bash
|
||||
./build/bin/whisper-cli -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
|
||||
./main -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
|
||||
```
|
||||
|
||||
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
|
||||
@ -453,7 +658,7 @@ to highlight words with high or low confidence:
|
||||
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
|
||||
|
||||
```text
|
||||
$ ./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
|
||||
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
@ -477,7 +682,7 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
|
||||
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
|
||||
|
||||
```text
|
||||
$ ./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
|
||||
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
@ -524,7 +729,7 @@ Sample usage:
|
||||
./models/download-ggml-model.sh small.en-tdrz
|
||||
|
||||
# run as usual, adding the "-tdrz" command-line argument
|
||||
./build/bin/whisper-cli -f ./samples/a13.wav -m ./models/ggml-small.en-tdrz.bin -tdrz
|
||||
./main -f ./samples/a13.wav -m ./models/ggml-small.en-tdrz.bin -tdrz
|
||||
...
|
||||
main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, tdrz = 1, timestamps = 1 ...
|
||||
...
|
||||
@ -541,14 +746,14 @@ main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 pr
|
||||
|
||||
## Karaoke-style movie generation (experimental)
|
||||
|
||||
The [whisper-cli](examples/cli) example provides support for output of karaoke-style movies, where the
|
||||
The [main](examples/main) example provides support for output of karaoke-style movies, where the
|
||||
currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script.
|
||||
This requires to have `ffmpeg` installed.
|
||||
|
||||
Here are a few _"typical"_ examples:
|
||||
|
||||
```bash
|
||||
./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
|
||||
source ./samples/jfk.wav.wts
|
||||
ffplay ./samples/jfk.wav.mp4
|
||||
```
|
||||
@ -558,7 +763,7 @@ https://user-images.githubusercontent.com/1991296/199337465-dbee4b5e-9aeb-48a3-b
|
||||
---
|
||||
|
||||
```bash
|
||||
./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
|
||||
source ./samples/mm0.wav.wts
|
||||
ffplay ./samples/mm0.wav.mp4
|
||||
```
|
||||
@ -568,7 +773,7 @@ https://user-images.githubusercontent.com/1991296/199337504-cc8fd233-0cb7-4920-9
|
||||
---
|
||||
|
||||
```bash
|
||||
./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
|
||||
source ./samples/gb0.wav.wts
|
||||
ffplay ./samples/gb0.wav.mp4
|
||||
```
|
||||
@ -593,7 +798,7 @@ https://user-images.githubusercontent.com/1991296/223206245-2d36d903-cf8e-4f09-8
|
||||
## Benchmarks
|
||||
|
||||
In order to have an objective comparison of the performance of the inference across different system configurations,
|
||||
use the [whisper-bench](examples/bench) tool. The tool simply runs the Encoder part of the model and prints how much time it
|
||||
use the [bench](examples/bench) tool. The tool simply runs the Encoder part of the model and prints how much time it
|
||||
took to execute it. The results are summarized in the following Github issue:
|
||||
|
||||
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
|
||||
@ -656,12 +861,13 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
|
||||
|
||||
| Example | Web | Description |
|
||||
| --------------------------------------------------- | ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| [whisper-cli](examples/cli) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
|
||||
| [whisper-bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
|
||||
| [whisper-stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
|
||||
| [whisper-command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
|
||||
| [whisper-server](examples/server) | | HTTP transcription server with OAI-like API |
|
||||
| [whisper-talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
|
||||
| [main](examples/main) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
|
||||
| [bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
|
||||
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
|
||||
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
|
||||
| [wchess](examples/wchess) | [wchess.wasm](examples/wchess) | Voice-controlled chess |
|
||||
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
|
||||
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
|
||||
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
|
||||
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
|
||||
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
|
||||
@ -669,7 +875,7 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
|
||||
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
|
||||
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
|
||||
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
|
||||
| [wchess](examples/wchess) | [wchess.wasm](examples/wchess) | Voice-controlled chess |
|
||||
| [server](examples/server) | | HTTP transcription server with OAI-like API |
|
||||
|
||||
## [Discussions](https://github.com/ggerganov/whisper.cpp/discussions)
|
||||
|
||||
|
@ -1,5 +0,0 @@
|
||||
module whisper [system] {
|
||||
header "whisper.h"
|
||||
link "whisper"
|
||||
export *
|
||||
}
|
@ -1,4 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <whisper.h>
|
||||
|
@ -67,5 +67,5 @@ copy /y ..\..\build\bin\Release\whisper.dll build\generated\resources\main\win32
|
||||
|
||||
## License
|
||||
|
||||
The license for the Java bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details.
|
||||
The license for the Go bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details.
|
||||
|
||||
|
@ -181,11 +181,11 @@ public class WhisperFullParams extends Structure {
|
||||
}
|
||||
|
||||
/** Flag to suppress non-speech tokens. */
|
||||
public CBool suppress_nst;
|
||||
public CBool suppress_non_speech_tokens;
|
||||
|
||||
/** Flag to suppress non-speech tokens. */
|
||||
public void suppressNonSpeechTokens(boolean enable) {
|
||||
suppress_nst = enable ? CBool.TRUE : CBool.FALSE;
|
||||
suppress_non_speech_tokens = enable ? CBool.TRUE : CBool.FALSE;
|
||||
}
|
||||
|
||||
/** Initial decoding temperature. */
|
||||
@ -315,7 +315,7 @@ public class WhisperFullParams extends Structure {
|
||||
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
|
||||
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "audio_ctx",
|
||||
"tdrz_enable", "suppress_regex", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
|
||||
"suppress_blank", "suppress_nst", "temperature", "max_initial_ts", "length_penalty",
|
||||
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty",
|
||||
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
|
||||
"new_segment_callback", "new_segment_callback_user_data",
|
||||
"progress_callback", "progress_callback_user_data",
|
||||
|
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "whisper.cpp",
|
||||
"version": "1.7.4",
|
||||
"version": "1.7.1",
|
||||
"description": "Whisper speech recognition",
|
||||
"main": "whisper.js",
|
||||
"scripts": {
|
||||
|
@ -22,17 +22,16 @@ Usage
|
||||
```ruby
|
||||
require "whisper"
|
||||
|
||||
whisper = Whisper::Context.new("base")
|
||||
whisper = Whisper::Context.new("path/to/model.bin")
|
||||
|
||||
params = Whisper::Params.new(
|
||||
language: "en",
|
||||
offset: 10_000,
|
||||
duration: 60_000,
|
||||
max_text_tokens: 300,
|
||||
translate: true,
|
||||
print_timestamps: false,
|
||||
initial_prompt: "Initial prompt here."
|
||||
)
|
||||
params = Whisper::Params.new
|
||||
params.language = "en"
|
||||
params.offset = 10_000
|
||||
params.duration = 60_000
|
||||
params.max_text_tokens = 300
|
||||
params.translate = true
|
||||
params.print_timestamps = false
|
||||
params.prompt = "Initial prompt here."
|
||||
|
||||
whisper.transcribe("path/to/audio.wav", params) do |whole_text|
|
||||
puts whole_text
|
||||
@ -42,67 +41,21 @@ end
|
||||
|
||||
### Preparing model ###
|
||||
|
||||
Some models are prepared up-front:
|
||||
Use script to download model file(s):
|
||||
|
||||
```ruby
|
||||
base_en = Whisper::Model.pre_converted_models["base.en"]
|
||||
whisper = Whisper::Context.new(base_en)
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/whisper.cpp.git
|
||||
cd whisper.cpp
|
||||
sh ./models/download-ggml-model.sh base.en
|
||||
```
|
||||
|
||||
At first time you use a model, it is downloaded automatically. After that, downloaded cached file is used. To clear cache, call `#clear_cache`:
|
||||
|
||||
```ruby
|
||||
Whisper::Model.pre_converted_models["base"].clear_cache
|
||||
```
|
||||
|
||||
You also can use shorthand for pre-converted models:
|
||||
|
||||
```ruby
|
||||
whisper = Whisper::Context.new("base.en")
|
||||
```
|
||||
|
||||
You can see the list of prepared model names by `Whisper::Model.pre_converted_models.keys`:
|
||||
|
||||
```ruby
|
||||
puts Whisper::Model.pre_converted_models.keys
|
||||
# tiny
|
||||
# tiny.en
|
||||
# tiny-q5_1
|
||||
# tiny.en-q5_1
|
||||
# tiny-q8_0
|
||||
# base
|
||||
# base.en
|
||||
# base-q5_1
|
||||
# base.en-q5_1
|
||||
# base-q8_0
|
||||
# :
|
||||
# :
|
||||
```
|
||||
|
||||
You can also use local model files you prepared:
|
||||
|
||||
```ruby
|
||||
whisper = Whisper::Context.new("path/to/your/model.bin")
|
||||
```
|
||||
|
||||
Or, you can download model files:
|
||||
|
||||
```ruby
|
||||
whisper = Whisper::Context.new("https://example.net/uri/of/your/model.bin")
|
||||
# Or
|
||||
whisper = Whisper::Context.new(URI("https://example.net/uri/of/your/model.bin"))
|
||||
```
|
||||
|
||||
See [models][] page for details.
|
||||
There are some types of models. See [models][] page for details.
|
||||
|
||||
### Preparing audio file ###
|
||||
|
||||
Currently, whisper.cpp accepts only 16-bit WAV files.
|
||||
|
||||
API
|
||||
---
|
||||
|
||||
### Segments ###
|
||||
### API ###
|
||||
|
||||
Once `Whisper::Context#transcribe` called, you can retrieve segments by `#each_segment`:
|
||||
|
||||
@ -114,24 +67,31 @@ def format_time(time_ms)
|
||||
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
|
||||
end
|
||||
|
||||
whisper
|
||||
.transcribe("path/to/audio.wav", params)
|
||||
.each_segment.with_index do |segment, index|
|
||||
line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
|
||||
nth: index + 1,
|
||||
st: format_time(segment.start_time),
|
||||
ed: format_time(segment.end_time),
|
||||
text: segment.text
|
||||
}
|
||||
line << " (speaker turned)" if segment.speaker_next_turn?
|
||||
puts line
|
||||
end
|
||||
whisper.transcribe("path/to/audio.wav", params)
|
||||
|
||||
whisper.each_segment.with_index do |segment, index|
|
||||
line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
|
||||
nth: index + 1,
|
||||
st: format_time(segment.start_time),
|
||||
ed: format_time(segment.end_time),
|
||||
text: segment.text
|
||||
}
|
||||
line << " (speaker turned)" if segment.speaker_next_turn?
|
||||
puts line
|
||||
end
|
||||
|
||||
```
|
||||
|
||||
You can also add hook to params called on new segment:
|
||||
|
||||
```ruby
|
||||
def format_time(time_ms)
|
||||
sec, decimal_part = time_ms.divmod(1000)
|
||||
min, sec = sec.divmod(60)
|
||||
hour, min = min.divmod(60)
|
||||
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
|
||||
end
|
||||
|
||||
# Add hook before calling #transcribe
|
||||
params.on_new_segment do |segment|
|
||||
line = "[%{st} --> %{ed}] %{text}" % {
|
||||
@ -147,99 +107,5 @@ whisper.transcribe("path/to/audio.wav", params)
|
||||
|
||||
```
|
||||
|
||||
### Models ###
|
||||
|
||||
You can see model information:
|
||||
|
||||
```ruby
|
||||
whisper = Whisper::Context.new("base")
|
||||
model = whisper.model
|
||||
|
||||
model.n_vocab # => 51864
|
||||
model.n_audio_ctx # => 1500
|
||||
model.n_audio_state # => 512
|
||||
model.n_audio_head # => 8
|
||||
model.n_audio_layer # => 6
|
||||
model.n_text_ctx # => 448
|
||||
model.n_text_state # => 512
|
||||
model.n_text_head # => 8
|
||||
model.n_text_layer # => 6
|
||||
model.n_mels # => 80
|
||||
model.ftype # => 1
|
||||
model.type # => "base"
|
||||
|
||||
```
|
||||
|
||||
### Logging ###
|
||||
|
||||
You can set log callback:
|
||||
|
||||
```ruby
|
||||
prefix = "[MyApp] "
|
||||
log_callback = ->(level, buffer, user_data) {
|
||||
case level
|
||||
when Whisper::LOG_LEVEL_NONE
|
||||
puts "#{user_data}none: #{buffer}"
|
||||
when Whisper::LOG_LEVEL_INFO
|
||||
puts "#{user_data}info: #{buffer}"
|
||||
when Whisper::LOG_LEVEL_WARN
|
||||
puts "#{user_data}warn: #{buffer}"
|
||||
when Whisper::LOG_LEVEL_ERROR
|
||||
puts "#{user_data}error: #{buffer}"
|
||||
when Whisper::LOG_LEVEL_DEBUG
|
||||
puts "#{user_data}debug: #{buffer}"
|
||||
when Whisper::LOG_LEVEL_CONT
|
||||
puts "#{user_data}same to previous: #{buffer}"
|
||||
end
|
||||
}
|
||||
Whisper.log_set log_callback, prefix
|
||||
```
|
||||
|
||||
Using this feature, you are also able to suppress log:
|
||||
|
||||
```ruby
|
||||
Whisper.log_set ->(level, buffer, user_data) {
|
||||
# do nothing
|
||||
}, nil
|
||||
Whisper::Context.new("base")
|
||||
```
|
||||
|
||||
### Low-level API to transcribe ###
|
||||
|
||||
You can also call `Whisper::Context#full` and `#full_parallel` with a Ruby array as samples. Although `#transcribe` with audio file path is recommended because it extracts PCM samples in C++ and is fast, `#full` and `#full_parallel` give you flexibility.
|
||||
|
||||
```ruby
|
||||
require "whisper"
|
||||
require "wavefile"
|
||||
|
||||
reader = WaveFile::Reader.new("path/to/audio.wav", WaveFile::Format.new(:mono, :float, 16000))
|
||||
samples = reader.enum_for(:each_buffer).map(&:samples).flatten
|
||||
|
||||
whisper = Whisper::Context.new("base")
|
||||
whisper
|
||||
.full(Whisper::Params.new, samples)
|
||||
.each_segment do |segment|
|
||||
puts segment.text
|
||||
end
|
||||
```
|
||||
|
||||
The second argument `samples` may be an array, an object with `length` and `each` method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.
|
||||
|
||||
Development
|
||||
-----------
|
||||
|
||||
% git clone https://github.com/ggerganov/whisper.cpp.git
|
||||
% cd whisper.cpp/bindings/ruby
|
||||
% rake test
|
||||
|
||||
First call of `rake test` builds an extension and downloads a model for testing. After that, you add tests in `tests` directory and modify `ext/ruby_whisper.cpp`.
|
||||
|
||||
If something seems wrong on build, running `rake clean` solves some cases.
|
||||
|
||||
License
|
||||
-------
|
||||
|
||||
The same to [whisper.cpp][].
|
||||
|
||||
[whisper.cpp]: https://github.com/ggerganov/whisper.cpp
|
||||
[models]: https://github.com/ggerganov/whisper.cpp/tree/master/models
|
||||
|
@ -1,66 +1,59 @@
|
||||
require 'rake/clean'
|
||||
require "bundler/gem_tasks"
|
||||
require "pathname"
|
||||
require "yaml"
|
||||
require "rake/testtask"
|
||||
require_relative "extsources"
|
||||
|
||||
extsources = YAML.load_file("extsources.yaml")
|
||||
SOURCES = FileList[]
|
||||
|
||||
EXTSOURCES.each do |src|
|
||||
extsources.each do |src|
|
||||
basename = src.pathmap("%f")
|
||||
dest = basename == "LICENSE" ? basename : src.pathmap("%{../..,ext}p")
|
||||
dir = dest.pathmap("%d")
|
||||
dest = basename == "LICENSE" ? basename : basename.pathmap("ext/%f")
|
||||
file src
|
||||
directory dir
|
||||
file dest => [src, dir] do |t|
|
||||
file dest => src do |t|
|
||||
cp t.source, t.name
|
||||
end
|
||||
SOURCES.include dest
|
||||
end
|
||||
|
||||
CLEAN.include SOURCES
|
||||
CLEAN.include FileList["ext/**/*.o", "ext/**/*.metal", "ext/**/*.tmp", "ext/whisper.{so,bundle,dll}"]
|
||||
CLEAN.include FileList[
|
||||
"ext/*.o",
|
||||
"ext/*.metal",
|
||||
"ext/whisper.{so,bundle,dll}",
|
||||
"ext/depend"
|
||||
]
|
||||
|
||||
SRC = FileList["ext/*.{c,cpp,h}"]
|
||||
|
||||
task build: SOURCES
|
||||
task build: SOURCES + FileList[
|
||||
"ext/extconf.rb",
|
||||
"ext/ruby_whisper.h",
|
||||
"ext/ruby_whisper.cpp",
|
||||
"whispercpp.gemspec",
|
||||
]
|
||||
|
||||
directory "pkg"
|
||||
CLOBBER.include "pkg"
|
||||
|
||||
TEST_MODEL = "../../models/ggml-base.en.bin"
|
||||
LIB_NAME = "whisper".ext(RbConfig::CONFIG["DLEXT"])
|
||||
SO_FILE = File.join("ext", LIB_NAME)
|
||||
LIB_FILE = File.join("lib", LIB_NAME)
|
||||
|
||||
file "ext/Makefile" => SRC + ["ext/extconf.rb"] + SOURCES do |t|
|
||||
chdir "ext" do
|
||||
ruby "extconf.rb"
|
||||
end
|
||||
end
|
||||
|
||||
file SO_FILE => "ext/Makefile" do |t|
|
||||
chdir "ext" do
|
||||
directory "lib"
|
||||
task LIB_FILE => SOURCES + ["lib"] do |t|
|
||||
Dir.chdir "ext" do
|
||||
sh "ruby extconf.rb"
|
||||
sh "make"
|
||||
end
|
||||
end
|
||||
CLEAN.include SO_FILE
|
||||
|
||||
directory "lib"
|
||||
file LIB_FILE => [SO_FILE, "lib"] do |t|
|
||||
copy t.source, t.name
|
||||
mv "ext/#{LIB_NAME}", t.name
|
||||
end
|
||||
CLEAN.include LIB_FILE
|
||||
|
||||
Rake::TestTask.new do |t|
|
||||
t.test_files = FileList["tests/test_*.rb"]
|
||||
end
|
||||
task test: [TEST_MODEL, LIB_FILE]
|
||||
|
||||
TEST_MEMORY_VIEW = "tests/jfk_reader/jfk_reader.#{RbConfig::CONFIG['DLEXT']}"
|
||||
file TEST_MEMORY_VIEW => "tests/jfk_reader/jfk_reader.c" do |t|
|
||||
chdir "tests/jfk_reader" do
|
||||
ruby "extconf.rb"
|
||||
sh "make"
|
||||
file TEST_MODEL do
|
||||
Dir.chdir "../.." do
|
||||
sh "./models/download-ggml-model.sh base.en"
|
||||
end
|
||||
end
|
||||
CLEAN.include "tests/jfk_reader/jfk_reader.{o,#{RbConfig::CONFIG['DLEXT']}}"
|
||||
|
||||
task test: [LIB_FILE, TEST_MEMORY_VIEW]
|
||||
|
40
bindings/ruby/ext/.gitignore
vendored
40
bindings/ruby/ext/.gitignore
vendored
@ -1,11 +1,35 @@
|
||||
Makefile
|
||||
whisper.so
|
||||
ggml.c
|
||||
ggml.h
|
||||
ggml-alloc.c
|
||||
ggml-alloc.h
|
||||
ggml-aarch64.c
|
||||
ggml-aarch64.h
|
||||
ggml-backend.cpp
|
||||
ggml-backend-impl.h
|
||||
ggml-backend.c
|
||||
ggml-backend.h
|
||||
ggml-common.h
|
||||
ggml-cpu-impl.h
|
||||
ggml-metal.m
|
||||
ggml-metal.metal
|
||||
ggml-metal-embed.metal
|
||||
ggml-blas.cpp
|
||||
ggml-cuda.h
|
||||
ggml-impl.h
|
||||
ggml-kompute.h
|
||||
ggml-metal.h
|
||||
ggml-opencl.h
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
ggml-sycl.h
|
||||
ggml-vulkan.h
|
||||
ggml-blas.h
|
||||
get-flags.mk
|
||||
whisper.cpp
|
||||
whisper.h
|
||||
dr_wav.h
|
||||
depend
|
||||
whisper.bundle
|
||||
whisper.so
|
||||
whisper.dll
|
||||
scripts/get-flags.mk
|
||||
*.o
|
||||
/*/**/*.c
|
||||
/*/**/*.cpp
|
||||
/*/**/*.h
|
||||
/*/**/*.m
|
||||
/*/**/*.metal
|
||||
|
@ -1,9 +0,0 @@
|
||||
ggml/src/ggml-cpu/ggml-cpu-cpp.o: \
|
||||
ggml/src/ggml-cpu/ggml-cpu.cpp \
|
||||
ggml/include/ggml-backend.h \
|
||||
ggml/include/ggml.h \
|
||||
ggml/include/ggml-alloc.h \
|
||||
ggml/src/ggml-backend-impl.h \
|
||||
ggml/include/ggml-cpu.h \
|
||||
ggml/src/ggml-impl.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
@ -1,10 +1,7 @@
|
||||
require 'mkmf'
|
||||
|
||||
# need to use c++ compiler flags
|
||||
$CXXFLAGS << ' -std=c++17'
|
||||
|
||||
$LDFLAGS << ' -lstdc++'
|
||||
|
||||
$CXXFLAGS << ' -std=c++11'
|
||||
# Set to true when building binary gems
|
||||
if enable_config('static-stdlib', false)
|
||||
$LDFLAGS << ' -static-libgcc -static-libstdc++'
|
||||
@ -15,6 +12,34 @@ if enable_config('march-tune-native', false)
|
||||
$CXXFLAGS << ' -march=native -mtune=native'
|
||||
end
|
||||
|
||||
def with_disabling_unsupported_files
|
||||
disabled_files = []
|
||||
|
||||
unless $GGML_METAL
|
||||
disabled_files << 'ggml-metal.h' << 'ggml-metal.m'
|
||||
end
|
||||
|
||||
unless $GGML_METAL_EMBED_LIBRARY
|
||||
disabled_files << 'ggml-metal.metal'
|
||||
end
|
||||
|
||||
unless $OBJ_ALL&.include? 'ggml-blas.o'
|
||||
disabled_files << 'ggml-blas.h' << 'ggml-blas.cpp'
|
||||
end
|
||||
|
||||
disabled_files.filter! {|file| File.exist? file}
|
||||
|
||||
disabled_files.each do |file|
|
||||
File.rename file, "#{file}.disabled"
|
||||
end
|
||||
|
||||
yield
|
||||
|
||||
disabled_files.each do |file|
|
||||
File.rename "#{file}.disabled", file
|
||||
end
|
||||
end
|
||||
|
||||
if ENV['WHISPER_METAL']
|
||||
$GGML_METAL ||= true
|
||||
$DEPRECATE_WARNING ||= true
|
||||
@ -35,16 +60,16 @@ if $GGML_METAL
|
||||
$GGML_METAL_EMBED_LIBRARY = true
|
||||
end
|
||||
|
||||
$MK_CPPFLAGS = '-Iggml/include -Iggml/src -Iggml/src/ggml-cpu -Iinclude -Isrc -Iexamples'
|
||||
$MK_CPPFLAGS = ''
|
||||
$MK_CFLAGS = '-std=c11 -fPIC'
|
||||
$MK_CXXFLAGS = '-std=c++17 -fPIC'
|
||||
$MK_NVCCFLAGS = '-std=c++17'
|
||||
$MK_CXXFLAGS = '-std=c++11 -fPIC'
|
||||
$MK_NVCCFLAGS = '-std=c++11'
|
||||
$MK_LDFLAGS = ''
|
||||
|
||||
$OBJ_GGML = []
|
||||
$OBJ_WHISPER = []
|
||||
$OBJ_COMMON = []
|
||||
$OBJ_SDL = []
|
||||
$OBJ_GGML = ''
|
||||
$OBJ_WHISPER = ''
|
||||
$OBJ_COMMON = ''
|
||||
$OBJ_SDL = ''
|
||||
|
||||
$MK_CPPFLAGS << ' -D_XOPEN_SOURCE=600'
|
||||
|
||||
@ -111,6 +136,11 @@ unless ENV['RISCV']
|
||||
$MK_CFLAGS << ' -march=native -mtune=native'
|
||||
$HOST_CXXFLAGS << ' -march=native -mtune=native'
|
||||
end
|
||||
|
||||
if $UNAME_M.match? /aarch64.*/
|
||||
$MK_CFLAGS << ' -mcpu=native'
|
||||
$MK_CXXFLAGS << ' -mcpu=native'
|
||||
end
|
||||
else
|
||||
$MK_CFLAGS << ' -march=rv64gcv -mabi=lp64d'
|
||||
$MK_CXXFLAGS << ' -march=rv64gcv -mabi=lp64d'
|
||||
@ -118,11 +148,11 @@ end
|
||||
|
||||
unless ENV['GGML_NO_ACCELERATE']
|
||||
if $UNAME_S == 'Darwin'
|
||||
$MK_CPPFLAGS << ' -DGGML_USE_ACCELERATE -DGGML_USE_BLAS -DGGML_BLAS_USE_ACCELERATE'
|
||||
$MK_CPPFLAGS << ' -DGGML_USE_ACCELERATE -DGGML_USE_BLAS'
|
||||
$MK_CPPFLAGS << ' -DACCELERATE_NEW_LAPACK'
|
||||
$MK_CPPFLAGS << ' -DACCELERATE_LAPACK_ILP64'
|
||||
$MK_LDFLAGS << ' -framework Accelerate'
|
||||
$OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
|
||||
$OBJ_GGML << ' ggml-blas.o'
|
||||
end
|
||||
end
|
||||
|
||||
@ -130,20 +160,20 @@ if ENV['GGML_OPENBLAS']
|
||||
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas`.chomp}"
|
||||
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas)`.chomp}"
|
||||
$MK_LDFLAGS << " #{`pkg-config --libs openblas`}"
|
||||
$OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
|
||||
$OBJ_GGML << ' ggml-blas.o'
|
||||
end
|
||||
|
||||
if ENV['GGML_OPENBLAS64']
|
||||
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas64`.chomp}"
|
||||
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas64)`.chomp}"
|
||||
$MK_LDFLAGS << " #{`pkg-config --libs openblas64`}"
|
||||
$OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
|
||||
$OBJ_GGML << ' ggml-blas.o'
|
||||
end
|
||||
|
||||
if $GGML_METAL
|
||||
$MK_CPPFLAGS << ' -DGGML_USE_METAL'
|
||||
$MK_LDFLAGS << ' -framework Foundation -framework Metal -framework MetalKit'
|
||||
$OBJ_GGML << 'ggml/src/ggml-metal/ggml-metal.o'
|
||||
$OBJ_GGML << ' ggml-metal.o'
|
||||
|
||||
if ENV['GGML_METAL_NDEBUG']
|
||||
$MK_CPPFLAGS << ' -DGGML_METAL_NDEBUG'
|
||||
@ -151,37 +181,21 @@ if $GGML_METAL
|
||||
|
||||
if $GGML_METAL_EMBED_LIBRARY
|
||||
$MK_CPPFLAGS << ' -DGGML_METAL_EMBED_LIBRARY'
|
||||
$OBJ_GGML << 'ggml/src/ggml-metal/ggml-metal-embed.o'
|
||||
$OBJ_GGML << ' ggml-metal-embed.o'
|
||||
end
|
||||
end
|
||||
|
||||
$OBJ_GGML <<
|
||||
'ggml/src/ggml.o' <<
|
||||
'ggml/src/ggml-alloc.o' <<
|
||||
'ggml/src/ggml-backend.o' <<
|
||||
'ggml/src/ggml-backend-reg.o' <<
|
||||
'ggml/src/ggml-opt.o' <<
|
||||
'ggml/src/ggml-quants.o' <<
|
||||
'ggml/src/ggml-threading.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu-cpp.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu-aarch64.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu-hbm.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu-quants.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu-traits.o'
|
||||
' ggml.o' <<
|
||||
' ggml-alloc.o' <<
|
||||
' ggml-backend.o' <<
|
||||
' ggml-quants.o' <<
|
||||
' ggml-aarch64.o'
|
||||
|
||||
$OBJ_WHISPER <<
|
||||
'src/whisper.o'
|
||||
' whisper.o'
|
||||
|
||||
$objs = $OBJ_GGML + $OBJ_WHISPER + $OBJ_COMMON + $OBJ_SDL
|
||||
$objs <<
|
||||
"ruby_whisper.o" <<
|
||||
"ruby_whisper_context.o" <<
|
||||
"ruby_whisper_transcribe.o" <<
|
||||
"ruby_whisper_params.o" <<
|
||||
"ruby_whisper_error.o" <<
|
||||
"ruby_whisper_segment.o" <<
|
||||
"ruby_whisper_model.o"
|
||||
$OBJ_ALL = "#{$OBJ_GGML} #{$OBJ_WHISPER} #{$OBJ_COMMON} #{$OBJ_SDL}"
|
||||
|
||||
$CPPFLAGS = "#{$MK_CPPFLAGS} #{$CPPFLAGS}"
|
||||
$CFLAGS = "#{$CPPFLAGS} #{$MK_CFLAGS} #{$GF_CFLAGS} #{$CFLAGS}"
|
||||
@ -190,16 +204,26 @@ $CXXFLAGS = "#{$BASE_CXXFLAGS} #{$HOST_CXXFLAGS} #{$GF_CXXFLAGS} #{$CPPFLAGS}"
|
||||
$NVCCFLAGS = "#{$MK_NVCCFLAGS} #{$NVCCFLAGS}"
|
||||
$LDFLAGS = "#{$MK_LDFLAGS} #{$LDFLAGS}"
|
||||
|
||||
create_makefile('whisper')
|
||||
if $GGML_METAL_EMBED_LIBRARY
|
||||
File.write 'depend', "$(OBJS): $(OBJS) ggml-metal-embed.o\n"
|
||||
end
|
||||
|
||||
with_disabling_unsupported_files do
|
||||
|
||||
create_makefile('whisper')
|
||||
|
||||
end
|
||||
|
||||
File.open 'Makefile', 'a' do |file|
|
||||
file.puts 'include scripts/get-flags.mk'
|
||||
file.puts 'include cpu.mk'
|
||||
file.puts 'include get-flags.mk'
|
||||
|
||||
if $GGML_METAL
|
||||
file.puts 'include metal.mk'
|
||||
|
||||
if $GGML_METAL_EMBED_LIBRARY
|
||||
# mkmf determines object files to compile dependent on existing *.{c,cpp,m} files
|
||||
# but ggml-metal-embed.c doesn't exist on creating Makefile.
|
||||
file.puts "objs := $(OBJS)"
|
||||
file.puts "OBJS = $(objs) 'ggml-metal-embed.o'"
|
||||
|
||||
file.puts 'include metal-embed.mk'
|
||||
end
|
||||
end
|
||||
|
@ -1,17 +1,14 @@
|
||||
ggml/src/ggml-metal/ggml-metal-embed.o: \
|
||||
ggml/src/ggml-metal/ggml-metal.metal \
|
||||
ggml/src/ggml-metal/ggml-metal-impl.h \
|
||||
ggml/src/ggml-common.h
|
||||
ggml-metal-embed.o: \
|
||||
ggml-metal.metal \
|
||||
ggml-common.h
|
||||
@echo "Embedding Metal library"
|
||||
@sed -e '/__embed_ggml-common.h__/r ggml/src/ggml-common.h' -e '/__embed_ggml-common.h__/d' < ggml/src/ggml-metal/ggml-metal.metal > ggml/src/ggml-metal/ggml-metal-embed.metal.tmp
|
||||
@sed -e '/#include "ggml-metal-impl.h"/r ggml/src/ggml-metal/ggml-metal-impl.h' -e '/#include "ggml-metal-impl.h"/d' < ggml/src/ggml-metal/ggml-metal-embed.metal.tmp > ggml/src/ggml-metal/ggml-metal-embed.metal
|
||||
$(eval TEMP_ASSEMBLY=$(shell mktemp -d))
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".incbin \"ggml/src/ggml-metal/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
$(CC) $(CFLAGS) -c $(TEMP_ASSEMBLY)/ggml-metal-embed.s -o $@
|
||||
@rm -f ${TEMP_ASSEMBLY}/ggml-metal-embed.s
|
||||
@rmdir ${TEMP_ASSEMBLY}
|
||||
@sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal
|
||||
$(eval TEMP_ASSEMBLY=$(shell mktemp))
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".incbin \"ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
|
||||
@$(AS) $(TEMP_ASSEMBLY) -o $@
|
||||
@rm -f ${TEMP_ASSEMBLY}
|
||||
|
@ -1,6 +0,0 @@
|
||||
ggml/src/ggml-metal/ggml-metal.o: \
|
||||
ggml/src/ggml-metal/ggml-metal.m \
|
||||
ggml/src/ggml-metal/ggml-metal-impl.h \
|
||||
ggml/include/ggml-metal.h \
|
||||
ggml/include/ggml.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
@ -1,164 +0,0 @@
|
||||
#include <ruby.h>
|
||||
#include <ruby/memory_view.h>
|
||||
#include "ruby_whisper.h"
|
||||
|
||||
VALUE mWhisper;
|
||||
VALUE cContext;
|
||||
VALUE cParams;
|
||||
VALUE eError;
|
||||
|
||||
VALUE cSegment;
|
||||
VALUE cModel;
|
||||
|
||||
ID id_to_s;
|
||||
ID id_call;
|
||||
ID id___method__;
|
||||
ID id_to_enum;
|
||||
ID id_length;
|
||||
ID id_next;
|
||||
ID id_new;
|
||||
ID id_to_path;
|
||||
ID id_URI;
|
||||
ID id_pre_converted_models;
|
||||
|
||||
static bool is_log_callback_finalized = false;
|
||||
|
||||
// High level API
|
||||
extern VALUE ruby_whisper_segment_allocate(VALUE klass);
|
||||
|
||||
extern void init_ruby_whisper_context(VALUE *mWhisper);
|
||||
extern void init_ruby_whisper_params(VALUE *mWhisper);
|
||||
extern void init_ruby_whisper_error(VALUE *mWhisper);
|
||||
extern void init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cSegment);
|
||||
extern void init_ruby_whisper_model(VALUE *mWhisper);
|
||||
extern void register_callbacks(ruby_whisper_params *rwp, VALUE *context);
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* lang_max_id -> Integer
|
||||
*/
|
||||
static VALUE ruby_whisper_s_lang_max_id(VALUE self) {
|
||||
return INT2NUM(whisper_lang_max_id());
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* lang_id(lang_name) -> Integer
|
||||
*/
|
||||
static VALUE ruby_whisper_s_lang_id(VALUE self, VALUE lang) {
|
||||
const char * lang_str = StringValueCStr(lang);
|
||||
const int id = whisper_lang_id(lang_str);
|
||||
if (-1 == id) {
|
||||
rb_raise(rb_eArgError, "language not found: %s", lang_str);
|
||||
}
|
||||
return INT2NUM(id);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* lang_str(lang_id) -> String
|
||||
*/
|
||||
static VALUE ruby_whisper_s_lang_str(VALUE self, VALUE id) {
|
||||
const int lang_id = NUM2INT(id);
|
||||
const char * str = whisper_lang_str(lang_id);
|
||||
if (NULL == str) {
|
||||
rb_raise(rb_eIndexError, "id %d outside of language id", lang_id);
|
||||
}
|
||||
return rb_str_new2(str);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* lang_str(lang_id) -> String
|
||||
*/
|
||||
static VALUE ruby_whisper_s_lang_str_full(VALUE self, VALUE id) {
|
||||
const int lang_id = NUM2INT(id);
|
||||
const char * str_full = whisper_lang_str_full(lang_id);
|
||||
if (NULL == str_full) {
|
||||
rb_raise(rb_eIndexError, "id %d outside of language id", lang_id);
|
||||
}
|
||||
return rb_str_new2(str_full);
|
||||
}
|
||||
|
||||
static VALUE ruby_whisper_s_finalize_log_callback(VALUE self, VALUE id) {
|
||||
is_log_callback_finalized = true;
|
||||
return Qnil;
|
||||
}
|
||||
|
||||
static void
|
||||
ruby_whisper_log_callback(enum ggml_log_level level, const char * buffer, void * user_data) {
|
||||
if (is_log_callback_finalized) {
|
||||
return;
|
||||
}
|
||||
VALUE log_callback = rb_iv_get(mWhisper, "log_callback");
|
||||
VALUE udata = rb_iv_get(mWhisper, "user_data");
|
||||
rb_funcall(log_callback, id_call, 3, INT2NUM(level), rb_str_new2(buffer), udata);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* log_set ->(level, buffer, user_data) { ... }, user_data -> nil
|
||||
*/
|
||||
static VALUE ruby_whisper_s_log_set(VALUE self, VALUE log_callback, VALUE user_data) {
|
||||
VALUE old_callback = rb_iv_get(self, "log_callback");
|
||||
if (!NIL_P(old_callback)) {
|
||||
rb_undefine_finalizer(old_callback);
|
||||
}
|
||||
|
||||
rb_iv_set(self, "log_callback", log_callback);
|
||||
rb_iv_set(self, "user_data", user_data);
|
||||
|
||||
VALUE finalize_log_callback = rb_funcall(mWhisper, rb_intern("method"), 1, rb_str_new2("finalize_log_callback"));
|
||||
rb_define_finalizer(log_callback, finalize_log_callback);
|
||||
|
||||
whisper_log_set(ruby_whisper_log_callback, NULL);
|
||||
|
||||
return Qnil;
|
||||
}
|
||||
|
||||
static void rb_whisper_model_mark(ruby_whisper_model *rwm) {
|
||||
rb_gc_mark(rwm->context);
|
||||
}
|
||||
|
||||
static VALUE ruby_whisper_model_allocate(VALUE klass) {
|
||||
ruby_whisper_model *rwm;
|
||||
rwm = ALLOC(ruby_whisper_model);
|
||||
return Data_Wrap_Struct(klass, rb_whisper_model_mark, RUBY_DEFAULT_FREE, rwm);
|
||||
}
|
||||
|
||||
void Init_whisper() {
|
||||
id_to_s = rb_intern("to_s");
|
||||
id_call = rb_intern("call");
|
||||
id___method__ = rb_intern("__method__");
|
||||
id_to_enum = rb_intern("to_enum");
|
||||
id_length = rb_intern("length");
|
||||
id_next = rb_intern("next");
|
||||
id_new = rb_intern("new");
|
||||
id_to_path = rb_intern("to_path");
|
||||
id_URI = rb_intern("URI");
|
||||
id_pre_converted_models = rb_intern("pre_converted_models");
|
||||
|
||||
mWhisper = rb_define_module("Whisper");
|
||||
|
||||
rb_define_const(mWhisper, "LOG_LEVEL_NONE", INT2NUM(GGML_LOG_LEVEL_NONE));
|
||||
rb_define_const(mWhisper, "LOG_LEVEL_INFO", INT2NUM(GGML_LOG_LEVEL_INFO));
|
||||
rb_define_const(mWhisper, "LOG_LEVEL_WARN", INT2NUM(GGML_LOG_LEVEL_WARN));
|
||||
rb_define_const(mWhisper, "LOG_LEVEL_ERROR", INT2NUM(GGML_LOG_LEVEL_ERROR));
|
||||
rb_define_const(mWhisper, "LOG_LEVEL_DEBUG", INT2NUM(GGML_LOG_LEVEL_DEBUG));
|
||||
rb_define_const(mWhisper, "LOG_LEVEL_CONT", INT2NUM(GGML_LOG_LEVEL_CONT));
|
||||
|
||||
rb_define_singleton_method(mWhisper, "lang_max_id", ruby_whisper_s_lang_max_id, 0);
|
||||
rb_define_singleton_method(mWhisper, "lang_id", ruby_whisper_s_lang_id, 1);
|
||||
rb_define_singleton_method(mWhisper, "lang_str", ruby_whisper_s_lang_str, 1);
|
||||
rb_define_singleton_method(mWhisper, "lang_str_full", ruby_whisper_s_lang_str_full, 1);
|
||||
rb_define_singleton_method(mWhisper, "log_set", ruby_whisper_s_log_set, 2);
|
||||
rb_define_private_method(rb_singleton_class(mWhisper), "finalize_log_callback", ruby_whisper_s_finalize_log_callback, 1);
|
||||
|
||||
init_ruby_whisper_context(&mWhisper);
|
||||
init_ruby_whisper_params(&mWhisper);
|
||||
init_ruby_whisper_error(&mWhisper);
|
||||
init_ruby_whisper_segment(&mWhisper, &cContext);
|
||||
init_ruby_whisper_model(&mWhisper);
|
||||
|
||||
rb_require("whisper/model/uri");
|
||||
}
|
1290
bindings/ruby/ext/ruby_whisper.cpp
Normal file
1290
bindings/ruby/ext/ruby_whisper.cpp
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,5 @@
|
||||
#ifndef RUBY_WHISPER_H
|
||||
#define RUBY_WHISPER_H
|
||||
#ifndef __RUBY_WHISPER_H
|
||||
#define __RUBY_WHISPER_H
|
||||
|
||||
#include "whisper.h"
|
||||
|
||||
@ -22,13 +22,4 @@ typedef struct {
|
||||
ruby_whisper_callback_container *abort_callback_container;
|
||||
} ruby_whisper_params;
|
||||
|
||||
typedef struct {
|
||||
VALUE context;
|
||||
int index;
|
||||
} ruby_whisper_segment;
|
||||
|
||||
typedef struct {
|
||||
VALUE context;
|
||||
} ruby_whisper_model;
|
||||
|
||||
#endif
|
||||
|
@ -1,613 +0,0 @@
|
||||
#include <ruby.h>
|
||||
#include <ruby/memory_view.h>
|
||||
#include "ruby_whisper.h"
|
||||
|
||||
extern ID id_to_s;
|
||||
extern ID id___method__;
|
||||
extern ID id_to_enum;
|
||||
extern ID id_length;
|
||||
extern ID id_next;
|
||||
extern ID id_new;
|
||||
extern ID id_to_path;
|
||||
extern ID id_URI;
|
||||
extern ID id_pre_converted_models;
|
||||
|
||||
extern VALUE cContext;
|
||||
extern VALUE eError;
|
||||
extern VALUE cModel;
|
||||
|
||||
extern VALUE ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self);
|
||||
extern VALUE rb_whisper_model_initialize(VALUE context);
|
||||
extern VALUE rb_whisper_segment_initialize(VALUE context, int index);
|
||||
extern void register_callbacks(ruby_whisper_params *rwp, VALUE *context);
|
||||
|
||||
static void
|
||||
ruby_whisper_free(ruby_whisper *rw)
|
||||
{
|
||||
if (rw->context) {
|
||||
whisper_free(rw->context);
|
||||
rw->context = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
rb_whisper_mark(ruby_whisper *rw)
|
||||
{
|
||||
// call rb_gc_mark on any ruby references in rw
|
||||
}
|
||||
|
||||
void
|
||||
rb_whisper_free(ruby_whisper *rw)
|
||||
{
|
||||
ruby_whisper_free(rw);
|
||||
free(rw);
|
||||
}
|
||||
|
||||
static VALUE
|
||||
ruby_whisper_allocate(VALUE klass)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
rw = ALLOC(ruby_whisper);
|
||||
rw->context = NULL;
|
||||
return Data_Wrap_Struct(klass, rb_whisper_mark, rb_whisper_free, rw);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* new("base.en") -> Whisper::Context
|
||||
* new("path/to/model.bin") -> Whisper::Context
|
||||
* new(Whisper::Model::URI.new("https://example.net/uri/of/model.bin")) -> Whisper::Context
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_initialize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
VALUE whisper_model_file_path;
|
||||
|
||||
// TODO: we can support init from buffer here too maybe another ruby object to expose
|
||||
rb_scan_args(argc, argv, "01", &whisper_model_file_path);
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
|
||||
VALUE pre_converted_models = rb_funcall(cModel, id_pre_converted_models, 0);
|
||||
VALUE pre_converted_model = rb_hash_aref(pre_converted_models, whisper_model_file_path);
|
||||
if (!NIL_P(pre_converted_model)) {
|
||||
whisper_model_file_path = pre_converted_model;
|
||||
}
|
||||
if (TYPE(whisper_model_file_path) == T_STRING) {
|
||||
const char * whisper_model_file_path_str = StringValueCStr(whisper_model_file_path);
|
||||
if (strncmp("http://", whisper_model_file_path_str, 7) == 0 || strncmp("https://", whisper_model_file_path_str, 8) == 0) {
|
||||
VALUE uri_class = rb_const_get(cModel, id_URI);
|
||||
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
|
||||
}
|
||||
}
|
||||
if (rb_obj_is_kind_of(whisper_model_file_path, rb_path2class("URI::HTTP"))) {
|
||||
VALUE uri_class = rb_const_get(cModel, id_URI);
|
||||
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
|
||||
}
|
||||
if (rb_respond_to(whisper_model_file_path, id_to_path)) {
|
||||
whisper_model_file_path = rb_funcall(whisper_model_file_path, id_to_path, 0);
|
||||
}
|
||||
if (!rb_respond_to(whisper_model_file_path, id_to_s)) {
|
||||
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
|
||||
}
|
||||
rw->context = whisper_init_from_file_with_params(StringValueCStr(whisper_model_file_path), whisper_context_default_params());
|
||||
if (rw->context == NULL) {
|
||||
rb_raise(rb_eRuntimeError, "error: failed to initialize whisper context");
|
||||
}
|
||||
return self;
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_vocab -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_vocab(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_vocab(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_audio_ctx -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_audio_ctx(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_audio_state -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_audio_state(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_audio_state(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_audio_head -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_audio_head(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_audio_head(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_audio_layer -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_audio_layer(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_audio_layer(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_text_ctx -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_text_ctx(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_text_ctx(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_text_state -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_text_state(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_text_state(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_text_head -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_text_head(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_text_head(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_text_layer -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_text_layer(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_text_layer(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_n_mels -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_n_mels(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_mels(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_ftype -> Integer
|
||||
*/
|
||||
VALUE ruby_whisper_model_ftype(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_ftype(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model_type -> String
|
||||
*/
|
||||
VALUE ruby_whisper_model_type(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return rb_str_new2(whisper_model_type_readable(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
|
||||
* Not thread safe for same context
|
||||
* Uses the specified decoding strategy to obtain the text.
|
||||
*
|
||||
* call-seq:
|
||||
* full(params, samples, n_samples) -> nil
|
||||
* full(params, samples) -> nil
|
||||
*
|
||||
* The second argument +samples+ must be an array of samples, respond to :length, or be a MemoryView of an array of float. It must be 32 bit float PCM audio data.
|
||||
*/
|
||||
VALUE ruby_whisper_full(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
if (argc < 2 || argc > 3) {
|
||||
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
|
||||
}
|
||||
|
||||
ruby_whisper *rw;
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
VALUE params = argv[0];
|
||||
Data_Get_Struct(params, ruby_whisper_params, rwp);
|
||||
VALUE samples = argv[1];
|
||||
int n_samples;
|
||||
rb_memory_view_t view;
|
||||
const bool memory_view_available_p = rb_memory_view_available_p(samples);
|
||||
if (argc == 3) {
|
||||
n_samples = NUM2INT(argv[2]);
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
if (RARRAY_LEN(samples) < n_samples) {
|
||||
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
|
||||
}
|
||||
}
|
||||
// Should check when samples.respond_to?(:length)?
|
||||
} else {
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
n_samples = RARRAY_LEN(samples);
|
||||
} else if (memory_view_available_p) {
|
||||
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
|
||||
view.obj = Qnil;
|
||||
rb_raise(rb_eArgError, "unable to get a memory view");
|
||||
}
|
||||
n_samples = view.byte_size / view.item_size;
|
||||
} else if (rb_respond_to(samples, id_length)) {
|
||||
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
|
||||
} else {
|
||||
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
|
||||
}
|
||||
}
|
||||
float * c_samples = (float *)malloc(n_samples * sizeof(float));
|
||||
if (memory_view_available_p) {
|
||||
c_samples = (float *)view.data;
|
||||
} else {
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
|
||||
}
|
||||
} else {
|
||||
// TODO: use rb_block_call
|
||||
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
// TODO: check if iter is exhausted and raise ArgumentError appropriately
|
||||
VALUE sample = rb_funcall(iter, id_next, 0);
|
||||
c_samples[i] = RFLOAT_VALUE(sample);
|
||||
}
|
||||
}
|
||||
}
|
||||
register_callbacks(rwp, &self);
|
||||
const int result = whisper_full(rw->context, rwp->params, c_samples, n_samples);
|
||||
if (0 == result) {
|
||||
return self;
|
||||
} else {
|
||||
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
|
||||
* Result is stored in the default state of the context
|
||||
* Not thread safe if executed in parallel on the same context.
|
||||
* It seems this approach can offer some speedup in some cases.
|
||||
* However, the transcription accuracy can be worse at the beginning and end of each chunk.
|
||||
*
|
||||
* call-seq:
|
||||
* full_parallel(params, samples) -> nil
|
||||
* full_parallel(params, samples, n_samples) -> nil
|
||||
* full_parallel(params, samples, n_samples, n_processors) -> nil
|
||||
* full_parallel(params, samples, nil, n_processors) -> nil
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_full_parallel(int argc, VALUE *argv,VALUE self)
|
||||
{
|
||||
if (argc < 2 || argc > 4) {
|
||||
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
|
||||
}
|
||||
|
||||
ruby_whisper *rw;
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
VALUE params = argv[0];
|
||||
Data_Get_Struct(params, ruby_whisper_params, rwp);
|
||||
VALUE samples = argv[1];
|
||||
int n_samples;
|
||||
int n_processors;
|
||||
rb_memory_view_t view;
|
||||
const bool memory_view_available_p = rb_memory_view_available_p(samples);
|
||||
switch (argc) {
|
||||
case 2:
|
||||
n_processors = 1;
|
||||
break;
|
||||
case 3:
|
||||
n_processors = 1;
|
||||
break;
|
||||
case 4:
|
||||
n_processors = NUM2INT(argv[3]);
|
||||
break;
|
||||
}
|
||||
if (argc >= 3 && !NIL_P(argv[2])) {
|
||||
n_samples = NUM2INT(argv[2]);
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
if (RARRAY_LEN(samples) < n_samples) {
|
||||
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
|
||||
}
|
||||
}
|
||||
// Should check when samples.respond_to?(:length)?
|
||||
} else if (memory_view_available_p) {
|
||||
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
|
||||
view.obj = Qnil;
|
||||
rb_raise(rb_eArgError, "unable to get a memory view");
|
||||
}
|
||||
n_samples = view.byte_size / view.item_size;
|
||||
} else {
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
n_samples = RARRAY_LEN(samples);
|
||||
} else if (rb_respond_to(samples, id_length)) {
|
||||
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
|
||||
} else {
|
||||
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
|
||||
}
|
||||
}
|
||||
float * c_samples = (float *)malloc(n_samples * sizeof(float));
|
||||
if (memory_view_available_p) {
|
||||
c_samples = (float *)view.data;
|
||||
} else {
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
|
||||
}
|
||||
} else {
|
||||
// FIXME: use rb_block_call
|
||||
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
// TODO: check if iter is exhausted and raise ArgumentError
|
||||
VALUE sample = rb_funcall(iter, id_next, 0);
|
||||
c_samples[i] = RFLOAT_VALUE(sample);
|
||||
}
|
||||
}
|
||||
}
|
||||
register_callbacks(rwp, &self);
|
||||
const int result = whisper_full_parallel(rw->context, rwp->params, c_samples, n_samples, n_processors);
|
||||
if (0 == result) {
|
||||
return self;
|
||||
} else {
|
||||
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Number of segments.
|
||||
*
|
||||
* call-seq:
|
||||
* full_n_segments -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_full_n_segments(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_full_n_segments(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* Language ID, which can be converted to string by Whisper.lang_str and Whisper.lang_str_full.
|
||||
*
|
||||
* call-seq:
|
||||
* full_lang_id -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_full_lang_id(VALUE self)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_full_lang_id(rw->context));
|
||||
}
|
||||
|
||||
static int ruby_whisper_full_check_segment_index(const ruby_whisper * rw, const VALUE i_segment)
|
||||
{
|
||||
const int c_i_segment = NUM2INT(i_segment);
|
||||
if (c_i_segment < 0 || c_i_segment >= whisper_full_n_segments(rw->context)) {
|
||||
rb_raise(rb_eIndexError, "segment index %d out of range", c_i_segment);
|
||||
}
|
||||
return c_i_segment;
|
||||
}
|
||||
|
||||
/*
|
||||
* Start time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
|
||||
*
|
||||
* full_get_segment_t0(3) # => 1668 (16680 ms)
|
||||
*
|
||||
* call-seq:
|
||||
* full_get_segment_t0(segment_index) -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_full_get_segment_t0(VALUE self, VALUE i_segment)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(rw->context, c_i_segment);
|
||||
return INT2NUM(t0);
|
||||
}
|
||||
|
||||
/*
|
||||
* End time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
|
||||
*
|
||||
* full_get_segment_t1(3) # => 1668 (16680 ms)
|
||||
*
|
||||
* call-seq:
|
||||
* full_get_segment_t1(segment_index) -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_full_get_segment_t1(VALUE self, VALUE i_segment)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(rw->context, c_i_segment);
|
||||
return INT2NUM(t1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Whether the next segment indexed by +segment_index+ is predicated as a speaker turn.
|
||||
*
|
||||
* full_get_segment_speacker_turn_next(3) # => true
|
||||
*
|
||||
* call-seq:
|
||||
* full_get_segment_speacker_turn_next(segment_index) -> bool
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_full_get_segment_speaker_turn_next(VALUE self, VALUE i_segment)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
|
||||
const bool speaker_turn_next = whisper_full_get_segment_speaker_turn_next(rw->context, c_i_segment);
|
||||
return speaker_turn_next ? Qtrue : Qfalse;
|
||||
}
|
||||
|
||||
/*
|
||||
* Text of a segment indexed by +segment_index+.
|
||||
*
|
||||
* full_get_segment_text(3) # => "ask not what your country can do for you, ..."
|
||||
*
|
||||
* call-seq:
|
||||
* full_get_segment_text(segment_index) -> String
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_full_get_segment_text(VALUE self, VALUE i_segment)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
|
||||
const char * text = whisper_full_get_segment_text(rw->context, c_i_segment);
|
||||
return rb_str_new2(text);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* full_get_segment_no_speech_prob(segment_index) -> Float
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_full_get_segment_no_speech_prob(VALUE self, VALUE i_segment)
|
||||
{
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
|
||||
const float no_speech_prob = whisper_full_get_segment_no_speech_prob(rw->context, c_i_segment);
|
||||
return DBL2NUM(no_speech_prob);
|
||||
}
|
||||
|
||||
// High level API
|
||||
|
||||
static VALUE
|
||||
ruby_whisper_full_get_segment(VALUE self, VALUE i_segment)
|
||||
{
|
||||
return rb_whisper_segment_initialize(self, NUM2INT(i_segment));
|
||||
}
|
||||
|
||||
/*
|
||||
* Yields each Whisper::Segment:
|
||||
*
|
||||
* whisper.transcribe("path/to/audio.wav", params)
|
||||
* whisper.each_segment do |segment|
|
||||
* puts segment.text
|
||||
* end
|
||||
*
|
||||
* Returns an Enumerator if no block given:
|
||||
*
|
||||
* whisper.transcribe("path/to/audio.wav", params)
|
||||
* enum = whisper.each_segment
|
||||
* enum.to_a # => [#<Whisper::Segment>, ...]
|
||||
*
|
||||
* call-seq:
|
||||
* each_segment {|segment| ... }
|
||||
* each_segment -> Enumerator
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_each_segment(VALUE self)
|
||||
{
|
||||
if (!rb_block_given_p()) {
|
||||
const VALUE method_name = rb_funcall(self, id___method__, 0);
|
||||
return rb_funcall(self, id_to_enum, 1, method_name);
|
||||
}
|
||||
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
|
||||
const int n_segments = whisper_full_n_segments(rw->context);
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
rb_yield(rb_whisper_segment_initialize(self, i));
|
||||
}
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* model -> Whisper::Model
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_get_model(VALUE self)
|
||||
{
|
||||
return rb_whisper_model_initialize(self);
|
||||
}
|
||||
|
||||
void
|
||||
init_ruby_whisper_context(VALUE *mWhisper)
|
||||
{
|
||||
cContext = rb_define_class_under(*mWhisper, "Context", rb_cObject);
|
||||
|
||||
rb_define_alloc_func(cContext, ruby_whisper_allocate);
|
||||
rb_define_method(cContext, "initialize", ruby_whisper_initialize, -1);
|
||||
|
||||
rb_define_method(cContext, "transcribe", ruby_whisper_transcribe, -1);
|
||||
rb_define_method(cContext, "model_n_vocab", ruby_whisper_model_n_vocab, 0);
|
||||
rb_define_method(cContext, "model_n_audio_ctx", ruby_whisper_model_n_audio_ctx, 0);
|
||||
rb_define_method(cContext, "model_n_audio_state", ruby_whisper_model_n_audio_state, 0);
|
||||
rb_define_method(cContext, "model_n_audio_head", ruby_whisper_model_n_audio_head, 0);
|
||||
rb_define_method(cContext, "model_n_audio_layer", ruby_whisper_model_n_audio_layer, 0);
|
||||
rb_define_method(cContext, "model_n_text_ctx", ruby_whisper_model_n_text_ctx, 0);
|
||||
rb_define_method(cContext, "model_n_text_state", ruby_whisper_model_n_text_state, 0);
|
||||
rb_define_method(cContext, "model_n_text_head", ruby_whisper_model_n_text_head, 0);
|
||||
rb_define_method(cContext, "model_n_text_layer", ruby_whisper_model_n_text_layer, 0);
|
||||
rb_define_method(cContext, "model_n_mels", ruby_whisper_model_n_mels, 0);
|
||||
rb_define_method(cContext, "model_ftype", ruby_whisper_model_ftype, 0);
|
||||
rb_define_method(cContext, "model_type", ruby_whisper_model_type, 0);
|
||||
rb_define_method(cContext, "full_n_segments", ruby_whisper_full_n_segments, 0);
|
||||
rb_define_method(cContext, "full_lang_id", ruby_whisper_full_lang_id, 0);
|
||||
rb_define_method(cContext, "full_get_segment_t0", ruby_whisper_full_get_segment_t0, 1);
|
||||
rb_define_method(cContext, "full_get_segment_t1", ruby_whisper_full_get_segment_t1, 1);
|
||||
rb_define_method(cContext, "full_get_segment_speaker_turn_next", ruby_whisper_full_get_segment_speaker_turn_next, 1);
|
||||
rb_define_method(cContext, "full_get_segment_text", ruby_whisper_full_get_segment_text, 1);
|
||||
rb_define_method(cContext, "full_get_segment_no_speech_prob", ruby_whisper_full_get_segment_no_speech_prob, 1);
|
||||
rb_define_method(cContext, "full", ruby_whisper_full, -1);
|
||||
rb_define_method(cContext, "full_parallel", ruby_whisper_full_parallel, -1);
|
||||
|
||||
// High leve
|
||||
rb_define_method(cContext, "full_get_segment", ruby_whisper_full_get_segment, 1);
|
||||
rb_define_method(cContext, "each_segment", ruby_whisper_each_segment, 0);
|
||||
|
||||
rb_define_method(cContext, "model", ruby_whisper_get_model, 0);
|
||||
}
|
@ -1,52 +0,0 @@
|
||||
#include <ruby.h>
|
||||
|
||||
extern VALUE eError;
|
||||
|
||||
VALUE ruby_whisper_error_initialize(VALUE self, VALUE code)
|
||||
{
|
||||
const int c_code = NUM2INT(code);
|
||||
const char *raw_message;
|
||||
switch (c_code) {
|
||||
case -2:
|
||||
raw_message = "failed to compute log mel spectrogram";
|
||||
break;
|
||||
case -3:
|
||||
raw_message = "failed to auto-detect language";
|
||||
break;
|
||||
case -4:
|
||||
raw_message = "too many decoders requested";
|
||||
break;
|
||||
case -5:
|
||||
raw_message = "audio_ctx is larger than the maximum allowed";
|
||||
break;
|
||||
case -6:
|
||||
raw_message = "failed to encode";
|
||||
break;
|
||||
case -7:
|
||||
raw_message = "whisper_kv_cache_init() failed for self-attention cache";
|
||||
break;
|
||||
case -8:
|
||||
raw_message = "failed to decode";
|
||||
break;
|
||||
case -9:
|
||||
raw_message = "failed to decode";
|
||||
break;
|
||||
default:
|
||||
raw_message = "unknown error";
|
||||
break;
|
||||
}
|
||||
const VALUE message = rb_str_new2(raw_message);
|
||||
rb_call_super(1, &message);
|
||||
rb_iv_set(self, "@code", code);
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
void
|
||||
init_ruby_whisper_error(VALUE *mWhisper)
|
||||
{
|
||||
eError = rb_define_class_under(*mWhisper, "Error", rb_eStandardError);
|
||||
|
||||
rb_define_attr(eError, "code", true, false);
|
||||
rb_define_method(eError, "initialize", ruby_whisper_error_initialize, 1);
|
||||
}
|
@ -1,210 +0,0 @@
|
||||
#include <ruby.h>
|
||||
#include "ruby_whisper.h"
|
||||
|
||||
extern VALUE cModel;
|
||||
|
||||
static void rb_whisper_model_mark(ruby_whisper_model *rwm) {
|
||||
rb_gc_mark(rwm->context);
|
||||
}
|
||||
|
||||
static VALUE ruby_whisper_model_allocate(VALUE klass) {
|
||||
ruby_whisper_model *rwm;
|
||||
rwm = ALLOC(ruby_whisper_model);
|
||||
return Data_Wrap_Struct(klass, rb_whisper_model_mark, RUBY_DEFAULT_FREE, rwm);
|
||||
}
|
||||
|
||||
VALUE rb_whisper_model_initialize(VALUE context) {
|
||||
ruby_whisper_model *rwm;
|
||||
const VALUE model = ruby_whisper_model_allocate(cModel);
|
||||
Data_Get_Struct(model, ruby_whisper_model, rwm);
|
||||
rwm->context = context;
|
||||
return model;
|
||||
};
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_vocab -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_vocab(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_vocab(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_audio_ctx -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_audio_ctx(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_audio_state -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_audio_state(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_audio_state(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_audio_head -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_audio_head(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_audio_head(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_audio_layer -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_audio_layer(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_audio_layer(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_text_ctx -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_text_ctx(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_text_ctx(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_text_state -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_text_state(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_text_state(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_text_head -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_text_head(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_text_head(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_text_layer -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_text_layer(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_text_layer(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* n_mels -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_n_mels(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_n_mels(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* ftype -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_ftype(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return INT2NUM(whisper_model_ftype(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* type -> String
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_model_type(VALUE self)
|
||||
{
|
||||
ruby_whisper_model *rwm;
|
||||
Data_Get_Struct(self, ruby_whisper_model, rwm);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rwm->context, ruby_whisper, rw);
|
||||
return rb_str_new2(whisper_model_type_readable(rw->context));
|
||||
}
|
||||
|
||||
void
|
||||
init_ruby_whisper_model(VALUE *mWhisper)
|
||||
{
|
||||
cModel = rb_define_class_under(*mWhisper, "Model", rb_cObject);
|
||||
|
||||
rb_define_alloc_func(cModel, ruby_whisper_model_allocate);
|
||||
rb_define_method(cModel, "n_vocab", ruby_whisper_model_n_vocab, 0);
|
||||
rb_define_method(cModel, "n_audio_ctx", ruby_whisper_model_n_audio_ctx, 0);
|
||||
rb_define_method(cModel, "n_audio_state", ruby_whisper_model_n_audio_state, 0);
|
||||
rb_define_method(cModel, "n_audio_head", ruby_whisper_model_n_audio_head, 0);
|
||||
rb_define_method(cModel, "n_audio_layer", ruby_whisper_model_n_audio_layer, 0);
|
||||
rb_define_method(cModel, "n_text_ctx", ruby_whisper_model_n_text_ctx, 0);
|
||||
rb_define_method(cModel, "n_text_state", ruby_whisper_model_n_text_state, 0);
|
||||
rb_define_method(cModel, "n_text_head", ruby_whisper_model_n_text_head, 0);
|
||||
rb_define_method(cModel, "n_text_layer", ruby_whisper_model_n_text_layer, 0);
|
||||
rb_define_method(cModel, "n_mels", ruby_whisper_model_n_mels, 0);
|
||||
rb_define_method(cModel, "ftype", ruby_whisper_model_ftype, 0);
|
||||
rb_define_method(cModel, "type", ruby_whisper_model_type, 0);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,123 +0,0 @@
|
||||
#include <ruby.h>
|
||||
#include "ruby_whisper.h"
|
||||
|
||||
extern VALUE cSegment;
|
||||
|
||||
static void
|
||||
rb_whisper_segment_mark(ruby_whisper_segment *rws)
|
||||
{
|
||||
rb_gc_mark(rws->context);
|
||||
}
|
||||
|
||||
VALUE
|
||||
ruby_whisper_segment_allocate(VALUE klass)
|
||||
{
|
||||
ruby_whisper_segment *rws;
|
||||
rws = ALLOC(ruby_whisper_segment);
|
||||
return Data_Wrap_Struct(klass, rb_whisper_segment_mark, RUBY_DEFAULT_FREE, rws);
|
||||
}
|
||||
|
||||
VALUE
|
||||
rb_whisper_segment_initialize(VALUE context, int index)
|
||||
{
|
||||
ruby_whisper_segment *rws;
|
||||
const VALUE segment = ruby_whisper_segment_allocate(cSegment);
|
||||
Data_Get_Struct(segment, ruby_whisper_segment, rws);
|
||||
rws->context = context;
|
||||
rws->index = index;
|
||||
return segment;
|
||||
};
|
||||
|
||||
/*
|
||||
* Start time in milliseconds.
|
||||
*
|
||||
* call-seq:
|
||||
* start_time -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_segment_get_start_time(VALUE self)
|
||||
{
|
||||
ruby_whisper_segment *rws;
|
||||
Data_Get_Struct(self, ruby_whisper_segment, rws);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rws->context, ruby_whisper, rw);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(rw->context, rws->index);
|
||||
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
|
||||
return INT2NUM(t0 * 10);
|
||||
}
|
||||
|
||||
/*
|
||||
* End time in milliseconds.
|
||||
*
|
||||
* call-seq:
|
||||
* end_time -> Integer
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_segment_get_end_time(VALUE self)
|
||||
{
|
||||
ruby_whisper_segment *rws;
|
||||
Data_Get_Struct(self, ruby_whisper_segment, rws);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rws->context, ruby_whisper, rw);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(rw->context, rws->index);
|
||||
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
|
||||
return INT2NUM(t1 * 10);
|
||||
}
|
||||
|
||||
/*
|
||||
* Whether the next segment is predicted as a speaker turn.
|
||||
*
|
||||
* call-seq:
|
||||
* speaker_turn_next? -> bool
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_segment_get_speaker_turn_next(VALUE self)
|
||||
{
|
||||
ruby_whisper_segment *rws;
|
||||
Data_Get_Struct(self, ruby_whisper_segment, rws);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rws->context, ruby_whisper, rw);
|
||||
return whisper_full_get_segment_speaker_turn_next(rw->context, rws->index) ? Qtrue : Qfalse;
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* text -> String
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_segment_get_text(VALUE self)
|
||||
{
|
||||
ruby_whisper_segment *rws;
|
||||
Data_Get_Struct(self, ruby_whisper_segment, rws);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rws->context, ruby_whisper, rw);
|
||||
const char * text = whisper_full_get_segment_text(rw->context, rws->index);
|
||||
return rb_str_new2(text);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* no_speech_prob -> Float
|
||||
*/
|
||||
static VALUE
|
||||
ruby_whisper_segment_get_no_speech_prob(VALUE self)
|
||||
{
|
||||
ruby_whisper_segment *rws;
|
||||
Data_Get_Struct(self, ruby_whisper_segment, rws);
|
||||
ruby_whisper *rw;
|
||||
Data_Get_Struct(rws->context, ruby_whisper, rw);
|
||||
return DBL2NUM(whisper_full_get_segment_no_speech_prob(rw->context, rws->index));
|
||||
}
|
||||
|
||||
void
|
||||
init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cContext)
|
||||
{
|
||||
cSegment = rb_define_class_under(*mWhisper, "Segment", rb_cObject);
|
||||
|
||||
rb_define_alloc_func(cSegment, ruby_whisper_segment_allocate);
|
||||
rb_define_method(cSegment, "start_time", ruby_whisper_segment_get_start_time, 0);
|
||||
rb_define_method(cSegment, "end_time", ruby_whisper_segment_get_end_time, 0);
|
||||
rb_define_method(cSegment, "speaker_next_turn?", ruby_whisper_segment_get_speaker_turn_next, 0);
|
||||
rb_define_method(cSegment, "text", ruby_whisper_segment_get_text, 0);
|
||||
rb_define_method(cSegment, "no_speech_prob", ruby_whisper_segment_get_no_speech_prob, 0);
|
||||
}
|
@ -1,159 +0,0 @@
|
||||
#include <ruby.h>
|
||||
#include "ruby_whisper.h"
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
extern ID id_to_s;
|
||||
extern ID id_call;
|
||||
|
||||
extern void
|
||||
register_callbacks(ruby_whisper_params * rwp, VALUE * self);
|
||||
|
||||
/*
|
||||
* transcribe a single file
|
||||
* can emit to a block results
|
||||
*
|
||||
* params = Whisper::Params.new
|
||||
* params.duration = 60_000
|
||||
* whisper.transcribe "path/to/audio.wav", params do |text|
|
||||
* puts text
|
||||
* end
|
||||
*
|
||||
* call-seq:
|
||||
* transcribe(path_to_audio, params) {|text| ...}
|
||||
**/
|
||||
VALUE
|
||||
ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
|
||||
ruby_whisper *rw;
|
||||
ruby_whisper_params *rwp;
|
||||
VALUE wave_file_path, blk, params;
|
||||
|
||||
rb_scan_args(argc, argv, "02&", &wave_file_path, ¶ms, &blk);
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
Data_Get_Struct(params, ruby_whisper_params, rwp);
|
||||
|
||||
if (!rb_respond_to(wave_file_path, id_to_s)) {
|
||||
rb_raise(rb_eRuntimeError, "Expected file path to wave file");
|
||||
}
|
||||
|
||||
std::string fname_inp = StringValueCStr(wave_file_path);
|
||||
|
||||
std::vector<float> pcmf32; // mono-channel F32 PCM
|
||||
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
|
||||
|
||||
// WAV input - this is directly from main.cpp example
|
||||
{
|
||||
drwav wav;
|
||||
std::vector<uint8_t> wav_data; // used for pipe input from stdin
|
||||
|
||||
if (fname_inp == "-") {
|
||||
{
|
||||
uint8_t buf[1024];
|
||||
while (true) {
|
||||
const size_t n = fread(buf, 1, sizeof(buf), stdin);
|
||||
if (n == 0) {
|
||||
break;
|
||||
}
|
||||
wav_data.insert(wav_data.end(), buf, buf + n);
|
||||
}
|
||||
}
|
||||
|
||||
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open WAV file from stdin\n");
|
||||
return self;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
|
||||
} else if (drwav_init_file(&wav, fname_inp.c_str(), nullptr) == false) {
|
||||
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
|
||||
return self;
|
||||
}
|
||||
|
||||
if (wav.channels != 1 && wav.channels != 2) {
|
||||
fprintf(stderr, "WAV file '%s' must be mono or stereo\n", fname_inp.c_str());
|
||||
return self;
|
||||
}
|
||||
|
||||
if (rwp->diarize && wav.channels != 2 && rwp->params.print_timestamps == false) {
|
||||
fprintf(stderr, "WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", fname_inp.c_str());
|
||||
return self;
|
||||
}
|
||||
|
||||
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
|
||||
fprintf(stderr, "WAV file '%s' must be %i kHz\n", fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
|
||||
return self;
|
||||
}
|
||||
|
||||
if (wav.bitsPerSample != 16) {
|
||||
fprintf(stderr, "WAV file '%s' must be 16-bit\n", fname_inp.c_str());
|
||||
return self;
|
||||
}
|
||||
|
||||
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
|
||||
|
||||
std::vector<int16_t> pcm16;
|
||||
pcm16.resize(n*wav.channels);
|
||||
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
|
||||
drwav_uninit(&wav);
|
||||
|
||||
// convert to mono, float
|
||||
pcmf32.resize(n);
|
||||
if (wav.channels == 1) {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float(pcm16[i])/32768.0f;
|
||||
}
|
||||
} else {
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32[i] = float((int32_t)pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
|
||||
}
|
||||
}
|
||||
|
||||
if (rwp->diarize) {
|
||||
// convert to stereo, float
|
||||
pcmf32s.resize(2);
|
||||
|
||||
pcmf32s[0].resize(n);
|
||||
pcmf32s[1].resize(n);
|
||||
for (uint64_t i = 0; i < n; i++) {
|
||||
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
|
||||
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
|
||||
|
||||
rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
|
||||
bool is_aborted = *(bool*)user_data;
|
||||
return !is_aborted;
|
||||
};
|
||||
rwp->params.encoder_begin_callback_user_data = &is_aborted;
|
||||
}
|
||||
|
||||
register_callbacks(rwp, &self);
|
||||
|
||||
if (whisper_full_parallel(rw->context, rwp->params, pcmf32.data(), pcmf32.size(), 1) != 0) {
|
||||
fprintf(stderr, "failed to process audio\n");
|
||||
return self;
|
||||
}
|
||||
const int n_segments = whisper_full_n_segments(rw->context);
|
||||
VALUE output = rb_str_new2("");
|
||||
for (int i = 0; i < n_segments; ++i) {
|
||||
const char * text = whisper_full_get_segment_text(rw->context, i);
|
||||
output = rb_str_concat(output, rb_str_new2(text));
|
||||
}
|
||||
VALUE idCall = id_call;
|
||||
if (blk != Qnil) {
|
||||
rb_funcall(blk, idCall, 1, output);
|
||||
}
|
||||
return self;
|
||||
}
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,6 +0,0 @@
|
||||
require "yaml"
|
||||
|
||||
sources = `git ls-files -z ../..`.split("\x0")
|
||||
paths = YAML.load_file("../../.github/workflows/bindings-ruby.yml")[true]["push"]["paths"]
|
||||
paths.delete "bindings/ruby/**"
|
||||
EXTSOURCES = (Dir.glob(paths, base: "../..").collect {|path| "../../#{path}"} << "../../LICENSE") & sources
|
29
bindings/ruby/extsources.yaml
Normal file
29
bindings/ruby/extsources.yaml
Normal file
@ -0,0 +1,29 @@
|
||||
---
|
||||
- ../../src/whisper.cpp
|
||||
- ../../include/whisper.h
|
||||
- ../../ggml/src/ggml.c
|
||||
- ../../ggml/src/ggml-impl.h
|
||||
- ../../ggml/src/ggml-aarch64.h
|
||||
- ../../ggml/src/ggml-aarch64.c
|
||||
- ../../ggml/src/ggml-alloc.c
|
||||
- ../../ggml/src/ggml-backend-impl.h
|
||||
- ../../ggml/src/ggml-backend.cpp
|
||||
- ../../ggml/src/ggml-common.h
|
||||
- ../../ggml/src/ggml-quants.h
|
||||
- ../../ggml/src/ggml-quants.c
|
||||
- ../../ggml/src/ggml-cpu-impl.h
|
||||
- ../../ggml/src/ggml-metal.m
|
||||
- ../../ggml/src/ggml-metal.metal
|
||||
- ../../ggml/src/ggml-blas.cpp
|
||||
- ../../ggml/include/ggml.h
|
||||
- ../../ggml/include/ggml-alloc.h
|
||||
- ../../ggml/include/ggml-backend.h
|
||||
- ../../ggml/include/ggml-cuda.h
|
||||
- ../../ggml/include/ggml-kompute.h
|
||||
- ../../ggml/include/ggml-metal.h
|
||||
- ../../ggml/include/ggml-sycl.h
|
||||
- ../../ggml/include/ggml-vulkan.h
|
||||
- ../../ggml/include/ggml-blas.h
|
||||
- ../../scripts/get-flags.mk
|
||||
- ../../examples/dr_wav.h
|
||||
- ../../LICENSE
|
@ -1,170 +0,0 @@
|
||||
require "uri"
|
||||
require "net/http"
|
||||
require "time"
|
||||
require "pathname"
|
||||
require "io/console/size"
|
||||
|
||||
module Whisper
|
||||
class Model
|
||||
class URI
|
||||
def initialize(uri)
|
||||
@uri = URI(uri)
|
||||
end
|
||||
|
||||
def to_path
|
||||
cache
|
||||
cache_path.to_path
|
||||
end
|
||||
|
||||
def clear_cache
|
||||
path = cache_path
|
||||
path.delete if path.exist?
|
||||
end
|
||||
|
||||
private
|
||||
|
||||
def cache_path
|
||||
base_cache_dir/@uri.host/@uri.path[1..]
|
||||
end
|
||||
|
||||
def base_cache_dir
|
||||
base = case RUBY_PLATFORM
|
||||
when /mswin|mingw/
|
||||
ENV.key?("LOCALAPPDATA") ? Pathname(ENV["LOCALAPPDATA"]) : Pathname(Dir.home)/"AppData/Local"
|
||||
when /darwin/
|
||||
Pathname(Dir.home)/"Library/Caches"
|
||||
else
|
||||
ENV.key?("XDG_CACHE_HOME") ? ENV["XDG_CACHE_HOME"] : Pathname(Dir.home)/".cache"
|
||||
end
|
||||
base/"whisper.cpp"
|
||||
end
|
||||
|
||||
def cache
|
||||
path = cache_path
|
||||
headers = {}
|
||||
headers["if-modified-since"] = path.mtime.httpdate if path.exist?
|
||||
request @uri, headers
|
||||
path
|
||||
end
|
||||
|
||||
def request(uri, headers)
|
||||
Net::HTTP.start uri.host, uri.port, use_ssl: uri.scheme == "https" do |http|
|
||||
request = Net::HTTP::Get.new(uri, headers)
|
||||
http.request request do |response|
|
||||
case response
|
||||
when Net::HTTPNotModified
|
||||
# noop
|
||||
when Net::HTTPOK
|
||||
download response
|
||||
when Net::HTTPRedirection
|
||||
request URI(response["location"]), headers
|
||||
else
|
||||
return if headers.key?("if-modified-since") # Use cache file
|
||||
|
||||
raise "#{response.code} #{response.message}\n#{response.body}"
|
||||
end
|
||||
end
|
||||
end
|
||||
rescue => err
|
||||
if cache_path.exist?
|
||||
warn err
|
||||
# Use cache file
|
||||
else
|
||||
raise
|
||||
end
|
||||
end
|
||||
|
||||
def download(response)
|
||||
path = cache_path
|
||||
path.dirname.mkpath unless path.dirname.exist?
|
||||
downloading_path = Pathname("#{path}.downloading")
|
||||
size = response.content_length
|
||||
downloading_path.open "wb" do |file|
|
||||
downloaded = 0
|
||||
response.read_body do |chunk|
|
||||
file << chunk
|
||||
downloaded += chunk.bytesize
|
||||
show_progress downloaded, size
|
||||
end
|
||||
$stderr.puts
|
||||
end
|
||||
downloading_path.rename path
|
||||
end
|
||||
|
||||
def show_progress(current, size)
|
||||
progress_rate_available = size && $stderr.tty?
|
||||
|
||||
unless @prev
|
||||
@prev = Time.now
|
||||
$stderr.puts "Downloading #{@uri} to #{cache_path}"
|
||||
end
|
||||
|
||||
now = Time.now
|
||||
|
||||
if progress_rate_available
|
||||
return if now - @prev < 1 && current < size
|
||||
|
||||
progress_width = 20
|
||||
progress = current.to_f / size
|
||||
arrow_length = progress * progress_width
|
||||
arrow = "=" * (arrow_length - 1) + ">" + " " * (progress_width - arrow_length)
|
||||
line = "[#{arrow}] (#{format_bytesize(current)} / #{format_bytesize(size)})"
|
||||
padding = ' ' * ($stderr.winsize[1] - line.size)
|
||||
$stderr.print "\r#{line}#{padding}"
|
||||
else
|
||||
return if now - @prev < 1
|
||||
|
||||
$stderr.print "."
|
||||
end
|
||||
@prev = now
|
||||
end
|
||||
|
||||
def format_bytesize(bytesize)
|
||||
return "0.0 B" if bytesize.zero?
|
||||
|
||||
units = %w[B KiB MiB GiB TiB]
|
||||
exp = (Math.log(bytesize) / Math.log(1024)).to_i
|
||||
format("%.1f %s", bytesize.to_f / 1024 ** exp, units[exp])
|
||||
end
|
||||
end
|
||||
|
||||
@pre_converted_models = %w[
|
||||
tiny
|
||||
tiny.en
|
||||
tiny-q5_1
|
||||
tiny.en-q5_1
|
||||
tiny-q8_0
|
||||
base
|
||||
base.en
|
||||
base-q5_1
|
||||
base.en-q5_1
|
||||
base-q8_0
|
||||
small
|
||||
small.en
|
||||
small.en-tdrz
|
||||
small-q5_1
|
||||
small.en-q5_1
|
||||
small-q8_0
|
||||
medium
|
||||
medium.en
|
||||
medium-q5_0
|
||||
medium.en-q5_0
|
||||
medium-q8_0
|
||||
large-v1
|
||||
large-v2
|
||||
large-v2-q5_0
|
||||
large-v2-q8_0
|
||||
large-v3
|
||||
large-v3-q5_0
|
||||
large-v3-turbo
|
||||
large-v3-turbo-q5_0
|
||||
large-v3-turbo-q8_0
|
||||
].each_with_object({}) {|name, models|
|
||||
models[name] = URI.new("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-#{name}.bin")
|
||||
}
|
||||
|
||||
class << self
|
||||
attr_reader :pre_converted_models
|
||||
end
|
||||
end
|
||||
end
|
@ -1,189 +0,0 @@
|
||||
module Whisper
|
||||
interface _Samples
|
||||
def length: () -> Integer
|
||||
def each: { (Float) -> void } -> void
|
||||
end
|
||||
|
||||
type log_callback = ^(Integer level, String message, Object user_data) -> void
|
||||
type new_segment_callback = ^(Whisper::Context, void, Integer n_new, Object user_data) -> void
|
||||
type progress_callback = ^(Whisper::Context, void, Integer progress, Object user_data) -> void
|
||||
type abort_callback = ^(Whisper::Context, void, Object user_data) -> boolish
|
||||
|
||||
LOG_LEVEL_NONE: Integer
|
||||
LOG_LEVEL_INFO: Integer
|
||||
LOG_LEVEL_WARN: Integer
|
||||
LOG_LEVEL_ERROR: Integer
|
||||
LOG_LEVEL_DEBUG: Integer
|
||||
LOG_LEVEL_CONT: Integer
|
||||
|
||||
def self.lang_max_id: () -> Integer
|
||||
def self.lang_id: (string name) -> Integer
|
||||
def self.lang_str: (Integer id) -> String
|
||||
def self.lang_str_full: (Integer id) -> String
|
||||
def self.log_set: (log_callback, Object? user_data) -> log_callback
|
||||
|
||||
class Context
|
||||
def self.new: (string | _ToPath | ::URI::HTTP) -> instance
|
||||
def transcribe: (string, Params) -> self
|
||||
| (string, Params) { (String) -> void } -> self
|
||||
def model_n_vocab: () -> Integer
|
||||
def model_n_audio_ctx: () -> Integer
|
||||
def model_n_audio_state: () -> Integer
|
||||
def model_n_text_head: () -> Integer
|
||||
def model_n_text_layer: () -> Integer
|
||||
def model_n_mels: () -> Integer
|
||||
def model_ftype: () -> Integer
|
||||
def model_type: () -> String
|
||||
def each_segment: { (Segment) -> void } -> void
|
||||
| () -> Enumerator[Segment]
|
||||
def model: () -> Model
|
||||
def full_get_segment: (Integer nth) -> Segment
|
||||
def full_n_segments: () -> Integer
|
||||
def full_lang_id: () -> Integer
|
||||
def full_get_segment_t0: (Integer) -> Integer
|
||||
def full_get_segment_t1: (Integer) -> Integer
|
||||
def full_get_segment_speaker_turn_next: (Integer) -> (true | false)
|
||||
def full_get_segment_text: (Integer) -> String
|
||||
def full_get_segment_no_speech_prob: (Integer) -> Float
|
||||
def full: (Params, Array[Float] samples, ?Integer n_samples) -> self
|
||||
| (Params, _Samples, ?Integer n_samples) -> self
|
||||
def full_parallel: (Params, Array[Float], ?Integer n_samples) -> self
|
||||
| (Params, _Samples, ?Integer n_samples) -> self
|
||||
| (Params, _Samples, ?Integer? n_samples, Integer n_processors) -> self
|
||||
end
|
||||
|
||||
class Params
|
||||
def self.new: (
|
||||
?language: string,
|
||||
?translate: boolish,
|
||||
?no_context: boolish,
|
||||
?single_segment: boolish,
|
||||
?print_special: boolish,
|
||||
?print_progress: boolish,
|
||||
?print_realtime: boolish,
|
||||
?print_timestamps: boolish,
|
||||
?suppress_blank: boolish,
|
||||
?suppress_nst: boolish,
|
||||
?token_timestamps: boolish,
|
||||
?split_on_word: boolish,
|
||||
?initial_prompt: string | nil,
|
||||
?diarize: boolish,
|
||||
?offset: Integer,
|
||||
?duration: Integer,
|
||||
?max_text_tokens: Integer,
|
||||
?temperature: Float,
|
||||
?max_initial_ts: Float,
|
||||
?length_penalty: Float,
|
||||
?temperature_inc: Float,
|
||||
?entropy_thold: Float,
|
||||
?logprob_thold: Float,
|
||||
?no_speech_thold: Float,
|
||||
?new_segment_callback: new_segment_callback,
|
||||
?new_segment_callback_user_data: Object,
|
||||
?progress_callback: progress_callback,
|
||||
?progress_callback_user_data: Object,
|
||||
?abort_callback: abort_callback,
|
||||
?abort_callback_user_data: Object
|
||||
) -> instance
|
||||
def language=: (String) -> String # TODO: Enumerate lang names
|
||||
def language: () -> String
|
||||
def translate=: (boolish) -> boolish
|
||||
def translate: () -> (true | false)
|
||||
def no_context=: (boolish) -> boolish
|
||||
def no_context: () -> (true | false)
|
||||
def single_segment=: (boolish) -> boolish
|
||||
def single_segment: () -> (true | false)
|
||||
def print_special=: (boolish) -> boolish
|
||||
def print_special: () -> (true | false)
|
||||
def print_progress=: (boolish) -> boolish
|
||||
def print_progress: () -> (true | false)
|
||||
def print_realtime=: (boolish) -> boolish
|
||||
def print_realtime: () -> (true | false)
|
||||
def print_timestamps=: (boolish) -> boolish
|
||||
def print_timestamps: () -> (true | false)
|
||||
def suppress_blank=: (boolish) -> boolish
|
||||
def suppress_blank: () -> (true | false)
|
||||
def suppress_nst=: (boolish) -> boolish
|
||||
def suppress_nst: () -> (true | false)
|
||||
def token_timestamps=: (boolish) -> boolish
|
||||
def token_timestamps: () -> (true | false)
|
||||
def split_on_word=: (boolish) -> boolish
|
||||
def split_on_word: () -> (true | false)
|
||||
def initial_prompt=: (_ToS) -> _ToS
|
||||
def initial_prompt: () -> (String | nil)
|
||||
def diarize=: (boolish) -> boolish
|
||||
def diarize: () -> (true | false)
|
||||
def offset=: (Integer) -> Integer
|
||||
def offset: () -> Integer
|
||||
def duration=: (Integer) -> Integer
|
||||
def duration: () -> Integer
|
||||
def max_text_tokens=: (Integer) -> Integer
|
||||
def max_text_tokens: () -> Integer
|
||||
def temperature=: (Float) -> Float
|
||||
def temperature: () -> Float
|
||||
def max_initial_ts=: (Float) -> Float
|
||||
def max_initial_ts: () -> Float
|
||||
def length_penalty=: (Float) -> Float
|
||||
def length_penalty: () -> Float
|
||||
def temperature_inc=: (Float) -> Float
|
||||
def temperature_inc: () -> Float
|
||||
def entropy_thold=: (Float) -> Float
|
||||
def entropy_thold: () -> Float
|
||||
def logprob_thold=: (Float) -> Float
|
||||
def logprob_thold: () -> Float
|
||||
def no_speech_thold=: (Float) -> Float
|
||||
def no_speech_thold: () -> Float
|
||||
def new_segment_callback=: (new_segment_callback) -> new_segment_callback
|
||||
def new_segment_callback: () -> (new_segment_callback | nil)
|
||||
def new_segment_callback_user_data=: (Object) -> Object
|
||||
def new_segment_callback_user_data: () -> Object
|
||||
def progress_callback=: (progress_callback) -> progress_callback
|
||||
def progress_callback: () -> (progress_callback | nil)
|
||||
def progress_callback_user_data=: (Object) -> Object
|
||||
def progress_callback_user_data: () -> Object
|
||||
def abort_callback=: (abort_callback) -> abort_callback
|
||||
def abort_callback: () -> (abort_callback | nil)
|
||||
def abort_callback_user_data=: (Object) -> Object
|
||||
def abort_callback_user_data: () -> Object
|
||||
def on_new_segment: { (Segment) -> void } -> void
|
||||
def on_progress: { (Integer progress) -> void } -> void
|
||||
def abort_on: { (Object user_data) -> boolish } -> void
|
||||
end
|
||||
|
||||
class Model
|
||||
def self.pre_converted_models: () -> Hash[String, Model::URI]
|
||||
def self.new: () -> instance
|
||||
def n_vocab: () -> Integer
|
||||
def n_audio_ctx: () -> Integer
|
||||
def n_audio_state: () -> Integer
|
||||
def n_audio_head: () -> Integer
|
||||
def n_audio_layer: () -> Integer
|
||||
def n_text_ctx: () -> Integer
|
||||
def n_text_state: () -> Integer
|
||||
def n_text_head: () -> Integer
|
||||
def n_text_layer: () -> Integer
|
||||
def n_mels: () -> Integer
|
||||
def ftype: () -> Integer
|
||||
def type: () -> String
|
||||
|
||||
class URI
|
||||
def self.new: (string | ::URI::HTTP) -> self
|
||||
def to_path: -> String
|
||||
def clear_cache: -> void
|
||||
end
|
||||
end
|
||||
|
||||
class Segment
|
||||
def start_time: () -> Integer
|
||||
def end_time: () -> Integer
|
||||
def speaker_next_turn?: () -> (true | false)
|
||||
def text: () -> String
|
||||
def no_speech_prob: () -> Float
|
||||
end
|
||||
|
||||
class Error < StandardError
|
||||
attr_reader code: Integer
|
||||
|
||||
def self.new: (Integer code) -> instance
|
||||
end
|
||||
end
|
@ -1,24 +0,0 @@
|
||||
require "test/unit"
|
||||
require "whisper"
|
||||
require_relative "jfk_reader/jfk_reader"
|
||||
|
||||
class TestBase < Test::Unit::TestCase
|
||||
AUDIO = File.join(__dir__, "..", "..", "..", "samples", "jfk.wav")
|
||||
|
||||
class << self
|
||||
attr_reader :whisper
|
||||
|
||||
def startup
|
||||
@whisper = Whisper::Context.new("base.en")
|
||||
params = Whisper::Params.new
|
||||
params.print_timestamps = false
|
||||
@whisper.transcribe(TestBase::AUDIO, params)
|
||||
end
|
||||
end
|
||||
|
||||
private
|
||||
|
||||
def whisper
|
||||
self.class.whisper
|
||||
end
|
||||
end
|
5
bindings/ruby/tests/jfk_reader/.gitignore
vendored
5
bindings/ruby/tests/jfk_reader/.gitignore
vendored
@ -1,5 +0,0 @@
|
||||
Makefile
|
||||
jfk_reader.o
|
||||
jfk_reader.so
|
||||
jfk_reader.bundle
|
||||
jfk_reader.dll
|
@ -1,3 +0,0 @@
|
||||
require "mkmf"
|
||||
|
||||
create_makefile("jfk_reader")
|
@ -1,68 +0,0 @@
|
||||
#include <ruby.h>
|
||||
#include <ruby/memory_view.h>
|
||||
#include <ruby/encoding.h>
|
||||
|
||||
static VALUE
|
||||
jfk_reader_initialize(VALUE self, VALUE audio_path)
|
||||
{
|
||||
rb_iv_set(self, "audio_path", audio_path);
|
||||
return Qnil;
|
||||
}
|
||||
|
||||
static bool
|
||||
jfk_reader_get_memory_view(const VALUE obj, rb_memory_view_t *view, int flags)
|
||||
{
|
||||
VALUE audio_path = rb_iv_get(obj, "audio_path");
|
||||
const char *audio_path_str = StringValueCStr(audio_path);
|
||||
const int n_samples = 176000;
|
||||
float *data = (float *)malloc(n_samples * sizeof(float));
|
||||
short *samples = (short *)malloc(n_samples * sizeof(short));
|
||||
FILE *file = fopen(audio_path_str, "rb");
|
||||
|
||||
fseek(file, 78, SEEK_SET);
|
||||
fread(samples, sizeof(short), n_samples, file);
|
||||
fclose(file);
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
data[i] = samples[i]/32768.0;
|
||||
}
|
||||
|
||||
view->obj = obj;
|
||||
view->data = (void *)data;
|
||||
view->byte_size = sizeof(float) * n_samples;
|
||||
view->readonly = true;
|
||||
view->format = "f";
|
||||
view->item_size = sizeof(float);
|
||||
view->item_desc.components = NULL;
|
||||
view->item_desc.length = 0;
|
||||
view->ndim = 1;
|
||||
view->shape = NULL;
|
||||
view->sub_offsets = NULL;
|
||||
view->private_data = NULL;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool
|
||||
jfk_reader_release_memory_view(const VALUE obj, rb_memory_view_t *view)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool
|
||||
jfk_reader_memory_view_available_p(const VALUE obj)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
static const rb_memory_view_entry_t jfk_reader_view_entry = {
|
||||
jfk_reader_get_memory_view,
|
||||
jfk_reader_release_memory_view,
|
||||
jfk_reader_memory_view_available_p
|
||||
};
|
||||
|
||||
void Init_jfk_reader(void)
|
||||
{
|
||||
VALUE cJFKReader = rb_define_class("JFKReader", rb_cObject);
|
||||
rb_memory_view_register(cJFKReader, &jfk_reader_view_entry);
|
||||
rb_define_method(cJFKReader, "initialize", jfk_reader_initialize, 1);
|
||||
}
|
@ -1,11 +1,14 @@
|
||||
require_relative "helper"
|
||||
require "test/unit"
|
||||
require "whisper"
|
||||
|
||||
class TestCallback < Test::Unit::TestCase
|
||||
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
|
||||
|
||||
class TestCallback < TestBase
|
||||
def setup
|
||||
GC.start
|
||||
@params = Whisper::Params.new
|
||||
@whisper = Whisper::Context.new("base.en")
|
||||
@audio = File.join(AUDIO)
|
||||
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
|
||||
@audio = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
|
||||
end
|
||||
|
||||
def test_new_segment_callback
|
||||
|
@ -1,20 +0,0 @@
|
||||
require_relative "helper"
|
||||
|
||||
class TestError < TestBase
|
||||
def test_error
|
||||
error = Whisper::Error.new(-2)
|
||||
assert_equal "failed to compute log mel spectrogram", error.message
|
||||
assert_equal -2, error.code
|
||||
end
|
||||
|
||||
def test_unknown_error
|
||||
error = Whisper::Error.new(-20)
|
||||
assert_equal "unknown error", error.message
|
||||
end
|
||||
|
||||
def test_non_int_code
|
||||
assert_raise TypeError do
|
||||
error = Whisper::Error.new("non int")
|
||||
end
|
||||
end
|
||||
end
|
@ -1,109 +0,0 @@
|
||||
require_relative "helper"
|
||||
require "pathname"
|
||||
|
||||
class TestModel < TestBase
|
||||
def test_model
|
||||
whisper = Whisper::Context.new("base.en")
|
||||
assert_instance_of Whisper::Model, whisper.model
|
||||
end
|
||||
|
||||
def test_attributes
|
||||
whisper = Whisper::Context.new("base.en")
|
||||
model = whisper.model
|
||||
|
||||
assert_equal 51864, model.n_vocab
|
||||
assert_equal 1500, model.n_audio_ctx
|
||||
assert_equal 512, model.n_audio_state
|
||||
assert_equal 8, model.n_audio_head
|
||||
assert_equal 6, model.n_audio_layer
|
||||
assert_equal 448, model.n_text_ctx
|
||||
assert_equal 512, model.n_text_state
|
||||
assert_equal 8, model.n_text_head
|
||||
assert_equal 6, model.n_text_layer
|
||||
assert_equal 80, model.n_mels
|
||||
assert_equal 1, model.ftype
|
||||
assert_equal "base", model.type
|
||||
end
|
||||
|
||||
def test_gc
|
||||
model = Whisper::Context.new("base.en").model
|
||||
GC.start
|
||||
|
||||
assert_equal 51864, model.n_vocab
|
||||
assert_equal 1500, model.n_audio_ctx
|
||||
assert_equal 512, model.n_audio_state
|
||||
assert_equal 8, model.n_audio_head
|
||||
assert_equal 6, model.n_audio_layer
|
||||
assert_equal 448, model.n_text_ctx
|
||||
assert_equal 512, model.n_text_state
|
||||
assert_equal 8, model.n_text_head
|
||||
assert_equal 6, model.n_text_layer
|
||||
assert_equal 80, model.n_mels
|
||||
assert_equal 1, model.ftype
|
||||
assert_equal "base", model.type
|
||||
end
|
||||
|
||||
def test_pathname
|
||||
path = Pathname(Whisper::Model.pre_converted_models["base.en"].to_path)
|
||||
whisper = Whisper::Context.new(path)
|
||||
model = whisper.model
|
||||
|
||||
assert_equal 51864, model.n_vocab
|
||||
assert_equal 1500, model.n_audio_ctx
|
||||
assert_equal 512, model.n_audio_state
|
||||
assert_equal 8, model.n_audio_head
|
||||
assert_equal 6, model.n_audio_layer
|
||||
assert_equal 448, model.n_text_ctx
|
||||
assert_equal 512, model.n_text_state
|
||||
assert_equal 8, model.n_text_head
|
||||
assert_equal 6, model.n_text_layer
|
||||
assert_equal 80, model.n_mels
|
||||
assert_equal 1, model.ftype
|
||||
assert_equal "base", model.type
|
||||
end
|
||||
|
||||
def test_auto_download
|
||||
path = Whisper::Model.pre_converted_models["base.en"].to_path
|
||||
|
||||
assert_path_exist path
|
||||
assert_equal 147964211, File.size(path)
|
||||
end
|
||||
|
||||
def test_uri_string
|
||||
path = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin"
|
||||
whisper = Whisper::Context.new(path)
|
||||
model = whisper.model
|
||||
|
||||
assert_equal 51864, model.n_vocab
|
||||
assert_equal 1500, model.n_audio_ctx
|
||||
assert_equal 512, model.n_audio_state
|
||||
assert_equal 8, model.n_audio_head
|
||||
assert_equal 6, model.n_audio_layer
|
||||
assert_equal 448, model.n_text_ctx
|
||||
assert_equal 512, model.n_text_state
|
||||
assert_equal 8, model.n_text_head
|
||||
assert_equal 6, model.n_text_layer
|
||||
assert_equal 80, model.n_mels
|
||||
assert_equal 1, model.ftype
|
||||
assert_equal "base", model.type
|
||||
end
|
||||
|
||||
def test_uri
|
||||
path = URI("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin")
|
||||
whisper = Whisper::Context.new(path)
|
||||
model = whisper.model
|
||||
|
||||
assert_equal 51864, model.n_vocab
|
||||
assert_equal 1500, model.n_audio_ctx
|
||||
assert_equal 512, model.n_audio_state
|
||||
assert_equal 8, model.n_audio_head
|
||||
assert_equal 6, model.n_audio_layer
|
||||
assert_equal 448, model.n_text_ctx
|
||||
assert_equal 512, model.n_text_state
|
||||
assert_equal 8, model.n_text_head
|
||||
assert_equal 6, model.n_text_layer
|
||||
assert_equal 80, model.n_mels
|
||||
assert_equal 1, model.ftype
|
||||
assert_equal "base", model.type
|
||||
end
|
||||
end
|
@ -1,9 +1,9 @@
|
||||
require_relative "helper"
|
||||
require 'test/unit'
|
||||
require 'tempfile'
|
||||
require 'tmpdir'
|
||||
require 'shellwords'
|
||||
|
||||
class TestPackage < TestBase
|
||||
class TestPackage < Test::Unit::TestCase
|
||||
def test_build
|
||||
Tempfile.create do |file|
|
||||
assert system("gem", "build", "whispercpp.gemspec", "--output", file.to_path.shellescape, exception: true)
|
||||
@ -23,7 +23,7 @@ class TestPackage < TestBase
|
||||
version = match_data[2]
|
||||
basename = "whisper.#{RbConfig::CONFIG["DLEXT"]}"
|
||||
Dir.mktmpdir do |dir|
|
||||
system "gem", "install", "--install-dir", dir.shellescape, "--no-document", "pkg/#{filename.shellescape}", exception: true
|
||||
system "gem", "install", "--install-dir", dir.shellescape, "pkg/#{filename.shellescape}", exception: true
|
||||
assert_path_exist File.join(dir, "gems/whispercpp-#{version}/lib", basename)
|
||||
end
|
||||
end
|
||||
|
@ -1,39 +1,7 @@
|
||||
require_relative "helper"
|
||||
|
||||
class TestParams < TestBase
|
||||
PARAM_NAMES = [
|
||||
:language,
|
||||
:translate,
|
||||
:no_context,
|
||||
:single_segment,
|
||||
:print_special,
|
||||
:print_progress,
|
||||
:print_realtime,
|
||||
:print_timestamps,
|
||||
:suppress_blank,
|
||||
:suppress_nst,
|
||||
:token_timestamps,
|
||||
:split_on_word,
|
||||
:initial_prompt,
|
||||
:diarize,
|
||||
:offset,
|
||||
:duration,
|
||||
:max_text_tokens,
|
||||
:temperature,
|
||||
:max_initial_ts,
|
||||
:length_penalty,
|
||||
:temperature_inc,
|
||||
:entropy_thold,
|
||||
:logprob_thold,
|
||||
:no_speech_thold,
|
||||
:new_segment_callback,
|
||||
:new_segment_callback_user_data,
|
||||
:progress_callback,
|
||||
:progress_callback_user_data,
|
||||
:abort_callback,
|
||||
:abort_callback_user_data,
|
||||
]
|
||||
require 'test/unit'
|
||||
require 'whisper'
|
||||
|
||||
class TestParams < Test::Unit::TestCase
|
||||
def setup
|
||||
@params = Whisper::Params.new
|
||||
end
|
||||
@ -122,11 +90,11 @@ class TestParams < TestBase
|
||||
assert !@params.suppress_blank
|
||||
end
|
||||
|
||||
def test_suppress_nst
|
||||
@params.suppress_nst = true
|
||||
assert @params.suppress_nst
|
||||
@params.suppress_nst = false
|
||||
assert !@params.suppress_nst
|
||||
def test_suppress_non_speech_tokens
|
||||
@params.suppress_non_speech_tokens = true
|
||||
assert @params.suppress_non_speech_tokens
|
||||
@params.suppress_non_speech_tokens = false
|
||||
assert !@params.suppress_non_speech_tokens
|
||||
end
|
||||
|
||||
def test_token_timestamps
|
||||
@ -184,63 +152,4 @@ class TestParams < TestBase
|
||||
@params.logprob_thold = -0.5
|
||||
assert_in_delta -0.5, @params.logprob_thold
|
||||
end
|
||||
|
||||
def test_no_speech_thold
|
||||
assert_in_delta 0.6, @params.no_speech_thold
|
||||
@params.no_speech_thold = 0.2
|
||||
assert_in_delta 0.2, @params.no_speech_thold
|
||||
end
|
||||
|
||||
def test_new_with_kw_args
|
||||
params = Whisper::Params.new(language: "es")
|
||||
assert_equal "es", params.language
|
||||
assert_equal 1.0, params.max_initial_ts
|
||||
end
|
||||
|
||||
def test_new_with_kw_args_non_existent
|
||||
assert_raise ArgumentError do
|
||||
Whisper::Params.new(non_existent: "value")
|
||||
end
|
||||
end
|
||||
|
||||
def test_new_with_kw_args_wrong_type
|
||||
assert_raise TypeError do
|
||||
Whisper::Params.new(language: 3)
|
||||
end
|
||||
end
|
||||
|
||||
data(PARAM_NAMES.collect {|param| [param, param]}.to_h)
|
||||
def test_new_with_kw_args_default_values(param)
|
||||
default_value = @params.send(param)
|
||||
value = case [param, default_value]
|
||||
in [*, true | false]
|
||||
!default_value
|
||||
in [*, Integer | Float]
|
||||
default_value + 1
|
||||
in [:language, *]
|
||||
"es"
|
||||
in [:initial_prompt, *]
|
||||
"Initial prompt"
|
||||
in [/_callback\Z/, *]
|
||||
proc {}
|
||||
in [/_user_data\Z/, *]
|
||||
Object.new
|
||||
end
|
||||
params = Whisper::Params.new(param => value)
|
||||
if Float === value
|
||||
assert_in_delta value, params.send(param)
|
||||
else
|
||||
assert_equal value, params.send(param)
|
||||
end
|
||||
|
||||
PARAM_NAMES.reject {|name| name == param}.each do |name|
|
||||
expected = @params.send(name)
|
||||
actual = params.send(name)
|
||||
if Float === expected
|
||||
assert_in_delta expected, actual
|
||||
else
|
||||
assert_equal expected, actual
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
@ -1,6 +1,21 @@
|
||||
require_relative "helper"
|
||||
require "test/unit"
|
||||
require "whisper"
|
||||
|
||||
class TestSegment < Test::Unit::TestCase
|
||||
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
|
||||
|
||||
class << self
|
||||
attr_reader :whisper
|
||||
|
||||
def startup
|
||||
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
|
||||
params = Whisper::Params.new
|
||||
params.print_timestamps = false
|
||||
jfk = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
|
||||
@whisper.transcribe(jfk, params)
|
||||
end
|
||||
end
|
||||
|
||||
class TestSegment < TestBase
|
||||
def test_iteration
|
||||
whisper.each_segment do |segment|
|
||||
assert_instance_of Whisper::Segment, segment
|
||||
@ -32,14 +47,6 @@ class TestSegment < TestBase
|
||||
end
|
||||
end
|
||||
|
||||
def test_no_speech_prob
|
||||
no_speech_prob = nil
|
||||
whisper.each_segment do |segment|
|
||||
no_speech_prob = segment.no_speech_prob
|
||||
end
|
||||
assert no_speech_prob > 0.0
|
||||
end
|
||||
|
||||
def test_on_new_segment
|
||||
params = Whisper::Params.new
|
||||
seg = nil
|
||||
@ -53,7 +60,7 @@ class TestSegment < TestBase
|
||||
end
|
||||
index += 1
|
||||
end
|
||||
whisper.transcribe(AUDIO, params)
|
||||
whisper.transcribe(File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav'), params)
|
||||
assert_equal 0, seg.start_time
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, seg.text
|
||||
end
|
||||
@ -69,6 +76,12 @@ class TestSegment < TestBase
|
||||
assert_same seg, segment
|
||||
return
|
||||
end
|
||||
whisper.transcribe(AUDIO, params)
|
||||
whisper.transcribe(File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav'), params)
|
||||
end
|
||||
|
||||
private
|
||||
|
||||
def whisper
|
||||
self.class.whisper
|
||||
end
|
||||
end
|
||||
|
@ -1,26 +1,41 @@
|
||||
require_relative "helper"
|
||||
require "stringio"
|
||||
require "etc"
|
||||
require 'whisper'
|
||||
require 'test/unit'
|
||||
|
||||
# Exists to detect memory-related bug
|
||||
Whisper.log_set ->(level, buffer, user_data) {}, nil
|
||||
class TestWhisper < Test::Unit::TestCase
|
||||
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
|
||||
|
||||
class TestWhisper < TestBase
|
||||
def setup
|
||||
@params = Whisper::Params.new
|
||||
end
|
||||
|
||||
def test_whisper
|
||||
@whisper = Whisper::Context.new("base.en")
|
||||
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
|
||||
params = Whisper::Params.new
|
||||
params.print_timestamps = false
|
||||
|
||||
@whisper.transcribe(AUDIO, params) {|text|
|
||||
jfk = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
|
||||
@whisper.transcribe(jfk, params) {|text|
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, text
|
||||
}
|
||||
end
|
||||
|
||||
sub_test_case "After transcription" do
|
||||
class << self
|
||||
attr_reader :whisper
|
||||
|
||||
def startup
|
||||
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin'))
|
||||
params = Whisper::Params.new
|
||||
params.print_timestamps = false
|
||||
jfk = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav')
|
||||
@whisper.transcribe(jfk, params)
|
||||
end
|
||||
end
|
||||
|
||||
def whisper
|
||||
self.class.whisper
|
||||
end
|
||||
|
||||
def test_full_n_segments
|
||||
assert_equal 1, whisper.full_n_segments
|
||||
end
|
||||
@ -29,12 +44,6 @@ class TestWhisper < TestBase
|
||||
assert_equal 0, whisper.full_lang_id
|
||||
end
|
||||
|
||||
def test_full_get_segment
|
||||
segment = whisper.full_get_segment(0)
|
||||
assert_equal 0, segment.start_time
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, segment.text
|
||||
end
|
||||
|
||||
def test_full_get_segment_t0
|
||||
assert_equal 0, whisper.full_get_segment_t0(0)
|
||||
assert_raise IndexError do
|
||||
@ -61,12 +70,6 @@ class TestWhisper < TestBase
|
||||
def test_full_get_segment_text
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, whisper.full_get_segment_text(0)
|
||||
end
|
||||
|
||||
def test_full_get_segment_no_speech_prob
|
||||
prob = whisper.full_get_segment_no_speech_prob(0)
|
||||
assert prob > 0.0
|
||||
assert prob < 1.0
|
||||
end
|
||||
end
|
||||
|
||||
def test_lang_max_id
|
||||
@ -93,131 +96,4 @@ class TestWhisper < TestBase
|
||||
Whisper.lang_str_full(Whisper.lang_max_id + 1)
|
||||
end
|
||||
end
|
||||
|
||||
def test_log_set
|
||||
user_data = Object.new
|
||||
logs = []
|
||||
log_callback = ->(level, buffer, udata) {
|
||||
logs << [level, buffer, udata]
|
||||
}
|
||||
Whisper.log_set log_callback, user_data
|
||||
Whisper::Context.new("base.en")
|
||||
|
||||
assert logs.length > 30
|
||||
logs.each do |log|
|
||||
assert_include [Whisper::LOG_LEVEL_DEBUG, Whisper::LOG_LEVEL_INFO, Whisper::LOG_LEVEL_WARN], log[0]
|
||||
assert_same user_data, log[2]
|
||||
end
|
||||
end
|
||||
|
||||
def test_log_suppress
|
||||
stderr = $stderr
|
||||
Whisper.log_set ->(level, buffer, user_data) {
|
||||
# do nothing
|
||||
}, nil
|
||||
dev = StringIO.new("")
|
||||
$stderr = dev
|
||||
Whisper::Context.new("base.en")
|
||||
assert_empty dev.string
|
||||
ensure
|
||||
$stderr = stderr
|
||||
end
|
||||
|
||||
sub_test_case "full" do
|
||||
def setup
|
||||
super
|
||||
@whisper = Whisper::Context.new("base.en")
|
||||
@samples = File.read(AUDIO, nil, 78).unpack("s<*").collect {|i| i.to_f / 2**15}
|
||||
end
|
||||
|
||||
def test_full
|
||||
@whisper.full(@params, @samples, @samples.length)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
|
||||
end
|
||||
|
||||
def test_full_without_length
|
||||
@whisper.full(@params, @samples)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
|
||||
end
|
||||
|
||||
def test_full_enumerator
|
||||
samples = @samples.each
|
||||
@whisper.full(@params, samples, @samples.length)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
|
||||
end
|
||||
|
||||
def test_full_enumerator_without_length
|
||||
samples = @samples.each
|
||||
assert_raise ArgumentError do
|
||||
@whisper.full(@params, samples)
|
||||
end
|
||||
end
|
||||
|
||||
def test_full_enumerator_with_too_large_length
|
||||
samples = @samples.each.take(10).to_enum
|
||||
assert_raise StopIteration do
|
||||
@whisper.full(@params, samples, 11)
|
||||
end
|
||||
end
|
||||
|
||||
def test_full_with_memory_view
|
||||
samples = JFKReader.new(AUDIO)
|
||||
@whisper.full(@params, samples)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
|
||||
end
|
||||
|
||||
def test_full_parallel
|
||||
@whisper.full_parallel(@params, @samples, @samples.length, Etc.nprocessors)
|
||||
|
||||
assert_equal Etc.nprocessors, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
|
||||
def test_full_parallel_with_memory_view
|
||||
samples = JFKReader.new(AUDIO)
|
||||
@whisper.full_parallel(@params, samples, nil, Etc.nprocessors)
|
||||
|
||||
assert_equal Etc.nprocessors, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
|
||||
def test_full_parallel_without_length_and_n_processors
|
||||
@whisper.full_parallel(@params, @samples)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
|
||||
def test_full_parallel_without_length
|
||||
@whisper.full_parallel(@params, @samples, nil, Etc.nprocessors)
|
||||
|
||||
assert_equal Etc.nprocessors, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
|
||||
def test_full_parallel_without_n_processors
|
||||
@whisper.full_parallel(@params, @samples, @samples.length)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
end
|
||||
end
|
||||
|
@ -1,36 +1,36 @@
|
||||
require_relative "extsources"
|
||||
require "yaml"
|
||||
|
||||
Gem::Specification.new do |s|
|
||||
s.name = "whispercpp"
|
||||
s.authors = ["Georgi Gerganov", "Todd A. Fisher"]
|
||||
s.version = '1.3.1'
|
||||
s.date = '2024-12-19'
|
||||
s.version = '1.3.0'
|
||||
s.date = '2024-05-14'
|
||||
s.description = %q{High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model via Ruby}
|
||||
s.email = 'todd.fisher@gmail.com'
|
||||
s.extra_rdoc_files = ['LICENSE', 'README.md']
|
||||
|
||||
|
||||
s.files = `git ls-files . -z`.split("\x0") +
|
||||
EXTSOURCES.collect {|file|
|
||||
YAML.load_file("extsources.yaml").collect {|file|
|
||||
basename = File.basename(file)
|
||||
if s.extra_rdoc_files.include?(basename)
|
||||
basename
|
||||
else
|
||||
file.sub("../..", "ext")
|
||||
File.join("ext", basename)
|
||||
end
|
||||
}
|
||||
|
||||
s.summary = %q{Ruby whisper.cpp bindings}
|
||||
s.test_files = s.files.select {|file| file.start_with? "tests/"}
|
||||
|
||||
s.test_files = ["tests/test_whisper.rb"]
|
||||
|
||||
s.extensions << 'ext/extconf.rb'
|
||||
s.required_ruby_version = '>= 3.1.0'
|
||||
|
||||
|
||||
#### Documentation and testing.
|
||||
s.homepage = 'https://github.com/ggerganov/whisper.cpp'
|
||||
s.rdoc_options = ['--main', 'README.md']
|
||||
|
||||
s.rdoc_options = ['--main', '../../README.md']
|
||||
|
||||
|
||||
s.platform = Gem::Platform::RUBY
|
||||
|
||||
|
||||
s.licenses = ['MIT']
|
||||
end
|
||||
|
@ -1,28 +0,0 @@
|
||||
name: Close inactive issues
|
||||
on:
|
||||
schedule:
|
||||
- cron: "42 0 * * *"
|
||||
|
||||
# Fine-grant permission
|
||||
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
|
||||
permissions:
|
||||
issues: write
|
||||
|
||||
jobs:
|
||||
close-issues:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
with:
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 14
|
||||
stale-issue-label: "stale"
|
||||
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
|
||||
days-before-pr-stale: -1
|
||||
days-before-pr-close: -1
|
||||
operations-per-run: 10000
|
||||
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
@ -13,4 +13,5 @@ set_target_properties(${TARGET}
|
||||
PROPERTIES
|
||||
EXPORT_COMPILE_COMMANDS ON
|
||||
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
|
||||
INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib"
|
||||
)
|
||||
|
@ -42,8 +42,6 @@ endif()
|
||||
if(MSVC)
|
||||
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
|
||||
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
|
||||
else()
|
||||
execute_process(
|
||||
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
|
||||
|
@ -1,10 +1,10 @@
|
||||
prefix=@CMAKE_INSTALL_PREFIX@
|
||||
exec_prefix=${prefix}
|
||||
libdir=${exec_prefix}/lib
|
||||
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
|
||||
includedir=${prefix}/include
|
||||
|
||||
Name: whisper
|
||||
Description: Port of OpenAI's Whisper model in C/C++
|
||||
Version: @PROJECT_VERSION@
|
||||
Libs: -L${libdir} -lggml -lggml-base -lwhisper
|
||||
Libs: -L${libdir} -lwhisper
|
||||
Cflags: -I${includedir}
|
||||
|
@ -97,29 +97,52 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
add_subdirectory(whisper.wasm)
|
||||
set_target_properties(libmain PROPERTIES FOLDER "libs")
|
||||
add_subdirectory(stream.wasm)
|
||||
set_target_properties(libstream PROPERTIES FOLDER "libs")
|
||||
add_subdirectory(command.wasm)
|
||||
set_target_properties(libcommand PROPERTIES FOLDER "libs")
|
||||
#add_subdirectory(talk.wasm)
|
||||
#set_target_properties(libtalk PROPERTIES FOLDER "libs")
|
||||
add_subdirectory(bench.wasm)
|
||||
set_target_properties(libbench PROPERTIES FOLDER "libs")
|
||||
elseif(CMAKE_JS_VERSION)
|
||||
add_subdirectory(addon.node)
|
||||
set_target_properties(addon.node PROPERTIES FOLDER "examples")
|
||||
else()
|
||||
add_subdirectory(cli)
|
||||
add_subdirectory(bench)
|
||||
add_subdirectory(main)
|
||||
set_target_properties(main PROPERTIES FOLDER "examples")
|
||||
if (WHISPER_SDL2)
|
||||
add_subdirectory(stream)
|
||||
set_target_properties(stream PROPERTIES FOLDER "examples")
|
||||
endif (WHISPER_SDL2)
|
||||
add_subdirectory(server)
|
||||
set_target_properties(server PROPERTIES FOLDER "examples")
|
||||
if (WHISPER_SDL2)
|
||||
add_subdirectory(command)
|
||||
set_target_properties(command PROPERTIES FOLDER "examples")
|
||||
endif (WHISPER_SDL2)
|
||||
add_subdirectory(bench)
|
||||
set_target_properties(bench PROPERTIES FOLDER "examples")
|
||||
add_subdirectory(quantize)
|
||||
if (WHISPER_SDL2)
|
||||
add_subdirectory(stream)
|
||||
add_subdirectory(command)
|
||||
add_subdirectory(talk-llama)
|
||||
add_subdirectory(lsp)
|
||||
if (GGML_SYCL)
|
||||
add_subdirectory(sycl)
|
||||
endif()
|
||||
endif (WHISPER_SDL2)
|
||||
|
||||
add_subdirectory(deprecation-warning)
|
||||
set_target_properties(quantize PROPERTIES FOLDER "examples")
|
||||
if (WHISPER_SDL2)
|
||||
# TODO: disabled until update
|
||||
# https://github.com/ggerganov/whisper.cpp/issues/1818
|
||||
#add_subdirectory(talk)
|
||||
#set_target_properties(talk PROPERTIES FOLDER "examples")
|
||||
add_subdirectory(talk-llama)
|
||||
set_target_properties(talk-llama PROPERTIES FOLDER "examples")
|
||||
add_subdirectory(lsp)
|
||||
set_target_properties(lsp PROPERTIES FOLDER "examples")
|
||||
if (GGML_SYCL)
|
||||
add_subdirectory(sycl)
|
||||
set_target_properties(sycl PROPERTIES FOLDER "examples")
|
||||
endif()
|
||||
endif (WHISPER_SDL2)
|
||||
endif()
|
||||
|
||||
if (WHISPER_SDL2)
|
||||
add_subdirectory(wchess)
|
||||
set_target_properties(wchess PROPERTIES FOLDER "examples")
|
||||
endif (WHISPER_SDL2)
|
||||
|
@ -330,7 +330,6 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
|
||||
bool no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>();
|
||||
int32_t audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>();
|
||||
bool comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>();
|
||||
int32_t max_len = whisper_params.Get("max_len").As<Napi::Number>();
|
||||
|
||||
Napi::Value pcmf32Value = whisper_params.Get("pcmf32");
|
||||
std::vector<float> pcmf32_vec;
|
||||
@ -353,7 +352,6 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
|
||||
params.audio_ctx = audio_ctx;
|
||||
params.pcmf32 = pcmf32_vec;
|
||||
params.comma_in_time = comma_in_time;
|
||||
params.max_len = max_len;
|
||||
|
||||
Napi::Function callback = info[1].As<Napi::Function>();
|
||||
Worker* worker = new Worker(callback, params);
|
||||
|
@ -18,7 +18,6 @@ const whisperParams = {
|
||||
translate: true,
|
||||
no_timestamps: false,
|
||||
audio_ctx: 0,
|
||||
max_len: 0,
|
||||
};
|
||||
|
||||
const arguments = process.argv.slice(2);
|
||||
|
@ -1,8 +1,6 @@
|
||||
set(TARGET whisper-bench)
|
||||
set(TARGET bench)
|
||||
add_executable(${TARGET} bench.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
|
@ -1,4 +1,4 @@
|
||||
# whisper.cpp/examples/bench
|
||||
# bench
|
||||
|
||||
A very basic tool for benchmarking the inference performance on your device. The tool simply runs the Encoder part of
|
||||
the transformer on some random audio data and records the execution time. This way we can have an objective comparison
|
||||
@ -7,8 +7,11 @@ of the performance of the model for various setups.
|
||||
Benchmark results are tracked in the following Github issue: https://github.com/ggerganov/whisper.cpp/issues/89
|
||||
|
||||
```bash
|
||||
# run the bench too on the small.en model using 4 threads
|
||||
$ ./build/bin/whisper-bench -m ./models/ggml-small.en.bin -t 4
|
||||
# build the bench tool
|
||||
$ make bench
|
||||
|
||||
# run it on the small.en model using 4 threads
|
||||
$ ./bench -m ./models/ggml-small.en.bin -t 4
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-small.en.bin'
|
||||
whisper_model_load: n_vocab = 51864
|
||||
|
@ -1,10 +1,9 @@
|
||||
if (WHISPER_SDL2)
|
||||
set(TARGET whisper-command)
|
||||
# command
|
||||
set(TARGET command)
|
||||
add_executable(${TARGET} command.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
endif ()
|
||||
|
@ -1,14 +1,14 @@
|
||||
# whisper.cpp/examples/command
|
||||
# command
|
||||
|
||||
This is a basic Voice Assistant example that accepts voice commands from the microphone.
|
||||
More info is available in [issue #171](https://github.com/ggerganov/whisper.cpp/issues/171).
|
||||
|
||||
```bash
|
||||
# Run with default arguments and small model
|
||||
./whisper-command -m ./models/ggml-small.en.bin -t 8
|
||||
./command -m ./models/ggml-small.en.bin -t 8
|
||||
|
||||
# On Raspberry Pi, use tiny or base models + "-ac 768" for better performance
|
||||
./whisper-command -m ./models/ggml-tiny.en.bin -ac 768 -t 3 -c 0
|
||||
./command -m ./models/ggml-tiny.en.bin -ac 768 -t 3 -c 0
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
|
||||
@ -23,10 +23,10 @@ Initial tests show that this approach might be extremely efficient in terms of p
|
||||
|
||||
```bash
|
||||
# Run in guided mode, the list of allowed commands is in commands.txt
|
||||
./whisper-command -m ./models/ggml-base.en.bin -cmd ./examples/command/commands.txt
|
||||
./command -m ./models/ggml-base.en.bin -cmd ./examples/command/commands.txt
|
||||
|
||||
# On Raspberry Pi, in guided mode you can use "-ac 128" for extra performance
|
||||
./whisper-command -m ./models/ggml-tiny.en.bin -cmd ./examples/command/commands.txt -ac 128 -t 3 -c 0
|
||||
./command -m ./models/ggml-tiny.en.bin -cmd ./examples/command/commands.txt -ac 128 -t 3 -c 0
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/207435352-8fc4ed3f-bde5-4555-9b8b-aeeb76bee969.mp4
|
||||
@ -34,7 +34,7 @@ https://user-images.githubusercontent.com/1991296/207435352-8fc4ed3f-bde5-4555-9
|
||||
|
||||
## Building
|
||||
|
||||
The `whisper-command` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
The `command` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2
|
||||
@ -47,6 +47,5 @@ sudo dnf install SDL2 SDL2-devel
|
||||
# Install SDL2 on Mac OS
|
||||
brew install sdl2
|
||||
|
||||
cmake -B build -DWHISPER_SDL2=ON
|
||||
cmake --build build --config Release
|
||||
make command
|
||||
```
|
||||
|
@ -21,12 +21,6 @@
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <chrono>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
@ -685,10 +679,6 @@ static int process_general_transcription(struct whisper_context * ctx, audio_asy
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
#if defined(_WIN32)
|
||||
SetConsoleOutputCP(CP_UTF8);
|
||||
#endif
|
||||
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
|
@ -72,6 +72,9 @@ bool ggml_common_quantize_0(
|
||||
case GGML_FTYPE_MOSTLY_IQ4_XS:
|
||||
case GGML_FTYPE_MOSTLY_IQ1_M:
|
||||
case GGML_FTYPE_MOSTLY_BF16:
|
||||
case GGML_FTYPE_MOSTLY_Q4_0_4_4:
|
||||
case GGML_FTYPE_MOSTLY_Q4_0_4_8:
|
||||
case GGML_FTYPE_MOSTLY_Q4_0_8_8:
|
||||
{
|
||||
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
|
||||
return false;
|
||||
@ -209,6 +212,9 @@ bool ggml_common_quantize_0(
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
case GGML_TYPE_IQ1_M:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0:
|
||||
case GGML_TYPE_COUNT:
|
||||
|
@ -1,7 +1,5 @@
|
||||
#include "common-sdl.h"
|
||||
|
||||
#include <cstdio>
|
||||
|
||||
audio_async::audio_async(int len_ms) {
|
||||
m_len_ms = len_ms;
|
||||
|
||||
|
@ -1,4 +0,0 @@
|
||||
add_executable(main ./deprecation-warning.cpp)
|
||||
add_executable(bench ./deprecation-warning.cpp)
|
||||
add_executable(stream ./deprecation-warning.cpp)
|
||||
add_executable(command ./deprecation-warning.cpp)
|
@ -1,17 +0,0 @@
|
||||
# Migration notice for binary filenames
|
||||
|
||||
> [!IMPORTANT]
|
||||
[2024 Dec 20] Binaries have been renamed w/ a `whisper-` prefix. `main` is now `whisper-cli`, `server` is `whisper-server`, etc (https://github.com/ggerganov/whisper.cpp/pull/2648)
|
||||
|
||||
This migration was important, but it is a breaking change that may not always be immediately obvious to users.
|
||||
|
||||
Please update all scripts and workflows to use the new binary names.
|
||||
|
||||
| Old Filename | New Filename |
|
||||
| ---- | ---- |
|
||||
| main | whisper-cli |
|
||||
| bench | whisper-bench |
|
||||
| stream | whisper-stream |
|
||||
| command | whisper-command |
|
||||
| server | whisper-server |
|
||||
| talk-llama | whisper-talk-llama |
|
@ -1,38 +0,0 @@
|
||||
// Warns users that this filename was deprecated, and provides a link for more information.
|
||||
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
|
||||
// Main
|
||||
int main(int argc, char** argv) {
|
||||
std::string filename = "main";
|
||||
if (argc >= 1) {
|
||||
filename = argv[0];
|
||||
}
|
||||
|
||||
// Get only the program name from the full path
|
||||
size_t pos = filename.find_last_of("/\\");
|
||||
if (pos != std::string::npos) {
|
||||
filename = filename.substr(pos+1);
|
||||
}
|
||||
|
||||
// Append "whisper-" to the beginning of filename to get the replacemnt filename
|
||||
std::string replacement_filename = "whisper-" + filename;
|
||||
|
||||
// The exception is if the filename is "main", then our replacement filename is "whisper-cli"
|
||||
if (filename == "main") {
|
||||
replacement_filename = "whisper-cli";
|
||||
}
|
||||
|
||||
if (filename == "main.exe") {
|
||||
replacement_filename = "whisper-cli.exe";
|
||||
}
|
||||
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
|
||||
fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str());
|
||||
fprintf(stdout, " See https://github.com/ggerganov/whisper.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
return EXIT_FAILURE;
|
||||
}
|
@ -204,6 +204,8 @@ static int decode_audio(struct audio_buffer *audio_buf, s16 **data, int *size)
|
||||
const size_t errbuffsize = 1024;
|
||||
char errbuff[errbuffsize];
|
||||
|
||||
av_register_all(); // from avformat. Still a must-have call for ffmpeg v3! (can be skipped for later versions)
|
||||
|
||||
fmt_ctx = avformat_alloc_context();
|
||||
avio_ctx_buffer = (u8*)av_malloc(AVIO_CTX_BUF_SZ);
|
||||
LOG("Creating an avio context: AVIO_CTX_BUF_SZ=%d\n", AVIO_CTX_BUF_SZ);
|
||||
|
@ -11,7 +11,7 @@
|
||||
# Press Ctrl+C to stop recording
|
||||
#
|
||||
|
||||
executable="./build/bin/whisper-cli"
|
||||
executable="./main"
|
||||
model="base.en"
|
||||
model_path="models/ggml-$model.bin"
|
||||
|
||||
@ -46,7 +46,7 @@ ffmpeg -y -i ./rec.wav -ar 16000 -ac 1 -c:a pcm_s16le ./rec16.wav > /dev/null 2>
|
||||
|
||||
# run Whisper
|
||||
echo "Processing ..."
|
||||
${executable} -m models/ggml-base.en.bin rec16.wav -owts > /dev/null 2>&1
|
||||
./main -m models/ggml-base.en.bin rec16.wav -owts > /dev/null 2>&1
|
||||
|
||||
# generate Karaoke video
|
||||
echo "Generating video ..."
|
||||
|
@ -14,7 +14,7 @@ model="base.en"
|
||||
|
||||
check_requirements()
|
||||
{
|
||||
if ! command -v ./build/bin/whisper-cli &>/dev/null; then
|
||||
if ! command -v ./main &>/dev/null; then
|
||||
echo "whisper.cpp main executable is required (make)"
|
||||
exit 1
|
||||
fi
|
||||
@ -100,7 +100,7 @@ while [ $running -eq 1 ]; do
|
||||
err=$(cat /tmp/whisper-live.err | wc -l)
|
||||
done
|
||||
|
||||
./build/bin/whisper-cli -t 8 -m ./models/ggml-${model}.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
|
||||
./main -t 8 -m ./models/ggml-${model}.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
|
||||
|
||||
while [ $SECONDS -lt $((($i+1)*$step_s)) ]; do
|
||||
sleep 1
|
||||
@ -109,4 +109,4 @@ while [ $running -eq 1 ]; do
|
||||
done
|
||||
|
||||
killall -v ffmpeg
|
||||
killall -v whisper-cli
|
||||
killall -v main
|
||||
|
@ -11,7 +11,6 @@
|
||||
#include <vector>
|
||||
#include <deque>
|
||||
#include <set>
|
||||
#include <chrono>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
@ -182,7 +181,7 @@ static json unguided_transcription(struct whisper_context * ctx, audio_async &au
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.suppress_nst = true;
|
||||
wparams.suppress_non_speech_tokens = true;
|
||||
// run the transformer and a single decoding pass
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
|
||||
@ -226,7 +225,7 @@ static json guided_transcription(struct whisper_context * ctx, audio_async &audi
|
||||
wparams.prompt_tokens = cs.prompt_tokens.data();
|
||||
wparams.prompt_n_tokens = cs.prompt_tokens.size();
|
||||
// TODO: properly expose as option
|
||||
wparams.suppress_nst = true;
|
||||
wparams.suppress_non_speech_tokens = true;
|
||||
|
||||
// run the transformer and a single decoding pass
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
|
@ -1,8 +1,6 @@
|
||||
set(TARGET whisper-cli)
|
||||
add_executable(${TARGET} cli.cpp)
|
||||
set(TARGET main)
|
||||
add_executable(${TARGET} main.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE common whisper ${FFMPEG_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
@ -1,12 +1,12 @@
|
||||
# whisper.cpp/examples/cli
|
||||
# main
|
||||
|
||||
This is the main example demonstrating most of the functionality of the Whisper model.
|
||||
It can be used as a reference for using the `whisper.cpp` library in other projects.
|
||||
|
||||
```
|
||||
./build/bin/whisper-cli -h
|
||||
./main -h
|
||||
|
||||
usage: ./build-pkg/bin/whisper-cli [options] file0.wav file1.wav ...
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help [default] show this help message and exit
|
||||
@ -20,12 +20,9 @@ options:
|
||||
-sow, --split-on-word [false ] split on word rather than on token
|
||||
-bo N, --best-of N [5 ] number of best candidates to keep
|
||||
-bs N, --beam-size N [5 ] beam size for beam search
|
||||
-ac N, --audio-ctx N [0 ] audio context size (0 - all)
|
||||
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
|
||||
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
|
||||
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
|
||||
-tp, --temperature N [0.00 ] The sampling temperature, between 0 and 1
|
||||
-tpi, --temperature-inc N [0.20 ] The increment of temperature, between 0 and 1
|
||||
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
|
||||
-tr, --translate [false ] translate from source language to english
|
||||
-di, --diarize [false ] stereo audio diarization
|
||||
@ -41,23 +38,16 @@ options:
|
||||
-oj, --output-json [false ] output result in a JSON file
|
||||
-ojf, --output-json-full [false ] include more information in the JSON file
|
||||
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
|
||||
-np, --no-prints [false ] do not print anything other than the results
|
||||
-ps, --print-special [false ] print special tokens
|
||||
-pc, --print-colors [false ] print colors
|
||||
-pp, --print-progress [false ] print progress
|
||||
-nt, --no-timestamps [false ] do not print timestamps
|
||||
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
|
||||
-dl, --detect-language [false ] exit after automatically detecting language
|
||||
--prompt PROMPT [ ] initial prompt (max n_text_ctx/2 tokens)
|
||||
--prompt PROMPT [ ] initial prompt
|
||||
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
|
||||
-f FNAME, --file FNAME [ ] input WAV file path
|
||||
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
|
||||
-dtw MODEL --dtw MODEL [ ] compute token-level timestamps
|
||||
-ls, --log-score [false ] log best decoder scores of tokens
|
||||
-ng, --no-gpu [false ] disable GPU
|
||||
-fa, --flash-attn [false ] flash attention
|
||||
--suppress-regex REGEX [ ] regular expression matching tokens to suppress
|
||||
--grammar GRAMMAR [ ] GBNF grammar to guide decoding
|
||||
--grammar-rule RULE [ ] top-level GBNF grammar rule name
|
||||
--grammar-penalty N [100.0 ] scales down logits of nongrammar tokens
|
||||
```
|
@ -12,11 +12,6 @@
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
@ -48,7 +43,6 @@ struct whisper_params {
|
||||
float word_thold = 0.01f;
|
||||
float entropy_thold = 2.40f;
|
||||
float logprob_thold = -1.00f;
|
||||
float no_speech_thold = 0.6f;
|
||||
float grammar_penalty = 100.0f;
|
||||
float temperature = 0.0f;
|
||||
float temperature_inc = 0.2f;
|
||||
@ -76,7 +70,6 @@ struct whisper_params {
|
||||
bool log_score = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
bool suppress_nst = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt;
|
||||
@ -111,11 +104,6 @@ static char * whisper_param_turn_lowercase(char * in){
|
||||
return in;
|
||||
}
|
||||
|
||||
static char * requires_value_error(const std::string & arg) {
|
||||
fprintf(stderr, "error: argument %s requires value\n", arg.c_str());
|
||||
exit(0);
|
||||
}
|
||||
|
||||
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
for (int i = 1; i < argc; i++) {
|
||||
std::string arg = argv[i];
|
||||
@ -134,23 +122,21 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
|
||||
whisper_print_usage(argc, argv, params);
|
||||
exit(0);
|
||||
}
|
||||
#define ARGV_NEXT (((i + 1) < argc) ? argv[++i] : requires_value_error(arg))
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(ARGV_NEXT); }
|
||||
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(ARGV_NEXT); }
|
||||
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(ARGV_NEXT); }
|
||||
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(ARGV_NEXT); }
|
||||
else if (arg == "-nth" || arg == "--no-speech-thold") { params.no_speech_thold = std::stof(ARGV_NEXT); }
|
||||
else if (arg == "-tp" || arg == "--temperature") { params.temperature = std::stof(ARGV_NEXT); }
|
||||
else if (arg == "-tpi" || arg == "--temperature-inc") { params.temperature_inc = std::stof(ARGV_NEXT); }
|
||||
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
||||
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); }
|
||||
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); }
|
||||
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); }
|
||||
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); }
|
||||
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); }
|
||||
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
||||
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); }
|
||||
else if (arg == "-tp" || arg == "--temperature") { params.temperature = std::stof(argv[++i]); }
|
||||
else if (arg == "-tpi" || arg == "--temperature-inc") { params.temperature_inc = std::stof(argv[++i]); }
|
||||
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
|
||||
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
||||
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
|
||||
@ -162,31 +148,30 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
|
||||
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
|
||||
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
|
||||
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
|
||||
else if (arg == "-fp" || arg == "--font-path") { params.font_path = ARGV_NEXT; }
|
||||
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
|
||||
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
|
||||
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
|
||||
else if (arg == "-ojf" || arg == "--output-json-full"){ params.output_jsn_full = params.output_jsn = true; }
|
||||
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(ARGV_NEXT); }
|
||||
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); }
|
||||
else if (arg == "-np" || arg == "--no-prints") { params.no_prints = true; }
|
||||
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
||||
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
|
||||
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
|
||||
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = whisper_param_turn_lowercase(ARGV_NEXT); }
|
||||
else if (arg == "-l" || arg == "--language") { params.language = whisper_param_turn_lowercase(argv[++i]); }
|
||||
else if (arg == "-dl" || arg == "--detect-language") { params.detect_language = true; }
|
||||
else if ( arg == "--prompt") { params.prompt = ARGV_NEXT; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = ARGV_NEXT; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(ARGV_NEXT); }
|
||||
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = ARGV_NEXT; }
|
||||
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = ARGV_NEXT; }
|
||||
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
|
||||
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
||||
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
|
||||
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; }
|
||||
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
|
||||
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-sns" || arg == "--suppress-nst") { params.suppress_nst = true; }
|
||||
else if ( arg == "--suppress-regex") { params.suppress_regex = ARGV_NEXT; }
|
||||
else if ( arg == "--grammar") { params.grammar = ARGV_NEXT; }
|
||||
else if ( arg == "--grammar-rule") { params.grammar_rule = ARGV_NEXT; }
|
||||
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(ARGV_NEXT); }
|
||||
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; }
|
||||
else if ( arg == "--grammar") { params.grammar = argv[++i]; }
|
||||
else if ( arg == "--grammar-rule") { params.grammar_rule = argv[++i]; }
|
||||
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); }
|
||||
else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
whisper_print_usage(argc, argv, params);
|
||||
@ -217,7 +202,6 @@ static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params
|
||||
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
|
||||
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
|
||||
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
|
||||
fprintf(stderr, " -nth N, --no-speech-thold N [%-7.2f] no speech threshold\n", params.no_speech_thold);
|
||||
fprintf(stderr, " -tp, --temperature N [%-7.2f] The sampling temperature, between 0 and 1\n", params.temperature);
|
||||
fprintf(stderr, " -tpi, --temperature-inc N [%-7.2f] The increment of temperature, between 0 and 1\n",params.temperature_inc);
|
||||
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
|
||||
@ -250,7 +234,6 @@ static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params
|
||||
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
|
||||
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
|
||||
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
|
||||
fprintf(stderr, " -sns, --suppress-nst [%-7s] suppress non-speech tokens\n", params.suppress_nst ? "true" : "false");
|
||||
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
|
||||
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
|
||||
fprintf(stderr, " --grammar-rule RULE [%-7s] top-level GBNF grammar rule name\n", params.grammar_rule.c_str());
|
||||
@ -921,13 +904,6 @@ static bool output_lrc(struct whisper_context * ctx, const char * fname, const w
|
||||
static void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
#if defined(_WIN32)
|
||||
// Set the console output code page to UTF-8, while command line arguments
|
||||
// are still encoded in the system's code page. In this way, we can print
|
||||
// non-ASCII characters to the console, and access files with non-ASCII paths.
|
||||
SetConsoleOutputCP(CP_UTF8);
|
||||
#endif
|
||||
|
||||
whisper_params params;
|
||||
|
||||
// If the only argument starts with "@", read arguments line-by-line
|
||||
@ -1145,12 +1121,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
wparams.no_speech_thold = params.no_speech_thold;
|
||||
|
||||
wparams.no_timestamps = params.no_timestamps;
|
||||
|
||||
wparams.suppress_nst = params.suppress_nst;
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s, 0 };
|
||||
|
||||
const auto & grammar_parsed = params.grammar_parsed;
|
@ -1,4 +1,4 @@
|
||||
set(TARGET whisper-server)
|
||||
set(TARGET server)
|
||||
add_executable(${TARGET} server.cpp httplib.h)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
@ -8,5 +8,3 @@ target_link_libraries(${TARGET} PRIVATE common json_cpp whisper ${CMAKE_THREAD_L
|
||||
if (WIN32)
|
||||
target_link_libraries(${TARGET} PRIVATE ws2_32)
|
||||
endif()
|
||||
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
|
@ -1,4 +1,4 @@
|
||||
# whisper.cpp/examples/server
|
||||
# whisper.cpp http server
|
||||
|
||||
Simple http server. WAV Files are passed to the inference model via http requests.
|
||||
|
||||
@ -7,9 +7,9 @@ https://github.com/ggerganov/whisper.cpp/assets/1991296/e983ee53-8741-4eb5-9048-
|
||||
## Usage
|
||||
|
||||
```
|
||||
./build/bin/whisper-server -h
|
||||
./server -h
|
||||
|
||||
usage: ./build/bin/whisper-server [options]
|
||||
usage: ./bin/server [options]
|
||||
|
||||
options:
|
||||
-h, --help [default] show this help message and exit
|
||||
|
@ -12,7 +12,6 @@
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
#include <sstream>
|
||||
#include <chrono>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
@ -62,7 +61,6 @@ struct whisper_params {
|
||||
float logprob_thold = -1.00f;
|
||||
float temperature = 0.00f;
|
||||
float temperature_inc = 0.20f;
|
||||
float no_speech_thold = 0.6f;
|
||||
|
||||
bool debug_mode = false;
|
||||
bool translate = false;
|
||||
@ -78,7 +76,6 @@ struct whisper_params {
|
||||
bool no_timestamps = false;
|
||||
bool use_gpu = true;
|
||||
bool flash_attn = false;
|
||||
bool suppress_nst = false;
|
||||
|
||||
std::string language = "en";
|
||||
std::string prompt = "";
|
||||
@ -137,9 +134,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, " --public PATH, [%-7s] Path to the public folder\n", sparams.public_path.c_str());
|
||||
fprintf(stderr, " --request-path PATH, [%-7s] Request path for all requests\n", sparams.request_path.c_str());
|
||||
fprintf(stderr, " --inference-path PATH, [%-7s] Inference path for all requests\n", sparams.inference_path.c_str());
|
||||
fprintf(stderr, " --convert, [%-7s] Convert audio to WAV, requires ffmpeg on the server\n", sparams.ffmpeg_converter ? "true" : "false");
|
||||
fprintf(stderr, " -sns, --suppress-nst [%-7s] suppress non-speech tokens\n", params.suppress_nst ? "true" : "false");
|
||||
fprintf(stderr, " -nth N, --no-speech-thold N [%-7.2f] no speech threshold\n", params.no_speech_thold);
|
||||
fprintf(stderr, " --convert, [%-7s] Convert audio to WAV, requires ffmpeg on the server", sparams.ffmpeg_converter ? "true" : "false");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
@ -184,9 +179,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params, serve
|
||||
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
|
||||
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
|
||||
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
|
||||
else if (arg == "-sns" || arg == "--suppress-nst") { params.suppress_nst = true; }
|
||||
else if (arg == "-nth" || arg == "--no-speech-thold") { params.no_speech_thold = std::stof(argv[++i]); }
|
||||
|
||||
// server params
|
||||
else if ( arg == "--port") { sparams.port = std::stoi(argv[++i]); }
|
||||
else if ( arg == "--host") { sparams.hostname = argv[++i]; }
|
||||
@ -224,24 +216,6 @@ void check_ffmpeg_availibility() {
|
||||
}
|
||||
}
|
||||
|
||||
std::string generate_temp_filename(const std::string &prefix, const std::string &extension) {
|
||||
auto now = std::chrono::system_clock::now();
|
||||
auto now_time_t = std::chrono::system_clock::to_time_t(now);
|
||||
|
||||
static std::mt19937 rng{std::random_device{}()};
|
||||
std::uniform_int_distribution<long long> dist(0, 1e9);
|
||||
|
||||
std::stringstream ss;
|
||||
ss << prefix
|
||||
<< "-"
|
||||
<< std::put_time(std::localtime(&now_time_t), "%Y%m%d-%H%M%S")
|
||||
<< "-"
|
||||
<< dist(rng)
|
||||
<< extension;
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
bool convert_to_wav(const std::string & temp_filename, std::string & error_resp) {
|
||||
std::ostringstream cmd_stream;
|
||||
std::string converted_filename_temp = temp_filename + "_temp.wav";
|
||||
@ -498,14 +472,6 @@ void get_req_parameters(const Request & req, whisper_params & params)
|
||||
{
|
||||
params.temperature_inc = std::stof(req.get_file_value("temperature_inc").content);
|
||||
}
|
||||
if (req.has_file("suppress_non_speech"))
|
||||
{
|
||||
params.suppress_nst = parse_str_to_bool(req.get_file_value("suppress_non_speech").content);
|
||||
}
|
||||
if (req.has_file("suppress_nst"))
|
||||
{
|
||||
params.suppress_nst = parse_str_to_bool(req.get_file_value("suppress_nst").content);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
@ -711,7 +677,8 @@ int main(int argc, char ** argv) {
|
||||
if (sparams.ffmpeg_converter) {
|
||||
// if file is not wav, convert to wav
|
||||
// write to temporary file
|
||||
const std::string temp_filename = generate_temp_filename("whisper-server", ".wav");
|
||||
const std::string temp_filename_base = std::tmpnam(nullptr);
|
||||
const std::string temp_filename = temp_filename_base + ".wav";
|
||||
std::ofstream temp_file{temp_filename, std::ios::binary};
|
||||
temp_file << audio_file.content;
|
||||
temp_file.close();
|
||||
@ -744,6 +711,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
printf("Successfully loaded %s\n", filename.c_str());
|
||||
|
||||
// print system information
|
||||
@ -811,7 +779,6 @@ int main(int argc, char ** argv) {
|
||||
wparams.beam_search.beam_size = params.beam_size;
|
||||
|
||||
wparams.temperature = params.temperature;
|
||||
wparams.no_speech_thold = params.no_speech_thold;
|
||||
wparams.temperature_inc = params.temperature_inc;
|
||||
wparams.entropy_thold = params.entropy_thold;
|
||||
wparams.logprob_thold = params.logprob_thold;
|
||||
@ -819,8 +786,6 @@ int main(int argc, char ** argv) {
|
||||
wparams.no_timestamps = params.no_timestamps;
|
||||
wparams.token_timestamps = !params.no_timestamps && params.response_format == vjson_format;
|
||||
|
||||
wparams.suppress_nst = params.suppress_nst;
|
||||
|
||||
whisper_print_user_data user_data = { ¶ms, &pcmf32s, 0 };
|
||||
|
||||
// this callback is called on each new segment
|
||||
@ -964,7 +929,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// TODO compression_ratio and no_speech_prob are not implemented yet
|
||||
// segment["compression_ratio"] = 0;
|
||||
segment["no_speech_prob"] = whisper_full_get_segment_no_speech_prob(ctx, i);
|
||||
// segment["no_speech_prob"] = 0;
|
||||
|
||||
jres["segments"].push_back(segment);
|
||||
}
|
||||
|
@ -1,10 +1,9 @@
|
||||
if (WHISPER_SDL2)
|
||||
set(TARGET whisper-stream)
|
||||
# stream
|
||||
set(TARGET stream)
|
||||
add_executable(${TARGET} stream.cpp)
|
||||
|
||||
include(DefaultTargetOptions)
|
||||
|
||||
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
endif ()
|
||||
|
@ -1,11 +1,11 @@
|
||||
# whisper.cpp/examples/stream
|
||||
# stream
|
||||
|
||||
This is a naive example of performing real-time inference on audio from your microphone.
|
||||
The `whisper-stream` tool samples the audio every half a second and runs the transcription continously.
|
||||
The `stream` tool samples the audio every half a second and runs the transcription continously.
|
||||
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||
|
||||
```bash
|
||||
./build/bin/whisper-stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
|
||||
@ -15,7 +15,7 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
|
||||
Setting the `--step` argument to `0` enables the sliding window mode:
|
||||
|
||||
```bash
|
||||
./build/bin/whisper-stream -m ./models/ggml-base.en.bin -t 6 --step 0 --length 30000 -vth 0.6
|
||||
./stream -m ./models/ggml-small.en.bin -t 6 --step 0 --length 30000 -vth 0.6
|
||||
```
|
||||
|
||||
In this mode, the tool will transcribe only after some speech activity is detected. A very
|
||||
@ -27,7 +27,7 @@ a transcription block that is suitable for parsing.
|
||||
|
||||
## Building
|
||||
|
||||
The `whisper-stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
The `stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2
|
||||
@ -40,10 +40,21 @@ sudo dnf install SDL2 SDL2-devel
|
||||
# Install SDL2 on Mac OS
|
||||
brew install sdl2
|
||||
|
||||
cmake -B build -DWHISPER_SDL2=ON
|
||||
cmake --build build --config Release
|
||||
make stream
|
||||
```
|
||||
|
||||
./build/bin/whisper-stream
|
||||
Ensure you are at the root of the repo when running `make stream`. Not within the `examples/stream` dir
|
||||
as the libraries needed like `common-sdl.h` are located within `examples`. Attempting to compile within
|
||||
`examples/steam` means your compiler cannot find them and it gives an error it cannot find the file.
|
||||
|
||||
```bash
|
||||
whisper.cpp/examples/stream$ make stream
|
||||
g++ stream.cpp -o stream
|
||||
stream.cpp:6:10: fatal error: common/sdl.h: No such file or directory
|
||||
6 | #include "common/sdl.h"
|
||||
| ^~~~~~~~~~~~~~
|
||||
compilation terminated.
|
||||
make: *** [<builtin>: stream] Error 1
|
||||
```
|
||||
|
||||
## Web version
|
||||
|
@ -12,12 +12,7 @@
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <chrono>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
@ -118,10 +113,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
#if defined(_WIN32)
|
||||
SetConsoleOutputCP(CP_UTF8);
|
||||
#endif
|
||||
|
||||
whisper_params params;
|
||||
|
||||
if (whisper_params_parse(argc, argv, params) == false) {
|
||||
@ -166,7 +157,6 @@ int main(int argc, char ** argv) {
|
||||
cparams.use_gpu = params.use_gpu;
|
||||
cparams.flash_attn = params.flash_attn;
|
||||
|
||||
fprintf(stderr, "whisper_init_from_file_with_params ...\n");
|
||||
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
|
||||
|
||||
std::vector<float> pcmf32 (n_samples_30s, 0.0f);
|
||||
@ -176,8 +166,6 @@ int main(int argc, char ** argv) {
|
||||
std::vector<whisper_token> prompt_tokens;
|
||||
|
||||
// print some info about the processing
|
||||
fprintf(stderr, "whisper_init_from_file_with_params ok\n");
|
||||
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
if (!whisper_is_multilingual(ctx)) {
|
||||
|
@ -5,5 +5,5 @@
|
||||
set(TARGET ls-sycl-device)
|
||||
add_executable(${TARGET} ls-sycl-device.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
@ -7,16 +7,13 @@ cd build
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#for FP16
|
||||
#cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON # faster for long-prompt inference
|
||||
#cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON # faster for long-prompt inference
|
||||
|
||||
#for FP32
|
||||
cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
#for other features from the examples, e.g. stream and talk link with SDL2:
|
||||
#cmake .. -DGGML_SYCL=ON -DWHISPER_SDL2=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
#build example/main only
|
||||
#cmake --build . --config Release --target main
|
||||
|
||||
#build all binary
|
||||
cmake --build . --config Release -v
|
||||
cmake --build . --config Release -v
|
@ -1,26 +1,11 @@
|
||||
if (WHISPER_SDL2)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
|
||||
set(TARGET whisper-talk-llama)
|
||||
# talk-llama
|
||||
set(TARGET talk-llama)
|
||||
add_executable(${TARGET} talk-llama.cpp
|
||||
llama.cpp
|
||||
llama-adapter.cpp
|
||||
llama-arch.cpp
|
||||
llama-batch.cpp
|
||||
llama-chat.cpp
|
||||
llama-context.cpp
|
||||
llama-cparams.cpp
|
||||
llama-grammar.cpp
|
||||
llama-hparams.cpp
|
||||
llama-impl.cpp
|
||||
llama-kv-cache.cpp
|
||||
llama-mmap.cpp
|
||||
llama-model-loader.cpp
|
||||
llama-model.cpp
|
||||
llama-quant.cpp
|
||||
llama-sampling.cpp
|
||||
llama-vocab.cpp
|
||||
llama-grammar.cpp
|
||||
llama-sampling.cpp
|
||||
unicode.cpp
|
||||
unicode-data.cpp)
|
||||
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
||||
|
@ -1,4 +1,4 @@
|
||||
# whisper.cpp/examples/talk-llama
|
||||
# talk-llama
|
||||
|
||||
Talk with an LLaMA AI in your terminal
|
||||
|
||||
@ -12,7 +12,7 @@ https://github.com/ggerganov/whisper.cpp/assets/1991296/d97a3788-bf2a-4756-9a43-
|
||||
|
||||
## Building
|
||||
|
||||
The `whisper-talk-llama` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
The `talk-llama` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
||||
|
||||
```bash
|
||||
# Install SDL2
|
||||
@ -25,12 +25,11 @@ sudo dnf install SDL2 SDL2-devel
|
||||
# Install SDL2 on Mac OS
|
||||
brew install sdl2
|
||||
|
||||
# Build the "whisper-talk-llama" executable
|
||||
cmake -B build -S . -DWHISPER_SDL2=ON
|
||||
cmake --build build --config Release
|
||||
# Build the "talk-llama" executable
|
||||
make talk-llama
|
||||
|
||||
# Run it
|
||||
./build/bin/whisper-talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
|
||||
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
|
||||
```
|
||||
|
||||
- The `-mw` argument specifies the Whisper model that you would like to use. Recommended `base` or `small` for real-time experience
|
||||
@ -38,16 +37,16 @@ cmake --build build --config Release
|
||||
|
||||
## Session
|
||||
|
||||
The `whisper-talk-llama` tool supports session management to enable more coherent and continuous conversations. By maintaining context from previous interactions, it can better understand and respond to user requests in a more natural way.
|
||||
The `talk-llama` tool supports session management to enable more coherent and continuous conversations. By maintaining context from previous interactions, it can better understand and respond to user requests in a more natural way.
|
||||
|
||||
To enable session support, use the `--session FILE` command line option when running the program. The `whisper-talk-llama` model state will be saved to the specified file after each interaction. If the file does not exist, it will be created. If the file exists, the model state will be loaded from it, allowing you to resume a previous session.
|
||||
To enable session support, use the `--session FILE` command line option when running the program. The `talk-llama` model state will be saved to the specified file after each interaction. If the file does not exist, it will be created. If the file exists, the model state will be loaded from it, allowing you to resume a previous session.
|
||||
|
||||
This feature is especially helpful for maintaining context in long conversations or when interacting with the AI assistant across multiple sessions. It ensures that the assistant remembers the previous interactions and can provide more relevant and contextual responses.
|
||||
|
||||
Example usage:
|
||||
|
||||
```bash
|
||||
./build/bin/whisper-talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
|
||||
./talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
|
||||
```
|
||||
|
||||
## TTS
|
||||
|
@ -1,347 +0,0 @@
|
||||
#include "llama-adapter.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-mmap.h"
|
||||
#include "llama-model.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <cassert>
|
||||
#include <stdexcept>
|
||||
|
||||
// vec
|
||||
|
||||
struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
|
||||
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return tensors[il];
|
||||
}
|
||||
|
||||
struct ggml_tensor * llama_adapter_cvec::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||||
ggml_tensor * layer_dir = tensor_for(il);
|
||||
if (layer_dir != nullptr) {
|
||||
cur = ggml_add(ctx, cur, layer_dir);
|
||||
}
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
bool llama_adapter_cvec::init(const llama_model & model) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
GGML_ASSERT(tensors.empty());
|
||||
GGML_ASSERT(ctxs.empty());
|
||||
GGML_ASSERT(bufs.empty());
|
||||
|
||||
// create a context for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
|
||||
ggml_context * ctx = ggml_init(params);
|
||||
if (!ctx) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ctx_map[buft] = ctx;
|
||||
ctxs.emplace_back(ctx);
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
return it->second;
|
||||
};
|
||||
|
||||
// make tensors
|
||||
tensors.reserve(hparams.n_layer);
|
||||
tensors.push_back(nullptr); // there's never a tensor for layer 0
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
ggml_backend_buffer_type_t buft = model.select_buft(il);
|
||||
ggml_context * ctx = ctx_for_buft(buft);
|
||||
if (!ctx) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
|
||||
tensors.push_back(tensor);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
bufs.reserve(ctx_map.size());
|
||||
for (auto it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx = it.second;
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
if (!buf) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
bufs.emplace_back(buf);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int32_t llama_adapter_cvec::apply(
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end) {
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
if (data == nullptr) {
|
||||
// disable the current control vector (but leave allocated for later)
|
||||
layer_start = -1;
|
||||
layer_end = -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (n_embd != (int) hparams.n_embd) {
|
||||
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (tensors.empty()) {
|
||||
if (!init(model)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
layer_start = il_start;
|
||||
layer_end = il_end;
|
||||
|
||||
for (size_t il = 1; il < hparams.n_layer; il++) {
|
||||
assert(tensors[il] != nullptr);
|
||||
|
||||
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
||||
if (off + n_embd <= len) {
|
||||
ggml_backend_tensor_set(tensors[il], data + off, 0, n_embd * ggml_element_size(tensors[il]));
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// lora
|
||||
|
||||
llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor * w) {
|
||||
const std::string name(w->name);
|
||||
|
||||
const auto pos = ab_map.find(name);
|
||||
if (pos != ab_map.end()) {
|
||||
return &pos->second;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) {
|
||||
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
||||
|
||||
ggml_context * ctx_init;
|
||||
struct gguf_init_params meta_gguf_params = {
|
||||
/* .no_alloc = */ true,
|
||||
/* .ctx = */ &ctx_init,
|
||||
};
|
||||
|
||||
gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) };
|
||||
if (!ctx_gguf) {
|
||||
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
|
||||
}
|
||||
|
||||
ggml_context_ptr ctx { ctx_init };
|
||||
|
||||
// check metadata
|
||||
{
|
||||
auto get_kv_str = [&](const std::string & key) -> std::string {
|
||||
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
||||
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id));
|
||||
};
|
||||
auto get_kv_f32 = [&](const std::string & key) -> float {
|
||||
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
|
||||
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id);
|
||||
};
|
||||
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||||
|
||||
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
|
||||
if (general_type != "adapter") {
|
||||
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
|
||||
}
|
||||
|
||||
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
|
||||
auto general_arch = llm_arch_from_string(general_arch_str);
|
||||
if (general_arch != model.arch) {
|
||||
throw std::runtime_error("model arch and LoRA arch mismatch");
|
||||
}
|
||||
|
||||
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
|
||||
if (adapter_type != "lora") {
|
||||
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
|
||||
}
|
||||
|
||||
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
|
||||
}
|
||||
|
||||
int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
|
||||
|
||||
// contexts for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
// add a new context
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ true,
|
||||
};
|
||||
ggml_context * buft_ctx = ggml_init(params);
|
||||
if (!buft_ctx) {
|
||||
return nullptr;
|
||||
}
|
||||
ctx_map[buft] = buft_ctx;
|
||||
adapter.ctxs.emplace_back(buft_ctx);
|
||||
return buft_ctx;
|
||||
};
|
||||
return it->second;
|
||||
};
|
||||
|
||||
// bundle lora_a and lora_b into pairs
|
||||
std::map<std::string, llama_adapter_lora_weight> ab_map;
|
||||
auto str_endswith = [](const std::string & str, const std::string & suffix) {
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
};
|
||||
|
||||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) {
|
||||
std::string name(cur->name);
|
||||
if (str_endswith(name, ".lora_a")) {
|
||||
replace_all(name, ".lora_a", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_adapter_lora_weight(cur, nullptr);
|
||||
} else {
|
||||
ab_map[name].a = cur;
|
||||
}
|
||||
} else if (str_endswith(name, ".lora_b")) {
|
||||
replace_all(name, ".lora_b", "");
|
||||
if (ab_map.find(name) == ab_map.end()) {
|
||||
ab_map[name] = llama_adapter_lora_weight(nullptr, cur);
|
||||
} else {
|
||||
ab_map[name].b = cur;
|
||||
}
|
||||
} else if (str_endswith(name, "_norm.weight")) {
|
||||
// TODO: add support for norm vector
|
||||
// for now, we don't really care because most adapters still work fine without it
|
||||
continue;
|
||||
} else {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
|
||||
}
|
||||
}
|
||||
|
||||
// add tensors
|
||||
for (auto & it : ab_map) {
|
||||
const std::string & name = it.first;
|
||||
llama_adapter_lora_weight & w = it.second;
|
||||
bool is_token_embd = str_endswith(name, "token_embd.weight");
|
||||
|
||||
if (!w.a || !w.b) {
|
||||
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
|
||||
}
|
||||
|
||||
// device buft and device ctx
|
||||
const auto * model_tensor = model.get_tensor(name.c_str());
|
||||
if (!model_tensor) {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
|
||||
}
|
||||
|
||||
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
|
||||
// validate tensor shape
|
||||
if (is_token_embd) {
|
||||
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
|
||||
if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
|
||||
}
|
||||
} else {
|
||||
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
|
||||
}
|
||||
if (w.a->ne[1] != w.b->ne[0]) {
|
||||
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
|
||||
}
|
||||
}
|
||||
|
||||
// save tensor to adapter
|
||||
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
|
||||
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
||||
ggml_set_name(tensor_a, w.a->name);
|
||||
ggml_set_name(tensor_b, w.b->name);
|
||||
adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b);
|
||||
}
|
||||
|
||||
// allocate tensors / buffers and zero
|
||||
{
|
||||
adapter.ctxs.reserve(ctx_map.size());
|
||||
adapter.bufs.reserve(ctx_map.size());
|
||||
for (auto & it : ctx_map) {
|
||||
ggml_backend_buffer_type_t buft = it.first;
|
||||
ggml_context * ctx_dev = it.second;
|
||||
ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
|
||||
if (!buf) {
|
||||
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
|
||||
}
|
||||
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
|
||||
adapter.bufs.emplace_back(std::move(buf));
|
||||
}
|
||||
}
|
||||
|
||||
// set tensor data
|
||||
{
|
||||
llama_file gguf_file(path_lora, "rb");
|
||||
std::vector<uint8_t> read_buf;
|
||||
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
|
||||
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
|
||||
size_t size = ggml_nbytes(orig);
|
||||
read_buf.resize(size);
|
||||
gguf_file.seek(offs, SEEK_SET);
|
||||
gguf_file.read_raw(read_buf.data(), size);
|
||||
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
|
||||
};
|
||||
for (auto & it : adapter.ab_map) {
|
||||
auto orig = ab_map[it.first];
|
||||
auto dev = it.second;
|
||||
set_tensor(orig.a, dev.a);
|
||||
set_tensor(orig.b, dev.b);
|
||||
}
|
||||
}
|
||||
|
||||
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
||||
}
|
||||
|
||||
struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) {
|
||||
struct llama_adapter_lora * adapter = new llama_adapter_lora();
|
||||
|
||||
try {
|
||||
llama_adapter_lora_init_impl(*model, path_lora, *adapter);
|
||||
return adapter;
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||
|
||||
delete adapter;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void llama_adapter_lora_free(struct llama_adapter_lora * adapter) {
|
||||
delete adapter;
|
||||
}
|
@ -1,74 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
// TODO: pimpl
|
||||
|
||||
//
|
||||
// llama_adapter_cvec
|
||||
//
|
||||
|
||||
struct llama_adapter_cvec {
|
||||
struct ggml_tensor * tensor_for(int il) const;
|
||||
|
||||
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
|
||||
|
||||
int32_t apply(
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
int32_t n_embd,
|
||||
int32_t il_start,
|
||||
int32_t il_end);
|
||||
|
||||
private:
|
||||
bool init(const llama_model & model);
|
||||
|
||||
int32_t layer_start = -1;
|
||||
int32_t layer_end = -1;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||||
};
|
||||
|
||||
//
|
||||
// llama_adapter_lora
|
||||
//
|
||||
|
||||
struct llama_adapter_lora_weight {
|
||||
struct ggml_tensor * a = nullptr;
|
||||
struct ggml_tensor * b = nullptr;
|
||||
|
||||
// get actual scale based on rank and alpha
|
||||
float get_scale(float alpha, float adapter_scale) const {
|
||||
const float rank = (float) b->ne[0];
|
||||
const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
|
||||
return scale;
|
||||
}
|
||||
|
||||
llama_adapter_lora_weight() = default;
|
||||
llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
};
|
||||
|
||||
struct llama_adapter_lora {
|
||||
// map tensor name to lora_a_b
|
||||
std::unordered_map<std::string, struct llama_adapter_lora_weight> ab_map;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
float alpha;
|
||||
|
||||
llama_adapter_lora() = default;
|
||||
~llama_adapter_lora() = default;
|
||||
|
||||
llama_adapter_lora_weight * get_weight(struct ggml_tensor * w);
|
||||
};
|
File diff suppressed because it is too large
Load Diff
@ -1,402 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h" // ggml_op
|
||||
|
||||
#include <string>
|
||||
|
||||
//
|
||||
// gguf constants (sync with gguf.py)
|
||||
//
|
||||
|
||||
enum llm_arch {
|
||||
LLM_ARCH_LLAMA,
|
||||
LLM_ARCH_DECI,
|
||||
LLM_ARCH_FALCON,
|
||||
LLM_ARCH_BAICHUAN,
|
||||
LLM_ARCH_GROK,
|
||||
LLM_ARCH_GPT2,
|
||||
LLM_ARCH_GPTJ,
|
||||
LLM_ARCH_GPTNEOX,
|
||||
LLM_ARCH_MPT,
|
||||
LLM_ARCH_STARCODER,
|
||||
LLM_ARCH_REFACT,
|
||||
LLM_ARCH_BERT,
|
||||
LLM_ARCH_NOMIC_BERT,
|
||||
LLM_ARCH_JINA_BERT_V2,
|
||||
LLM_ARCH_BLOOM,
|
||||
LLM_ARCH_STABLELM,
|
||||
LLM_ARCH_QWEN,
|
||||
LLM_ARCH_QWEN2,
|
||||
LLM_ARCH_QWEN2MOE,
|
||||
LLM_ARCH_QWEN2VL,
|
||||
LLM_ARCH_PHI2,
|
||||
LLM_ARCH_PHI3,
|
||||
LLM_ARCH_PHIMOE,
|
||||
LLM_ARCH_PLAMO,
|
||||
LLM_ARCH_CODESHELL,
|
||||
LLM_ARCH_ORION,
|
||||
LLM_ARCH_INTERNLM2,
|
||||
LLM_ARCH_MINICPM,
|
||||
LLM_ARCH_MINICPM3,
|
||||
LLM_ARCH_GEMMA,
|
||||
LLM_ARCH_GEMMA2,
|
||||
LLM_ARCH_STARCODER2,
|
||||
LLM_ARCH_MAMBA,
|
||||
LLM_ARCH_XVERSE,
|
||||
LLM_ARCH_COMMAND_R,
|
||||
LLM_ARCH_COHERE2,
|
||||
LLM_ARCH_DBRX,
|
||||
LLM_ARCH_OLMO,
|
||||
LLM_ARCH_OLMO2,
|
||||
LLM_ARCH_OLMOE,
|
||||
LLM_ARCH_OPENELM,
|
||||
LLM_ARCH_ARCTIC,
|
||||
LLM_ARCH_DEEPSEEK,
|
||||
LLM_ARCH_DEEPSEEK2,
|
||||
LLM_ARCH_CHATGLM,
|
||||
LLM_ARCH_BITNET,
|
||||
LLM_ARCH_T5,
|
||||
LLM_ARCH_T5ENCODER,
|
||||
LLM_ARCH_JAIS,
|
||||
LLM_ARCH_NEMOTRON,
|
||||
LLM_ARCH_EXAONE,
|
||||
LLM_ARCH_RWKV6,
|
||||
LLM_ARCH_RWKV6QWEN2,
|
||||
LLM_ARCH_GRANITE,
|
||||
LLM_ARCH_GRANITE_MOE,
|
||||
LLM_ARCH_CHAMELEON,
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
enum llm_kv {
|
||||
LLM_KV_GENERAL_TYPE,
|
||||
LLM_KV_GENERAL_ARCHITECTURE,
|
||||
LLM_KV_GENERAL_QUANTIZATION_VERSION,
|
||||
LLM_KV_GENERAL_ALIGNMENT,
|
||||
LLM_KV_GENERAL_NAME,
|
||||
LLM_KV_GENERAL_AUTHOR,
|
||||
LLM_KV_GENERAL_VERSION,
|
||||
LLM_KV_GENERAL_URL,
|
||||
LLM_KV_GENERAL_DESCRIPTION,
|
||||
LLM_KV_GENERAL_LICENSE,
|
||||
LLM_KV_GENERAL_SOURCE_URL,
|
||||
LLM_KV_GENERAL_SOURCE_HF_REPO,
|
||||
|
||||
LLM_KV_VOCAB_SIZE,
|
||||
LLM_KV_CONTEXT_LENGTH,
|
||||
LLM_KV_EMBEDDING_LENGTH,
|
||||
LLM_KV_FEATURES_LENGTH,
|
||||
LLM_KV_BLOCK_COUNT,
|
||||
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
|
||||
LLM_KV_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
|
||||
LLM_KV_USE_PARALLEL_RESIDUAL,
|
||||
LLM_KV_TENSOR_DATA_LAYOUT,
|
||||
LLM_KV_EXPERT_COUNT,
|
||||
LLM_KV_EXPERT_USED_COUNT,
|
||||
LLM_KV_EXPERT_SHARED_COUNT,
|
||||
LLM_KV_EXPERT_WEIGHTS_SCALE,
|
||||
LLM_KV_EXPERT_WEIGHTS_NORM,
|
||||
LLM_KV_EXPERT_GATING_FUNC,
|
||||
LLM_KV_POOLING_TYPE,
|
||||
LLM_KV_LOGIT_SCALE,
|
||||
LLM_KV_DECODER_START_TOKEN_ID,
|
||||
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
|
||||
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
|
||||
LLM_KV_SWIN_NORM,
|
||||
LLM_KV_RESCALE_EVERY_N_LAYERS,
|
||||
LLM_KV_TIME_MIX_EXTRA_DIM,
|
||||
LLM_KV_TIME_DECAY_EXTRA_DIM,
|
||||
LLM_KV_RESIDUAL_SCALE,
|
||||
LLM_KV_EMBEDDING_SCALE,
|
||||
LLM_KV_TOKEN_SHIFT_COUNT,
|
||||
|
||||
LLM_KV_ATTENTION_HEAD_COUNT,
|
||||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||||
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
|
||||
LLM_KV_ATTENTION_CLAMP_KQV,
|
||||
LLM_KV_ATTENTION_KEY_LENGTH,
|
||||
LLM_KV_ATTENTION_VALUE_LENGTH,
|
||||
LLM_KV_ATTENTION_LAYERNORM_EPS,
|
||||
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
|
||||
LLM_KV_ATTENTION_GROUPNORM_EPS,
|
||||
LLM_KV_ATTENTION_GROUPNORM_GROUPS,
|
||||
LLM_KV_ATTENTION_CAUSAL,
|
||||
LLM_KV_ATTENTION_Q_LORA_RANK,
|
||||
LLM_KV_ATTENTION_KV_LORA_RANK,
|
||||
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
||||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
|
||||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||||
LLM_KV_ROPE_DIMENSION_SECTIONS,
|
||||
LLM_KV_ROPE_FREQ_BASE,
|
||||
LLM_KV_ROPE_SCALE_LINEAR,
|
||||
LLM_KV_ROPE_SCALING_TYPE,
|
||||
LLM_KV_ROPE_SCALING_FACTOR,
|
||||
LLM_KV_ROPE_SCALING_ATTN_FACTOR,
|
||||
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
|
||||
LLM_KV_ROPE_SCALING_FINETUNED,
|
||||
LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
|
||||
|
||||
LLM_KV_SPLIT_NO,
|
||||
LLM_KV_SPLIT_COUNT,
|
||||
LLM_KV_SPLIT_TENSORS_COUNT,
|
||||
|
||||
LLM_KV_SSM_INNER_SIZE,
|
||||
LLM_KV_SSM_CONV_KERNEL,
|
||||
LLM_KV_SSM_STATE_SIZE,
|
||||
LLM_KV_SSM_TIME_STEP_RANK,
|
||||
LLM_KV_SSM_DT_B_C_RMS,
|
||||
|
||||
LLM_KV_WKV_HEAD_SIZE,
|
||||
|
||||
LLM_KV_TOKENIZER_MODEL,
|
||||
LLM_KV_TOKENIZER_PRE,
|
||||
LLM_KV_TOKENIZER_LIST,
|
||||
LLM_KV_TOKENIZER_TOKEN_TYPE,
|
||||
LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
|
||||
LLM_KV_TOKENIZER_SCORES,
|
||||
LLM_KV_TOKENIZER_MERGES,
|
||||
LLM_KV_TOKENIZER_BOS_ID,
|
||||
LLM_KV_TOKENIZER_EOS_ID,
|
||||
LLM_KV_TOKENIZER_EOT_ID,
|
||||
LLM_KV_TOKENIZER_EOM_ID,
|
||||
LLM_KV_TOKENIZER_UNK_ID,
|
||||
LLM_KV_TOKENIZER_SEP_ID,
|
||||
LLM_KV_TOKENIZER_PAD_ID,
|
||||
LLM_KV_TOKENIZER_CLS_ID,
|
||||
LLM_KV_TOKENIZER_MASK_ID,
|
||||
LLM_KV_TOKENIZER_ADD_BOS,
|
||||
LLM_KV_TOKENIZER_ADD_EOS,
|
||||
LLM_KV_TOKENIZER_ADD_PREFIX,
|
||||
LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
|
||||
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
|
||||
LLM_KV_TOKENIZER_HF_JSON,
|
||||
LLM_KV_TOKENIZER_RWKV,
|
||||
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
|
||||
LLM_KV_TOKENIZER_CHAT_TEMPLATE_N,
|
||||
LLM_KV_TOKENIZER_FIM_PRE_ID,
|
||||
LLM_KV_TOKENIZER_FIM_SUF_ID,
|
||||
LLM_KV_TOKENIZER_FIM_MID_ID,
|
||||
LLM_KV_TOKENIZER_FIM_PAD_ID,
|
||||
LLM_KV_TOKENIZER_FIM_REP_ID,
|
||||
LLM_KV_TOKENIZER_FIM_SEP_ID,
|
||||
|
||||
LLM_KV_ADAPTER_TYPE,
|
||||
LLM_KV_ADAPTER_LORA_ALPHA,
|
||||
|
||||
LLM_KV_POSNET_EMBEDDING_LENGTH,
|
||||
LLM_KV_POSNET_BLOCK_COUNT,
|
||||
|
||||
LLM_KV_CONVNEXT_EMBEDDING_LENGTH,
|
||||
LLM_KV_CONVNEXT_BLOCK_COUNT,
|
||||
|
||||
// deprecated:
|
||||
LLM_KV_TOKENIZER_PREFIX_ID,
|
||||
LLM_KV_TOKENIZER_SUFFIX_ID,
|
||||
LLM_KV_TOKENIZER_MIDDLE_ID,
|
||||
};
|
||||
|
||||
enum llm_tensor {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
LLM_TENSOR_TOKEN_EMBD_NORM,
|
||||
LLM_TENSOR_TOKEN_TYPES,
|
||||
LLM_TENSOR_POS_EMBD,
|
||||
LLM_TENSOR_OUTPUT,
|
||||
LLM_TENSOR_OUTPUT_NORM,
|
||||
LLM_TENSOR_ROPE_FREQS,
|
||||
LLM_TENSOR_ROPE_FACTORS_LONG,
|
||||
LLM_TENSOR_ROPE_FACTORS_SHORT,
|
||||
LLM_TENSOR_ATTN_Q,
|
||||
LLM_TENSOR_ATTN_K,
|
||||
LLM_TENSOR_ATTN_V,
|
||||
LLM_TENSOR_ATTN_QKV,
|
||||
LLM_TENSOR_ATTN_OUT,
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_NORM_2,
|
||||
LLM_TENSOR_ATTN_OUT_NORM,
|
||||
LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||
LLM_TENSOR_FFN_NORM,
|
||||
LLM_TENSOR_FFN_POST_NORM,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
LLM_TENSOR_FFN_ACT,
|
||||
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
|
||||
LLM_TENSOR_FFN_GATE_EXP,
|
||||
LLM_TENSOR_FFN_UP_EXP,
|
||||
LLM_TENSOR_FFN_NORM_EXPS,
|
||||
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
|
||||
LLM_TENSOR_FFN_GATE_EXPS,
|
||||
LLM_TENSOR_FFN_UP_EXPS,
|
||||
LLM_TENSOR_FFN_DOWN_SHEXP,
|
||||
LLM_TENSOR_FFN_GATE_SHEXP,
|
||||
LLM_TENSOR_FFN_UP_SHEXP,
|
||||
LLM_TENSOR_FFN_EXP_PROBS_B,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
LLM_TENSOR_LAYER_OUT_NORM,
|
||||
LLM_TENSOR_SSM_IN,
|
||||
LLM_TENSOR_SSM_CONV1D,
|
||||
LLM_TENSOR_SSM_X,
|
||||
LLM_TENSOR_SSM_DT,
|
||||
LLM_TENSOR_SSM_A,
|
||||
LLM_TENSOR_SSM_D,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
LLM_TENSOR_TIME_MIX_W1,
|
||||
LLM_TENSOR_TIME_MIX_W2,
|
||||
LLM_TENSOR_TIME_MIX_LERP_X,
|
||||
LLM_TENSOR_TIME_MIX_LERP_W,
|
||||
LLM_TENSOR_TIME_MIX_LERP_K,
|
||||
LLM_TENSOR_TIME_MIX_LERP_V,
|
||||
LLM_TENSOR_TIME_MIX_LERP_R,
|
||||
LLM_TENSOR_TIME_MIX_LERP_G,
|
||||
LLM_TENSOR_TIME_MIX_LERP_FUSED,
|
||||
LLM_TENSOR_TIME_MIX_FIRST,
|
||||
LLM_TENSOR_TIME_MIX_DECAY,
|
||||
LLM_TENSOR_TIME_MIX_DECAY_W1,
|
||||
LLM_TENSOR_TIME_MIX_DECAY_W2,
|
||||
LLM_TENSOR_TIME_MIX_KEY,
|
||||
LLM_TENSOR_TIME_MIX_VALUE,
|
||||
LLM_TENSOR_TIME_MIX_RECEPTANCE,
|
||||
LLM_TENSOR_TIME_MIX_GATE,
|
||||
LLM_TENSOR_TIME_MIX_LN,
|
||||
LLM_TENSOR_TIME_MIX_OUTPUT,
|
||||
LLM_TENSOR_CHANNEL_MIX_LERP_K,
|
||||
LLM_TENSOR_CHANNEL_MIX_LERP_R,
|
||||
LLM_TENSOR_CHANNEL_MIX_KEY,
|
||||
LLM_TENSOR_CHANNEL_MIX_RECEPTANCE,
|
||||
LLM_TENSOR_CHANNEL_MIX_VALUE,
|
||||
LLM_TENSOR_ATTN_Q_A,
|
||||
LLM_TENSOR_ATTN_Q_B,
|
||||
LLM_TENSOR_ATTN_KV_A_MQA,
|
||||
LLM_TENSOR_ATTN_KV_B,
|
||||
LLM_TENSOR_ATTN_Q_A_NORM,
|
||||
LLM_TENSOR_ATTN_KV_A_NORM,
|
||||
LLM_TENSOR_ATTN_SUB_NORM,
|
||||
LLM_TENSOR_FFN_SUB_NORM,
|
||||
LLM_TENSOR_DEC_ATTN_NORM,
|
||||
LLM_TENSOR_DEC_ATTN_Q,
|
||||
LLM_TENSOR_DEC_ATTN_K,
|
||||
LLM_TENSOR_DEC_ATTN_V,
|
||||
LLM_TENSOR_DEC_ATTN_OUT,
|
||||
LLM_TENSOR_DEC_ATTN_REL_B,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_NORM,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_Q,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_K,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_V,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_OUT,
|
||||
LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
|
||||
LLM_TENSOR_DEC_FFN_NORM,
|
||||
LLM_TENSOR_DEC_FFN_GATE,
|
||||
LLM_TENSOR_DEC_FFN_DOWN,
|
||||
LLM_TENSOR_DEC_FFN_UP,
|
||||
LLM_TENSOR_DEC_OUTPUT_NORM,
|
||||
LLM_TENSOR_ENC_ATTN_NORM,
|
||||
LLM_TENSOR_ENC_ATTN_Q,
|
||||
LLM_TENSOR_ENC_ATTN_K,
|
||||
LLM_TENSOR_ENC_ATTN_V,
|
||||
LLM_TENSOR_ENC_ATTN_OUT,
|
||||
LLM_TENSOR_ENC_ATTN_REL_B,
|
||||
LLM_TENSOR_ENC_FFN_NORM,
|
||||
LLM_TENSOR_ENC_FFN_GATE,
|
||||
LLM_TENSOR_ENC_FFN_DOWN,
|
||||
LLM_TENSOR_ENC_FFN_UP,
|
||||
LLM_TENSOR_ENC_OUTPUT_NORM,
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
LLM_TENSOR_CONV1D,
|
||||
LLM_TENSOR_CONVNEXT_DW,
|
||||
LLM_TENSOR_CONVNEXT_NORM,
|
||||
LLM_TENSOR_CONVNEXT_PW1,
|
||||
LLM_TENSOR_CONVNEXT_PW2,
|
||||
LLM_TENSOR_CONVNEXT_GAMMA,
|
||||
LLM_TENSOR_POS_NET_CONV1,
|
||||
LLM_TENSOR_POS_NET_CONV2,
|
||||
LLM_TENSOR_POS_NET_NORM,
|
||||
LLM_TENSOR_POS_NET_NORM1,
|
||||
LLM_TENSOR_POS_NET_NORM2,
|
||||
LLM_TENSOR_POS_NET_ATTN_NORM,
|
||||
LLM_TENSOR_POS_NET_ATTN_Q,
|
||||
LLM_TENSOR_POS_NET_ATTN_K,
|
||||
LLM_TENSOR_POS_NET_ATTN_V,
|
||||
LLM_TENSOR_POS_NET_ATTN_OUT,
|
||||
};
|
||||
|
||||
enum llm_tensor_layer {
|
||||
LLM_TENSOR_LAYER_INPUT,
|
||||
LLM_TENSOR_LAYER_REPEATING,
|
||||
LLM_TENSOR_LAYER_OUTPUT,
|
||||
};
|
||||
|
||||
struct LLM_KV {
|
||||
LLM_KV(llm_arch arch, const char * suffix = nullptr);
|
||||
|
||||
llm_arch arch;
|
||||
const char * suffix;
|
||||
|
||||
std::string operator()(llm_kv kv) const;
|
||||
};
|
||||
|
||||
// helper to handle gguf constants
|
||||
// usage:
|
||||
//
|
||||
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
|
||||
//
|
||||
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
|
||||
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
|
||||
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
|
||||
//
|
||||
struct LLM_TN_IMPL {
|
||||
const llm_arch arch;
|
||||
const llm_tensor tensor;
|
||||
const char * const suffix;
|
||||
const int bid;
|
||||
const int xid;
|
||||
|
||||
std::string str() const;
|
||||
|
||||
operator std::string() const {
|
||||
return str();
|
||||
}
|
||||
|
||||
friend bool operator==(const std::string & str, const LLM_TN_IMPL & tn) {
|
||||
return str == tn.str();
|
||||
}
|
||||
|
||||
friend bool operator!=(const std::string & str, const LLM_TN_IMPL & tn) {
|
||||
return str != tn.str();
|
||||
}
|
||||
};
|
||||
|
||||
struct LLM_TN {
|
||||
LLM_TN(llm_arch arch) : arch(arch) {}
|
||||
|
||||
llm_arch arch;
|
||||
|
||||
LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const {
|
||||
return { arch, tensor, suffix, bid, xid };
|
||||
}
|
||||
|
||||
LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const {
|
||||
return { arch, tensor, nullptr, bid, xid };
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct llm_tensor_info {
|
||||
llm_tensor_layer layer;
|
||||
ggml_op op;
|
||||
};
|
||||
|
||||
const char * llm_arch_name(llm_arch arch);
|
||||
|
||||
llm_arch llm_arch_from_string(const std::string & name);
|
||||
|
||||
const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor);
|
@ -1,368 +0,0 @@
|
||||
#include "llama-batch.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
llama_ubatch llama_sbatch::reserve_ubatch(size_t n_ubatch, bool has_embd) {
|
||||
// clear empty sequences
|
||||
// the previous ubatch is assumed to be gone,
|
||||
// so nothing should refer to values in these sequences anymore.
|
||||
for (size_t i = seq.size(); i-- > 0;) {
|
||||
if (seq[i].length == 0) {
|
||||
seq.pop_back();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
ubatch_token.resize(!has_embd ? n_ubatch : 0);
|
||||
ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0);
|
||||
ubatch_pos.resize(n_ubatch);
|
||||
ubatch_n_seq_id.resize(n_ubatch);
|
||||
ubatch_seq_id.resize(n_ubatch);
|
||||
ubatch_output.resize(n_ubatch);
|
||||
llama_ubatch ubatch = {
|
||||
/*equal_seqs =*/ true,
|
||||
/*n_tokens =*/ 0,
|
||||
/*n_seq_tokens =*/ 0,
|
||||
/*n_seqs =*/ 0,
|
||||
/*token =*/ !has_embd ? ubatch_token.data() : nullptr,
|
||||
/*embd =*/ has_embd ? ubatch_embd.data() : nullptr,
|
||||
/*pos =*/ ubatch_pos.data(),
|
||||
/*n_seq_id =*/ ubatch_n_seq_id.data(),
|
||||
/*seq_id =*/ ubatch_seq_id.data(),
|
||||
/*output =*/ ubatch_output.data(),
|
||||
};
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
void llama_sbatch::add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length) {
|
||||
GGML_ASSERT(batch != nullptr);
|
||||
GGML_ASSERT(length <= seq.length);
|
||||
// Can only add sequences of equal lengths to a batch,
|
||||
// otherwise it isn't clear to which sequence a token belongs
|
||||
GGML_ASSERT(seq.n_seq_id == 0 || ubatch.n_seqs == 0 || length == (size_t) ubatch.n_tokens / ubatch.n_seqs);
|
||||
GGML_ASSERT((seq.n_seq_id != 0) == ubatch.equal_seqs);
|
||||
// NOTE: loops are separated for cache-friendliness
|
||||
if (batch->token) {
|
||||
if (ubatch.equal_seqs) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.token[ubatch.n_tokens + i] = batch->token[ids[seq.offset + i]];
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
ubatch.token = batch->token + seq.offset;
|
||||
}
|
||||
} else {
|
||||
ubatch.token = nullptr;
|
||||
}
|
||||
if (batch->embd) {
|
||||
if (ubatch.equal_seqs) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
memcpy(
|
||||
ubatch.embd + (n_embd * (ubatch.n_tokens + i)),
|
||||
batch->embd + (n_embd * ids[seq.offset + i]),
|
||||
n_embd * sizeof(float)
|
||||
);
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
ubatch.embd = batch->embd + (n_embd * seq.offset);
|
||||
}
|
||||
} else {
|
||||
ubatch.embd = nullptr;
|
||||
}
|
||||
if (ubatch.equal_seqs) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.pos[ubatch.n_tokens + i] = batch->pos[ids[seq.offset + i]];
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
ubatch.pos = batch->pos + seq.offset;
|
||||
}
|
||||
if (ubatch.equal_seqs) {
|
||||
ubatch.n_seq_id[ubatch.n_seqs] = seq.n_seq_id;
|
||||
if (seq.seq_id) {
|
||||
ubatch.seq_id[ubatch.n_seqs] = seq.seq_id;
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
if (batch->n_seq_id) {
|
||||
ubatch.n_seq_id = batch->n_seq_id + seq.offset;
|
||||
} else {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.n_seq_id[ubatch.n_seqs + i] = 1;
|
||||
}
|
||||
}
|
||||
if (batch->seq_id) {
|
||||
ubatch.seq_id = batch->seq_id + seq.offset;
|
||||
}
|
||||
}
|
||||
if (logits_all) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
ubatch.output[ubatch.n_tokens + i] = 1;
|
||||
out_ids.push_back(ids[seq.offset + i]);
|
||||
}
|
||||
} else if (batch->logits) {
|
||||
if (ubatch.equal_seqs) {
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
size_t id = ids[seq.offset + i];
|
||||
int8_t is_output = batch->logits[id];
|
||||
ubatch.output[ubatch.n_tokens + i] = is_output;
|
||||
if (is_output) { out_ids.push_back(id); }
|
||||
}
|
||||
} else {
|
||||
// simple split
|
||||
ubatch.output = batch->logits + seq.offset;
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
if (ubatch.output[i] != 0) { out_ids.push_back(seq.offset + i); }
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// only get last output
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
size_t id = ids[seq.offset + i];
|
||||
int8_t is_last = id == ids.size() - 1;
|
||||
ubatch.output[ubatch.n_tokens + i] = is_last;
|
||||
if (is_last) { out_ids.push_back(id); }
|
||||
}
|
||||
}
|
||||
if (ubatch.n_tokens == 0 && ubatch.n_seqs == 0) {
|
||||
ubatch.n_seq_tokens = ubatch.equal_seqs ? length : 1;
|
||||
}
|
||||
ubatch.n_tokens += length;
|
||||
ubatch.n_seqs += ubatch.equal_seqs ? 1 : length; // virtual sequences for simple splits
|
||||
seq.offset += length;
|
||||
seq.length -= length;
|
||||
n_tokens -= length;
|
||||
GGML_ASSERT(ubatch.n_tokens == ubatch.n_seq_tokens * ubatch.n_seqs);
|
||||
}
|
||||
|
||||
llama_ubatch llama_sbatch::split_simple(size_t n_ubatch) {
|
||||
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
|
||||
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
|
||||
ubatch.equal_seqs = false;
|
||||
if (!seq.empty()) {
|
||||
llama_sbatch_seq & s = seq[0];
|
||||
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
|
||||
GGML_ASSERT(seq.size() == 1 && s.n_seq_id == 0); // don't mix with other splits
|
||||
add_seq_to_ubatch(ubatch, s, length);
|
||||
}
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
llama_ubatch llama_sbatch::split_equal(size_t n_ubatch) {
|
||||
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
|
||||
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
|
||||
if (!seq.empty()) {
|
||||
size_t length = 0;
|
||||
size_t n_tokens_in_ubatch = 0;
|
||||
GGML_ASSERT(seq[0].n_seq_id > 0); // should not be mixed with simple splits
|
||||
// smallest first, because it's easier to split this way;
|
||||
// starting from the end to pop in constant time.
|
||||
for (size_t i = seq.size(); i-- > 0;) {
|
||||
llama_sbatch_seq & s = seq[i];
|
||||
GGML_ASSERT(s.length > 0);
|
||||
if (length == 0) {
|
||||
length = s.length < n_ubatch ? s.length : n_ubatch;
|
||||
}
|
||||
add_seq_to_ubatch(ubatch, s, length);
|
||||
n_tokens_in_ubatch += length;
|
||||
// shared prompts can't be mixed with any of their sequences,
|
||||
// so it's safer to compute them in their own ubatch
|
||||
if (s.n_seq_id > 1) { break; }
|
||||
// stop when there isn't enough space for another sequence
|
||||
if (length + n_tokens_in_ubatch > n_ubatch) { break; }
|
||||
}
|
||||
}
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
|
||||
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
|
||||
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
|
||||
if (!seq.empty()) {
|
||||
llama_sbatch_seq & s = seq[seq.size() - 1];
|
||||
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
|
||||
GGML_ASSERT(s.n_seq_id > 0); // should not be mixed with simple splits
|
||||
add_seq_to_ubatch(ubatch, s, length);
|
||||
}
|
||||
return ubatch;
|
||||
}
|
||||
|
||||
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
|
||||
GGML_ASSERT(batch.n_tokens >= 0);
|
||||
this->batch = &batch;
|
||||
this->n_embd = n_embd;
|
||||
this->logits_all = logits_all;
|
||||
|
||||
n_tokens = batch.n_tokens;
|
||||
ids.resize(n_tokens);
|
||||
out_ids.clear();
|
||||
// TODO: reserve out_ids and seq
|
||||
|
||||
for (size_t i = 0; i < n_tokens; ++i) {
|
||||
ids[i] = i;
|
||||
}
|
||||
if (simple_split) {
|
||||
seq.resize(1);
|
||||
llama_sbatch_seq & s = seq[0];
|
||||
s.n_seq_id = 0;
|
||||
s.seq_id = nullptr;
|
||||
s.offset = 0;
|
||||
s.length = n_tokens;
|
||||
return;
|
||||
}
|
||||
std::sort(ids.begin(), ids.end(),
|
||||
[&batch](size_t a, size_t b) {
|
||||
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
|
||||
int32_t n_seq_b = batch.n_seq_id ? batch.n_seq_id[b] : 1;
|
||||
// sort by seq_id, then by pos
|
||||
if (n_seq_a == n_seq_b) {
|
||||
if (batch.seq_id) {
|
||||
for (int32_t i = 0; i < n_seq_a; ++i) {
|
||||
llama_seq_id seq_id_a = batch.seq_id[a][i];
|
||||
llama_seq_id seq_id_b = batch.seq_id[b][i];
|
||||
// smaller seq_ids go first
|
||||
if (seq_id_a != seq_id_b) {
|
||||
return seq_id_a < seq_id_b;
|
||||
}
|
||||
}
|
||||
}
|
||||
// when all else is equal, sort by pos
|
||||
if (batch.pos) {
|
||||
return batch.pos[a] < batch.pos[b];
|
||||
}
|
||||
// no pos, sort by id
|
||||
return a < b;
|
||||
}
|
||||
// shared prompts go first
|
||||
return n_seq_a > n_seq_b;
|
||||
}
|
||||
);
|
||||
// init seq
|
||||
llama_sbatch_seq * last_seq = nullptr;
|
||||
|
||||
for (size_t i = 0; i < n_tokens; ++i) {
|
||||
const size_t bi = ids[i];
|
||||
const int32_t n_seqs = batch.n_seq_id[bi];
|
||||
llama_seq_id * seq_ids = batch.seq_id[bi];
|
||||
if (last_seq != nullptr) {
|
||||
bool same = n_seqs == last_seq->n_seq_id;
|
||||
for (int32_t j = 0; same && j < n_seqs; ++j) {
|
||||
if (seq_ids[j] != last_seq->seq_id[j]) {
|
||||
same = false;
|
||||
}
|
||||
}
|
||||
if (same) {
|
||||
last_seq->length += 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
llama_sbatch_seq new_seq = {n_seqs, seq_ids, i, 1};
|
||||
seq.push_back(new_seq);
|
||||
last_seq = &seq.back();
|
||||
}
|
||||
// keep shared prompts first at the end, then sort by length descending.
|
||||
std::sort(seq.begin(), seq.end(),
|
||||
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
|
||||
if (a.n_seq_id == b.n_seq_id) {
|
||||
return a.length > b.length;
|
||||
}
|
||||
return a.n_seq_id < b.n_seq_id;
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
llama_batch_allocr::llama_batch_allocr(struct llama_batch in_batch, llama_pos p0) {
|
||||
batch = in_batch;
|
||||
GGML_ASSERT(batch.n_tokens > 0);
|
||||
if (!batch.pos) {
|
||||
pos.resize(batch.n_tokens);
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
pos[i] = i + p0;
|
||||
}
|
||||
batch.pos = pos.data();
|
||||
}
|
||||
if (!batch.n_seq_id) {
|
||||
n_seq_id.resize(batch.n_tokens);
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
n_seq_id[i] = seq_id_0.size();
|
||||
}
|
||||
batch.n_seq_id = n_seq_id.data();
|
||||
}
|
||||
if (!batch.seq_id) {
|
||||
seq_id.resize(batch.n_tokens + 1);
|
||||
seq_id[batch.n_tokens] = NULL;
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
seq_id[i] = seq_id_0.data();
|
||||
}
|
||||
batch.seq_id = seq_id.data();
|
||||
}
|
||||
if (!batch.logits) {
|
||||
logits.resize(batch.n_tokens);
|
||||
logits[logits.size() - 1] = true;
|
||||
batch.logits = logits.data();
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// interface implementation
|
||||
//
|
||||
|
||||
struct llama_batch llama_batch_get_one(
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens) {
|
||||
return {
|
||||
/*n_tokens =*/ n_tokens,
|
||||
/*tokens =*/ tokens,
|
||||
/*embd =*/ nullptr,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
/*logits =*/ nullptr,
|
||||
};
|
||||
}
|
||||
|
||||
struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
|
||||
llama_batch batch = {
|
||||
/*n_tokens =*/ 0,
|
||||
/*tokens =*/ nullptr,
|
||||
/*embd =*/ nullptr,
|
||||
/*pos =*/ nullptr,
|
||||
/*n_seq_id =*/ nullptr,
|
||||
/*seq_id =*/ nullptr,
|
||||
/*logits =*/ nullptr,
|
||||
};
|
||||
|
||||
if (embd) {
|
||||
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
||||
} else {
|
||||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||||
}
|
||||
|
||||
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
|
||||
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
|
||||
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
|
||||
for (int i = 0; i < n_tokens_alloc; ++i) {
|
||||
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
|
||||
}
|
||||
batch.seq_id[n_tokens_alloc] = nullptr;
|
||||
|
||||
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
|
||||
|
||||
return batch;
|
||||
}
|
||||
|
||||
void llama_batch_free(struct llama_batch batch) {
|
||||
if (batch.token) free(batch.token);
|
||||
if (batch.embd) free(batch.embd);
|
||||
if (batch.pos) free(batch.pos);
|
||||
if (batch.n_seq_id) free(batch.n_seq_id);
|
||||
if (batch.seq_id) {
|
||||
for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
|
||||
free(batch.seq_id[i]);
|
||||
}
|
||||
free(batch.seq_id);
|
||||
}
|
||||
if (batch.logits) free(batch.logits);
|
||||
}
|
@ -1,88 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <array>
|
||||
#include <vector>
|
||||
|
||||
// very similar to llama_batch,
|
||||
// but has more metadata about sequences
|
||||
struct llama_ubatch {
|
||||
bool equal_seqs;
|
||||
// TODO: whole_seqs for embeddings?
|
||||
|
||||
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
|
||||
uint32_t n_seq_tokens; // tokens per sequence
|
||||
uint32_t n_seqs;
|
||||
|
||||
llama_token * token; // [n_tokens]
|
||||
float * embd; // [n_embd, n_tokens]
|
||||
llama_pos * pos; // [n_tokens]
|
||||
int32_t * n_seq_id; // [n_seqs]
|
||||
llama_seq_id ** seq_id; // [n_seqs]
|
||||
int8_t * output; // [n_tokens]
|
||||
};
|
||||
|
||||
struct llama_sbatch_seq {
|
||||
int32_t n_seq_id;
|
||||
|
||||
llama_seq_id * seq_id;
|
||||
|
||||
size_t offset;
|
||||
size_t length;
|
||||
};
|
||||
|
||||
// sequence-length-aware batch splitting
|
||||
struct llama_sbatch {
|
||||
// tokens left in this batch
|
||||
size_t n_tokens;
|
||||
|
||||
size_t n_embd;
|
||||
|
||||
bool logits_all; // TODO: remove once lctx.logits_all is removed too
|
||||
|
||||
// sorted indices into the batch
|
||||
std::vector<size_t> ids;
|
||||
// batch indices of the output
|
||||
std::vector<size_t> out_ids;
|
||||
std::vector<llama_sbatch_seq> seq;
|
||||
|
||||
const llama_batch * batch = nullptr;
|
||||
|
||||
// buffers for the ubatch
|
||||
std::vector<llama_token> ubatch_token;
|
||||
std::vector<float> ubatch_embd;
|
||||
std::vector<llama_pos> ubatch_pos;
|
||||
std::vector<int32_t> ubatch_n_seq_id;
|
||||
std::vector<llama_seq_id *> ubatch_seq_id;
|
||||
std::vector<int8_t> ubatch_output;
|
||||
|
||||
llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false);
|
||||
|
||||
void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length);
|
||||
|
||||
// simple split, unknown number of sequences of unequal lengths
|
||||
llama_ubatch split_simple(size_t n_ubatch);
|
||||
|
||||
// make batches of equal-length sequences
|
||||
llama_ubatch split_equal(size_t n_ubatch);
|
||||
|
||||
// sequence-wise split
|
||||
llama_ubatch split_seq(size_t n_ubatch);
|
||||
|
||||
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
|
||||
};
|
||||
|
||||
// temporary allocate memory for the input batch if needed
|
||||
struct llama_batch_allocr {
|
||||
struct llama_batch batch;
|
||||
|
||||
std::array<llama_seq_id, 1> seq_id_0 = { 0 }; // default sequence id
|
||||
std::vector<llama_pos> pos;
|
||||
std::vector<int32_t> n_seq_id;
|
||||
std::vector<llama_seq_id *> seq_id;
|
||||
std::vector<int8_t> logits;
|
||||
|
||||
// optionally fulfill the batch returned by llama_batch_get_one
|
||||
llama_batch_allocr(struct llama_batch in_batch, llama_pos p0);
|
||||
};
|
@ -1,587 +0,0 @@
|
||||
#include "llama-chat.h"
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
|
||||
#if __cplusplus >= 202000L
|
||||
#define LU8(x) (const char*)(u8##x)
|
||||
#else
|
||||
#define LU8(x) u8##x
|
||||
#endif
|
||||
|
||||
// trim whitespace from the beginning and end of a string
|
||||
static std::string trim(const std::string & str) {
|
||||
size_t start = 0;
|
||||
size_t end = str.size();
|
||||
while (start < end && isspace(str[start])) {
|
||||
start += 1;
|
||||
}
|
||||
while (end > start && isspace(str[end - 1])) {
|
||||
end -= 1;
|
||||
}
|
||||
return str.substr(start, end - start);
|
||||
}
|
||||
|
||||
static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "chatml", LLM_CHAT_TEMPLATE_CHATML },
|
||||
{ "llama2", LLM_CHAT_TEMPLATE_LLAMA_2 },
|
||||
{ "llama2-sys", LLM_CHAT_TEMPLATE_LLAMA_2_SYS },
|
||||
{ "llama2-sys-bos", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS },
|
||||
{ "llama2-sys-strip", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP },
|
||||
{ "mistral-v1", LLM_CHAT_TEMPLATE_MISTRAL_V1 },
|
||||
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
|
||||
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
||||
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
||||
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
||||
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
|
||||
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
|
||||
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
|
||||
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
|
||||
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
|
||||
{ "orion", LLM_CHAT_TEMPLATE_ORION },
|
||||
{ "openchat", LLM_CHAT_TEMPLATE_OPENCHAT },
|
||||
{ "vicuna", LLM_CHAT_TEMPLATE_VICUNA },
|
||||
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
|
||||
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
|
||||
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
|
||||
{ "deepseek3", LLM_CHAT_TEMPLATE_DEEPSEEK_3 },
|
||||
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
|
||||
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
|
||||
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
|
||||
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
|
||||
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
|
||||
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
|
||||
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
|
||||
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
||||
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
|
||||
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
|
||||
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
|
||||
};
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name) {
|
||||
return LLM_CHAT_TEMPLATES.at(name);
|
||||
}
|
||||
|
||||
llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
|
||||
try {
|
||||
return llm_chat_template_from_str(tmpl);
|
||||
} catch (const std::out_of_range &) {
|
||||
// ignore
|
||||
}
|
||||
|
||||
auto tmpl_contains = [&tmpl](const char * haystack) -> bool {
|
||||
return tmpl.find(haystack) != std::string::npos;
|
||||
};
|
||||
if (tmpl_contains("<|im_start|>")) {
|
||||
return tmpl_contains("<|im_sep|>")
|
||||
? LLM_CHAT_TEMPLATE_PHI_4
|
||||
: LLM_CHAT_TEMPLATE_CHATML;
|
||||
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
|
||||
if (tmpl_contains("[SYSTEM_PROMPT]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
|
||||
} else if (
|
||||
// catches official 'v1' template
|
||||
tmpl_contains("' [INST] ' + system_message")
|
||||
// catches official 'v3' and 'v3-tekken' templates
|
||||
|| tmpl_contains("[AVAILABLE_TOOLS]")
|
||||
) {
|
||||
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||
if (tmpl_contains(" [INST]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V1;
|
||||
} else if (tmpl_contains("\"[INST]\"")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||
} else {
|
||||
// llama2 template and its variants
|
||||
// [variant] support system message
|
||||
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
bool support_system_message = tmpl_contains("<<SYS>>");
|
||||
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
|
||||
bool strip_message = tmpl_contains("content.strip()");
|
||||
if (strip_message) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||
} else if (add_bos_inside_history) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||
} else if (support_system_message) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS;
|
||||
} else {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||
}
|
||||
}
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
|
||||
return LLM_CHAT_TEMPLATE_PHI_3;
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
|
||||
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
|
||||
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
|
||||
return LLM_CHAT_TEMPLATE_ZEPHYR;
|
||||
} else if (tmpl_contains("bos_token + message['role']")) {
|
||||
return LLM_CHAT_TEMPLATE_MONARCH;
|
||||
} else if (tmpl_contains("<start_of_turn>")) {
|
||||
return LLM_CHAT_TEMPLATE_GEMMA;
|
||||
} else if (tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
return LLM_CHAT_TEMPLATE_ORION;
|
||||
} else if (tmpl_contains("GPT4 Correct ")) {
|
||||
// openchat/openchat-3.5-0106
|
||||
return LLM_CHAT_TEMPLATE_OPENCHAT;
|
||||
} else if (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: ")) {
|
||||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||
if (tmpl_contains("SYSTEM: ")) {
|
||||
return LLM_CHAT_TEMPLATE_VICUNA_ORCA;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_VICUNA;
|
||||
} else if (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>")) {
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK;
|
||||
} else if (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>")) {
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
return LLM_CHAT_TEMPLATE_COMMAND_R;
|
||||
} else if (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>")) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_3;
|
||||
} else if (tmpl_contains("[gMASK]sop")) {
|
||||
// chatglm3-6b
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_3;
|
||||
} else if (tmpl_contains("[gMASK]<sop>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_4;
|
||||
} else if (tmpl_contains(LU8("<用户>"))) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
return LLM_CHAT_TEMPLATE_MINICPM;
|
||||
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
|
||||
} else if (tmpl_contains(LU8("<|Assistant|>")) && tmpl_contains(LU8("<|User|>")) && tmpl_contains(LU8("<|end▁of▁sentence|>"))) {
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
|
||||
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
|
||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||
// EXAONE-3.0-7.8B-Instruct
|
||||
return LLM_CHAT_TEMPLATE_EXAONE_3;
|
||||
} else if (tmpl_contains("rwkv-world")) {
|
||||
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
|
||||
} else if (tmpl_contains("<|start_of_role|>")) {
|
||||
return LLM_CHAT_TEMPLATE_GRANITE;
|
||||
} else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
|
||||
return LLM_CHAT_TEMPLATE_GIGACHAT;
|
||||
} else if (tmpl_contains("<|role_start|>")) {
|
||||
return LLM_CHAT_TEMPLATE_MEGREZ;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
|
||||
// Simple version of "llama_apply_chat_template" that only works with strings
|
||||
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
|
||||
int32_t llm_chat_apply_template(
|
||||
llm_chat_template tmpl,
|
||||
const std::vector<const llama_chat_message *> & chat,
|
||||
std::string & dest, bool add_ass) {
|
||||
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
|
||||
std::stringstream ss;
|
||||
if (tmpl == LLM_CHAT_TEMPLATE_CHATML) {
|
||||
// chatml template
|
||||
for (auto message : chat) {
|
||||
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|im_start|>assistant\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
|
||||
// Official mistral 'v7' template
|
||||
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
std::string content(message->content);
|
||||
if (role == "system") {
|
||||
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
|
||||
} else if (role == "user") {
|
||||
ss << "[INST] " << content << "[/INST]";
|
||||
}
|
||||
else {
|
||||
ss << " " << content << "</s>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN) {
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||
std::string leading_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 ? " " : "";
|
||||
std::string trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN ? "" : " ";
|
||||
bool trim_assistant_message = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||
bool is_inside_turn = false;
|
||||
for (auto message : chat) {
|
||||
if (!is_inside_turn) {
|
||||
ss << leading_space << "[INST]" << trailing_space;
|
||||
is_inside_turn = true;
|
||||
}
|
||||
std::string role(message->role);
|
||||
std::string content(message->content);
|
||||
if (role == "system") {
|
||||
ss << content << "\n\n";
|
||||
} else if (role == "user") {
|
||||
ss << content << leading_space << "[/INST]";
|
||||
} else {
|
||||
ss << trailing_space << (trim_assistant_message ? trim(content) : content) << "</s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
} else if (
|
||||
tmpl == LLM_CHAT_TEMPLATE_LLAMA_2
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP) {
|
||||
// llama2 template and its variants
|
||||
// [variant] support system message
|
||||
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
bool support_system_message = tmpl != LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||
// [variant] add BOS inside history
|
||||
bool add_bos_inside_history = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||
// [variant] trim spaces from the input message
|
||||
bool strip_message = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||
// construct the prompt
|
||||
bool is_inside_turn = true; // skip BOS at the beginning
|
||||
ss << "[INST] ";
|
||||
for (auto message : chat) {
|
||||
std::string content = strip_message ? trim(message->content) : message->content;
|
||||
std::string role(message->role);
|
||||
if (!is_inside_turn) {
|
||||
is_inside_turn = true;
|
||||
ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
|
||||
}
|
||||
if (role == "system") {
|
||||
if (support_system_message) {
|
||||
ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
|
||||
} else {
|
||||
// if the model does not support system message, we still include it in the first message, but without <<SYS>>
|
||||
ss << content << "\n";
|
||||
}
|
||||
} else if (role == "user") {
|
||||
ss << content << " [/INST]";
|
||||
} else {
|
||||
ss << content << "</s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_3) {
|
||||
// Phi 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_4) {
|
||||
// chatml template
|
||||
for (auto message : chat) {
|
||||
ss << "<|im_start|>" << message->role << "<|im_sep|>" << message->content << "<|im_end|>";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|im_start|>assistant<|im_sep|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
|
||||
// Falcon 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>\n" << message->content << "\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
|
||||
// zephyr template
|
||||
for (auto message : chat) {
|
||||
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MONARCH) {
|
||||
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
|
||||
for (auto message : chat) {
|
||||
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
|
||||
ss << bos << message->role << "\n" << message->content << "</s>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<s>assistant\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GEMMA) {
|
||||
// google/gemma-7b-it
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
|
||||
system_prompt = trim(message->content);
|
||||
continue;
|
||||
}
|
||||
// in gemma, "assistant" is "model"
|
||||
role = role == "assistant" ? "model" : message->role;
|
||||
ss << "<start_of_turn>" << role << "\n";
|
||||
if (!system_prompt.empty() && role != "model") {
|
||||
ss << system_prompt << "\n\n";
|
||||
system_prompt = "";
|
||||
}
|
||||
ss << trim(message->content) << "<end_of_turn>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<start_of_turn>model\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_ORION) {
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// there is no system message support, we will merge it with user prompt
|
||||
system_prompt = message->content;
|
||||
continue;
|
||||
} else if (role == "user") {
|
||||
ss << "Human: ";
|
||||
if (!system_prompt.empty()) {
|
||||
ss << system_prompt << "\n\n";
|
||||
system_prompt = "";
|
||||
}
|
||||
ss << message->content << "\n\nAssistant: </s>";
|
||||
} else {
|
||||
ss << message->content << "</s>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_OPENCHAT) {
|
||||
// openchat/openchat-3.5-0106,
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << message->content << "<|end_of_turn|>";
|
||||
} else {
|
||||
role[0] = toupper(role[0]);
|
||||
ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "GPT4 Correct Assistant:";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_VICUNA || tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// Orca-Vicuna variant uses a system prefix
|
||||
if (tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||
ss << "SYSTEM: " << message->content << "\n";
|
||||
} else {
|
||||
ss << message->content << "\n\n";
|
||||
}
|
||||
} else if (role == "user") {
|
||||
ss << "USER: " << message->content << "\n";
|
||||
} else if (role == "assistant") {
|
||||
ss << "ASSISTANT: " << message->content << "</s>\n";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "ASSISTANT:";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK) {
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << message->content;
|
||||
} else if (role == "user") {
|
||||
ss << "### Instruction:\n" << message->content << "\n";
|
||||
} else if (role == "assistant") {
|
||||
ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "### Response:\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_COMMAND_R) {
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
|
||||
} else if (role == "user") {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
|
||||
} else if (role == "assistant") {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA_3) {
|
||||
// Llama 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
|
||||
// chatglm3-6b
|
||||
ss << "[gMASK]" << "sop";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>" << "\n " << message->content;
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
|
||||
ss << "[gMASK]" << "<sop>";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>" << "\n" << message->content;
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|" << role << "|>" << "\n" << message->content;
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "user") {
|
||||
ss << LU8("<用户>");
|
||||
ss << trim(message->content);
|
||||
ss << "<AI>";
|
||||
} else {
|
||||
ss << trim(message->content);
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_2) {
|
||||
// DeepSeek-V2
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << message->content << "\n\n";
|
||||
} else if (role == "user") {
|
||||
ss << "User: " << message->content << "\n\n";
|
||||
} else if (role == "assistant") {
|
||||
ss << "Assistant: " << message->content << LU8("<|end▁of▁sentence|>");
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "Assistant:";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_3) {
|
||||
// DeepSeek-V3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << message->content << "\n\n";
|
||||
} else if (role == "user") {
|
||||
ss << LU8("<|User|>") << message->content;
|
||||
} else if (role == "assistant") {
|
||||
ss << LU8("<|Assistant|>") << message->content << LU8("<|end▁of▁sentence|>");
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << LU8("<|Assistant|>");
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
|
||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||
// EXAONE-3.0-7.8B-Instruct
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
|
||||
} else if (role == "user") {
|
||||
ss << "[|user|]" << trim(message->content) << "\n";
|
||||
} else if (role == "assistant") {
|
||||
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
|
||||
}
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "[|assistant|]";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
|
||||
// this template requires the model to have "\n\n" as EOT token
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "user") {
|
||||
ss << "User: " << message->content << "\n\nAssistant:";
|
||||
} else {
|
||||
ss << message->content << "\n\n";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GRANITE) {
|
||||
// IBM Granite template
|
||||
for (const auto & message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|start_of_role|>" << role << "<|end_of_role|>";
|
||||
if (role == "assistant_tool_call") {
|
||||
ss << "<|tool_call|>";
|
||||
}
|
||||
ss << message->content << "<|end_of_text|>\n";
|
||||
}
|
||||
if (add_ass) {
|
||||
ss << "<|start_of_role|>assistant<|end_of_role|>\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) {
|
||||
// GigaChat template
|
||||
bool has_system = !chat.empty() && std::string(chat[0]->role) == "system";
|
||||
|
||||
// Handle system message if present
|
||||
if (has_system) {
|
||||
ss << "<s>" << chat[0]->content << "<|message_sep|>";
|
||||
} else {
|
||||
ss << "<s>";
|
||||
}
|
||||
|
||||
// Process remaining messages
|
||||
for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) {
|
||||
std::string role(chat[i]->role);
|
||||
if (role == "user") {
|
||||
ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>"
|
||||
<< "available functions<|role_sep|>[]<|message_sep|>";
|
||||
} else if (role == "assistant") {
|
||||
ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>";
|
||||
}
|
||||
}
|
||||
|
||||
// Add generation prompt if needed
|
||||
if (add_ass) {
|
||||
ss << "assistant<|role_sep|>";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) {
|
||||
// Megrez template
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>";
|
||||
}
|
||||
|
||||
if (add_ass) {
|
||||
ss << "<|role_start|>assistant<|role_end|>";
|
||||
}
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
}
|
||||
dest = ss.str();
|
||||
return dest.size();
|
||||
}
|
||||
|
||||
// public interface
|
||||
|
||||
int32_t llama_chat_builtin_templates(const char ** output, size_t len) {
|
||||
auto it = LLM_CHAT_TEMPLATES.begin();
|
||||
for (size_t i = 0; i < std::min(len, LLM_CHAT_TEMPLATES.size()); i++) {
|
||||
output[i] = it->first.c_str();
|
||||
std::advance(it, 1);
|
||||
}
|
||||
return (int32_t) LLM_CHAT_TEMPLATES.size();
|
||||
}
|
||||
|
@ -1,53 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <cstdint>
|
||||
|
||||
enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_CHATML,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V1,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
||||
LLM_CHAT_TEMPLATE_PHI_3,
|
||||
LLM_CHAT_TEMPLATE_PHI_4,
|
||||
LLM_CHAT_TEMPLATE_FALCON_3,
|
||||
LLM_CHAT_TEMPLATE_ZEPHYR,
|
||||
LLM_CHAT_TEMPLATE_MONARCH,
|
||||
LLM_CHAT_TEMPLATE_GEMMA,
|
||||
LLM_CHAT_TEMPLATE_ORION,
|
||||
LLM_CHAT_TEMPLATE_OPENCHAT,
|
||||
LLM_CHAT_TEMPLATE_VICUNA,
|
||||
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK,
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK_3,
|
||||
LLM_CHAT_TEMPLATE_COMMAND_R,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_4,
|
||||
LLM_CHAT_TEMPLATE_GLMEDGE,
|
||||
LLM_CHAT_TEMPLATE_MINICPM,
|
||||
LLM_CHAT_TEMPLATE_EXAONE_3,
|
||||
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
||||
LLM_CHAT_TEMPLATE_GRANITE,
|
||||
LLM_CHAT_TEMPLATE_GIGACHAT,
|
||||
LLM_CHAT_TEMPLATE_MEGREZ,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
struct llama_chat_message;
|
||||
|
||||
llm_chat_template llm_chat_template_from_str(const std::string & name);
|
||||
|
||||
llm_chat_template llm_chat_detect_template(const std::string & tmpl);
|
||||
|
||||
int32_t llm_chat_apply_template(
|
||||
llm_chat_template tmpl,
|
||||
const std::vector<const llama_chat_message *> & chat,
|
||||
std::string & dest, bool add_ass);
|
File diff suppressed because it is too large
Load Diff
@ -1,128 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include "llama-batch.h"
|
||||
#include "llama-cparams.h"
|
||||
#include "llama-model.h"
|
||||
#include "llama-kv-cache.h"
|
||||
#include "llama-adapter.h"
|
||||
|
||||
#include "ggml-cpp.h"
|
||||
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
struct llama_context {
|
||||
llama_context(const llama_model & model)
|
||||
: model(model)
|
||||
, t_start_us(model.t_start_us)
|
||||
, t_load_us(model.t_load_us) {}
|
||||
|
||||
const struct llama_model & model;
|
||||
|
||||
struct llama_cparams cparams;
|
||||
struct llama_sbatch sbatch; // TODO: revisit if needed
|
||||
struct llama_kv_cache kv_self;
|
||||
struct llama_adapter_cvec cvec;
|
||||
|
||||
std::unordered_map<struct llama_adapter_lora *, float> lora;
|
||||
|
||||
std::vector<ggml_backend_ptr> backends;
|
||||
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
|
||||
|
||||
ggml_backend_t backend_cpu = nullptr;
|
||||
|
||||
ggml_threadpool_t threadpool = nullptr;
|
||||
ggml_threadpool_t threadpool_batch = nullptr;
|
||||
|
||||
bool has_evaluated_once = false;
|
||||
|
||||
mutable int64_t t_start_us;
|
||||
mutable int64_t t_load_us;
|
||||
mutable int64_t t_p_eval_us = 0;
|
||||
mutable int64_t t_eval_us = 0;
|
||||
|
||||
mutable int64_t t_compute_start_us = 0;
|
||||
mutable int64_t n_queued_tokens = 0;
|
||||
|
||||
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
|
||||
mutable int32_t n_eval = 0; // number of eval calls
|
||||
|
||||
// host buffer for the model output (logits and embeddings)
|
||||
ggml_backend_buffer_ptr buf_output;
|
||||
|
||||
// decode output (2-dimensional array: [n_outputs][n_vocab])
|
||||
size_t logits_size = 0; // capacity (of floats) for logits
|
||||
float * logits = nullptr;
|
||||
|
||||
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
|
||||
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
|
||||
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
|
||||
|
||||
bool logits_all = false;
|
||||
|
||||
// embeddings output (2-dimensional array: [n_outputs][n_embd])
|
||||
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
|
||||
size_t embd_size = 0; // capacity (of floats) for embeddings
|
||||
float * embd = nullptr;
|
||||
|
||||
// sequence embeddings output (map of [n_embd] vectors)
|
||||
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
|
||||
std::map<llama_seq_id, std::vector<float>> embd_seq;
|
||||
|
||||
// whether we are computing encoder output or decoder output
|
||||
bool is_encoding = false;
|
||||
|
||||
// TODO: find a better way to accommodate mutli-dimension position encoding methods
|
||||
// number of position id each token get, 1 for each token in most cases.
|
||||
// when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
|
||||
int n_pos_per_token = 1;
|
||||
|
||||
// output of the encoder part of the encoder-decoder models
|
||||
std::vector<float> embd_enc;
|
||||
std::vector<std::set<llama_seq_id>> seq_ids_enc;
|
||||
|
||||
// memory buffers used to evaluate the model
|
||||
std::vector<uint8_t> buf_compute_meta;
|
||||
ggml_backend_sched_ptr sched;
|
||||
|
||||
ggml_abort_callback abort_callback = nullptr;
|
||||
void * abort_callback_data = nullptr;
|
||||
|
||||
// input tensors
|
||||
struct ggml_tensor * inp_tokens; // I32 [n_batch]
|
||||
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
|
||||
struct ggml_tensor * inp_pos; // I32 [n_batch]
|
||||
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
|
||||
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
|
||||
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
|
||||
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
|
||||
struct ggml_tensor * inp_cls; // I32 [n_batch]
|
||||
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
|
||||
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
|
||||
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
|
||||
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
||||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
};
|
||||
|
||||
// TODO: make these methods of llama_context
|
||||
void llama_set_k_shift(struct llama_context & lctx);
|
||||
|
||||
void llama_set_s_copy(struct llama_context & lctx);
|
||||
|
||||
void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch);
|
||||
|
||||
// Make sure enough space is available for outputs.
|
||||
// Returns max number of outputs for which space was reserved.
|
||||
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs);
|
||||
|
||||
// make the outputs have the same order they had in the user-provided batch
|
||||
void llama_output_reorder(struct llama_context & ctx);
|
||||
|
||||
// For internal test use
|
||||
// TODO: remove
|
||||
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(struct llama_context * ctx);
|
@ -1 +0,0 @@
|
||||
#include "llama-cparams.h"
|
@ -1,37 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
struct llama_cparams {
|
||||
uint32_t n_ctx; // context size used during inference
|
||||
uint32_t n_batch;
|
||||
uint32_t n_ubatch;
|
||||
uint32_t n_seq_max;
|
||||
int n_threads; // number of threads to use for generation
|
||||
int n_threads_batch; // number of threads to use for batch processing
|
||||
|
||||
float rope_freq_base;
|
||||
float rope_freq_scale;
|
||||
|
||||
uint32_t n_ctx_orig_yarn;
|
||||
// These hyperparameters are not exposed in GGUF, because all
|
||||
// existing YaRN models use the same values for them.
|
||||
float yarn_ext_factor;
|
||||
float yarn_attn_factor;
|
||||
float yarn_beta_fast;
|
||||
float yarn_beta_slow;
|
||||
float defrag_thold;
|
||||
|
||||
bool embeddings;
|
||||
bool causal_attn;
|
||||
bool offload_kqv;
|
||||
bool flash_attn;
|
||||
bool no_perf;
|
||||
|
||||
enum llama_pooling_type pooling_type;
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval;
|
||||
void * cb_eval_user_data;
|
||||
};
|
@ -1,6 +1,5 @@
|
||||
#include "llama-grammar.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-vocab.h"
|
||||
#include "llama-sampling.h"
|
||||
|
||||
@ -560,7 +559,7 @@ bool llama_grammar_parser::parse(const char * src) {
|
||||
}
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s: error parsing grammar: %s\n\n%s\n", __func__, err.what(), src);
|
||||
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
|
||||
rules.clear();
|
||||
return false;
|
||||
}
|
||||
@ -823,11 +822,15 @@ llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar)
|
||||
return grammar->stacks;
|
||||
}
|
||||
|
||||
void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr) {
|
||||
llama_grammar_stacks stacks_new;
|
||||
stacks_new.reserve(grammar->stacks.size());
|
||||
void llama_grammar_accept(
|
||||
const llama_grammar_rules & rules,
|
||||
const llama_grammar_stacks & stacks,
|
||||
const uint32_t chr,
|
||||
llama_grammar_stacks & stacks_new) {
|
||||
stacks_new.clear();
|
||||
stacks_new.reserve(stacks.size());
|
||||
|
||||
for (const auto & stack : grammar->stacks) {
|
||||
for (const auto & stack : stacks) {
|
||||
if (stack.empty()) {
|
||||
continue;
|
||||
}
|
||||
@ -841,11 +844,9 @@ void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr) {
|
||||
if (!llama_grammar_is_end_of_sequence(pos)) {
|
||||
new_stack.push_back(pos);
|
||||
}
|
||||
llama_grammar_advance_stack(grammar->rules, new_stack, stacks_new);
|
||||
llama_grammar_advance_stack(rules, new_stack, stacks_new);
|
||||
}
|
||||
}
|
||||
|
||||
grammar->stacks = std::move(stacks_new);
|
||||
}
|
||||
|
||||
llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
|
||||
@ -960,28 +961,10 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
// Important: vec_rules has to be moved here, not copied, because stacks contains
|
||||
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
|
||||
// then the pointers would be invalidated when the local vec_rules goes out of scope.
|
||||
return new llama_grammar {
|
||||
vocab,
|
||||
std::move(vec_rules),
|
||||
std::move(stacks),
|
||||
/* .partial_utf8 = */ {},
|
||||
/* .lazy =*/ false,
|
||||
/* .awaiting_trigger = */ false,
|
||||
/* .trigger_buffer = */ "",
|
||||
/* .trigger_tokens = */ {},
|
||||
/* .trigger_words = */ {},
|
||||
};
|
||||
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
|
||||
}
|
||||
|
||||
struct llama_grammar * llama_grammar_init_impl(
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root,
|
||||
bool lazy,
|
||||
const char ** trigger_words,
|
||||
size_t num_trigger_words,
|
||||
const llama_token * trigger_tokens,
|
||||
size_t num_trigger_tokens) {
|
||||
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root) {
|
||||
llama_grammar_parser parser;
|
||||
|
||||
// if there is a grammar, parse it
|
||||
@ -1053,31 +1036,10 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
}
|
||||
} while (true);
|
||||
|
||||
std::vector<llama_token> vec_trigger_tokens;
|
||||
std::vector<std::string> vec_trigger_words;
|
||||
for (size_t i = 0; i < num_trigger_tokens; i++) {
|
||||
GGML_ASSERT(trigger_tokens != nullptr);
|
||||
vec_trigger_tokens.push_back(trigger_tokens[i]);
|
||||
}
|
||||
for (size_t i = 0; i < num_trigger_words; i++) {
|
||||
GGML_ASSERT(trigger_words != nullptr);
|
||||
vec_trigger_words.push_back(trigger_words[i]);
|
||||
}
|
||||
|
||||
// Important: vec_rules has to be moved here, not copied, because stacks contains
|
||||
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
|
||||
// then the pointers would be invalidated when the local vec_rules goes out of scope.
|
||||
return new llama_grammar {
|
||||
vocab,
|
||||
std::move(vec_rules),
|
||||
std::move(stacks),
|
||||
/* .partial_utf8 = */ {},
|
||||
/* .lazy = */ lazy,
|
||||
/* .awaiting_trigger = */ lazy,
|
||||
/* .trigger_buffer = */ "",
|
||||
std::move(vec_trigger_tokens),
|
||||
std::move(vec_trigger_words),
|
||||
};
|
||||
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, };
|
||||
}
|
||||
|
||||
void llama_grammar_free_impl(struct llama_grammar * grammar) {
|
||||
@ -1089,17 +1051,7 @@ void llama_grammar_free_impl(struct llama_grammar * grammar) {
|
||||
}
|
||||
|
||||
struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & grammar) {
|
||||
llama_grammar * result = new llama_grammar {
|
||||
grammar.vocab,
|
||||
grammar.rules,
|
||||
grammar.stacks,
|
||||
grammar.partial_utf8,
|
||||
grammar.lazy,
|
||||
grammar.awaiting_trigger,
|
||||
grammar.trigger_buffer,
|
||||
grammar.trigger_tokens,
|
||||
grammar.trigger_words,
|
||||
};
|
||||
llama_grammar * result = new llama_grammar { grammar.vocab, grammar.rules, grammar.stacks, grammar.partial_utf8, };
|
||||
|
||||
// redirect elements in stacks to point to new rules
|
||||
for (size_t is = 0; is < result->stacks.size(); is++) {
|
||||
@ -1107,7 +1059,7 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
|
||||
for (size_t ir0 = 0; ir0 < grammar.rules.size(); ir0++) {
|
||||
for (size_t ir1 = 0; ir1 < grammar.rules[ir0].size(); ir1++) {
|
||||
if (grammar.stacks[is][ie] == &grammar.rules[ir0][ir1]) {
|
||||
result->stacks[is][ie] = &result->rules[ir0][ir1];
|
||||
result->stacks[is][ie] = &result->rules[ir0][ir1];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1120,10 +1072,6 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
|
||||
void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_data_array * cur_p) {
|
||||
GGML_ASSERT(grammar.vocab != nullptr);
|
||||
|
||||
if (grammar.awaiting_trigger) {
|
||||
return;
|
||||
}
|
||||
|
||||
bool allow_eog = false;
|
||||
for (const auto & stack : grammar.stacks) {
|
||||
if (stack.empty()) {
|
||||
@ -1140,9 +1088,9 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
const llama_token id = cur_p->data[i].id;
|
||||
const std::string & piece = grammar.vocab->token_to_piece(id);
|
||||
const std::string & piece = grammar.vocab->cache_token_to_piece.at(id);
|
||||
|
||||
if (grammar.vocab->is_eog(id)) {
|
||||
if (llama_token_is_eog_impl(*grammar.vocab, id)) {
|
||||
if (!allow_eog) {
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
}
|
||||
@ -1163,35 +1111,7 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) {
|
||||
GGML_ASSERT(grammar.vocab != nullptr);
|
||||
|
||||
const auto & piece = grammar.vocab->token_to_piece(token);
|
||||
|
||||
if (grammar.awaiting_trigger) {
|
||||
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
|
||||
grammar.awaiting_trigger = false;
|
||||
grammar.trigger_buffer.clear();
|
||||
llama_grammar_accept_str(grammar, piece);
|
||||
LLAMA_LOG_DEBUG("Grammar triggered on token %u (`%s`)", token, piece.c_str());
|
||||
return;
|
||||
} else {
|
||||
// TODO: consider a smarter incremental substring search algorithm (store last position to search from).
|
||||
grammar.trigger_buffer += piece;
|
||||
for (const auto & word : grammar.trigger_words) {
|
||||
auto pos = grammar.trigger_buffer.find(word);
|
||||
if (pos != std::string::npos) {
|
||||
grammar.awaiting_trigger = false;
|
||||
auto constrained_str = grammar.trigger_buffer.substr(pos);
|
||||
grammar.trigger_buffer.clear();
|
||||
llama_grammar_accept_str(grammar, constrained_str);
|
||||
LLAMA_LOG_DEBUG("Grammar triggered on word `%s`", word.c_str());
|
||||
return;
|
||||
}
|
||||
}
|
||||
LLAMA_LOG_DEBUG("Grammar still awaiting trigger after token %d (`%s`) (buffer: `%s`)\n", token, piece.c_str(), grammar.trigger_buffer.c_str());
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (grammar.vocab->is_eog(token)) {
|
||||
if (llama_token_is_eog_impl(*grammar.vocab, token)) {
|
||||
for (const auto & stack : grammar.stacks) {
|
||||
if (stack.empty()) {
|
||||
return;
|
||||
@ -1200,20 +1120,19 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
llama_grammar_accept_str(grammar, piece);
|
||||
}
|
||||
const std::string & piece = grammar.vocab->cache_token_to_piece.at(token);
|
||||
|
||||
void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string & piece) {
|
||||
// Note terminating 0 in decoded string
|
||||
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
|
||||
const auto & code_points = decoded.first;
|
||||
|
||||
llama_grammar_stacks stacks_new;
|
||||
|
||||
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
||||
llama_grammar_accept(&grammar, *it);
|
||||
llama_grammar_accept(grammar.rules, grammar.stacks, *it, stacks_new);
|
||||
grammar.stacks = std::move(stacks_new);
|
||||
}
|
||||
|
||||
grammar.partial_utf8 = decoded.second;
|
||||
if (grammar.stacks.empty()) {
|
||||
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece);
|
||||
}
|
||||
GGML_ASSERT(!grammar.stacks.empty());
|
||||
}
|
||||
|
@ -1,10 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
struct llama_vocab;
|
||||
|
||||
@ -60,7 +58,6 @@ using llama_grammar_rules = std::vector<llama_grammar_rule>;
|
||||
using llama_grammar_stacks = std::vector<llama_grammar_stack>;
|
||||
using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
|
||||
|
||||
// TODO: remove, needed for tests atm
|
||||
const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
|
||||
llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
|
||||
|
||||
@ -68,7 +65,11 @@ const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar
|
||||
// be positioned at a character range (see `llama_grammar_advance_stack`), and
|
||||
// produces the N possible stacks if the given char is accepted at those
|
||||
// positions
|
||||
void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr);
|
||||
void llama_grammar_accept(
|
||||
const llama_grammar_rules & rules,
|
||||
const llama_grammar_stacks & stacks,
|
||||
uint32_t chr,
|
||||
llama_grammar_stacks & stacks_new);
|
||||
|
||||
std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
|
||||
const llama_grammar_rules & rules,
|
||||
@ -114,15 +115,6 @@ struct llama_grammar {
|
||||
|
||||
// buffer for partially generated UTF-8 sequence from accepted tokens
|
||||
llama_partial_utf8 partial_utf8;
|
||||
|
||||
// lazy grammars wait for trigger words or tokens before constraining the sampling.
|
||||
// we still ahve trigger_tokens for non-lazy grammars to force printing of special trigger tokens.
|
||||
// (useful e.g. for tool_choice=required)
|
||||
bool lazy = false;
|
||||
bool awaiting_trigger = false; // Initialized to true for lazy grammars only
|
||||
std::string trigger_buffer; // Output buffered by lazy grammar. Will be cleared once trigger is found.
|
||||
std::vector<llama_token> trigger_tokens; // Tokens that trigger a lazy grammar, or tokens to force printing of (even if special).
|
||||
std::vector<std::string> trigger_words;
|
||||
};
|
||||
|
||||
//
|
||||
@ -136,15 +128,7 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
size_t n_rules,
|
||||
size_t start_rule_index);
|
||||
|
||||
struct llama_grammar * llama_grammar_init_impl(
|
||||
const struct llama_vocab * vocab,
|
||||
const char * grammar_str,
|
||||
const char * grammar_root,
|
||||
bool lazy,
|
||||
const char ** trigger_words,
|
||||
size_t num_trigger_words,
|
||||
const llama_token * trigger_tokens,
|
||||
size_t num_trigger_tokens);
|
||||
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root);
|
||||
|
||||
void llama_grammar_free_impl(struct llama_grammar * grammar);
|
||||
|
||||
@ -158,7 +142,3 @@ void llama_grammar_apply_impl(
|
||||
void llama_grammar_accept_impl(
|
||||
struct llama_grammar & grammar,
|
||||
llama_token token);
|
||||
|
||||
void llama_grammar_accept_str(
|
||||
struct llama_grammar & grammar,
|
||||
const std::string & piece);
|
||||
|
@ -1,71 +0,0 @@
|
||||
#include "llama-hparams.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
uint32_t llama_hparams::n_head(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_head_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_head_kv_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_ff(uint32_t il) const {
|
||||
if (il < n_layer) {
|
||||
return n_ff_arr[il];
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_gqa(uint32_t il) const {
|
||||
const uint32_t n_head = this->n_head(il);
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
if (n_head_kv == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return n_head/n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
return n_embd_head_k * n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
|
||||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||||
|
||||
return n_embd_head_v * n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_k_s() const {
|
||||
if (wkv_head_size != 0) {
|
||||
// for RWKV models
|
||||
return token_shift_count * n_embd;
|
||||
}
|
||||
|
||||
// TODO: maybe support other convolution strides than 1
|
||||
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
|
||||
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
|
||||
}
|
||||
|
||||
uint32_t llama_hparams::n_embd_v_s() const {
|
||||
if (wkv_head_size != 0) {
|
||||
// corresponds to RWKV's wkv_states size
|
||||
return n_embd * wkv_head_size;
|
||||
}
|
||||
|
||||
// corresponds to Mamba's ssm_states size
|
||||
return ssm_d_state * ssm_d_inner;
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user