mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-07-02 23:41:28 +02:00
Compare commits
74 Commits
gg/objc
...
v1.7.3-pre
Author | SHA1 | Date | |
---|---|---|---|
ed733e85a1 | |||
5980b1ae77 | |||
0415a66044 | |||
7d134e3737 | |||
9df53b357e | |||
b2115b4d9b | |||
0164427dd5 | |||
627b11c78a | |||
472464453d | |||
11dddfbc9e | |||
384e214cc7 | |||
f2c680f893 | |||
fbe66da0e5 | |||
a815940e0e | |||
904e307bce | |||
491ec076b4 | |||
966433fdf2 | |||
6f1ba9d82d | |||
015ecd0001 | |||
b7c64a4352 | |||
7895d39508 | |||
22616f00f9 | |||
02c6fcbc2c | |||
3daeacad24 | |||
4d73962da4 | |||
068812650e | |||
4b7e059e15 | |||
30e35d7271 | |||
3623bd58f2 | |||
cb847c20a7 | |||
964b154a2a | |||
d7c2a04bce | |||
2bb4ca9cba | |||
a753a82462 | |||
276b08d8f0 | |||
4ca1e72fe0 | |||
16a66f103f | |||
330273901f | |||
42099a9342 | |||
90dd5fca9c | |||
2490f2a7f8 | |||
230e985633 | |||
ae24083f23 | |||
6463e36369 | |||
b3301f7d82 | |||
ab5d4d93ec | |||
2d6e9dd723 | |||
2f16e51553 | |||
0f0994902f | |||
5e1fcc1780 | |||
48f421de23 | |||
e7afb2b991 | |||
9a5ef7b169 | |||
453cc0fcf1 | |||
78dfec6bc5 | |||
f6d518fc4c | |||
ac33379a35 | |||
77e3e4a090 | |||
b840bb09be | |||
8b1c1c30a7 | |||
4b81335f75 | |||
2a4b5c9d7e | |||
04662748aa | |||
a117279e13 | |||
bbb292ed38 | |||
95e8901e71 | |||
4af9626702 | |||
c52d1035de | |||
5773a14980 | |||
6939147c47 | |||
98f9916c9f | |||
021eef1000 | |||
a9d06ce151 | |||
8c6a9b8bb6 |
@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git cmake libsdl2-dev
|
||||
apt-get install -y build-essential git cmake libsdl2-dev wget
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
@ -23,6 +23,6 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV GGML_CUDA=1
|
||||
|
||||
RUN make
|
||||
RUN make base.en
|
||||
|
||||
ENTRYPOINT ["/app/main"]
|
||||
|
@ -17,7 +17,7 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
ENV GGML_CUDA=1
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential libsdl2-dev \
|
||||
apt-get install -y build-essential libsdl2-dev wget cmake \
|
||||
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
|
||||
|
||||
# Ref: https://stackoverflow.com/a/53464012
|
||||
@ -25,7 +25,7 @@ ENV CUDA_MAIN_VERSION=12.3
|
||||
ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
|
||||
|
||||
COPY .. .
|
||||
RUN make
|
||||
RUN make base.en
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
|
||||
ENV CUDA_MAIN_VERSION=12.3
|
||||
@ -33,7 +33,7 @@ ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y curl ffmpeg \
|
||||
apt-get install -y curl ffmpeg wget cmake \
|
||||
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
|
||||
|
||||
COPY --from=build /app /app
|
||||
|
@ -2,17 +2,17 @@ FROM ubuntu:22.04 AS build
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential \
|
||||
apt-get install -y build-essential wget cmake \
|
||||
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
|
||||
|
||||
COPY .. .
|
||||
RUN make
|
||||
RUN make base.en
|
||||
|
||||
FROM ubuntu:22.04 AS runtime
|
||||
WORKDIR /app
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y curl ffmpeg libsdl2-dev \
|
||||
apt-get install -y curl ffmpeg libsdl2-dev wget cmake \
|
||||
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
|
||||
|
||||
COPY --from=build /app /app
|
||||
|
82
.github/workflows/bindings-ruby.yml
vendored
82
.github/workflows/bindings-ruby.yml
vendored
@ -3,61 +3,41 @@ on:
|
||||
push:
|
||||
paths:
|
||||
- bindings/ruby/**
|
||||
- src/whisper.cpp
|
||||
- include/whisper.h
|
||||
- ggml/src/ggml.c
|
||||
- ggml/src/ggml-impl.h
|
||||
- ggml/src/ggml-aarch64.h
|
||||
- ggml/src/ggml-aarch64.c
|
||||
- ggml/src/ggml-alloc.c
|
||||
- ggml/src/ggml-backend-impl.h
|
||||
- ggml/src/ggml-backend.cpp
|
||||
- ggml/src/ggml-common.h
|
||||
- ggml/src/ggml-quants.h
|
||||
- ggml/src/ggml-quants.c
|
||||
- ggml/src/ggml-cpu-impl.h
|
||||
- ggml/src/ggml-metal.m
|
||||
- ggml/src/ggml-metal.metal
|
||||
- ggml/src/ggml-blas.cpp
|
||||
- ggml/include/ggml.h
|
||||
- ggml/include/ggml-alloc.h
|
||||
- ggml/include/ggml-backend.h
|
||||
- ggml/include/ggml-cuda.h
|
||||
- ggml/include/ggml-kompute.h
|
||||
- ggml/include/ggml-metal.h
|
||||
- ggml/include/ggml-sycl.h
|
||||
- ggml/include/ggml-vulkan.h
|
||||
- ggml/include/ggml-blas.h
|
||||
- src/**/*.c
|
||||
- src/**/*.cpp
|
||||
- src/**/*.h
|
||||
- src/**/*.m
|
||||
- src/**/*.metal
|
||||
- include/**/*.c
|
||||
- include/**/*.cpp
|
||||
- include/**/*.h
|
||||
- include/**/*.m
|
||||
- include/**/*.metal
|
||||
- ggml/**/*.c
|
||||
- ggml/**/*.cpp
|
||||
- ggml/**/*.h
|
||||
- ggml/**/*.m
|
||||
- ggml/**/*.metal
|
||||
- scripts/get-flags.mk
|
||||
- examples/dr_wav.h
|
||||
pull_request:
|
||||
paths:
|
||||
- bindings/ruby/**
|
||||
- src/whisper.cpp
|
||||
- include/whisper.h
|
||||
- ggml/src/ggml.c
|
||||
- ggml/src/ggml-impl.h
|
||||
- ggml/src/ggml-aarch64.h
|
||||
- ggml/src/ggml-aarch64.c
|
||||
- ggml/src/ggml-alloc.c
|
||||
- ggml/src/ggml-backend-impl.h
|
||||
- ggml/src/ggml-backend.cpp
|
||||
- ggml/src/ggml-common.h
|
||||
- ggml/src/ggml-quants.h
|
||||
- ggml/src/ggml-quants.c
|
||||
- ggml/src/ggml-cpu-impl.h
|
||||
- ggml/src/ggml-metal.m
|
||||
- ggml/src/ggml-metal.metal
|
||||
- ggml/src/ggml-blas.cpp
|
||||
- ggml/include/ggml.h
|
||||
- ggml/include/ggml-alloc.h
|
||||
- ggml/include/ggml-backend.h
|
||||
- ggml/include/ggml-cuda.h
|
||||
- ggml/include/ggml-kompute.h
|
||||
- ggml/include/ggml-metal.h
|
||||
- ggml/include/ggml-sycl.h
|
||||
- ggml/include/ggml-vulkan.h
|
||||
- ggml/include/ggml-blas.h
|
||||
- src/**/*.c
|
||||
- src/**/*.cpp
|
||||
- src/**/*.h
|
||||
- src/**/*.m
|
||||
- src/**/*.metal
|
||||
- include/**/*.c
|
||||
- include/**/*.cpp
|
||||
- include/**/*.h
|
||||
- include/**/*.m
|
||||
- include/**/*.metal
|
||||
- ggml/**/*.c
|
||||
- ggml/**/*.cpp
|
||||
- ggml/**/*.h
|
||||
- ggml/**/*.m
|
||||
- ggml/**/*.metal
|
||||
- scripts/get-flags.mk
|
||||
- examples/dr_wav.h
|
||||
|
||||
@ -70,6 +50,6 @@ jobs:
|
||||
steps:
|
||||
- uses: ruby/setup-ruby@v1
|
||||
with:
|
||||
ruby-version: '3.0'
|
||||
ruby-version: '3.1'
|
||||
- uses: actions/checkout@v4
|
||||
- run: rake test
|
||||
|
288
.github/workflows/build.yml
vendored
288
.github/workflows/build.yml
vendored
@ -28,9 +28,9 @@ jobs:
|
||||
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
|
||||
set -e
|
||||
apt update
|
||||
apt install -y build-essential libsdl2-dev
|
||||
make
|
||||
make stream'
|
||||
apt install -y build-essential libsdl2-dev cmake
|
||||
cmake -B build
|
||||
cmake --build build --config Release -j $(nproc)'
|
||||
|
||||
macOS-latest:
|
||||
runs-on: macOS-latest
|
||||
@ -42,30 +42,30 @@ jobs:
|
||||
- name: Dependencies
|
||||
run: |
|
||||
brew update
|
||||
brew install sdl2
|
||||
brew install sdl2 cmake
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
make
|
||||
make stream
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
|
||||
freeBSD-latest:
|
||||
runs-on: macos-12
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build
|
||||
uses: cross-platform-actions/action@v0.24.0
|
||||
with:
|
||||
operating_system: freebsd
|
||||
version: '13.3'
|
||||
run: |
|
||||
sudo pkg update
|
||||
sudo pkg install -y gmake sdl2
|
||||
gmake
|
||||
gmake stream
|
||||
# freeBSD-latest:
|
||||
# runs-on: macos-12
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Build
|
||||
# uses: cross-platform-actions/action@v0.24.0
|
||||
# with:
|
||||
# operating_system: freebsd
|
||||
# version: '13.3'
|
||||
# run: |
|
||||
# sudo pkg update
|
||||
# sudo pkg install -y gmake sdl2 cmake
|
||||
# cmake -B build
|
||||
# cmake --build build --config Release
|
||||
|
||||
ubuntu-latest-gcc:
|
||||
runs-on: ubuntu-latest
|
||||
@ -280,21 +280,6 @@ jobs:
|
||||
mingw-w64-${{matrix.env}}-SDL2
|
||||
mingw-w64-${{matrix.env}}-openblas
|
||||
|
||||
- name: Build using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make -j $(nproc)
|
||||
|
||||
- name: Clean after building using make
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make clean
|
||||
|
||||
- name: Build using make w/ OpenBLAS
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
make GGML_OPENBLAS=1 -j $(nproc)
|
||||
|
||||
- name: Build using CMake
|
||||
shell: msys2 {0}
|
||||
run: |
|
||||
@ -445,71 +430,72 @@ jobs:
|
||||
name: whisper-blas-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
|
||||
windows-cublas:
|
||||
runs-on: windows-2019
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
build: [Release]
|
||||
arch: [x64]
|
||||
cublas: [ON]
|
||||
sdl2: [ON]
|
||||
cuda-toolkit: [12.2.0, 11.8.0]
|
||||
include:
|
||||
- arch: x64
|
||||
s2arc: x64
|
||||
- sdl2: ON
|
||||
s2ver: 2.28.5
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Add msbuild to PATH
|
||||
uses: microsoft/setup-msbuild@v2
|
||||
|
||||
- name: Install CUDA Toolkit
|
||||
id: cuda-toolkit
|
||||
uses: Jimver/cuda-toolkit@v0.2.15
|
||||
with:
|
||||
cuda: '${{ matrix.cuda-toolkit }}'
|
||||
|
||||
- name: Fetch SDL2 and set SDL2_DIR
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: |
|
||||
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
7z x sdl2.zip
|
||||
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
|
||||
- name: Configure
|
||||
run: >
|
||||
cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
-DGGML_CUDA=${{ matrix.cublas }}
|
||||
-DWHISPER_SDL2=${{ matrix.sdl2 }}
|
||||
|
||||
- name: Build ${{ matrix.cuda-toolkit }}
|
||||
run: |
|
||||
cd ./build
|
||||
cmake --build . --config ${{ matrix.build }}
|
||||
|
||||
- name: Copy CUDA DLLs
|
||||
run: >
|
||||
Copy-Item -PassThru
|
||||
-Path "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/*.dll"
|
||||
-Include cudart64_*,cublas64_*,cublasLt64_*
|
||||
-Destination build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Copy SDL2.dll
|
||||
if: matrix.sdl2 == 'ON'
|
||||
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
|
||||
- name: Upload binaries
|
||||
if: matrix.sdl2 == 'ON'
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
|
||||
path: build/bin/${{ matrix.build }}
|
||||
# TODO: fix and re-enable
|
||||
# windows-cublas:
|
||||
# runs-on: windows-2019
|
||||
#
|
||||
# strategy:
|
||||
# matrix:
|
||||
# build: [Release]
|
||||
# arch: [x64]
|
||||
# cublas: [ON]
|
||||
# sdl2: [ON]
|
||||
# cuda-toolkit: [12.2.0, 11.8.0]
|
||||
# include:
|
||||
# - arch: x64
|
||||
# s2arc: x64
|
||||
# - sdl2: ON
|
||||
# s2ver: 2.28.5
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v4
|
||||
#
|
||||
# - name: Add msbuild to PATH
|
||||
# uses: microsoft/setup-msbuild@v2
|
||||
#
|
||||
# - name: Install CUDA Toolkit
|
||||
# id: cuda-toolkit
|
||||
# uses: Jimver/cuda-toolkit@v0.2.15
|
||||
# with:
|
||||
# cuda: '${{ matrix.cuda-toolkit }}'
|
||||
#
|
||||
# - name: Fetch SDL2 and set SDL2_DIR
|
||||
# if: matrix.sdl2 == 'ON'
|
||||
# run: |
|
||||
# C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
|
||||
# 7z x sdl2.zip
|
||||
# echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
|
||||
#
|
||||
# - name: Configure
|
||||
# run: >
|
||||
# cmake -S . -B ./build -A ${{ matrix.arch }}
|
||||
# -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
# -DGGML_CUDA=${{ matrix.cublas }}
|
||||
# -DWHISPER_SDL2=${{ matrix.sdl2 }}
|
||||
#
|
||||
# - name: Build ${{ matrix.cuda-toolkit }}
|
||||
# run: |
|
||||
# cd ./build
|
||||
# cmake --build . --config ${{ matrix.build }}
|
||||
#
|
||||
# - name: Copy CUDA DLLs
|
||||
# run: >
|
||||
# Copy-Item -PassThru
|
||||
# -Path "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/*.dll"
|
||||
# -Include cudart64_*,cublas64_*,cublasLt64_*
|
||||
# -Destination build/bin/${{ matrix.build }}
|
||||
#
|
||||
# - name: Copy SDL2.dll
|
||||
# if: matrix.sdl2 == 'ON'
|
||||
# run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
|
||||
#
|
||||
# - name: Upload binaries
|
||||
# if: matrix.sdl2 == 'ON'
|
||||
# uses: actions/upload-artifact@v4
|
||||
# with:
|
||||
# name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
|
||||
# path: build/bin/${{ matrix.build }}
|
||||
|
||||
emscripten:
|
||||
runs-on: ubuntu-latest
|
||||
@ -533,7 +519,7 @@ jobs:
|
||||
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
|
||||
make
|
||||
|
||||
ios:
|
||||
ios-xcode-build:
|
||||
runs-on: macos-latest
|
||||
|
||||
strategy:
|
||||
@ -541,7 +527,7 @@ jobs:
|
||||
build: [Release]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Configure
|
||||
@ -549,41 +535,64 @@ jobs:
|
||||
cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
|
||||
mkdir models/ggml-base.en-encoder.mlmodelc
|
||||
|
||||
# TODO: disabled because it fails for some reason with Github Actions
|
||||
# - name: Build objc example
|
||||
# run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DWHISPER_BUILD_EXAMPLES=OFF \
|
||||
-DWHISPER_BUILD_TESTS=OFF \
|
||||
-DWHISPER_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
|
||||
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
|
||||
sudo cmake --install . --config Release
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
xcodebuild -scheme whisper-Package -destination 'generic/platform=iOS'
|
||||
|
||||
#- name: Build objc example
|
||||
# run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphoneos build
|
||||
|
||||
- name: Build swiftui example
|
||||
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphonesimulator build
|
||||
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
|
||||
|
||||
android:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
path: whisper
|
||||
|
||||
- name: Install Java
|
||||
uses: actions/setup-java@v4
|
||||
with:
|
||||
distribution: zulu
|
||||
java-version: 21
|
||||
|
||||
- name: Setup Android SDK
|
||||
uses: android-actions/setup-android@v3
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cd whisper/examples/whisper.android
|
||||
./gradlew assembleRelease --no-daemon
|
||||
|
||||
- name: Build with external ggml
|
||||
run: |
|
||||
export PATH_TO_GGML=$PWD/ggml
|
||||
cd whisper/examples/whisper.android
|
||||
./gradlew assembleRelease --no-daemon
|
||||
# TODO: update android build and re-enable when it works
|
||||
# android:
|
||||
# runs-on: ubuntu-latest
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v4
|
||||
# with:
|
||||
# path: whisper
|
||||
#
|
||||
# - name: Install Java
|
||||
# uses: actions/setup-java@v4
|
||||
# with:
|
||||
# distribution: zulu
|
||||
# java-version: 21
|
||||
#
|
||||
# - name: Setup Android SDK
|
||||
# uses: android-actions/setup-android@v3
|
||||
#
|
||||
# - name: Build
|
||||
# run: |
|
||||
# cd whisper/examples/whisper.android
|
||||
# ./gradlew assembleRelease --no-daemon
|
||||
#
|
||||
# - name: Build with external ggml
|
||||
# run: |
|
||||
# export PATH_TO_GGML=$PWD/ggml
|
||||
# cd whisper/examples/whisper.android
|
||||
# ./gradlew assembleRelease --no-daemon
|
||||
|
||||
# TODO: disable because of following fail: https://github.com/ggerganov/whisper.cpp/actions/runs/11019444420/job/30627193602
|
||||
# android_java:
|
||||
@ -665,5 +674,6 @@ jobs:
|
||||
- name: Test quantize
|
||||
run: |
|
||||
./models/download-ggml-model.sh tiny.en
|
||||
make quantize
|
||||
./quantize models/ggml-tiny.en.bin models/ggml-tiny.en-q4_0.bin q4_0
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
./build/bin/quantize models/ggml-tiny.en.bin models/ggml-tiny.en-q4_0.bin q4_0
|
||||
|
@ -14,55 +14,6 @@ let package = Package(
|
||||
.library(name: "whisper", targets: ["whisper"]),
|
||||
],
|
||||
targets: [
|
||||
.target(
|
||||
name: "whisper",
|
||||
path: ".",
|
||||
exclude: [
|
||||
"build",
|
||||
"bindings",
|
||||
"cmake",
|
||||
"examples",
|
||||
"scripts",
|
||||
"models",
|
||||
"samples",
|
||||
"tests",
|
||||
"CMakeLists.txt",
|
||||
"Makefile",
|
||||
"ggml/src/ggml-metal/ggml-metal-embed.metal"
|
||||
],
|
||||
sources: [
|
||||
"ggml/src/ggml.c",
|
||||
"src/whisper.cpp",
|
||||
"ggml/src/ggml-aarch64.c",
|
||||
"ggml/src/ggml-alloc.c",
|
||||
"ggml/src/ggml-backend.cpp",
|
||||
"ggml/src/ggml-backend-reg.cpp",
|
||||
"ggml/src/ggml-cpu/ggml-cpu.c",
|
||||
"ggml/src/ggml-cpu/ggml-cpu.cpp",
|
||||
"ggml/src/ggml-cpu/ggml-cpu-aarch64.c",
|
||||
"ggml/src/ggml-cpu/ggml-cpu-quants.c",
|
||||
"ggml/src/ggml-quants.c",
|
||||
"ggml/src/ggml-threading.cpp",
|
||||
"ggml/src/ggml-metal/ggml-metal.m"
|
||||
],
|
||||
resources: [.process("ggml/src/ggml-metal/ggml-metal.metal")],
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
.headerSearchPath("ggml/src"),
|
||||
.define("GGML_USE_ACCELERATE"),
|
||||
.define("GGML_USE_METAL")
|
||||
// NOTE: NEW_LAPACK will required iOS version 16.4+
|
||||
// We should consider add this in the future when we drop support for iOS 14
|
||||
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
|
||||
// .define("ACCELERATE_NEW_LAPACK"),
|
||||
// .define("ACCELERATE_LAPACK_ILP64")
|
||||
],
|
||||
linkerSettings: [
|
||||
.linkedFramework("Accelerate")
|
||||
]
|
||||
)
|
||||
],
|
||||
cxxLanguageStandard: .cxx11
|
||||
.systemLibrary(name: "whisper", pkgConfig: "whisper"),
|
||||
]
|
||||
)
|
||||
|
56
README.md
56
README.md
@ -89,10 +89,11 @@ Now build the [main](examples/main) example and transcribe an audio file like th
|
||||
|
||||
```bash
|
||||
# build the main example
|
||||
make -j
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
|
||||
# transcribe an audio file
|
||||
./main -f samples/jfk.wav
|
||||
./build/bin/main -f samples/jfk.wav
|
||||
```
|
||||
|
||||
---
|
||||
@ -265,11 +266,12 @@ Here are the steps for creating and using a quantized model:
|
||||
|
||||
```bash
|
||||
# quantize a model with Q5_0 method
|
||||
make -j quantize
|
||||
./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
./build/bin/quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
|
||||
|
||||
# run the examples as usual, specifying the quantized model file
|
||||
./main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
|
||||
./build/bin/main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
|
||||
```
|
||||
|
||||
## Core ML support
|
||||
@ -303,10 +305,6 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
||||
- Build `whisper.cpp` with Core ML support:
|
||||
|
||||
```bash
|
||||
# using Makefile
|
||||
make clean
|
||||
WHISPER_COREML=1 make -j
|
||||
|
||||
# using CMake
|
||||
cmake -B build -DWHISPER_COREML=1
|
||||
cmake --build build -j --config Release
|
||||
@ -426,8 +424,8 @@ First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-do
|
||||
Now build `whisper.cpp` with CUDA support:
|
||||
|
||||
```
|
||||
make clean
|
||||
GGML_CUDA=1 make -j
|
||||
cmake -B build -DGGML_CUDA=1
|
||||
cmake --build build -j --config Release
|
||||
```
|
||||
|
||||
## Vulkan GPU support
|
||||
@ -436,8 +434,8 @@ First, make sure your graphics card driver provides support for Vulkan API.
|
||||
|
||||
Now build `whisper.cpp` with Vulkan support:
|
||||
```
|
||||
make clean
|
||||
make GGML_VULKAN=1 -j
|
||||
cmake -B build -DGGML_VULKAN=1
|
||||
cmake --build build -j --config Release
|
||||
```
|
||||
|
||||
## BLAS CPU support via OpenBLAS
|
||||
@ -448,28 +446,13 @@ First, make sure you have installed `openblas`: https://www.openblas.net/
|
||||
Now build `whisper.cpp` with OpenBLAS support:
|
||||
|
||||
```
|
||||
make clean
|
||||
GGML_OPENBLAS=1 make -j
|
||||
```
|
||||
|
||||
## BLAS CPU support via Intel MKL
|
||||
|
||||
Encoder processing can be accelerated on the CPU via the BLAS compatible interface of Intel's Math Kernel Library.
|
||||
First, make sure you have installed Intel's MKL runtime and development packages: https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
|
||||
|
||||
Now build `whisper.cpp` with Intel MKL BLAS support:
|
||||
|
||||
```
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DWHISPER_MKL=ON ..
|
||||
WHISPER_MKL=1 make -j
|
||||
cmake -B build -DGGML_BLAS=1
|
||||
cmake --build build -j --config Release
|
||||
```
|
||||
|
||||
## Ascend NPU support
|
||||
|
||||
Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores.
|
||||
Ascend NPU provides inference acceleration via [`CANN`](https://www.hiascend.com/en/software/cann) and AI cores.
|
||||
|
||||
First, check if your Ascend NPU device is supported:
|
||||
|
||||
@ -483,10 +466,8 @@ Then, make sure you have installed [`CANN toolkit`](https://www.hiascend.com/en/
|
||||
Now build `whisper.cpp` with CANN support:
|
||||
|
||||
```
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -D GGML_CANN=on
|
||||
make -j
|
||||
cmake -B build -DGGML_CANN=1
|
||||
cmake --build build -j --config Release
|
||||
```
|
||||
|
||||
Run the inference examples as usual, for example:
|
||||
@ -636,8 +617,9 @@ The [stream](examples/stream) tool samples the audio every half a second and run
|
||||
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
|
||||
|
||||
```bash
|
||||
make stream -j
|
||||
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||
cmake -B build
|
||||
cmake --build build --config Release
|
||||
./build/bin/stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
|
||||
|
5
Sources/whisper/module.modulemap
Normal file
5
Sources/whisper/module.modulemap
Normal file
@ -0,0 +1,5 @@
|
||||
module whisper [system] {
|
||||
header "whisper.h"
|
||||
link "whisper"
|
||||
export *
|
||||
}
|
4
Sources/whisper/whisper.h
Normal file
4
Sources/whisper/whisper.h
Normal file
@ -0,0 +1,4 @@
|
||||
#pragma once
|
||||
|
||||
#include <whisper.h>
|
||||
|
@ -160,6 +160,24 @@ Whisper.log_set ->(level, buffer, user_data) {
|
||||
Whisper::Context.new(MODEL)
|
||||
```
|
||||
|
||||
You can also call `Whisper::Context#full` and `#full_parallel` with a Ruby array as samples. Although `#transcribe` with audio file path is recommended because it extracts PCM samples in C++ and is fast, `#full` and `#full_parallel` give you flexibility.
|
||||
|
||||
```ruby
|
||||
require "whisper"
|
||||
require "wavefile"
|
||||
|
||||
reader = WaveFile::Reader.new("path/to/audio.wav", WaveFile::Format.new(:mono, :float, 16000))
|
||||
samples = reader.enum_for(:each_buffer).map(&:samples).flatten
|
||||
|
||||
whisper = Whisper::Context.new("path/to/model.bin")
|
||||
whisper.full(Whisper::Params.new, samples)
|
||||
whisper.each_segment do |segment|
|
||||
puts segment.text
|
||||
end
|
||||
```
|
||||
|
||||
The second argument `samples` may be an array, an object with `length` method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.
|
||||
|
||||
License
|
||||
-------
|
||||
|
||||
|
@ -1,20 +1,22 @@
|
||||
require 'rake/clean'
|
||||
require "bundler/gem_tasks"
|
||||
require "pathname"
|
||||
require "yaml"
|
||||
require "rake/testtask"
|
||||
require_relative "extsources"
|
||||
|
||||
extsources = YAML.load_file("extsources.yaml")
|
||||
SOURCES = FileList[]
|
||||
extsources.each do |src|
|
||||
|
||||
EXTSOURCES.each do |src|
|
||||
basename = src.pathmap("%f")
|
||||
dest = basename == "LICENSE" ? basename : basename.pathmap("ext/%f")
|
||||
dest = basename == "LICENSE" ? basename : src.pathmap("%{../..,ext}p")
|
||||
dir = dest.pathmap("%d")
|
||||
file src
|
||||
file dest => src do |t|
|
||||
directory dir
|
||||
file dest => [src, dir] do |t|
|
||||
cp t.source, t.name
|
||||
end
|
||||
SOURCES.include dest
|
||||
end
|
||||
|
||||
CLEAN.include SOURCES
|
||||
CLEAN.include FileList[
|
||||
"ext/*.o",
|
||||
@ -66,3 +68,13 @@ file TEST_MODEL do
|
||||
sh "./models/download-ggml-model.sh base.en"
|
||||
end
|
||||
end
|
||||
|
||||
TEST_MEMORY_VIEW = "tests/jfk_reader/jfk_reader.#{RbConfig::CONFIG['DLEXT']}"
|
||||
file TEST_MEMORY_VIEW => "tests/jfk_reader/jfk_reader.c" do |t|
|
||||
Dir.chdir "tests/jfk_reader" do
|
||||
ruby "extconf.rb"
|
||||
sh "make"
|
||||
end
|
||||
end
|
||||
CLEAN.include "tests/jfk_reader/jfk_reader.{o,#{RbConfig::CONFIG['DLEXT']}}"
|
||||
task test: TEST_MEMORY_VIEW
|
||||
|
43
bindings/ruby/ext/.gitignore
vendored
43
bindings/ruby/ext/.gitignore
vendored
@ -1,35 +1,14 @@
|
||||
Makefile
|
||||
ggml.c
|
||||
ggml.h
|
||||
ggml-alloc.c
|
||||
ggml-alloc.h
|
||||
ggml-aarch64.c
|
||||
ggml-aarch64.h
|
||||
ggml-backend.cpp
|
||||
ggml-backend-impl.h
|
||||
ggml-backend.c
|
||||
ggml-backend.h
|
||||
ggml-common.h
|
||||
ggml-cpu-impl.h
|
||||
ggml-metal.m
|
||||
ggml-metal.metal
|
||||
ggml-metal-embed.metal
|
||||
ggml-blas.cpp
|
||||
ggml-cuda.h
|
||||
ggml-impl.h
|
||||
ggml-kompute.h
|
||||
ggml-metal.h
|
||||
ggml-opencl.h
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
ggml-sycl.h
|
||||
ggml-vulkan.h
|
||||
ggml-blas.h
|
||||
get-flags.mk
|
||||
whisper.cpp
|
||||
whisper.h
|
||||
dr_wav.h
|
||||
depend
|
||||
whisper.bundle
|
||||
whisper.so
|
||||
whisper.bundle
|
||||
whisper.dll
|
||||
depend
|
||||
scripts/get-flags.mk
|
||||
*.o
|
||||
*.c
|
||||
*.cpp
|
||||
*.h
|
||||
*.m
|
||||
*.metal
|
||||
!ruby_whisper.cpp
|
||||
!ruby_whisper.h
|
||||
|
9
bindings/ruby/ext/cpu.mk
Normal file
9
bindings/ruby/ext/cpu.mk
Normal file
@ -0,0 +1,9 @@
|
||||
ggml/src/ggml-cpu/ggml-cpu-cpp.o: \
|
||||
ggml/src/ggml-cpu/ggml-cpu.cpp \
|
||||
ggml/include/ggml-backend.h \
|
||||
ggml/include/ggml.h \
|
||||
ggml/include/ggml-alloc.h \
|
||||
ggml/src/ggml-backend-impl.h \
|
||||
ggml/include/ggml-cpu.h \
|
||||
ggml/src/ggml-impl.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
@ -35,7 +35,7 @@ if $GGML_METAL
|
||||
$GGML_METAL_EMBED_LIBRARY = true
|
||||
end
|
||||
|
||||
$MK_CPPFLAGS = ''
|
||||
$MK_CPPFLAGS = '-Iggml/include -Iggml/src -Iinclude -Isrc -Iexamples'
|
||||
$MK_CFLAGS = '-std=c11 -fPIC'
|
||||
$MK_CXXFLAGS = '-std=c++11 -fPIC'
|
||||
$MK_NVCCFLAGS = '-std=c++11'
|
||||
@ -123,11 +123,11 @@ end
|
||||
|
||||
unless ENV['GGML_NO_ACCELERATE']
|
||||
if $UNAME_S == 'Darwin'
|
||||
$MK_CPPFLAGS << ' -DGGML_USE_ACCELERATE -DGGML_USE_BLAS'
|
||||
$MK_CPPFLAGS << ' -DGGML_USE_ACCELERATE -DGGML_USE_BLAS -DGGML_BLAS_USE_ACCELERATE'
|
||||
$MK_CPPFLAGS << ' -DACCELERATE_NEW_LAPACK'
|
||||
$MK_CPPFLAGS << ' -DACCELERATE_LAPACK_ILP64'
|
||||
$MK_LDFLAGS << ' -framework Accelerate'
|
||||
$OBJ_GGML << 'ggml-blas.o'
|
||||
$OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
|
||||
end
|
||||
end
|
||||
|
||||
@ -135,20 +135,20 @@ if ENV['GGML_OPENBLAS']
|
||||
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas`.chomp}"
|
||||
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas)`.chomp}"
|
||||
$MK_LDFLAGS << " #{`pkg-config --libs openblas`}"
|
||||
$OBJ_GGML << 'ggml-blas.o'
|
||||
$OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
|
||||
end
|
||||
|
||||
if ENV['GGML_OPENBLAS64']
|
||||
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas64`.chomp}"
|
||||
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas64)`.chomp}"
|
||||
$MK_LDFLAGS << " #{`pkg-config --libs openblas64`}"
|
||||
$OBJ_GGML << 'ggml-blas.o'
|
||||
$OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
|
||||
end
|
||||
|
||||
if $GGML_METAL
|
||||
$MK_CPPFLAGS << ' -DGGML_USE_METAL'
|
||||
$MK_LDFLAGS << ' -framework Foundation -framework Metal -framework MetalKit'
|
||||
$OBJ_GGML << 'ggml-metal.o'
|
||||
$OBJ_GGML << 'ggml/src/ggml-metal/ggml-metal.o'
|
||||
|
||||
if ENV['GGML_METAL_NDEBUG']
|
||||
$MK_CPPFLAGS << ' -DGGML_METAL_NDEBUG'
|
||||
@ -156,20 +156,26 @@ if $GGML_METAL
|
||||
|
||||
if $GGML_METAL_EMBED_LIBRARY
|
||||
$MK_CPPFLAGS << ' -DGGML_METAL_EMBED_LIBRARY'
|
||||
$OBJ_GGML << 'ggml-metal-embed.o'
|
||||
$OBJ_GGML << 'ggml/src/ggml-metal/ggml-metal-embed.o'
|
||||
end
|
||||
end
|
||||
|
||||
$OBJ_GGML <<
|
||||
'ggml.o' <<
|
||||
'ggml-cpu.o' <<
|
||||
'ggml-alloc.o' <<
|
||||
'ggml-backend.o' <<
|
||||
'ggml-quants.o' <<
|
||||
'ggml-aarch64.o'
|
||||
'ggml/src/ggml.o' <<
|
||||
'ggml/src/ggml-aarch64.o' <<
|
||||
'ggml/src/ggml-alloc.o' <<
|
||||
'ggml/src/ggml-backend.o' <<
|
||||
'ggml/src/ggml-backend-reg.o' <<
|
||||
'ggml/src/ggml-opt.o' <<
|
||||
'ggml/src/ggml-quants.o' <<
|
||||
'ggml/src/ggml-threading.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu-cpp.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu-aarch64.o' <<
|
||||
'ggml/src/ggml-cpu/ggml-cpu-quants.o'
|
||||
|
||||
$OBJ_WHISPER <<
|
||||
'whisper.o'
|
||||
'src/whisper.o'
|
||||
|
||||
$objs = $OBJ_GGML + $OBJ_WHISPER + $OBJ_COMMON + $OBJ_SDL
|
||||
$objs << "ruby_whisper.o"
|
||||
@ -184,9 +190,12 @@ $LDFLAGS = "#{$MK_LDFLAGS} #{$LDFLAGS}"
|
||||
create_makefile('whisper')
|
||||
|
||||
File.open 'Makefile', 'a' do |file|
|
||||
file.puts 'include get-flags.mk'
|
||||
file.puts 'include scripts/get-flags.mk'
|
||||
file.puts 'include cpu.mk'
|
||||
|
||||
if $GGML_METAL
|
||||
file.puts 'include metal.mk'
|
||||
|
||||
if $GGML_METAL_EMBED_LIBRARY
|
||||
file.puts 'include metal-embed.mk'
|
||||
end
|
||||
|
@ -1,14 +1,17 @@
|
||||
ggml-metal-embed.o: \
|
||||
ggml-metal.metal \
|
||||
ggml-common.h
|
||||
ggml/src/ggml-metal/ggml-metal-embed.o: \
|
||||
ggml/src/ggml-metal/ggml-metal.metal \
|
||||
ggml/src/ggml-metal/ggml-metal-impl.h \
|
||||
ggml/src/ggml-common.h
|
||||
@echo "Embedding Metal library"
|
||||
@sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal
|
||||
$(eval TEMP_ASSEMBLY=$(shell mktemp))
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".incbin \"ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
|
||||
@$(AS) $(TEMP_ASSEMBLY) -o $@
|
||||
@rm -f ${TEMP_ASSEMBLY}
|
||||
@sed -e '/__embed_ggml-common.h__/r ggml/src/ggml-common.h' -e '/__embed_ggml-common.h__/d' < ggml/src/ggml-metal/ggml-metal.metal > ggml/src/ggml-metal/ggml-metal-embed.metal.tmp
|
||||
@sed -e '/#include "ggml-metal-impl.h"/r ggml/src/ggml-metal/ggml-metal-impl.h' -e '/#include "ggml-metal-impl.h"/d' < ggml/src/ggml-metal/ggml-metal-embed.metal.tmp > ggml/src/ggml-metal/ggml-metal-embed.metal
|
||||
$(eval TEMP_ASSEMBLY=$(shell mktemp -d))
|
||||
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".incbin \"ggml/src/ggml-metal/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
|
||||
$(CC) $(CFLAGS) -c $(TEMP_ASSEMBLY)/ggml-metal-embed.s -o $@
|
||||
@rm -f ${TEMP_ASSEMBLY}/ggml-metal-embed.s
|
||||
@rmdir ${TEMP_ASSEMBLY}
|
||||
|
6
bindings/ruby/ext/metal.mk
Normal file
6
bindings/ruby/ext/metal.mk
Normal file
@ -0,0 +1,6 @@
|
||||
ggml/src/ggml-metal/ggml-metal.o: \
|
||||
ggml/src/ggml-metal/ggml-metal.m \
|
||||
ggml/src/ggml-metal/ggml-metal-impl.h \
|
||||
ggml/include/ggml-metal.h \
|
||||
ggml/include/ggml.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
@ -1,4 +1,5 @@
|
||||
#include <ruby.h>
|
||||
#include <ruby/memory_view.h>
|
||||
#include "ruby_whisper.h"
|
||||
#define DR_WAV_IMPLEMENTATION
|
||||
#include "dr_wav.h"
|
||||
@ -35,11 +36,15 @@ extern "C" {
|
||||
VALUE mWhisper;
|
||||
VALUE cContext;
|
||||
VALUE cParams;
|
||||
VALUE eError;
|
||||
|
||||
static ID id_to_s;
|
||||
static ID id_call;
|
||||
static ID id___method__;
|
||||
static ID id_to_enum;
|
||||
static ID id_length;
|
||||
static ID id_next;
|
||||
static ID id_new;
|
||||
|
||||
static bool is_log_callback_finalized = false;
|
||||
|
||||
@ -100,13 +105,13 @@ static VALUE ruby_whisper_s_finalize_log_callback(VALUE self, VALUE id) {
|
||||
* log_set ->(level, buffer, user_data) { ... }, user_data -> nil
|
||||
*/
|
||||
static VALUE ruby_whisper_s_log_set(VALUE self, VALUE log_callback, VALUE user_data) {
|
||||
VALUE old_callback = rb_iv_get(self, "@log_callback");
|
||||
VALUE old_callback = rb_iv_get(self, "log_callback");
|
||||
if (!NIL_P(old_callback)) {
|
||||
rb_undefine_finalizer(old_callback);
|
||||
}
|
||||
|
||||
rb_iv_set(self, "@log_callback", log_callback);
|
||||
rb_iv_set(self, "@user_data", user_data);
|
||||
rb_iv_set(self, "log_callback", log_callback);
|
||||
rb_iv_set(self, "user_data", user_data);
|
||||
|
||||
VALUE finalize_log_callback = rb_funcall(mWhisper, rb_intern("method"), 1, rb_str_new2("finalize_log_callback"));
|
||||
rb_define_finalizer(log_callback, finalize_log_callback);
|
||||
@ -115,8 +120,8 @@ static VALUE ruby_whisper_s_log_set(VALUE self, VALUE log_callback, VALUE user_d
|
||||
if (is_log_callback_finalized) {
|
||||
return;
|
||||
}
|
||||
VALUE log_callback = rb_iv_get(mWhisper, "@log_callback");
|
||||
VALUE udata = rb_iv_get(mWhisper, "@user_data");
|
||||
VALUE log_callback = rb_iv_get(mWhisper, "log_callback");
|
||||
VALUE udata = rb_iv_get(mWhisper, "user_data");
|
||||
rb_funcall(log_callback, id_call, 3, INT2NUM(level), rb_str_new2(buffer), udata);
|
||||
}, nullptr);
|
||||
|
||||
@ -544,6 +549,168 @@ VALUE ruby_whisper_model_type(VALUE self) {
|
||||
return rb_str_new2(whisper_model_type_readable(rw->context));
|
||||
}
|
||||
|
||||
/*
|
||||
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
|
||||
* Not thread safe for same context
|
||||
* Uses the specified decoding strategy to obtain the text.
|
||||
*
|
||||
* call-seq:
|
||||
* full(params, samples, n_samples) -> nil
|
||||
* full(params, samples) -> nil
|
||||
*
|
||||
* The second argument +samples+ must be an array of samples, respond to :length, or be a MemoryView of an array of float. It must be 32 bit float PCM audio data.
|
||||
*/
|
||||
VALUE ruby_whisper_full(int argc, VALUE *argv, VALUE self) {
|
||||
if (argc < 2 || argc > 3) {
|
||||
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
|
||||
}
|
||||
|
||||
ruby_whisper *rw;
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
VALUE params = argv[0];
|
||||
Data_Get_Struct(params, ruby_whisper_params, rwp);
|
||||
VALUE samples = argv[1];
|
||||
int n_samples;
|
||||
rb_memory_view_t view;
|
||||
const bool memory_view_available_p = rb_memory_view_available_p(samples);
|
||||
if (argc == 3) {
|
||||
n_samples = NUM2INT(argv[2]);
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
if (RARRAY_LEN(samples) < n_samples) {
|
||||
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
|
||||
}
|
||||
}
|
||||
// Should check when samples.respond_to?(:length)?
|
||||
} else {
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
n_samples = RARRAY_LEN(samples);
|
||||
} else if (memory_view_available_p) {
|
||||
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
|
||||
view.obj = Qnil;
|
||||
rb_raise(rb_eArgError, "unable to get a memory view");
|
||||
}
|
||||
n_samples = view.byte_size / view.item_size;
|
||||
} else if (rb_respond_to(samples, id_length)) {
|
||||
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
|
||||
} else {
|
||||
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
|
||||
}
|
||||
}
|
||||
float * c_samples = (float *)malloc(n_samples * sizeof(float));
|
||||
if (memory_view_available_p) {
|
||||
c_samples = (float *)view.data;
|
||||
} else {
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
|
||||
}
|
||||
} else {
|
||||
// TODO: use rb_block_call
|
||||
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
// TODO: check if iter is exhausted and raise ArgumentError appropriately
|
||||
VALUE sample = rb_funcall(iter, id_next, 0);
|
||||
c_samples[i] = RFLOAT_VALUE(sample);
|
||||
}
|
||||
}
|
||||
}
|
||||
const int result = whisper_full(rw->context, rwp->params, c_samples, n_samples);
|
||||
if (0 == result) {
|
||||
return Qnil;
|
||||
} else {
|
||||
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
|
||||
* Result is stored in the default state of the context
|
||||
* Not thread safe if executed in parallel on the same context.
|
||||
* It seems this approach can offer some speedup in some cases.
|
||||
* However, the transcription accuracy can be worse at the beginning and end of each chunk.
|
||||
*
|
||||
* call-seq:
|
||||
* full_parallel(params, samples) -> nil
|
||||
* full_parallel(params, samples, n_samples) -> nil
|
||||
* full_parallel(params, samples, n_samples, n_processors) -> nil
|
||||
* full_parallel(params, samples, nil, n_processors) -> nil
|
||||
*/
|
||||
static VALUE ruby_whisper_full_parallel(int argc, VALUE *argv,VALUE self) {
|
||||
if (argc < 2 || argc > 4) {
|
||||
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
|
||||
}
|
||||
|
||||
ruby_whisper *rw;
|
||||
ruby_whisper_params *rwp;
|
||||
Data_Get_Struct(self, ruby_whisper, rw);
|
||||
VALUE params = argv[0];
|
||||
Data_Get_Struct(params, ruby_whisper_params, rwp);
|
||||
VALUE samples = argv[1];
|
||||
int n_samples;
|
||||
int n_processors;
|
||||
rb_memory_view_t view;
|
||||
const bool memory_view_available_p = rb_memory_view_available_p(samples);
|
||||
switch (argc) {
|
||||
case 2:
|
||||
n_processors = 1;
|
||||
break;
|
||||
case 3:
|
||||
n_processors = 1;
|
||||
break;
|
||||
case 4:
|
||||
n_processors = NUM2INT(argv[3]);
|
||||
break;
|
||||
}
|
||||
if (argc >= 3 && !NIL_P(argv[2])) {
|
||||
n_samples = NUM2INT(argv[2]);
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
if (RARRAY_LEN(samples) < n_samples) {
|
||||
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
|
||||
}
|
||||
}
|
||||
// Should check when samples.respond_to?(:length)?
|
||||
} else if (memory_view_available_p) {
|
||||
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
|
||||
view.obj = Qnil;
|
||||
rb_raise(rb_eArgError, "unable to get a memory view");
|
||||
}
|
||||
n_samples = view.byte_size / view.item_size;
|
||||
} else {
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
n_samples = RARRAY_LEN(samples);
|
||||
} else if (rb_respond_to(samples, id_length)) {
|
||||
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
|
||||
} else {
|
||||
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
|
||||
}
|
||||
}
|
||||
float * c_samples = (float *)malloc(n_samples * sizeof(float));
|
||||
if (memory_view_available_p) {
|
||||
c_samples = (float *)view.data;
|
||||
} else {
|
||||
if (TYPE(samples) == T_ARRAY) {
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
|
||||
}
|
||||
} else {
|
||||
// FIXME: use rb_block_call
|
||||
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
// TODO: check if iter is exhausted and raise ArgumentError
|
||||
VALUE sample = rb_funcall(iter, id_next, 0);
|
||||
c_samples[i] = RFLOAT_VALUE(sample);
|
||||
}
|
||||
}
|
||||
}
|
||||
const int result = whisper_full_parallel(rw->context, rwp->params, c_samples, n_samples, n_processors);
|
||||
if (0 == result) {
|
||||
return Qnil;
|
||||
} else {
|
||||
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Number of segments.
|
||||
*
|
||||
@ -1518,15 +1685,59 @@ static VALUE ruby_whisper_c_model_type(VALUE self) {
|
||||
return rb_str_new2(whisper_model_type_readable(rw->context));
|
||||
}
|
||||
|
||||
static VALUE ruby_whisper_error_initialize(VALUE self, VALUE code) {
|
||||
const int c_code = NUM2INT(code);
|
||||
char *raw_message;
|
||||
switch (c_code) {
|
||||
case -2:
|
||||
raw_message = "failed to compute log mel spectrogram";
|
||||
break;
|
||||
case -3:
|
||||
raw_message = "failed to auto-detect language";
|
||||
break;
|
||||
case -4:
|
||||
raw_message = "too many decoders requested";
|
||||
break;
|
||||
case -5:
|
||||
raw_message = "audio_ctx is larger than the maximum allowed";
|
||||
break;
|
||||
case -6:
|
||||
raw_message = "failed to encode";
|
||||
break;
|
||||
case -7:
|
||||
raw_message = "whisper_kv_cache_init() failed for self-attention cache";
|
||||
break;
|
||||
case -8:
|
||||
raw_message = "failed to decode";
|
||||
break;
|
||||
case -9:
|
||||
raw_message = "failed to decode";
|
||||
break;
|
||||
default:
|
||||
raw_message = "unknown error";
|
||||
break;
|
||||
}
|
||||
const VALUE message = rb_str_new2(raw_message);
|
||||
rb_call_super(1, &message);
|
||||
rb_iv_set(self, "@code", code);
|
||||
|
||||
return self;
|
||||
}
|
||||
|
||||
|
||||
void Init_whisper() {
|
||||
id_to_s = rb_intern("to_s");
|
||||
id_call = rb_intern("call");
|
||||
id___method__ = rb_intern("__method__");
|
||||
id_to_enum = rb_intern("to_enum");
|
||||
id_length = rb_intern("length");
|
||||
id_next = rb_intern("next");
|
||||
id_new = rb_intern("new");
|
||||
|
||||
mWhisper = rb_define_module("Whisper");
|
||||
cContext = rb_define_class_under(mWhisper, "Context", rb_cObject);
|
||||
cParams = rb_define_class_under(mWhisper, "Params", rb_cObject);
|
||||
eError = rb_define_class_under(mWhisper, "Error", rb_eStandardError);
|
||||
|
||||
rb_define_const(mWhisper, "LOG_LEVEL_NONE", INT2NUM(GGML_LOG_LEVEL_NONE));
|
||||
rb_define_const(mWhisper, "LOG_LEVEL_INFO", INT2NUM(GGML_LOG_LEVEL_INFO));
|
||||
@ -1564,6 +1775,8 @@ void Init_whisper() {
|
||||
rb_define_method(cContext, "full_get_segment_t1", ruby_whisper_full_get_segment_t1, 1);
|
||||
rb_define_method(cContext, "full_get_segment_speaker_turn_next", ruby_whisper_full_get_segment_speaker_turn_next, 1);
|
||||
rb_define_method(cContext, "full_get_segment_text", ruby_whisper_full_get_segment_text, 1);
|
||||
rb_define_method(cContext, "full", ruby_whisper_full, -1);
|
||||
rb_define_method(cContext, "full_parallel", ruby_whisper_full_parallel, -1);
|
||||
|
||||
rb_define_alloc_func(cParams, ruby_whisper_params_allocate);
|
||||
|
||||
@ -1623,6 +1836,9 @@ void Init_whisper() {
|
||||
rb_define_method(cParams, "abort_callback=", ruby_whisper_params_set_abort_callback, 1);
|
||||
rb_define_method(cParams, "abort_callback_user_data=", ruby_whisper_params_set_abort_callback_user_data, 1);
|
||||
|
||||
rb_define_attr(eError, "code", true, false);
|
||||
rb_define_method(eError, "initialize", ruby_whisper_error_initialize, 1);
|
||||
|
||||
// High leve
|
||||
cSegment = rb_define_class_under(mWhisper, "Segment", rb_cObject);
|
||||
|
||||
|
6
bindings/ruby/extsources.rb
Normal file
6
bindings/ruby/extsources.rb
Normal file
@ -0,0 +1,6 @@
|
||||
require "yaml"
|
||||
|
||||
sources = `git ls-files -z ../..`.split("\x0")
|
||||
paths = YAML.load_file("../../.github/workflows/bindings-ruby.yml")[true]["push"]["paths"]
|
||||
paths.delete "bindings/ruby/**"
|
||||
EXTSOURCES = (Dir.glob(paths, base: "../..").collect {|path| "../../#{path}"} << "../../LICENSE") & sources
|
@ -1,31 +0,0 @@
|
||||
---
|
||||
- ../../src/whisper.cpp
|
||||
- ../../include/whisper.h
|
||||
- ../../ggml/src/ggml.c
|
||||
- ../../ggml/src/ggml-cpu.c
|
||||
- ../../ggml/src/ggml-impl.h
|
||||
- ../../ggml/src/ggml-aarch64.h
|
||||
- ../../ggml/src/ggml-aarch64.c
|
||||
- ../../ggml/src/ggml-alloc.c
|
||||
- ../../ggml/src/ggml-backend-impl.h
|
||||
- ../../ggml/src/ggml-backend.cpp
|
||||
- ../../ggml/src/ggml-common.h
|
||||
- ../../ggml/src/ggml-quants.h
|
||||
- ../../ggml/src/ggml-quants.c
|
||||
- ../../ggml/src/ggml-cpu-impl.h
|
||||
- ../../ggml/src/ggml-metal.m
|
||||
- ../../ggml/src/ggml-metal.metal
|
||||
- ../../ggml/src/ggml-blas.cpp
|
||||
- ../../ggml/include/ggml.h
|
||||
- ../../ggml/include/ggml-alloc.h
|
||||
- ../../ggml/include/ggml-backend.h
|
||||
- ../../ggml/include/ggml-cpu.h
|
||||
- ../../ggml/include/ggml-cuda.h
|
||||
- ../../ggml/include/ggml-kompute.h
|
||||
- ../../ggml/include/ggml-metal.h
|
||||
- ../../ggml/include/ggml-sycl.h
|
||||
- ../../ggml/include/ggml-vulkan.h
|
||||
- ../../ggml/include/ggml-blas.h
|
||||
- ../../scripts/get-flags.mk
|
||||
- ../../examples/dr_wav.h
|
||||
- ../../LICENSE
|
@ -1,5 +1,6 @@
|
||||
require "test/unit"
|
||||
require "whisper"
|
||||
require_relative "jfk_reader/jfk_reader"
|
||||
|
||||
class TestBase < Test::Unit::TestCase
|
||||
MODEL = File.join(__dir__, "..", "..", "..", "models", "ggml-base.en.bin")
|
||||
|
5
bindings/ruby/tests/jfk_reader/.gitignore
vendored
Normal file
5
bindings/ruby/tests/jfk_reader/.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
Makefile
|
||||
jfk_reader.o
|
||||
jfk_reader.so
|
||||
jfk_reader.bundle
|
||||
jfk_reader.dll
|
3
bindings/ruby/tests/jfk_reader/extconf.rb
Normal file
3
bindings/ruby/tests/jfk_reader/extconf.rb
Normal file
@ -0,0 +1,3 @@
|
||||
require "mkmf"
|
||||
|
||||
create_makefile("jfk_reader")
|
108
bindings/ruby/tests/jfk_reader/jfk_reader.c
Normal file
108
bindings/ruby/tests/jfk_reader/jfk_reader.c
Normal file
@ -0,0 +1,108 @@
|
||||
#include <ruby.h>
|
||||
#include <ruby/memory_view.h>
|
||||
#include <ruby/encoding.h>
|
||||
|
||||
static VALUE
|
||||
jfk_reader_initialize(VALUE self, VALUE audio_path)
|
||||
{
|
||||
rb_iv_set(self, "audio_path", audio_path);
|
||||
return Qnil;
|
||||
}
|
||||
|
||||
static bool
|
||||
jfk_reader_get_memory_view(const VALUE obj, rb_memory_view_t *view, int flags)
|
||||
{
|
||||
VALUE audio_path = rb_iv_get(obj, "audio_path");
|
||||
const char *audio_path_str = StringValueCStr(audio_path);
|
||||
const int n_samples = 176000;
|
||||
float *data = (float *)malloc(n_samples * sizeof(float));
|
||||
short *samples = (short *)malloc(n_samples * sizeof(short));
|
||||
FILE *file = fopen(audio_path_str, "rb");
|
||||
|
||||
fseek(file, 78, SEEK_SET);
|
||||
fread(samples, sizeof(short), n_samples, file);
|
||||
fclose(file);
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
data[i] = samples[i]/32768.0;
|
||||
}
|
||||
|
||||
view->obj = obj;
|
||||
view->data = (void *)data;
|
||||
view->byte_size = sizeof(float) * n_samples;
|
||||
view->readonly = true;
|
||||
view->format = "f";
|
||||
view->item_size = sizeof(float);
|
||||
view->item_desc.components = NULL;
|
||||
view->item_desc.length = 0;
|
||||
view->ndim = 1;
|
||||
view->shape = NULL;
|
||||
view->sub_offsets = NULL;
|
||||
view->private_data = NULL;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool
|
||||
jfk_reader_release_memory_view(const VALUE obj, rb_memory_view_t *view)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool
|
||||
jfk_reader_memory_view_available_p(const VALUE obj)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
static const rb_memory_view_entry_t jfk_reader_view_entry = {
|
||||
jfk_reader_get_memory_view,
|
||||
jfk_reader_release_memory_view,
|
||||
jfk_reader_memory_view_available_p
|
||||
};
|
||||
|
||||
static VALUE
|
||||
read_jfk(int argc, VALUE *argv, VALUE obj)
|
||||
{
|
||||
const char *audio_path_str = StringValueCStr(argv[0]);
|
||||
const int n_samples = 176000;
|
||||
|
||||
short samples[n_samples];
|
||||
FILE *file = fopen(audio_path_str, "rb");
|
||||
|
||||
fseek(file, 78, SEEK_SET);
|
||||
fread(samples, sizeof(short), n_samples, file);
|
||||
fclose(file);
|
||||
|
||||
VALUE rb_samples = rb_ary_new2(n_samples);
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
rb_ary_push(rb_samples, INT2FIX(samples[i]));
|
||||
}
|
||||
|
||||
VALUE rb_data = rb_ary_new2(n_samples);
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
rb_ary_push(rb_data, DBL2NUM(samples[i]/32768.0));
|
||||
}
|
||||
|
||||
float data[n_samples];
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
data[i] = samples[i]/32768.0;
|
||||
}
|
||||
void *c_data = (void *)data;
|
||||
VALUE rb_void = rb_enc_str_new((const char *)c_data, sizeof(data), rb_ascii8bit_encoding());
|
||||
|
||||
VALUE rb_result = rb_ary_new3(3, rb_samples, rb_data, rb_void);
|
||||
return rb_result;
|
||||
}
|
||||
|
||||
void Init_jfk_reader(void)
|
||||
{
|
||||
VALUE cJFKReader = rb_define_class("JFKReader", rb_cObject);
|
||||
rb_memory_view_register(cJFKReader, &jfk_reader_view_entry);
|
||||
rb_define_method(cJFKReader, "initialize", jfk_reader_initialize, 1);
|
||||
|
||||
|
||||
rb_define_global_function("read_jfk", read_jfk, -1);
|
||||
|
||||
|
||||
|
||||
}
|
20
bindings/ruby/tests/test_error.rb
Normal file
20
bindings/ruby/tests/test_error.rb
Normal file
@ -0,0 +1,20 @@
|
||||
require_relative "helper"
|
||||
|
||||
class TestError < TestBase
|
||||
def test_error
|
||||
error = Whisper::Error.new(-2)
|
||||
assert_equal "failed to compute log mel spectrogram", error.message
|
||||
assert_equal -2, error.code
|
||||
end
|
||||
|
||||
def test_unknown_error
|
||||
error = Whisper::Error.new(-20)
|
||||
assert_equal "unknown error", error.message
|
||||
end
|
||||
|
||||
def test_non_int_code
|
||||
assert_raise TypeError do
|
||||
error = Whisper::Error.new("non int")
|
||||
end
|
||||
end
|
||||
end
|
@ -1,5 +1,6 @@
|
||||
require_relative "helper"
|
||||
require "stringio"
|
||||
require "etc"
|
||||
|
||||
# Exists to detect memory-related bug
|
||||
Whisper.log_set ->(level, buffer, user_data) {}, nil
|
||||
@ -107,7 +108,7 @@ class TestWhisper < TestBase
|
||||
|
||||
assert logs.length > 30
|
||||
logs.each do |log|
|
||||
assert_equal Whisper::LOG_LEVEL_INFO, log[0]
|
||||
assert_include [Whisper::LOG_LEVEL_DEBUG, Whisper::LOG_LEVEL_INFO, Whisper::LOG_LEVEL_WARN], log[0]
|
||||
assert_same user_data, log[2]
|
||||
end
|
||||
end
|
||||
@ -124,4 +125,102 @@ class TestWhisper < TestBase
|
||||
ensure
|
||||
$stderr = stderr
|
||||
end
|
||||
|
||||
sub_test_case "full" do
|
||||
def setup
|
||||
super
|
||||
@whisper = Whisper::Context.new(MODEL)
|
||||
@samples = File.read(AUDIO, nil, 78).unpack("s<*").collect {|i| i.to_f / 2**15}
|
||||
end
|
||||
|
||||
def test_full
|
||||
@whisper.full(@params, @samples, @samples.length)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
|
||||
end
|
||||
|
||||
def test_full_without_length
|
||||
@whisper.full(@params, @samples)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
|
||||
end
|
||||
|
||||
def test_full_enumerator
|
||||
samples = @samples.each
|
||||
@whisper.full(@params, samples, @samples.length)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
|
||||
end
|
||||
|
||||
def test_full_enumerator_without_length
|
||||
samples = @samples.each
|
||||
assert_raise ArgumentError do
|
||||
@whisper.full(@params, samples)
|
||||
end
|
||||
end
|
||||
|
||||
def test_full_enumerator_with_too_large_length
|
||||
samples = @samples.each.take(10).to_enum
|
||||
assert_raise StopIteration do
|
||||
@whisper.full(@params, samples, 11)
|
||||
end
|
||||
end
|
||||
|
||||
def test_full_with_memory_view
|
||||
samples = JFKReader.new(AUDIO)
|
||||
@whisper.full(@params, samples)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
|
||||
end
|
||||
|
||||
def test_full_parallel
|
||||
@whisper.full_parallel(@params, @samples, @samples.length, Etc.nprocessors)
|
||||
|
||||
assert_equal Etc.nprocessors, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
|
||||
def test_full_parallel_with_memory_view
|
||||
samples = JFKReader.new(AUDIO)
|
||||
@whisper.full_parallel(@params, samples, nil, Etc.nprocessors)
|
||||
|
||||
assert_equal Etc.nprocessors, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
|
||||
def test_full_parallel_without_length_and_n_processors
|
||||
@whisper.full_parallel(@params, @samples)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
|
||||
def test_full_parallel_without_length
|
||||
@whisper.full_parallel(@params, @samples, nil, Etc.nprocessors)
|
||||
|
||||
assert_equal Etc.nprocessors, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
|
||||
def test_full_parallel_without_n_processors
|
||||
@whisper.full_parallel(@params, @samples, @samples.length)
|
||||
|
||||
assert_equal 1, @whisper.full_n_segments
|
||||
text = @whisper.each_segment.collect(&:text).join
|
||||
assert_match /ask what you can do/i, text
|
||||
assert_match /for your country/i, text
|
||||
end
|
||||
end
|
||||
end
|
||||
|
@ -1,4 +1,4 @@
|
||||
require "yaml"
|
||||
require_relative "extsources"
|
||||
|
||||
Gem::Specification.new do |s|
|
||||
s.name = "whispercpp"
|
||||
@ -10,24 +10,24 @@ Gem::Specification.new do |s|
|
||||
s.extra_rdoc_files = ['LICENSE', 'README.md']
|
||||
|
||||
s.files = `git ls-files . -z`.split("\x0") +
|
||||
YAML.load_file("extsources.yaml").collect {|file|
|
||||
EXTSOURCES.collect {|file|
|
||||
basename = File.basename(file)
|
||||
if s.extra_rdoc_files.include?(basename)
|
||||
basename
|
||||
else
|
||||
File.join("ext", basename)
|
||||
file.sub("../..", "ext")
|
||||
end
|
||||
}
|
||||
|
||||
s.summary = %q{Ruby whisper.cpp bindings}
|
||||
s.test_files = ["tests/test_whisper.rb"]
|
||||
s.test_files = s.files.select {|file| file.start_with? "tests/"}
|
||||
|
||||
s.extensions << 'ext/extconf.rb'
|
||||
|
||||
|
||||
#### Documentation and testing.
|
||||
s.homepage = 'https://github.com/ggerganov/whisper.cpp'
|
||||
s.rdoc_options = ['--main', '../../README.md']
|
||||
s.rdoc_options = ['--main', 'README.md']
|
||||
|
||||
|
||||
s.platform = Gem::Platform::RUBY
|
||||
|
@ -1,10 +1,10 @@
|
||||
prefix=@CMAKE_INSTALL_PREFIX@
|
||||
exec_prefix=${prefix}
|
||||
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
|
||||
libdir=${exec_prefix}/lib
|
||||
includedir=${prefix}/include
|
||||
|
||||
Name: whisper
|
||||
Description: Port of OpenAI's Whisper model in C/C++
|
||||
Version: @PROJECT_VERSION@
|
||||
Libs: -L${libdir} -lwhisper
|
||||
Libs: -L${libdir} -lggml -lggml-base -lwhisper
|
||||
Cflags: -I${includedir}
|
||||
|
@ -217,6 +217,7 @@ bool ggml_common_quantize_0(
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
case GGML_TYPE_TQ1_0:
|
||||
case GGML_TYPE_TQ2_0:
|
||||
case GGML_TYPE_IQ4_NL_4_4:
|
||||
case GGML_TYPE_COUNT:
|
||||
{
|
||||
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
|
||||
|
@ -179,7 +179,7 @@ enum llm_arch {
|
||||
LLM_ARCH_COMMAND_R,
|
||||
LLM_ARCH_DBRX,
|
||||
LLM_ARCH_OLMO,
|
||||
LLM_ARCH_OLMO_1124,
|
||||
LLM_ARCH_OLMO2,
|
||||
LLM_ARCH_OLMOE,
|
||||
LLM_ARCH_OPENELM,
|
||||
LLM_ARCH_ARCTIC,
|
||||
@ -233,7 +233,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||||
{ LLM_ARCH_DBRX, "dbrx" },
|
||||
{ LLM_ARCH_OLMO, "olmo" },
|
||||
{ LLM_ARCH_OLMO_1124, "olmo_1124" },
|
||||
{ LLM_ARCH_OLMO2, "olmo2" },
|
||||
{ LLM_ARCH_OLMOE, "olmoe" },
|
||||
{ LLM_ARCH_OPENELM, "openelm" },
|
||||
{ LLM_ARCH_ARCTIC, "arctic" },
|
||||
@ -1036,6 +1036,8 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
|
||||
{ LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
@ -1210,7 +1212,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_OLMO_1124,
|
||||
LLM_ARCH_OLMO2,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
@ -1549,6 +1551,67 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
},
|
||||
};
|
||||
|
||||
enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_CHATML,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V1,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
||||
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
||||
LLM_CHAT_TEMPLATE_PHI_3,
|
||||
LLM_CHAT_TEMPLATE_ZEPHYR,
|
||||
LLM_CHAT_TEMPLATE_MONARCH,
|
||||
LLM_CHAT_TEMPLATE_GEMMA,
|
||||
LLM_CHAT_TEMPLATE_ORION,
|
||||
LLM_CHAT_TEMPLATE_OPENCHAT,
|
||||
LLM_CHAT_TEMPLATE_VICUNA,
|
||||
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK,
|
||||
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
|
||||
LLM_CHAT_TEMPLATE_COMMAND_R,
|
||||
LLM_CHAT_TEMPLATE_LLAMA_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_3,
|
||||
LLM_CHAT_TEMPLATE_CHATGML_4,
|
||||
LLM_CHAT_TEMPLATE_MINICPM,
|
||||
LLM_CHAT_TEMPLATE_EXAONE_3,
|
||||
LLM_CHAT_TEMPLATE_RWKV_WORLD,
|
||||
LLM_CHAT_TEMPLATE_GRANITE,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "chatml", LLM_CHAT_TEMPLATE_CHATML },
|
||||
{ "llama2", LLM_CHAT_TEMPLATE_LLAMA_2 },
|
||||
{ "llama2-sys", LLM_CHAT_TEMPLATE_LLAMA_2_SYS },
|
||||
{ "llama2-sys-bos", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS },
|
||||
{ "llama2-sys-strip", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP },
|
||||
{ "mistral-v1", LLM_CHAT_TEMPLATE_MISTRAL_V1 },
|
||||
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
|
||||
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
||||
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
||||
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
||||
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
|
||||
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
|
||||
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
|
||||
{ "orion", LLM_CHAT_TEMPLATE_ORION },
|
||||
{ "openchat", LLM_CHAT_TEMPLATE_OPENCHAT },
|
||||
{ "vicuna", LLM_CHAT_TEMPLATE_VICUNA },
|
||||
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
|
||||
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
|
||||
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
|
||||
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
|
||||
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
|
||||
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
|
||||
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
|
||||
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
|
||||
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
|
||||
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
|
||||
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
|
||||
};
|
||||
|
||||
static llm_arch llm_arch_from_string(const std::string & name) {
|
||||
for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
|
||||
if (kv.second == name) {
|
||||
@ -1622,9 +1685,10 @@ struct LLM_TN {
|
||||
//
|
||||
|
||||
static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
|
||||
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
|
||||
};
|
||||
|
||||
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
|
||||
@ -2341,6 +2405,7 @@ enum e_model {
|
||||
MODEL_16B,
|
||||
MODEL_20B,
|
||||
MODEL_30B,
|
||||
MODEL_32B,
|
||||
MODEL_34B,
|
||||
MODEL_35B,
|
||||
MODEL_40B,
|
||||
@ -4866,7 +4931,9 @@ struct llama_model_loader {
|
||||
mappings.reserve(files.size());
|
||||
mmaps_used.reserve(files.size());
|
||||
for (const auto & file : files) {
|
||||
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
|
||||
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
|
||||
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, is_numa_fn()));
|
||||
mmaps_used.emplace_back(mapping->size, 0);
|
||||
if (mlock_mmaps) {
|
||||
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
|
||||
@ -5328,6 +5395,7 @@ static const char * llama_model_type_name(e_model type) {
|
||||
case MODEL_16B: return "16B";
|
||||
case MODEL_20B: return "20B";
|
||||
case MODEL_30B: return "30B";
|
||||
case MODEL_32B: return "32B";
|
||||
case MODEL_34B: return "34B";
|
||||
case MODEL_35B: return "35B";
|
||||
case MODEL_40B: return "40B";
|
||||
@ -5515,8 +5583,12 @@ static void llm_load_hparams(
|
||||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
|
||||
ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
|
||||
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 52: model.type = e_model::MODEL_1B; break;
|
||||
case 40: model.type = e_model::MODEL_2B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
@ -5688,7 +5760,10 @@ static void llm_load_hparams(
|
||||
case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
|
||||
case 28: model.type = hparams.n_embd == 1536 ? e_model::MODEL_1_5B : e_model::MODEL_7B; break;
|
||||
case 32: model.type = e_model::MODEL_7B; break;
|
||||
case 36: model.type = e_model::MODEL_3B; break;
|
||||
case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
|
||||
case 48: model.type = e_model::MODEL_14B; break;
|
||||
case 64: model.type = e_model::MODEL_32B; break;
|
||||
case 80: model.type = e_model::MODEL_70B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
@ -5898,7 +5973,7 @@ static void llm_load_hparams(
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_OLMO_1124:
|
||||
case LLM_ARCH_OLMO2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
@ -6997,7 +7072,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||||
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
||||
}
|
||||
|
||||
if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
||||
if (model.arch == LLM_ARCH_MINICPM || model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
||||
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
||||
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
||||
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
||||
@ -7181,12 +7256,12 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w
|
||||
} break;
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, w->ne[0], 512);
|
||||
ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
|
||||
op_tensor = ggml_add(ctx, a, w);
|
||||
} break;
|
||||
case GGML_OP_MUL:
|
||||
{
|
||||
ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, w->ne[0], 512);
|
||||
ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
|
||||
op_tensor = ggml_mul(ctx, a, w);
|
||||
} break;
|
||||
case GGML_OP_DIV:
|
||||
@ -7622,7 +7697,13 @@ static bool llm_load_tensors(
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
|
||||
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
else {
|
||||
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
}
|
||||
|
||||
if (n_expert == 0) {
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
@ -8591,7 +8672,7 @@ static bool llm_load_tensors(
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_OLMO_1124:
|
||||
case LLM_ARCH_OLMO2:
|
||||
{
|
||||
model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
@ -9190,7 +9271,7 @@ static bool llm_load_tensors(
|
||||
ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
|
||||
if (!dev) {
|
||||
// FIXME: workaround for CPU backend buft having a NULL device
|
||||
dev = ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0);
|
||||
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
}
|
||||
ggml_backend_dev_props props;
|
||||
ggml_backend_dev_get_props(dev, &props);
|
||||
@ -13429,153 +13510,6 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
// ref: https://arxiv.org/abs/2203.03466
|
||||
// https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
|
||||
// based on the original build_llama() function
|
||||
struct ggml_cgraph * build_minicpm() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
//TODO: if the model varies, these parameters need to be read from the model
|
||||
const int64_t n_embd_base = 256;
|
||||
const float scale_embd = 12.0f;
|
||||
const float scale_depth = 1.4f;
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, ubatch, model.tok_embd, cb);
|
||||
|
||||
// scale the input embeddings
|
||||
inpL = ggml_scale(ctx0, inpL, scale_embd);
|
||||
cb(inpL, "inp_scaled", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
// scale_res - scale the hidden states for residual connection
|
||||
const float scale_res = scale_depth/sqrtf(float(n_layer));
|
||||
cur = ggml_scale(ctx0, cur, scale_res);
|
||||
cb(cur, "hidden_scaled", -1);
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
{
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
}
|
||||
|
||||
// scale the hidden states for residual connection
|
||||
cur = ggml_scale(ctx0, cur, scale_res);
|
||||
cb(cur, "hidden_scaled_ffn", -1);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head scaling
|
||||
const float scale_lmhead = float(n_embd_base)/float(n_embd);
|
||||
cur = ggml_scale(ctx0, cur, scale_lmhead);
|
||||
cb(cur, "lmhead_scaling", -1);
|
||||
|
||||
// lm_head
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_minicpm3() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
@ -14481,7 +14415,7 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_olmo_1124() {
|
||||
struct ggml_cgraph * build_olmo2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
@ -16674,6 +16608,7 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
|
||||
switch (model.arch) {
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_MINICPM:
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
{
|
||||
@ -16757,10 +16692,6 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_internlm2();
|
||||
} break;
|
||||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
result = llm.build_minicpm();
|
||||
} break;
|
||||
case LLM_ARCH_MINICPM3:
|
||||
{
|
||||
result = llm.build_minicpm3();
|
||||
@ -16797,9 +16728,9 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_olmo();
|
||||
} break;
|
||||
case LLM_ARCH_OLMO_1124:
|
||||
case LLM_ARCH_OLMO2:
|
||||
{
|
||||
result = llm.build_olmo_1124();
|
||||
result = llm.build_olmo2();
|
||||
} break;
|
||||
case LLM_ARCH_OLMOE:
|
||||
{
|
||||
@ -17443,8 +17374,9 @@ static enum ggml_status llama_graph_compute(
|
||||
int n_threads,
|
||||
ggml_threadpool * threadpool) {
|
||||
if (lctx.backend_cpu != nullptr) {
|
||||
ggml_backend_cpu_set_threadpool(lctx.backend_cpu, threadpool);
|
||||
ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(lctx.backend_cpu));
|
||||
auto * set_threadpool_fn = (decltype(ggml_backend_cpu_set_threadpool) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_set_threadpool");
|
||||
set_threadpool_fn(lctx.backend_cpu, threadpool);
|
||||
}
|
||||
|
||||
// set the number of threads for all the backends
|
||||
@ -18211,13 +18143,13 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||||
static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
||||
bool need_reserve = false;
|
||||
|
||||
// apply K-shift if needed
|
||||
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
|
||||
if (lctx.kv_self.has_shift) {
|
||||
if (!llama_kv_cache_can_shift(&lctx)) {
|
||||
GGML_ABORT("Deepseek2 does not support K-shift");
|
||||
GGML_ABORT("The current context does not support K-shift");
|
||||
}
|
||||
|
||||
{
|
||||
// apply K-shift if needed
|
||||
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
|
||||
ggml_backend_sched_reset(lctx.sched.get());
|
||||
|
||||
ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
|
||||
@ -19361,6 +19293,7 @@ void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
|
||||
//
|
||||
struct llama_model_params llama_model_default_params() {
|
||||
struct llama_model_params result = {
|
||||
/*.devices =*/ nullptr,
|
||||
/*.n_gpu_layers =*/ 0,
|
||||
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
|
||||
/*.main_gpu =*/ 0,
|
||||
@ -19478,7 +19411,11 @@ void llama_backend_init(void) {
|
||||
|
||||
void llama_numa_init(enum ggml_numa_strategy numa) {
|
||||
if (numa != GGML_NUMA_STRATEGY_DISABLED) {
|
||||
ggml_numa_init(numa);
|
||||
auto * dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
GGML_ASSERT(dev && "CPU backend is not loaded");
|
||||
auto * reg = ggml_backend_dev_backend_reg(dev);
|
||||
auto * numa_init_fn = (decltype(ggml_numa_init) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_numa_init");
|
||||
numa_init_fn(numa);
|
||||
}
|
||||
}
|
||||
|
||||
@ -19569,19 +19506,24 @@ struct llama_model * llama_load_model_from_file(
|
||||
}
|
||||
|
||||
// create list of devices to use with this model
|
||||
// currently, we use all available devices
|
||||
// TODO: rework API to give user more control over device selection
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
switch (ggml_backend_dev_type(dev)) {
|
||||
case GGML_BACKEND_DEVICE_TYPE_CPU:
|
||||
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
// skip CPU backends since they are handled separately
|
||||
break;
|
||||
if (params.devices) {
|
||||
for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) {
|
||||
model->devices.push_back(*dev);
|
||||
}
|
||||
} else {
|
||||
// use all available devices
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
switch (ggml_backend_dev_type(dev)) {
|
||||
case GGML_BACKEND_DEVICE_TYPE_CPU:
|
||||
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
// skip CPU backends since they are handled separately
|
||||
break;
|
||||
|
||||
case GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
model->devices.push_back(dev);
|
||||
break;
|
||||
case GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
model->devices.push_back(dev);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -19752,9 +19694,6 @@ struct llama_context * llama_new_context_with_model(
|
||||
__func__, n_ctx_per_seq, hparams.n_ctx_train);
|
||||
}
|
||||
|
||||
ctx->abort_callback = params.abort_callback;
|
||||
ctx->abort_callback_data = params.abort_callback_data;
|
||||
|
||||
ctx->logits_all = params.logits_all;
|
||||
|
||||
// build worst-case graph for encoder if a model contains encoder
|
||||
@ -19803,7 +19742,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
|
||||
// add CPU backend
|
||||
ctx->backend_cpu = ggml_backend_cpu_init();
|
||||
ctx->backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
|
||||
if (ctx->backend_cpu == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
|
||||
llama_free(ctx);
|
||||
@ -19823,6 +19762,8 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
}
|
||||
|
||||
llama_set_abort_callback(ctx, params.abort_callback, params.abort_callback_data);
|
||||
|
||||
if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
|
||||
LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
llama_free(ctx);
|
||||
@ -19868,7 +19809,8 @@ struct llama_context * llama_new_context_with_model(
|
||||
std::vector<ggml_backend_t> backend_ptrs;
|
||||
for (auto & backend : ctx->backends) {
|
||||
auto * buft = ggml_backend_get_default_buffer_type(backend.get());
|
||||
if (ggml_backend_is_cpu(backend.get()) && !model->devices.empty()) {
|
||||
auto backend_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get()));
|
||||
if (backend_type == GGML_BACKEND_DEVICE_TYPE_CPU && !model->devices.empty()) {
|
||||
// use the host buffer of the first device CPU for faster transfer of the intermediate state
|
||||
auto * dev = model->devices[0];
|
||||
auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
|
||||
@ -19896,7 +19838,8 @@ struct llama_context * llama_new_context_with_model(
|
||||
// pipeline parallelism requires support for async compute and events in all devices
|
||||
if (pipeline_parallel) {
|
||||
for (auto & backend : ctx->backends) {
|
||||
if (ggml_backend_is_cpu(backend.get())) {
|
||||
auto dev_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get()));
|
||||
if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU) {
|
||||
// ignore CPU backend
|
||||
continue;
|
||||
}
|
||||
@ -20070,7 +20013,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_QWEN:
|
||||
case LLM_ARCH_QWEN2:
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
case LLM_ARCH_OLMO_1124:
|
||||
case LLM_ARCH_OLMO2:
|
||||
case LLM_ARCH_OLMOE:
|
||||
case LLM_ARCH_PHI2:
|
||||
case LLM_ARCH_PHI3:
|
||||
@ -20463,7 +20406,7 @@ void llama_kv_cache_update(struct llama_context * ctx) {
|
||||
}
|
||||
|
||||
bool llama_kv_cache_can_shift(struct llama_context * ctx) {
|
||||
return ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
||||
return !ctx->kv_self.recurrent && ctx->model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
|
||||
}
|
||||
|
||||
// deprecated
|
||||
@ -21450,6 +21393,14 @@ int32_t llama_n_threads_batch(struct llama_context * ctx) {
|
||||
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
|
||||
ctx->abort_callback = abort_callback;
|
||||
ctx->abort_callback_data = abort_callback_data;
|
||||
|
||||
for (auto & backend : ctx->backends) {
|
||||
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get()));
|
||||
auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
|
||||
if (set_abort_callback_fn) {
|
||||
set_abort_callback_fn(backend.get(), ctx->abort_callback, ctx->abort_callback_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
|
||||
@ -21816,18 +21767,109 @@ int32_t llama_detokenize(
|
||||
// chat templates
|
||||
//
|
||||
|
||||
static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
|
||||
if (LLM_CHAT_TEMPLATES.find(tmpl) != LLM_CHAT_TEMPLATES.end()) {
|
||||
return LLM_CHAT_TEMPLATES.at(tmpl);
|
||||
}
|
||||
auto tmpl_contains = [&tmpl](const char * haystack) -> bool {
|
||||
return tmpl.find(haystack) != std::string::npos;
|
||||
};
|
||||
if (tmpl_contains("<|im_start|>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATML;
|
||||
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
|
||||
if (tmpl_contains("[SYSTEM_PROMPT]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
|
||||
} else if (
|
||||
// catches official 'v1' template
|
||||
tmpl_contains("' [INST] ' + system_message")
|
||||
// catches official 'v3' and 'v3-tekken' templates
|
||||
|| tmpl_contains("[AVAILABLE_TOOLS]")
|
||||
) {
|
||||
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||
if (tmpl_contains(" [INST]")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V1;
|
||||
} else if (tmpl_contains("\"[INST]\"")) {
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||
} else {
|
||||
// llama2 template and its variants
|
||||
// [variant] support system message
|
||||
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
bool support_system_message = tmpl_contains("<<SYS>>");
|
||||
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
|
||||
bool strip_message = tmpl_contains("content.strip()");
|
||||
if (strip_message) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||
} else if (add_bos_inside_history) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||
} else if (support_system_message) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS;
|
||||
} else {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||
}
|
||||
}
|
||||
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
|
||||
return LLM_CHAT_TEMPLATE_PHI_3;
|
||||
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
|
||||
return LLM_CHAT_TEMPLATE_ZEPHYR;
|
||||
} else if (tmpl_contains("bos_token + message['role']")) {
|
||||
return LLM_CHAT_TEMPLATE_MONARCH;
|
||||
} else if (tmpl_contains("<start_of_turn>")) {
|
||||
return LLM_CHAT_TEMPLATE_GEMMA;
|
||||
} else if (tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
return LLM_CHAT_TEMPLATE_ORION;
|
||||
} else if (tmpl_contains("GPT4 Correct ")) {
|
||||
// openchat/openchat-3.5-0106
|
||||
return LLM_CHAT_TEMPLATE_OPENCHAT;
|
||||
} else if (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: ")) {
|
||||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||
if (tmpl_contains("SYSTEM: ")) {
|
||||
return LLM_CHAT_TEMPLATE_VICUNA_ORCA;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_VICUNA;
|
||||
} else if (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>")) {
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK;
|
||||
} else if (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>")) {
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
return LLM_CHAT_TEMPLATE_COMMAND_R;
|
||||
} else if (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>")) {
|
||||
return LLM_CHAT_TEMPLATE_LLAMA_3;
|
||||
} else if (tmpl_contains("[gMASK]sop")) {
|
||||
// chatglm3-6b
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_3;
|
||||
} else if (tmpl_contains("[gMASK]<sop>")) {
|
||||
return LLM_CHAT_TEMPLATE_CHATGML_4;
|
||||
} else if (tmpl_contains(LU8("<用户>"))) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
return LLM_CHAT_TEMPLATE_MINICPM;
|
||||
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
||||
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
|
||||
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
|
||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||
// EXAONE-3.0-7.8B-Instruct
|
||||
return LLM_CHAT_TEMPLATE_EXAONE_3;
|
||||
} else if (tmpl_contains("rwkv-world")) {
|
||||
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
|
||||
} else if (tmpl_contains("<|start_of_role|>")) {
|
||||
return LLM_CHAT_TEMPLATE_GRANITE;
|
||||
}
|
||||
return LLM_CHAT_TEMPLATE_UNKNOWN;
|
||||
}
|
||||
|
||||
// Simple version of "llama_apply_chat_template" that only works with strings
|
||||
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
|
||||
static int32_t llama_chat_apply_template_internal(
|
||||
const std::string & tmpl,
|
||||
const llm_chat_template tmpl,
|
||||
const std::vector<const llama_chat_message *> & chat,
|
||||
std::string & dest, bool add_ass) {
|
||||
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
|
||||
std::stringstream ss;
|
||||
auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
|
||||
return tmpl.find(haystack) != std::string::npos;
|
||||
};
|
||||
if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
|
||||
if (tmpl == LLM_CHAT_TEMPLATE_CHATML) {
|
||||
// chatml template
|
||||
for (auto message : chat) {
|
||||
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
|
||||
@ -21835,16 +21877,59 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|im_start|>assistant\n";
|
||||
}
|
||||
} else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
|
||||
// Official mistral 'v7' template
|
||||
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
std::string content(message->content);
|
||||
if (role == "system") {
|
||||
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
|
||||
} else if (role == "user") {
|
||||
ss << "[INST] " << content << "[/INST]";
|
||||
}
|
||||
else {
|
||||
ss << " " << content << "</s>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN) {
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
|
||||
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
|
||||
std::string leading_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 ? " " : "";
|
||||
std::string trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN ? "" : " ";
|
||||
bool trim_assistant_message = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3;
|
||||
bool is_inside_turn = false;
|
||||
for (auto message : chat) {
|
||||
if (!is_inside_turn) {
|
||||
ss << leading_space << "[INST]" << trailing_space;
|
||||
is_inside_turn = true;
|
||||
}
|
||||
std::string role(message->role);
|
||||
std::string content(message->content);
|
||||
if (role == "system") {
|
||||
ss << content << "\n\n";
|
||||
} else if (role == "user") {
|
||||
ss << content << leading_space << "[/INST]";
|
||||
} else {
|
||||
ss << trailing_space << (trim_assistant_message ? trim(content) : content) << "</s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
} else if (
|
||||
tmpl == LLM_CHAT_TEMPLATE_LLAMA_2
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS
|
||||
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP) {
|
||||
// llama2 template and its variants
|
||||
// [variant] support system message
|
||||
bool support_system_message = tmpl_contains("<<SYS>>") || tmpl == "mistral";
|
||||
// [variant] space before + after response
|
||||
bool space_around_response = tmpl_contains("' ' + eos_token");
|
||||
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
|
||||
bool support_system_message = tmpl != LLM_CHAT_TEMPLATE_LLAMA_2;
|
||||
// [variant] add BOS inside history
|
||||
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
|
||||
bool add_bos_inside_history = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
|
||||
// [variant] trim spaces from the input message
|
||||
bool strip_message = tmpl_contains("content.strip()");
|
||||
bool strip_message = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
|
||||
// construct the prompt
|
||||
bool is_inside_turn = true; // skip BOS at the beginning
|
||||
ss << "[INST] ";
|
||||
@ -21865,12 +21950,11 @@ static int32_t llama_chat_apply_template_internal(
|
||||
} else if (role == "user") {
|
||||
ss << content << " [/INST]";
|
||||
} else {
|
||||
ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
|
||||
ss << content << "</s>";
|
||||
is_inside_turn = false;
|
||||
}
|
||||
}
|
||||
// llama2 templates seem to not care about "add_generation_prompt"
|
||||
} else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_3) {
|
||||
// Phi 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -21879,7 +21963,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
|
||||
// zephyr template
|
||||
for (auto message : chat) {
|
||||
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
|
||||
@ -21887,7 +21971,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>\n";
|
||||
}
|
||||
} else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MONARCH) {
|
||||
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
|
||||
for (auto message : chat) {
|
||||
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
|
||||
@ -21896,7 +21980,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<s>assistant\n";
|
||||
}
|
||||
} else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("<start_of_turn>")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GEMMA) {
|
||||
// google/gemma-7b-it
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
@ -21918,7 +22002,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<start_of_turn>model\n";
|
||||
}
|
||||
} else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_ORION) {
|
||||
// OrionStarAI/Orion-14B-Chat
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
@ -21938,7 +22022,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
ss << message->content << "</s>";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_OPENCHAT) {
|
||||
// openchat/openchat-3.5-0106,
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -21952,13 +22036,13 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "GPT4 Correct Assistant:";
|
||||
}
|
||||
} else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_VICUNA || tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
// Orca-Vicuna variant uses a system prefix
|
||||
if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
|
||||
if (tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
|
||||
ss << "SYSTEM: " << message->content << "\n";
|
||||
} else {
|
||||
ss << message->content << "\n\n";
|
||||
@ -21972,7 +22056,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "ASSISTANT:";
|
||||
}
|
||||
} else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK) {
|
||||
// deepseek-ai/deepseek-coder-33b-instruct
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -21987,7 +22071,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "### Response:\n";
|
||||
}
|
||||
} else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_COMMAND_R) {
|
||||
// CohereForAI/c4ai-command-r-plus
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22002,7 +22086,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
|
||||
}
|
||||
} else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA_3) {
|
||||
// Llama 3
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22011,7 +22095,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
||||
}
|
||||
} else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
|
||||
// chatglm3-6b
|
||||
ss << "[gMASK]" << "sop";
|
||||
for (auto message : chat) {
|
||||
@ -22021,7 +22105,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == "chatglm4" || tmpl_contains("[gMASK]<sop>")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
|
||||
ss << "[gMASK]" << "<sop>";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22030,7 +22114,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|assistant|>";
|
||||
}
|
||||
} else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
|
||||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22042,7 +22126,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
ss << trim(message->content);
|
||||
}
|
||||
}
|
||||
} else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_2) {
|
||||
// DeepSeek-V2
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22057,7 +22141,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "Assistant:";
|
||||
}
|
||||
} else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
|
||||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||||
// EXAONE-3.0-7.8B-Instruct
|
||||
for (auto message : chat) {
|
||||
@ -22073,7 +22157,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "[|assistant|]";
|
||||
}
|
||||
} else if (tmpl == "rwkv-world" || tmpl_contains("rwkv-world")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
|
||||
// this template requires the model to have "\n\n" as EOT token
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22083,7 +22167,7 @@ static int32_t llama_chat_apply_template_internal(
|
||||
ss << message->content << "\n\n";
|
||||
}
|
||||
}
|
||||
} else if (tmpl == "granite" || tmpl_contains("<|start_of_role|>")) {
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_GRANITE) {
|
||||
// IBM Granite template
|
||||
for (const auto & message : chat) {
|
||||
std::string role(message->role);
|
||||
@ -22135,7 +22219,11 @@ int32_t llama_chat_apply_template(
|
||||
}
|
||||
|
||||
std::string formatted_chat;
|
||||
int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
|
||||
llm_chat_template detected_tmpl = llama_chat_detect_template(curr_tmpl);
|
||||
if (detected_tmpl == LLM_CHAT_TEMPLATE_UNKNOWN) {
|
||||
return -1;
|
||||
}
|
||||
int32_t res = llama_chat_apply_template_internal(detected_tmpl, chat_vec, formatted_chat, add_ass);
|
||||
if (res < 0) {
|
||||
return res;
|
||||
}
|
||||
@ -22145,6 +22233,15 @@ int32_t llama_chat_apply_template(
|
||||
return res;
|
||||
}
|
||||
|
||||
int32_t llama_chat_builtin_templates(const char ** output, size_t len) {
|
||||
auto it = LLM_CHAT_TEMPLATES.begin();
|
||||
for (size_t i = 0; i < std::min(len, LLM_CHAT_TEMPLATES.size()); i++) {
|
||||
output[i] = it->first.c_str();
|
||||
std::advance(it, 1);
|
||||
}
|
||||
return (int32_t) LLM_CHAT_TEMPLATES.size();
|
||||
}
|
||||
|
||||
//
|
||||
// sampling
|
||||
//
|
||||
@ -22191,32 +22288,23 @@ int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int
|
||||
}
|
||||
|
||||
const char * llama_print_system_info(void) {
|
||||
ggml_cpu_init(); // some ARM features are detected at runtime
|
||||
|
||||
static std::string s;
|
||||
|
||||
s = "";
|
||||
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
|
||||
s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
|
||||
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
|
||||
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
|
||||
s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
|
||||
s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
|
||||
s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
|
||||
s += "AMX_INT8 = " + std::to_string(ggml_cpu_has_amx_int8()) + " | ";
|
||||
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
|
||||
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
|
||||
s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
|
||||
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
||||
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
||||
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
||||
s += "RISCV_VECT = " + std::to_string(ggml_cpu_has_riscv_v()) + " | ";
|
||||
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
||||
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
||||
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
|
||||
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
||||
s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
|
||||
s += "LLAMAFILE = " + std::to_string(ggml_cpu_has_llamafile()) + " | ";
|
||||
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
|
||||
auto * reg = ggml_backend_reg_get(i);
|
||||
auto * get_features_fn = (ggml_backend_get_features_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_get_features");
|
||||
if (get_features_fn) {
|
||||
ggml_backend_feature * features = get_features_fn(reg);
|
||||
s += ggml_backend_reg_name(reg);
|
||||
s += " : ";
|
||||
for (; features->name; features++) {
|
||||
s += features->name;
|
||||
s += " = ";
|
||||
s += features->value;
|
||||
s += " | ";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return s.c_str();
|
||||
}
|
||||
|
@ -185,7 +185,8 @@ extern "C" {
|
||||
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
|
||||
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
|
||||
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
|
||||
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
|
||||
LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3,
|
||||
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE,
|
||||
};
|
||||
|
||||
enum llama_pooling_type {
|
||||
@ -272,6 +273,9 @@ extern "C" {
|
||||
};
|
||||
|
||||
struct llama_model_params {
|
||||
// NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
|
||||
ggml_backend_dev_t * devices;
|
||||
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
|
||||
|
||||
@ -987,6 +991,9 @@ extern "C" {
|
||||
char * buf,
|
||||
int32_t length);
|
||||
|
||||
// Get list of built-in chat templates
|
||||
LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
|
||||
|
||||
//
|
||||
// Sampling API
|
||||
//
|
||||
|
@ -201,7 +201,18 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
|
||||
}
|
||||
|
||||
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
#if defined(__clang__)
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
return conv.from_bytes(s);
|
||||
}
|
||||
|
||||
|
@ -2,11 +2,11 @@ cmake_minimum_required(VERSION 3.10)
|
||||
|
||||
project(whisper.cpp)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(WHISPER_LIB_DIR ${CMAKE_SOURCE_DIR}/../../../../../../..)
|
||||
|
||||
# Path to external GGML, otherwise uses the copy in whisper.cpp.
|
||||
option(GGML_HOME "whisper: Path to external GGML source" OFF)
|
||||
option(GGML_HOME "whisper: Path to external GGML source" OFF)
|
||||
|
||||
set(
|
||||
SOURCE_FILES
|
||||
@ -14,6 +14,8 @@ set(
|
||||
${CMAKE_SOURCE_DIR}/jni.c
|
||||
)
|
||||
|
||||
# TODO: this needs to be updated to work with the new ggml CMakeLists
|
||||
|
||||
if (NOT GGML_HOME)
|
||||
set(
|
||||
SOURCE_FILES
|
||||
|
@ -363,7 +363,6 @@
|
||||
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
|
||||
GCC_WARN_UNUSED_FUNCTION = YES;
|
||||
GCC_WARN_UNUSED_VARIABLE = YES;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
HEADER_SEARCH_PATHS = ../../../ggml/src/;
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
|
||||
MTL_ENABLE_DEBUG_INFO = INCLUDE_SOURCE;
|
||||
@ -418,7 +417,6 @@
|
||||
GCC_WARN_UNINITIALIZED_AUTOS = YES_AGGRESSIVE;
|
||||
GCC_WARN_UNUSED_FUNCTION = YES;
|
||||
GCC_WARN_UNUSED_VARIABLE = YES;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
HEADER_SEARCH_PATHS = ../../../ggml/src/;
|
||||
IPHONEOS_DEPLOYMENT_TARGET = 16.0;
|
||||
MTL_ENABLE_DEBUG_INFO = NO;
|
||||
@ -432,6 +430,66 @@
|
||||
};
|
||||
name = Release;
|
||||
};
|
||||
18627C9029052BE000BD2A04 /* Debug */ = {
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
|
||||
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_TEAM = P8JZH34X63;
|
||||
GCC_WARN_64_TO_32_BIT_CONVERSION = NO;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
HEADER_SEARCH_PATHS = ../../../ggml/src/;
|
||||
INFOPLIST_FILE = whisper.objc/Info.plist;
|
||||
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
|
||||
INFOPLIST_KEY_UILaunchStoryboardName = LaunchScreen;
|
||||
INFOPLIST_KEY_UIMainStoryboardFile = Main;
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
LD_RUNPATH_SEARCH_PATHS = (
|
||||
"$(inherited)",
|
||||
"@executable_path/Frameworks",
|
||||
);
|
||||
MARKETING_VERSION = 1.0;
|
||||
MTL_HEADER_SEARCH_PATHS = "";
|
||||
PRODUCT_BUNDLE_IDENTIFIER = "com.ggerganov.whisper-objc";
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SWIFT_EMIT_LOC_STRINGS = YES;
|
||||
TARGETED_DEVICE_FAMILY = "1,2";
|
||||
};
|
||||
name = Debug;
|
||||
};
|
||||
18627C9129052BE000BD2A04 /* Release */ = {
|
||||
isa = XCBuildConfiguration;
|
||||
buildSettings = {
|
||||
ASSETCATALOG_COMPILER_APPICON_NAME = AppIcon;
|
||||
ASSETCATALOG_COMPILER_GLOBAL_ACCENT_COLOR_NAME = AccentColor;
|
||||
CODE_SIGN_STYLE = Automatic;
|
||||
CURRENT_PROJECT_VERSION = 1;
|
||||
DEVELOPMENT_TEAM = P8JZH34X63;
|
||||
GCC_WARN_64_TO_32_BIT_CONVERSION = NO;
|
||||
GENERATE_INFOPLIST_FILE = YES;
|
||||
HEADER_SEARCH_PATHS = ../../../ggml/src/;
|
||||
INFOPLIST_FILE = whisper.objc/Info.plist;
|
||||
INFOPLIST_KEY_UIApplicationSupportsIndirectInputEvents = YES;
|
||||
INFOPLIST_KEY_UILaunchStoryboardName = LaunchScreen;
|
||||
INFOPLIST_KEY_UIMainStoryboardFile = Main;
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPad = "UIInterfaceOrientationPortrait UIInterfaceOrientationPortraitUpsideDown UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
INFOPLIST_KEY_UISupportedInterfaceOrientations_iPhone = "UIInterfaceOrientationPortrait UIInterfaceOrientationLandscapeLeft UIInterfaceOrientationLandscapeRight";
|
||||
LD_RUNPATH_SEARCH_PATHS = (
|
||||
"$(inherited)",
|
||||
"@executable_path/Frameworks",
|
||||
);
|
||||
MARKETING_VERSION = 1.0;
|
||||
MTL_HEADER_SEARCH_PATHS = "";
|
||||
PRODUCT_BUNDLE_IDENTIFIER = "com.ggerganov.whisper-objc";
|
||||
PRODUCT_NAME = "$(TARGET_NAME)";
|
||||
SWIFT_EMIT_LOC_STRINGS = YES;
|
||||
TARGETED_DEVICE_FAMILY = "1,2";
|
||||
};
|
||||
name = Release;
|
||||
};
|
||||
/* End XCBuildConfiguration section */
|
||||
|
||||
/* Begin XCConfigurationList section */
|
||||
@ -444,6 +502,15 @@
|
||||
defaultConfigurationIsVisible = 0;
|
||||
defaultConfigurationName = Release;
|
||||
};
|
||||
18627C8F29052BE000BD2A04 /* Build configuration list for PBXNativeTarget "whisper.objc" */ = {
|
||||
isa = XCConfigurationList;
|
||||
buildConfigurations = (
|
||||
18627C9029052BE000BD2A04 /* Debug */,
|
||||
18627C9129052BE000BD2A04 /* Release */,
|
||||
);
|
||||
defaultConfigurationIsVisible = 0;
|
||||
defaultConfigurationName = Release;
|
||||
};
|
||||
/* End XCConfigurationList section */
|
||||
};
|
||||
rootObject = 18627C6E29052BDF00BD2A04 /* Project object */;
|
||||
|
@ -66,7 +66,7 @@ actor WhisperContext {
|
||||
|
||||
private func systemInfo() -> String {
|
||||
var info = ""
|
||||
if (ggml_cpu_has_neon() != 0) { info += "NEON " }
|
||||
//if (ggml_cpu_has_neon() != 0) { info += "NEON " }
|
||||
return String(info.dropLast())
|
||||
}
|
||||
|
||||
@ -75,45 +75,45 @@ actor WhisperContext {
|
||||
if (whisper_set_mel(context, nil, 0, nMels) != 0) {
|
||||
return "error: failed to set mel"
|
||||
}
|
||||
|
||||
|
||||
// heat encoder
|
||||
if (whisper_encode(context, 0, nThreads) != 0) {
|
||||
return "error: failed to encode"
|
||||
}
|
||||
|
||||
|
||||
var tokens = [whisper_token](repeating: 0, count: 512)
|
||||
|
||||
|
||||
// prompt heat
|
||||
if (whisper_decode(context, &tokens, 256, 0, nThreads) != 0) {
|
||||
return "error: failed to decode"
|
||||
}
|
||||
|
||||
|
||||
// text-generation heat
|
||||
if (whisper_decode(context, &tokens, 1, 256, nThreads) != 0) {
|
||||
return "error: failed to decode"
|
||||
}
|
||||
|
||||
|
||||
whisper_reset_timings(context)
|
||||
|
||||
|
||||
// actual run
|
||||
if (whisper_encode(context, 0, nThreads) != 0) {
|
||||
return "error: failed to encode"
|
||||
}
|
||||
|
||||
|
||||
// text-generation
|
||||
for i in 0..<256 {
|
||||
if (whisper_decode(context, &tokens, 1, Int32(i), nThreads) != 0) {
|
||||
return "error: failed to decode"
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// batched decoding
|
||||
for _ in 0..<64 {
|
||||
if (whisper_decode(context, &tokens, 5, 0, nThreads) != 0) {
|
||||
return "error: failed to decode"
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// prompt processing
|
||||
for _ in 0..<16 {
|
||||
if (whisper_decode(context, &tokens, 256, 0, nThreads) != 0) {
|
||||
|
@ -33,6 +33,7 @@ else()
|
||||
endif()
|
||||
|
||||
option(BUILD_SHARED_LIBS "ggml: build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
|
||||
option(GGML_BACKEND_DL "ggml: build backends as dynamic libraries (requires BUILD_SHARED_LIBS)" OFF)
|
||||
|
||||
#
|
||||
# option list
|
||||
@ -91,28 +92,33 @@ else()
|
||||
set(INS_ENB ON)
|
||||
endif()
|
||||
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
|
||||
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
|
||||
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
|
||||
option(GGML_AVX512 "ggml: enable AVX512" OFF)
|
||||
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
|
||||
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
|
||||
option(GGML_AVX512_BF16 "ggml: enable AVX512-BF16" OFF)
|
||||
option(GGML_AMX_TILE "ggml: enable AMX-TILE" OFF)
|
||||
option(GGML_AMX_INT8 "ggml: enable AMX-INT8" OFF)
|
||||
option(GGML_AMX_BF16 "ggml: enable AMX-BF16" OFF)
|
||||
option(GGML_FMA "ggml: enable FMA" ${INS_ENB})
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
|
||||
option(GGML_AVX_VNNI "ggml: enable AVX-VNNI" OFF)
|
||||
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
|
||||
option(GGML_AVX512 "ggml: enable AVX512F" OFF)
|
||||
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
|
||||
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
|
||||
option(GGML_AVX512_BF16 "ggml: enable AVX512-BF16" OFF)
|
||||
if (NOT MSVC)
|
||||
option(GGML_F16C "ggml: enable F16C" ${INS_ENB}) # in MSVC F16C is implied with AVX2/AVX512
|
||||
# in MSVC F16C and FMA is implied with AVX2/AVX512
|
||||
option(GGML_FMA "ggml: enable FMA" ${INS_ENB})
|
||||
option(GGML_F16C "ggml: enable F16C" ${INS_ENB})
|
||||
# MSVC does not seem to support AMX
|
||||
option(GGML_AMX_TILE "ggml: enable AMX-TILE" OFF)
|
||||
option(GGML_AMX_INT8 "ggml: enable AMX-INT8" OFF)
|
||||
option(GGML_AMX_BF16 "ggml: enable AMX-BF16" OFF)
|
||||
endif()
|
||||
option(GGML_LASX "ggml: enable lasx" ON)
|
||||
option(GGML_LSX "ggml: enable lsx" ON)
|
||||
option(GGML_SVE "ggml: enable SVE" OFF)
|
||||
option(GGML_LASX "ggml: enable lasx" ON)
|
||||
option(GGML_LSX "ggml: enable lsx" ON)
|
||||
option(GGML_RVV "ggml: enable rvv" ON)
|
||||
option(GGML_SVE "ggml: enable SVE" OFF)
|
||||
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
|
||||
|
||||
|
||||
if (WIN32)
|
||||
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows Version")
|
||||
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
|
||||
endif()
|
||||
|
||||
# ggml core
|
||||
@ -159,7 +165,6 @@ set (GGML_METAL_MACOSX_VERSION_MIN "" CACHE STRING
|
||||
set (GGML_METAL_STD "" CACHE STRING "ggml: metal standard version (-std flag)")
|
||||
option(GGML_OPENMP "ggml: use OpenMP" ON)
|
||||
option(GGML_RPC "ggml: use RPC" OFF)
|
||||
option(GGML_AMX "ggml: use AMX" OFF)
|
||||
option(GGML_SYCL "ggml: use SYCL" OFF)
|
||||
option(GGML_SYCL_F16 "ggml: use 16 bit floats for sycl calculations" OFF)
|
||||
set (GGML_SYCL_TARGET "INTEL" CACHE STRING
|
||||
@ -178,11 +183,7 @@ option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
|
||||
set(CMAKE_C_STANDARD 11)
|
||||
set(CMAKE_C_STANDARD_REQUIRED true)
|
||||
|
||||
if (GGML_SYCL)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
else()
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
endif()
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED true)
|
||||
|
||||
set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
|
@ -1,25 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// buffer_type API
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_amx(ggml_backend_t backend);
|
||||
|
||||
// backend API
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_amx_init(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_amx_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -190,6 +190,14 @@ extern "C" {
|
||||
typedef void (*ggml_backend_set_n_threads_t)(ggml_backend_t backend, int n_threads);
|
||||
// Get additional buffer types provided by the device (returns a NULL-terminated array)
|
||||
typedef ggml_backend_buffer_type_t * (*ggml_backend_dev_get_extra_bufts_t)(ggml_backend_dev_t device);
|
||||
// Set the abort callback for the backend
|
||||
typedef void (*ggml_backend_set_abort_callback_t)(ggml_backend_t backend, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
// Get a list of feature flags supported by the backend (returns a NULL-terminated array)
|
||||
struct ggml_backend_feature {
|
||||
const char * name;
|
||||
const char * value;
|
||||
};
|
||||
typedef struct ggml_backend_feature * (*ggml_backend_get_features_t)(ggml_backend_reg_t reg);
|
||||
|
||||
//
|
||||
// Backend registry
|
||||
@ -214,6 +222,13 @@ extern "C" {
|
||||
// = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU) OR ggml_backend_dev_by_type(CPU), NULL)
|
||||
GGML_API ggml_backend_t ggml_backend_init_best(void);
|
||||
|
||||
// Load a backend from a dynamic library and register it
|
||||
GGML_API ggml_backend_reg_t ggml_backend_load(const char * path);
|
||||
// Unload a backend if loaded dynamically and unregister it
|
||||
GGML_API void ggml_backend_unload(ggml_backend_reg_t reg);
|
||||
// Load all known backends from dynamic libraries
|
||||
GGML_API void ggml_backend_load_all(void);
|
||||
|
||||
//
|
||||
// Backend scheduler
|
||||
//
|
||||
|
@ -7,29 +7,6 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Scheduling priorities
|
||||
enum ggml_sched_priority {
|
||||
GGML_SCHED_PRIO_NORMAL,
|
||||
GGML_SCHED_PRIO_MEDIUM,
|
||||
GGML_SCHED_PRIO_HIGH,
|
||||
GGML_SCHED_PRIO_REALTIME
|
||||
};
|
||||
|
||||
// Threadpool params
|
||||
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
|
||||
struct ggml_threadpool_params {
|
||||
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
|
||||
int n_threads; // number of threads
|
||||
enum ggml_sched_priority prio; // thread priority
|
||||
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
|
||||
bool strict_cpu; // strict cpu placement
|
||||
bool paused; // start in paused state
|
||||
};
|
||||
|
||||
struct ggml_threadpool; // forward declaration, see ggml.c
|
||||
|
||||
typedef struct ggml_threadpool * ggml_threadpool_t;
|
||||
|
||||
// the compute plan that needs to be prepared for ggml_graph_compute()
|
||||
// since https://github.com/ggerganov/ggml/issues/287
|
||||
struct ggml_cplan {
|
||||
@ -75,14 +52,11 @@ extern "C" {
|
||||
GGML_BACKEND_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_BACKEND_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
||||
|
||||
GGML_BACKEND_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
||||
GGML_BACKEND_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
||||
GGML_BACKEND_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
||||
GGML_BACKEND_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||
GGML_BACKEND_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||
GGML_BACKEND_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API int ggml_threadpool_get_n_threads (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
@ -104,10 +78,10 @@ extern "C" {
|
||||
GGML_BACKEND_API int ggml_cpu_has_sse3 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_ssse3 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx2 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_f16c (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_vbmi(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_vnni(void);
|
||||
@ -117,6 +91,7 @@ extern "C" {
|
||||
GGML_BACKEND_API int ggml_cpu_has_neon (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_arm_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fp16_va (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_dotprod (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_sve (void);
|
||||
GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
|
||||
|
@ -389,6 +389,9 @@ extern "C" {
|
||||
GGML_TYPE_Q4_0_8_8 = 33,
|
||||
GGML_TYPE_TQ1_0 = 34,
|
||||
GGML_TYPE_TQ2_0 = 35,
|
||||
GGML_TYPE_IQ4_NL_4_4 = 36,
|
||||
// GGML_TYPE_IQ4_NL_4_8 = 37,
|
||||
// GGML_TYPE_IQ4_NL_8_8 = 38,
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
@ -496,6 +499,7 @@ extern "C" {
|
||||
GGML_OP_POOL_2D_BACK,
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_PAD,
|
||||
GGML_OP_PAD_REFLECT_1D,
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
@ -1692,6 +1696,13 @@ extern "C" {
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
|
||||
GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int p0,
|
||||
int p1);
|
||||
|
||||
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
||||
// timesteps: [N,]
|
||||
// return: [N, dim]
|
||||
@ -2215,6 +2226,37 @@ extern "C" {
|
||||
|
||||
GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
|
||||
|
||||
// ggml threadpool
|
||||
// TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
|
||||
// the goal should be to create an API that other backends can use move everything to the ggml base
|
||||
|
||||
// scheduling priorities
|
||||
enum ggml_sched_priority {
|
||||
GGML_SCHED_PRIO_NORMAL,
|
||||
GGML_SCHED_PRIO_MEDIUM,
|
||||
GGML_SCHED_PRIO_HIGH,
|
||||
GGML_SCHED_PRIO_REALTIME
|
||||
};
|
||||
|
||||
// threadpool params
|
||||
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
|
||||
struct ggml_threadpool_params {
|
||||
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
|
||||
int n_threads; // number of threads
|
||||
enum ggml_sched_priority prio; // thread priority
|
||||
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
|
||||
bool strict_cpu; // strict cpu placement
|
||||
bool paused; // start in paused state
|
||||
};
|
||||
|
||||
struct ggml_threadpool; // forward declaration, see ggml.c
|
||||
|
||||
typedef struct ggml_threadpool * ggml_threadpool_t;
|
||||
|
||||
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
|
||||
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
|
||||
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -24,7 +24,7 @@ if (NOT MSVC)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
function(get_flags CCID CCVER)
|
||||
function(ggml_get_flags CCID CCVER)
|
||||
set(C_FLAGS "")
|
||||
set(CXX_FLAGS "")
|
||||
|
||||
@ -41,6 +41,7 @@ function(get_flags CCID CCVER)
|
||||
elseif (CCID STREQUAL "GNU")
|
||||
set(C_FLAGS -Wdouble-promotion)
|
||||
set(CXX_FLAGS -Wno-array-bounds)
|
||||
|
||||
if (CCVER VERSION_GREATER_EQUAL 8.1.0)
|
||||
list(APPEND CXX_FLAGS -Wextra-semi)
|
||||
endif()
|
||||
@ -69,7 +70,7 @@ if (GGML_ALL_WARNINGS)
|
||||
list(APPEND C_FLAGS ${WARNING_FLAGS})
|
||||
list(APPEND CXX_FLAGS ${WARNING_FLAGS})
|
||||
|
||||
get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
|
||||
ggml_get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${C_FLAGS};${GF_C_FLAGS}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${CXX_FLAGS};${GF_CXX_FLAGS}>")
|
||||
@ -202,6 +203,10 @@ endif()
|
||||
|
||||
# ggml
|
||||
|
||||
if (GGML_BACKEND_DL AND NOT BUILD_SHARED_LIBS)
|
||||
message(FATAL_ERROR "GGML_BACKEND_DL requires BUILD_SHARED_LIBS")
|
||||
endif()
|
||||
|
||||
add_library(ggml-base
|
||||
../include/ggml.h
|
||||
../include/ggml-alloc.h
|
||||
@ -226,44 +231,94 @@ add_library(ggml
|
||||
|
||||
target_link_libraries(ggml PUBLIC ggml-base)
|
||||
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
target_link_libraries(ggml PRIVATE dl)
|
||||
endif()
|
||||
|
||||
function(ggml_add_backend_library backend)
|
||||
if (GGML_BACKEND_DL)
|
||||
add_library(${backend} MODULE ${ARGN})
|
||||
# write the shared library to the output directory
|
||||
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
|
||||
else()
|
||||
add_library(${backend} ${ARGN})
|
||||
target_link_libraries(ggml PUBLIC ${backend})
|
||||
install(TARGETS ${backend} LIBRARY)
|
||||
endif()
|
||||
|
||||
target_link_libraries(${backend} PRIVATE ggml-base)
|
||||
target_include_directories(${backend} PRIVATE ..)
|
||||
|
||||
if (${BUILD_SHARED_LIBS})
|
||||
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_BUILD)
|
||||
target_compile_definitions(${backend} PUBLIC GGML_BACKEND_SHARED)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
function(ggml_add_backend backend)
|
||||
string(TOUPPER "GGML_${backend}" backend_id)
|
||||
if (${backend_id})
|
||||
string(TOLOWER "ggml-${backend}" backend_target)
|
||||
add_subdirectory(${backend_target})
|
||||
# check again in case the backend disabled itself
|
||||
# note that this should NOT be the normal behavior, in case of errors the backend should fail the build
|
||||
# however, currently it is necessary for AMX, since it is enabled by default on llama.cpp
|
||||
if (${backend_id})
|
||||
message(STATUS "Including ${backend} backend")
|
||||
if (${BUILD_SHARED_LIBS})
|
||||
target_compile_definitions(${backend_target} PRIVATE GGML_BACKEND_BUILD)
|
||||
target_compile_definitions(${backend_target} PUBLIC GGML_BACKEND_SHARED)
|
||||
endif()
|
||||
install(TARGETS ${backend_target} LIBRARY)
|
||||
target_link_libraries(ggml PUBLIC ${backend_target})
|
||||
message(STATUS "Including ${backend} backend")
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
string(TOUPPER "GGML_USE_${backend}" backend_use)
|
||||
target_compile_definitions(ggml PUBLIC ${backend_use})
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
function(ggml_add_cpu_backend_variant tag_name)
|
||||
set(GGML_CPU_TAG_NAME ${tag_name})
|
||||
# other: OPENMP LLAMAFILE CPU_HBM
|
||||
foreach (feat NATIVE
|
||||
AVX AVX2 AVX_VNNI FMA F16C
|
||||
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
|
||||
AMX_TILE AMX_INT8 AMX_BF16)
|
||||
set(GGML_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_${feat} ON)
|
||||
endforeach()
|
||||
|
||||
ggml_add_cpu_backend_variant_impl(${tag_name})
|
||||
endfunction()
|
||||
|
||||
ggml_add_backend(CPU)
|
||||
ggml_add_backend(AMX)
|
||||
|
||||
if (GGML_CPU_ALL_VARIANTS)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
|
||||
endif()
|
||||
ggml_add_cpu_backend_variant(sandybridge AVX)
|
||||
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AVX-VNNI or AMX
|
||||
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 FMA AVX_VNNI)
|
||||
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
else ()
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
endif()
|
||||
|
||||
ggml_add_backend(BLAS)
|
||||
ggml_add_backend(CANN)
|
||||
ggml_add_backend(CUDA)
|
||||
ggml_add_backend(HIP)
|
||||
ggml_add_backend(Kompute)
|
||||
ggml_add_backend(METAL)
|
||||
ggml_add_backend(MUSA)
|
||||
ggml_add_backend(RPC)
|
||||
ggml_add_backend(SYCL)
|
||||
ggml_add_backend(Vulkan)
|
||||
ggml_add_backend(MUSA)
|
||||
|
||||
foreach (target ggml-base ggml)
|
||||
target_include_directories(${target} PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>)
|
||||
target_compile_features (${target} PRIVATE c_std_11) # don't bump
|
||||
target_compile_features (${target} PRIVATE c_std_11 cxx_std_17) # don't bump
|
||||
endforeach()
|
||||
|
||||
target_link_libraries(ggml-base PRIVATE Threads::Threads)
|
||||
|
@ -8,6 +8,8 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_BACKEND_API_VERSION 1
|
||||
|
||||
//
|
||||
// Backend buffer type
|
||||
//
|
||||
@ -63,20 +65,20 @@ extern "C" {
|
||||
enum ggml_backend_buffer_usage usage;
|
||||
};
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
ggml_backend_buffer_type_t buft,
|
||||
struct ggml_backend_buffer_i iface,
|
||||
void * context,
|
||||
size_t size);
|
||||
|
||||
// do not use directly, use ggml_backend_tensor_copy instead
|
||||
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
GGML_API bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// multi-buffer
|
||||
// buffer that contains a collection of buffers
|
||||
ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
||||
bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
||||
void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
||||
GGML_API bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
|
||||
//
|
||||
// Backend (stream)
|
||||
@ -199,17 +201,55 @@ extern "C" {
|
||||
};
|
||||
|
||||
struct ggml_backend_reg {
|
||||
// int api_version; // TODO: for dynamic loading
|
||||
int api_version; // initialize to GGML_BACKEND_API_VERSION
|
||||
struct ggml_backend_reg_i iface;
|
||||
void * context;
|
||||
};
|
||||
|
||||
|
||||
// Internal backend registry API
|
||||
void ggml_backend_register(ggml_backend_reg_t reg);
|
||||
void ggml_backend_device_register(ggml_backend_dev_t device);
|
||||
// TODO: backends can be loaded as a dynamic library, in which case it needs to export this function
|
||||
// typedef ggml_backend_register_t * (*ggml_backend_init)(void);
|
||||
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
|
||||
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
|
||||
|
||||
// Add backend dynamic loading support to the backend
|
||||
|
||||
// Initialize the backend
|
||||
typedef ggml_backend_reg_t (*ggml_backend_init_t)(void);
|
||||
// Optional: obtain a score for the backend based on the system configuration
|
||||
// Higher scores are preferred, 0 means the backend is not supported in the current system
|
||||
typedef int (*ggml_backend_score_t)(void);
|
||||
|
||||
#ifdef GGML_BACKEND_DL
|
||||
# ifdef __cplusplus
|
||||
# define GGML_BACKEND_DL_IMPL(reg_fn) \
|
||||
extern "C" { \
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_init(void); \
|
||||
} \
|
||||
ggml_backend_reg_t ggml_backend_init(void) { \
|
||||
return reg_fn(); \
|
||||
}
|
||||
# define GGML_BACKEND_DL_SCORE_IMPL(score_fn) \
|
||||
extern "C" { \
|
||||
GGML_BACKEND_API int ggml_backend_score(void); \
|
||||
} \
|
||||
int ggml_backend_score(void) { \
|
||||
return score_fn(); \
|
||||
}
|
||||
# else
|
||||
# define GGML_BACKEND_DL_IMPL(reg_fn) \
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_init(void); \
|
||||
ggml_backend_reg_t ggml_backend_init(void) { \
|
||||
return reg_fn(); \
|
||||
}
|
||||
# define GGML_BACKEND_DL_SCORE_IMPL(score_fn) \
|
||||
GGML_BACKEND_API int ggml_backend_score(void); \
|
||||
int ggml_backend_score(void) { \
|
||||
return score_fn(); \
|
||||
}
|
||||
# endif
|
||||
#else
|
||||
# define GGML_BACKEND_DL_IMPL(reg_fn)
|
||||
# define GGML_BACKEND_DL_SCORE_IMPL(score_fn)
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@ -1,11 +1,34 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <algorithm>
|
||||
#include <codecvt>
|
||||
#include <cstring>
|
||||
#include <filesystem>
|
||||
#include <locale>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
#ifdef _WIN32
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
# endif
|
||||
# include <windows.h>
|
||||
#elif defined(__APPLE__)
|
||||
# include <mach-o/dyld.h>
|
||||
# include <dlfcn.h>
|
||||
#else
|
||||
# include <dlfcn.h>
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
|
||||
// Backend registry
|
||||
#ifdef GGML_USE_CPU
|
||||
#include "ggml-cpu.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
@ -31,10 +54,6 @@
|
||||
#include "ggml-rpc.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_AMX
|
||||
# include "ggml-amx.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
@ -43,8 +62,75 @@
|
||||
#include "ggml-kompute.h"
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(HMODULE handle) {
|
||||
FreeLibrary(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static dl_handle * dl_load_library(const std::wstring & path) {
|
||||
// suppress error dialogs for missing DLLs
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
HMODULE handle = LoadLibraryW(path.c_str());
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
static dl_handle * dl_load_library(const std::string & path) {
|
||||
std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
|
||||
return dl_load_library(converter.from_bytes(path));
|
||||
}
|
||||
|
||||
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
void * p = (void *) GetProcAddress(handle, name);
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
using dl_handle = void;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(void * handle) {
|
||||
dlclose(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static void * dl_load_library(const std::string & path) {
|
||||
dl_handle * handle = dlopen(path.c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
return dlsym(handle, name);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
|
||||
|
||||
struct ggml_backend_reg_entry {
|
||||
ggml_backend_reg_t reg;
|
||||
dl_handle_ptr handle;
|
||||
};
|
||||
|
||||
struct ggml_backend_registry {
|
||||
std::vector<ggml_backend_reg_t> backends;
|
||||
std::vector<ggml_backend_reg_entry> backends;
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
|
||||
ggml_backend_registry() {
|
||||
@ -69,17 +155,25 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_RPC
|
||||
register_backend(ggml_backend_rpc_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_AMX
|
||||
register_backend(ggml_backend_amx_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
register_backend(ggml_backend_kompute_reg());
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU
|
||||
register_backend(ggml_backend_cpu_reg());
|
||||
#endif
|
||||
}
|
||||
|
||||
void register_backend(ggml_backend_reg_t reg) {
|
||||
~ggml_backend_registry() {
|
||||
// FIXME: backends cannot be safely unloaded without a function to destroy all the backend resources,
|
||||
// since backend threads may still be running and accessing resources from the dynamic library
|
||||
for (auto & entry : backends) {
|
||||
if (entry.handle) {
|
||||
entry.handle.release(); // NOLINT
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void register_backend(ggml_backend_reg_t reg, dl_handle_ptr handle = nullptr) {
|
||||
if (!reg) {
|
||||
return;
|
||||
}
|
||||
@ -88,7 +182,7 @@ struct ggml_backend_registry {
|
||||
GGML_LOG_DEBUG("%s: registered backend %s (%zu devices)\n",
|
||||
__func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
|
||||
#endif
|
||||
backends.push_back(reg);
|
||||
backends.push_back({ reg, std::move(handle) });
|
||||
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
|
||||
register_device(ggml_backend_reg_dev_get(reg, i));
|
||||
}
|
||||
@ -100,6 +194,76 @@ struct ggml_backend_registry {
|
||||
#endif
|
||||
devices.push_back(device);
|
||||
}
|
||||
|
||||
ggml_backend_reg_t load_backend(const char * path, bool silent) {
|
||||
dl_handle_ptr handle { dl_load_library(path) };
|
||||
if (!handle) {
|
||||
if (!silent) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (score_fn && score_fn() == 0) {
|
||||
if (!silent) {
|
||||
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
|
||||
if (!backend_init_fn) {
|
||||
if (!silent) {
|
||||
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_backend_reg_t reg = backend_init_fn();
|
||||
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
|
||||
if (!silent) {
|
||||
if (!reg) {
|
||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n", __func__, path);
|
||||
} else {
|
||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
|
||||
__func__, path, reg->api_version, GGML_BACKEND_API_VERSION);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path);
|
||||
|
||||
register_backend(reg, std::move(handle));
|
||||
|
||||
return reg;
|
||||
}
|
||||
|
||||
void unload_backend(ggml_backend_reg_t reg, bool silent) {
|
||||
auto it = std::find_if(backends.begin(), backends.end(),
|
||||
[reg](const ggml_backend_reg_entry & entry) { return entry.reg == reg; });
|
||||
|
||||
if (it == backends.end()) {
|
||||
if (!silent) {
|
||||
GGML_LOG_ERROR("%s: backend not found\n", __func__);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (!silent) {
|
||||
GGML_LOG_DEBUG("%s: unloading %s backend\n", __func__, ggml_backend_reg_name(reg));
|
||||
}
|
||||
|
||||
// remove devices
|
||||
devices.erase(
|
||||
std::remove_if(devices.begin(), devices.end(),
|
||||
[reg](ggml_backend_dev_t dev) { return ggml_backend_dev_backend_reg(dev) == reg; }),
|
||||
devices.end());
|
||||
|
||||
// remove backend
|
||||
backends.erase(it);
|
||||
}
|
||||
};
|
||||
|
||||
static ggml_backend_registry & get_reg() {
|
||||
@ -117,23 +281,32 @@ void ggml_backend_device_register(ggml_backend_dev_t device) {
|
||||
}
|
||||
|
||||
// Backend (reg) enumeration
|
||||
static bool striequals(const char * a, const char * b) {
|
||||
for (; *a && *b; a++, b++) {
|
||||
if (std::tolower(*a) != std::tolower(*b)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return *a == *b;
|
||||
}
|
||||
|
||||
size_t ggml_backend_reg_count() {
|
||||
return get_reg().backends.size();
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
|
||||
GGML_ASSERT(index < ggml_backend_reg_count());
|
||||
return get_reg().backends[index];
|
||||
return get_reg().backends[index].reg;
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
|
||||
ggml_backend_reg_t reg = ggml_backend_reg_get(i);
|
||||
if (std::strcmp(ggml_backend_reg_name(reg), name) == 0) {
|
||||
if (striequals(ggml_backend_reg_name(reg), name)) {
|
||||
return reg;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Device enumeration
|
||||
@ -149,11 +322,11 @@ ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
|
||||
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
|
||||
if (striequals(ggml_backend_dev_name(dev), name)) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
|
||||
@ -163,14 +336,14 @@ ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Convenience functions
|
||||
ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
|
||||
if (!dev) {
|
||||
return NULL;
|
||||
return nullptr;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, params);
|
||||
}
|
||||
@ -178,7 +351,7 @@ ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params)
|
||||
ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
|
||||
if (!dev) {
|
||||
return NULL;
|
||||
return nullptr;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, params);
|
||||
}
|
||||
@ -189,7 +362,168 @@ ggml_backend_t ggml_backend_init_best(void) {
|
||||
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
}
|
||||
if (!dev) {
|
||||
return NULL;
|
||||
return nullptr;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, NULL);
|
||||
return ggml_backend_dev_init(dev, nullptr);
|
||||
}
|
||||
|
||||
// Dynamic loading
|
||||
ggml_backend_reg_t ggml_backend_load(const char * path) {
|
||||
return get_reg().load_backend(path, false);
|
||||
}
|
||||
|
||||
void ggml_backend_unload(ggml_backend_reg_t reg) {
|
||||
get_reg().unload_backend(reg, true);
|
||||
}
|
||||
|
||||
static std::string get_executable_path() {
|
||||
#if defined(__APPLE__)
|
||||
// get executable path
|
||||
std::vector<char> path;
|
||||
uint32_t size;
|
||||
while (true) {
|
||||
size = path.size();
|
||||
if (_NSGetExecutablePath(path.data(), &size) == 0) {
|
||||
break;
|
||||
}
|
||||
path.resize(size);
|
||||
}
|
||||
std::string base_path(path.data(), size);
|
||||
// remove executable name
|
||||
auto last_slash = base_path.find_last_of('/');
|
||||
if (last_slash != std::string::npos) {
|
||||
base_path = base_path.substr(0, last_slash);
|
||||
}
|
||||
return base_path + "/";
|
||||
#elif defined(__linux__)
|
||||
std::string base_path = ".";
|
||||
std::vector<char> path(1024);
|
||||
while (true) {
|
||||
// get executable path
|
||||
ssize_t len = readlink("/proc/self/exe", path.data(), path.size());
|
||||
if (len == -1) {
|
||||
break;
|
||||
}
|
||||
if (len < (ssize_t) path.size()) {
|
||||
base_path = std::string(path.data(), len);
|
||||
// remove executable name
|
||||
auto last_slash = base_path.find_last_of('/');
|
||||
if (last_slash != std::string::npos) {
|
||||
base_path = base_path.substr(0, last_slash);
|
||||
}
|
||||
break;
|
||||
}
|
||||
path.resize(path.size() * 2);
|
||||
}
|
||||
|
||||
return base_path + "/";
|
||||
#elif defined(_WIN32)
|
||||
std::vector<char> path(MAX_PATH);
|
||||
DWORD len = GetModuleFileNameA(NULL, path.data(), path.size());
|
||||
if (len == 0) {
|
||||
return "";
|
||||
}
|
||||
std::string base_path(path.data(), len);
|
||||
// remove executable name
|
||||
auto last_slash = base_path.find_last_of('\\');
|
||||
if (last_slash != std::string::npos) {
|
||||
base_path = base_path.substr(0, last_slash);
|
||||
}
|
||||
return base_path + "\\";
|
||||
#endif
|
||||
}
|
||||
|
||||
static std::string backend_filename_prefix() {
|
||||
#ifdef _WIN32
|
||||
return "ggml-";
|
||||
#else
|
||||
return "libggml-";
|
||||
#endif
|
||||
}
|
||||
|
||||
static std::string backend_filename_suffix() {
|
||||
#ifdef _WIN32
|
||||
return ".dll";
|
||||
#else
|
||||
return ".so";
|
||||
#endif
|
||||
}
|
||||
|
||||
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent) {
|
||||
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
|
||||
// TODO: search system paths
|
||||
std::vector<std::string> search_paths = { "./", get_executable_path() };
|
||||
std::string file_prefix = backend_filename_prefix() + name + "-";
|
||||
|
||||
int best_score = 0;
|
||||
std::string best_path;
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
for (const auto & search_path : search_paths) {
|
||||
if (!fs::exists(search_path)) {
|
||||
continue;
|
||||
}
|
||||
for (const auto & entry : fs::directory_iterator(search_path)) {
|
||||
if (entry.is_regular_file()) {
|
||||
std::string filename = entry.path().filename().string();
|
||||
std::string ext = entry.path().extension().string();
|
||||
if (filename.find(file_prefix) == 0 && ext == backend_filename_suffix()) {
|
||||
dl_handle_ptr handle { dl_load_library(entry.path().c_str()) };
|
||||
if (!handle && !silent) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, entry.path().string().c_str());
|
||||
}
|
||||
if (handle) {
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (score_fn) {
|
||||
int s = score_fn();
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, entry.path().string().c_str(), s);
|
||||
#endif
|
||||
if (s > best_score) {
|
||||
best_score = s;
|
||||
best_path = entry.path().string();
|
||||
}
|
||||
} else {
|
||||
if (!silent) {
|
||||
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, entry.path().string().c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (best_score == 0) {
|
||||
// try to load the base backend
|
||||
for (const auto & search_path : search_paths) {
|
||||
std::string path = search_path + backend_filename_prefix() + name + backend_filename_suffix();
|
||||
if (fs::exists(path)) {
|
||||
return get_reg().load_backend(path.c_str(), silent);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return get_reg().load_backend(best_path.c_str(), silent);
|
||||
}
|
||||
|
||||
void ggml_backend_load_all() {
|
||||
#ifdef NDEBUG
|
||||
bool silent = true;
|
||||
#else
|
||||
bool silent = false;
|
||||
#endif
|
||||
|
||||
ggml_backend_load_best("blas", silent);
|
||||
ggml_backend_load_best("cann", silent);
|
||||
ggml_backend_load_best("cuda", silent);
|
||||
ggml_backend_load_best("hip", silent);
|
||||
ggml_backend_load_best("kompute", silent);
|
||||
ggml_backend_load_best("metal", silent);
|
||||
ggml_backend_load_best("rpc", silent);
|
||||
ggml_backend_load_best("sycl", silent);
|
||||
ggml_backend_load_best("vulkan", silent);
|
||||
ggml_backend_load_best("musa", silent);
|
||||
ggml_backend_load_best("cpu", silent);
|
||||
}
|
||||
|
@ -252,6 +252,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
if (size == 0) {
|
||||
@ -266,6 +267,7 @@ void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, siz
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
if (size == 0) {
|
||||
@ -740,7 +742,8 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
|
||||
if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
|
||||
// since the tensor is pre-allocated, it cannot be moved to another backend
|
||||
GGML_ABORT("pre-allocated tensor (%s) in a backend that cannot run the operation", tensor->name);
|
||||
ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)", tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op));
|
||||
}
|
||||
|
||||
// graph input
|
||||
|
@ -11,12 +11,9 @@ find_package(BLAS)
|
||||
if (BLAS_FOUND)
|
||||
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
|
||||
|
||||
add_library(ggml-blas
|
||||
ggml-blas.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-blas PRIVATE ggml-base)
|
||||
target_include_directories(ggml-blas PRIVATE . ..)
|
||||
ggml_add_backend_library(ggml-blas
|
||||
ggml-blas.cpp
|
||||
)
|
||||
|
||||
if (${GGML_BLAS_VENDOR} MATCHES "Apple")
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
|
@ -506,9 +506,12 @@ static const struct ggml_backend_reg_i ggml_backend_blas_reg_i = {
|
||||
|
||||
ggml_backend_reg_t ggml_backend_blas_reg(void) {
|
||||
static struct ggml_backend_reg ggml_backend_blas_reg = {
|
||||
/* .iface = */ ggml_backend_blas_reg_i,
|
||||
/* .context = */ NULL,
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_blas_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_blas_reg;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_blas_reg)
|
||||
|
@ -3,6 +3,34 @@ if ("cann${CANN_INSTALL_DIR}" STREQUAL "cann" AND DEFINED ENV{ASCEND_TOOLKIT_HOM
|
||||
message(STATUS "CANN: updated CANN_INSTALL_DIR from ASCEND_TOOLKIT_HOME=$ENV{ASCEND_TOOLKIT_HOME}")
|
||||
endif()
|
||||
|
||||
# Auto-detech Soc type and Soc version, if detect failed, will abort build
|
||||
set(SOC_VERSION "")
|
||||
function(detect_ascend_soc_type SOC_VERSION)
|
||||
execute_process(
|
||||
COMMAND bash -c "npu-smi info|awk -F' ' 'NF > 0 && NR==7 {print $3}'"
|
||||
OUTPUT_VARIABLE npu_info
|
||||
RESULT_VARIABLE npu_result
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
if("${npu_info}" STREQUAL "" OR ${npu_result})
|
||||
message(FATAL_ERROR "Auto-detech ascend soc type failed, please specify manually or check ascend device working normally.")
|
||||
endif()
|
||||
set(${SOC_VERSION} "Ascend${npu_info}" PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
if(NOT SOC_TYPE)
|
||||
detect_ascend_soc_type(SOC_VERSION)
|
||||
set(SOC_TYPE "${SOC_VERSION}")
|
||||
message(STATUS "CANN: SOC_VERSION auto-detected is:${SOC_VERSION}")
|
||||
endif()
|
||||
|
||||
string(TOLOWER ${SOC_TYPE} SOC_VERSION) # SOC_VERSION need lower
|
||||
|
||||
# Construct Soc specify compile option: ASCEND_#Soc_Major_SN. Such as ASCEND_910B, ASCEND_310P.
|
||||
string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}")
|
||||
set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}")
|
||||
string(TOUPPER ${SOC_TYPE_COMPILE_OPTION} SOC_TYPE_COMPILE_OPTION)
|
||||
|
||||
if (CANN_INSTALL_DIR)
|
||||
# Only Support Linux.
|
||||
if (NOT UNIX)
|
||||
@ -34,11 +62,13 @@ if (CANN_INSTALL_DIR)
|
||||
|
||||
file(GLOB GGML_SOURCES_CANN "*.cpp")
|
||||
|
||||
add_library(ggml-cann ${GGML_SOURCES_CANN})
|
||||
target_link_libraries(ggml-cann PRIVATE ggml-base ${CANN_LIBRARIES})
|
||||
target_include_directories(ggml-cann PRIVATE . .. ${CANN_INCLUDE_DIRS})
|
||||
ggml_add_backend_library(ggml-cann ${GGML_SOURCES_CANN})
|
||||
target_link_libraries(ggml-cann PRIVATE ${CANN_LIBRARIES})
|
||||
target_include_directories(ggml-cann PRIVATE ${CANN_INCLUDE_DIRS})
|
||||
target_link_directories(ggml-cann PRIVATE ${CANN_INSTALL_DIR}/lib64)
|
||||
|
||||
target_compile_definitions(ggml-cann PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
|
||||
|
||||
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
|
||||
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
|
||||
else()
|
||||
|
@ -22,11 +22,14 @@
|
||||
|
||||
#include "aclnn_ops.h"
|
||||
|
||||
#include <aclnnop/aclnn_addcdiv.h>
|
||||
#include <aclnnop/aclnn_avgpool2d.h>
|
||||
#include <aclnnop/aclnn_batch_matmul.h>
|
||||
#include <aclnnop/aclnn_cast.h>
|
||||
#include <aclnnop/aclnn_constant_pad_nd.h>
|
||||
#include <aclnnop/aclnn_copy.h>
|
||||
#include <aclnnop/aclnn_cos.h>
|
||||
#include <aclnnop/aclnn_div.h>
|
||||
#include <aclnnop/aclnn_exp.h>
|
||||
#include <aclnnop/aclnn_fill_scalar.h>
|
||||
#include <aclnnop/aclnn_group_norm.h>
|
||||
@ -34,6 +37,7 @@
|
||||
#include <aclnnop/aclnn_layer_norm.h>
|
||||
#include <aclnnop/aclnn_matmul.h>
|
||||
#include <aclnnop/aclnn_max_pool.h>
|
||||
#include <aclnnop/aclnn_mm.h>
|
||||
#include <aclnnop/aclnn_permute.h>
|
||||
#include <aclnnop/aclnn_pow_tensor_tensor.h>
|
||||
#include <aclnnop/aclnn_reduce_sum.h>
|
||||
@ -53,6 +57,7 @@
|
||||
#include <exception>
|
||||
#include <vector>
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "kernels/ascendc_kernels.h"
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
@ -241,10 +246,14 @@ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
int64_t concat_dim = 1;
|
||||
const int32_t dim = ggml_get_op_params_i32(dst, 0);
|
||||
|
||||
GGML_ASSERT(dim >= 0 && dim < 4);
|
||||
int32_t acl_dim = 3 - dim;
|
||||
|
||||
aclTensor* tensors[] = {acl_src0, acl_src1};
|
||||
aclTensorList* tensorList = aclCreateTensorList(tensors, 2);
|
||||
aclnn_concat(ctx, tensorList, acl_dst, concat_dim);
|
||||
aclnn_concat(ctx, tensorList, acl_dst, acl_dim);
|
||||
|
||||
ACL_CHECK(aclDestroyTensorList(tensorList));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
@ -1096,9 +1105,9 @@ static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer,
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Creates an ACL tensor initialized with ones using a provided buffer.
|
||||
* @brief Creates an ACL tensor initialized with value using a provided buffer.
|
||||
*
|
||||
* This function initializes a tensor with ones using the specified buffer and
|
||||
* This function initializes a tensor with value using the specified buffer and
|
||||
* tensor parameters.
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
@ -1111,12 +1120,12 @@ static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer,
|
||||
* @param type_size The size of each element in the tensor data type.
|
||||
* @param value The value to be used for initializing the tensor (default
|
||||
* is 1.0).
|
||||
* @return An ACL tensor initialized with ones.
|
||||
* @return An ACL tensor initialized with value.
|
||||
*/
|
||||
static aclTensor* aclnn_ones(ggml_backend_cann_context& ctx, void* buffer,
|
||||
size_t n_bytes, int64_t* ne, int64_t dims,
|
||||
aclDataType type, size_t type_size,
|
||||
float value = 1.0f) {
|
||||
static aclTensor* aclnn_values(ggml_backend_cann_context& ctx, void* buffer,
|
||||
size_t n_bytes, int64_t* ne, int64_t dims,
|
||||
aclDataType type, size_t type_size,
|
||||
float value = 1.0f) {
|
||||
aclTensor* acl_tensor =
|
||||
aclnn_zero(ctx, buffer, n_bytes, ne, dims, type, type_size);
|
||||
float alpha_host = 1.0f;
|
||||
@ -1158,7 +1167,7 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
size_t one_tensor_n_bytes = src->ne[0] * ggml_element_size(src);
|
||||
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
|
||||
|
||||
aclTensor* acl_gamma = aclnn_ones(
|
||||
aclTensor* acl_gamma = aclnn_values(
|
||||
ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne, 1,
|
||||
ggml_cann_type_mapping(src->type), ggml_element_size(src));
|
||||
|
||||
@ -1202,9 +1211,9 @@ void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
||||
ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
|
||||
|
||||
aclTensor* mask_tensor =
|
||||
aclnn_ones(ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne,
|
||||
GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
|
||||
ggml_element_size(src), value);
|
||||
aclnn_values(ctx, one_tensor_allocator.get(), one_tensor_n_bytes,
|
||||
src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
|
||||
ggml_element_size(src), value);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
@ -1437,10 +1446,6 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0]; // kernel
|
||||
ggml_tensor* src1 = dst->src[1]; // input
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
// aclnnIm2col only works on 2D. set s1, p1, d1 to 1 to perform 2D
|
||||
@ -1462,9 +1467,6 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
const int64_t OH = is_2D ? ne2 : 1;
|
||||
const int64_t OW = ne1;
|
||||
|
||||
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
// memory allocated increased to 3x when is_2D == false
|
||||
const int64_t n_bytes_factor = is_2D ? 1 : 3;
|
||||
|
||||
@ -1768,6 +1770,92 @@ static void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
ACL_CHECK(aclnnSin(workspaceAddr, workspaceSize, executor, ctx.stream()));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs element-wise division of tensor1 by tensor2 , multiplies the
|
||||
result by the scalar value and adds it to self .
|
||||
*
|
||||
* Performs element-wise division of tensor1 by tensor2,
|
||||
* multiplies the result by the scalar value and adds it to self .
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text{out}_i = \text{selft}_i + \text{value} \times
|
||||
\frac{\text{tensor1}_i}{\text{tensor2}_i}
|
||||
* \f]
|
||||
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_self The source tensor on which the addcdiv function will be
|
||||
applied.
|
||||
* @param tensor1 Numerator tensor.
|
||||
* @param tensor2 Denominator tensor.
|
||||
* @param value The value to be used for coefficient.
|
||||
*/
|
||||
static void aclnn_inplace_addcdiv(ggml_backend_cann_context& ctx,
|
||||
aclTensor* acl_self, aclTensor* tensor1,
|
||||
aclTensor* tensor2, float value) {
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
|
||||
|
||||
ACL_CHECK(aclnnInplaceAddcdivGetWorkspaceSize(
|
||||
acl_self, tensor1, tensor2, acl_value, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
ACL_CHECK(aclnnInplaceAddcdiv(workspaceAddr, workspaceSize, executor,
|
||||
ctx.stream()));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Matrix division, optionally in-place.
|
||||
*
|
||||
* This function division each element of the source tensor `acl_src` by the
|
||||
* tensor `acl_other` and stores the result in the destination tensor `acl_dst`.
|
||||
* If `inplace` is true, `acl_dst` will not be used and the operation is
|
||||
* performed in-place on `acl_src`. The operation is defined as: \f[
|
||||
* \text{dst}_i = \frac{\text{acl_src}_i}{\text{acl_other}_i}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_src Numerator tensor..
|
||||
* @param acl_other Denominator tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored if
|
||||
* `inplace` is false.
|
||||
* @param inplace Flag indicating whether to perform the operation in-place on
|
||||
* `acl_src`.
|
||||
*/
|
||||
static void aclnn_div_tensor(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_other, aclTensor* acl_dst,
|
||||
bool inplace) {
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
if (inplace) {
|
||||
ACL_CHECK(aclnnInplaceDivGetWorkspaceSize(acl_src, acl_other,
|
||||
&workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
ACL_CHECK(aclnnInplaceDiv(workspaceAddr, workspaceSize, executor,
|
||||
ctx.stream()));
|
||||
} else {
|
||||
ACL_CHECK(aclnnDivGetWorkspaceSize(acl_src, acl_other, acl_dst,
|
||||
&workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
ACL_CHECK(
|
||||
aclnnDiv(workspaceAddr, workspaceSize, executor, ctx.stream()));
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx,
|
||||
ggml_tensor* dst) {
|
||||
const ggml_tensor* src = dst->src[0];
|
||||
@ -2311,7 +2399,16 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ctx.stream()));
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F32: {
|
||||
#ifdef ASCEND_310P
|
||||
// Special operation for get_row_f32 kernel of 310P: clear the
|
||||
// content of dest data buffer when row is not aligned to 32 bytes
|
||||
if ((src0->ne[0] % 8) != 0) {
|
||||
size_t dst_len = src1->ne[0] * src1->ne[1] * src1->ne[2] *
|
||||
src0->ne[0] * ggml_type_size(GGML_TYPE_F32);
|
||||
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
|
||||
}
|
||||
#endif
|
||||
aclrtlaunch_ascendc_get_row_f32(
|
||||
24, ctx.stream(), src0->data, src1->data, dst->data,
|
||||
((ggml_tensor*)src0->extra)->ne,
|
||||
@ -2320,7 +2417,19 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
|
||||
((ggml_tensor*)dst->extra)->nb);
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
}
|
||||
case GGML_TYPE_F16: {
|
||||
#ifdef ASCEND_310P
|
||||
// Special operation for get_row_f16 kernel of 310P: clear the
|
||||
// content of dest data buffer when row is not aligned to 32 bytes
|
||||
if ((src0->ne[0] % 16) != 0) {
|
||||
size_t dst_len =
|
||||
src1->ne[0] * src1->ne[1] * src1->ne[2] * src0->ne[0] *
|
||||
ggml_type_size(
|
||||
GGML_TYPE_F32); // out is also f32, even input is f16
|
||||
ACL_CHECK(aclrtMemset((char*)dst->data, dst_len, 0, dst_len));
|
||||
}
|
||||
#endif
|
||||
aclrtlaunch_ascendc_get_row_f16(
|
||||
24, ctx.stream(), src0->data, src1->data, dst->data,
|
||||
((ggml_tensor*)src0->extra)->ne,
|
||||
@ -2329,6 +2438,7 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
|
||||
((ggml_tensor*)dst->extra)->nb);
|
||||
break;
|
||||
}
|
||||
case GGML_TYPE_Q4_0:
|
||||
aclrtlaunch_ascendc_get_row_q4_0(
|
||||
24, ctx.stream(), src0->data, src1->data, dst->data,
|
||||
@ -2407,7 +2517,6 @@ static void aclnn_mat_mul(ggml_backend_cann_context& ctx, aclTensor* acl_input,
|
||||
aclTensor* acl_weight, aclTensor* acl_dst) {
|
||||
int8_t cube_math_type = 1; // ALLOW_FP32_DOWN_PRECISION, when input is
|
||||
// fp32, atlas a2 will transpose it to HFLOAT32.
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
@ -2425,6 +2534,81 @@ static void aclnn_mat_mul(ggml_backend_cann_context& ctx, aclTensor* acl_input,
|
||||
aclnnMatmul(workspaceAddr, workspaceSize, executor, ctx.stream()));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs matrix multiplication of two 2D tensors.
|
||||
*
|
||||
* This function computes the matrix multiplication of the input tensor
|
||||
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the
|
||||
* destination tensor `acl_dst`.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text {acl_dst}=\text {acl_input@acl_weight}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_input The input tensor for the matrix multiplication.
|
||||
* @param acl_weight The weight tensor for the matrix multiplication.
|
||||
* @param acl_dst The destination tensor where the result of the matrix
|
||||
* multiplication will be stored.
|
||||
*/
|
||||
static void aclnn_mat_mul_2d(ggml_backend_cann_context& ctx,
|
||||
aclTensor* acl_input, aclTensor* acl_weight,
|
||||
aclTensor* acl_dst) {
|
||||
int8_t cube_math_type = 2;
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(aclnnMmGetWorkspaceSize(acl_input, acl_weight, acl_dst,
|
||||
cube_math_type, &workspaceSize,
|
||||
&executor));
|
||||
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
ACL_CHECK(aclnnMm(workspaceAddr, workspaceSize, executor, ctx.stream()));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs matrix multiplication of two 3D tensors.
|
||||
*
|
||||
* This function computes the matrix multiplication of the input tensor
|
||||
* `acl_input` and the weight tensor `acl_weight`, and stores the result in the
|
||||
* destination tensor `acl_dst`.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text {acl_dst}=\text {acl_input@acl_weight}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The context for the CANN backend operations.
|
||||
* @param acl_input The input tensor for the matrix multiplication.
|
||||
* @param acl_weight The weight tensor for the matrix multiplication.
|
||||
* @param acl_dst The destination tensor where the result of the matrix
|
||||
* multiplication will be stored.
|
||||
*/
|
||||
static void aclnn_mat_mul_3d(ggml_backend_cann_context& ctx,
|
||||
aclTensor* acl_input, aclTensor* acl_weight,
|
||||
aclTensor* acl_dst) {
|
||||
int8_t cube_math_type = 2;
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(aclnnBatchMatMulGetWorkspaceSize(acl_input, acl_weight, acl_dst,
|
||||
cube_math_type, &workspaceSize,
|
||||
&executor));
|
||||
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
ACL_CHECK(
|
||||
aclnnBatchMatMul(workspaceAddr, workspaceSize, executor, ctx.stream()));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs matrix multiplication with floating-point precision on
|
||||
* tensors using the CANN backend.
|
||||
@ -2446,20 +2630,39 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
|
||||
// broadcast, when weight ne2 or ne3 is not 1, weight need repeat.
|
||||
BCAST_MUL_MAT_SHAPE(input, weight, dst);
|
||||
|
||||
// transpose weight: [1,2,3,4] -> [1,2,4,3]
|
||||
int64_t n_dims = bcast_dims;
|
||||
if (bcast_input_ne[3] == bcast_weight_ne[3] && bcast_input_ne[3] == 1) {
|
||||
if (bcast_input_ne[2] == 1 && bcast_weight_ne[2] == 1) {
|
||||
n_dims = 2;
|
||||
} else if (bcast_input_ne[2] == 1) {
|
||||
n_dims = 3;
|
||||
}
|
||||
}
|
||||
|
||||
aclTensor* acl_input_tensor =
|
||||
ggml_cann_create_tensor(input, bcast_input_ne, bcast_input_nb, n_dims);
|
||||
int64_t transpose_ne[] = {bcast_weight_ne[1], bcast_weight_ne[0],
|
||||
bcast_weight_ne[2], bcast_weight_ne[3],
|
||||
bcast_weight_ne[4], bcast_weight_ne[5]};
|
||||
size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0],
|
||||
bcast_weight_nb[2], bcast_weight_nb[3],
|
||||
bcast_weight_nb[4], bcast_weight_nb[5]};
|
||||
|
||||
aclTensor* acl_weight_tensor =
|
||||
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, bcast_dims);
|
||||
aclTensor* acl_input_tensor =
|
||||
ggml_cann_create_tensor(input, BCAST_MUL_MAT_PARAM(input));
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst, BCAST_MUL_MAT_PARAM(dst));
|
||||
aclnn_mat_mul(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
|
||||
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims);
|
||||
aclTensor* acl_dst =
|
||||
ggml_cann_create_tensor(dst, bcast_dst_ne, bcast_dst_nb, n_dims);
|
||||
|
||||
switch (n_dims) {
|
||||
case 2:
|
||||
aclnn_mat_mul_2d(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
|
||||
break;
|
||||
case 3:
|
||||
aclnn_mat_mul_3d(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
|
||||
break;
|
||||
default:
|
||||
aclnn_mat_mul(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
|
||||
break;
|
||||
}
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
|
||||
@ -2480,51 +2683,47 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
|
||||
* multiplication will be stored.
|
||||
*/
|
||||
static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
|
||||
ggml_tensor* dst,
|
||||
const enum ggml_type type) {
|
||||
ggml_tensor* dst,
|
||||
const enum ggml_type type) {
|
||||
ggml_tensor* src0 = dst->src[0]; // weight
|
||||
ggml_tensor* src1 = dst->src[1]; // input
|
||||
|
||||
// The shape of the weight is NCHW. Matrix multiplication uses HW dims. HC
|
||||
// is regarded as batch. weight need transpose.
|
||||
int64_t weight_ne[] = {src0->ne[1], src0->ne[0]};
|
||||
// The shape of the weight is NCHW.
|
||||
// Matrix multiplication uses HW dims.
|
||||
// HC is regarded as batch.
|
||||
// weight need transpose.
|
||||
float weight_elem_size;
|
||||
if (type == GGML_TYPE_Q4_0) {
|
||||
weight_elem_size = float(sizeof(uint8_t)) / 2;
|
||||
}
|
||||
else if (type == GGML_TYPE_Q8_0) {
|
||||
} else if (type == GGML_TYPE_Q8_0) {
|
||||
weight_elem_size = float(sizeof(uint8_t));
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT");
|
||||
}
|
||||
float weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size};
|
||||
|
||||
// size of one matrix is element_size * height * width.
|
||||
size_t weight_stride = weight_elem_size * src0->ne[0] * src0->ne[1];
|
||||
float weight_nb[] = {src0->ne[0] * weight_elem_size, weight_elem_size};
|
||||
size_t weight_stride = src0->ne[1] * src0->ne[0] * weight_elem_size;
|
||||
size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3];
|
||||
|
||||
// scale stored at the end of weight. Also need transpose.
|
||||
GGML_ASSERT(QK4_0 == QK8_0);
|
||||
int64_t scale_ne[] = {src0->ne[1], src0->ne[0] / QK8_0};
|
||||
size_t scale_elem_size = sizeof(uint16_t);
|
||||
size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size,
|
||||
scale_elem_size};
|
||||
size_t scale_stride = scale_elem_size * src0->ne[0] * src0->ne[1] / QK8_0;
|
||||
size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size;
|
||||
char* scale_offset = (char*)src0->data + weight_size;
|
||||
|
||||
// input
|
||||
void* input_buffer;
|
||||
size_t input_elem_size = sizeof(uint16_t);
|
||||
int64_t input_ne[] = {src1->ne[0], src1->ne[1]};
|
||||
size_t input_nb[] = {input_elem_size, input_elem_size * src1->ne[0]};
|
||||
size_t input_stride = input_elem_size * src1->ne[0] * src1->ne[1];
|
||||
|
||||
size_t input_nb[] = {input_elem_size, input_ne[0] * input_elem_size};
|
||||
size_t input_stride = input_ne[0] * input_ne[1] * input_elem_size;
|
||||
ggml_cann_pool_alloc input_alloctor(ctx.pool());
|
||||
void* input_buffer = src1->data;
|
||||
|
||||
// case in
|
||||
if (src1->type != GGML_TYPE_F16) {
|
||||
aclTensor* acl_src1_tensor = ggml_cann_create_tensor(src1);
|
||||
input_alloctor.alloc(ggml_nelements(src1) * input_elem_size);
|
||||
input_buffer = input_alloctor.get();
|
||||
input_buffer =
|
||||
input_alloctor.alloc(ggml_nelements(src1) * input_elem_size);
|
||||
|
||||
int64_t* input_cast_ne = src1->ne;
|
||||
size_t input_cast_nb[GGML_MAX_DIMS];
|
||||
@ -2537,85 +2736,136 @@ static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
|
||||
input_buffer, ACL_FLOAT16, input_elem_size, input_cast_ne,
|
||||
input_cast_nb, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx, acl_src1_tensor, acl_input_tensor, ACL_FLOAT16);
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_src1_tensor));
|
||||
} else {
|
||||
input_buffer = src1->data;
|
||||
}
|
||||
|
||||
// output
|
||||
size_t output_elem_size = sizeof(uint16_t);
|
||||
int64_t output_ne[] = {dst->ne[0], dst->ne[1]};
|
||||
size_t output_nb[] = {output_elem_size, output_elem_size * dst->ne[0]};
|
||||
ggml_cann_pool_alloc output_alloctor(
|
||||
ctx.pool(), ggml_nelements(dst) * output_elem_size);
|
||||
void* output_buffer = output_alloctor.get();
|
||||
size_t output_stride = output_elem_size * dst->ne[0] * dst->ne[1];
|
||||
size_t output_nb[] = {output_elem_size, dst->ne[0] * output_elem_size};
|
||||
ggml_cann_pool_alloc output_allocator(ctx.pool());
|
||||
void* output_buffer =
|
||||
output_allocator.alloc(ggml_nelements(dst) * output_elem_size);
|
||||
size_t output_stride = dst->ne[0] * dst->ne[1] * output_elem_size;
|
||||
|
||||
// aclnn
|
||||
int64_t max_elem_size = 65535;
|
||||
int64_t split_size = (src0->ne[1] / max_elem_size) + 1;
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool());
|
||||
aclOpExecutor* executor = nullptr;
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
for (int64_t n1 = 0; n1 < src1->ne[3]; n1++) {
|
||||
for (int64_t c1 = 0; c1 < src1->ne[2]; c1++) {
|
||||
int64_t n0 = n1 / (src1->ne[3] / src0->ne[3]);
|
||||
int64_t c0 = c1 / (src1->ne[2] / src0->ne[2]);
|
||||
|
||||
int64_t batch1 = n1 * src1->ne[2] + c1;
|
||||
int64_t batch0 = n0 * src0->ne[2] + c0;
|
||||
int64_t batch1 = (n1 * src1->ne[2]) + c1;
|
||||
int64_t batch0 = (n0 * src0->ne[2]) + c0;
|
||||
|
||||
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
|
||||
(char*)input_buffer + batch1 * input_stride, ACL_FLOAT16,
|
||||
input_elem_size, input_ne, input_nb, 2);
|
||||
|
||||
// first split
|
||||
int64_t weight_ne_offset = 0;
|
||||
int64_t weight_ne[2] = {
|
||||
max_elem_size > src0->ne[1] ? src0->ne[1] : max_elem_size,
|
||||
src0->ne[0]};
|
||||
int64_t scale_ne_offset = 0;
|
||||
int64_t scale_ne[2] = {weight_ne[0], weight_ne[1] / QK8_0};
|
||||
int64_t output_ne_offset = 0;
|
||||
int64_t output_ne[2] = {weight_ne[0], dst->ne[1]};
|
||||
|
||||
aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
|
||||
(char*)src0->data + batch0 * weight_stride,
|
||||
ggml_cann_type_mapping(type), weight_elem_size, weight_ne,
|
||||
weight_nb, 2);
|
||||
weight_nb, 2, ACL_FORMAT_ND, weight_ne_offset);
|
||||
aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
|
||||
scale_offset + batch0 * scale_stride, ACL_FLOAT16,
|
||||
scale_elem_size, scale_ne, scale_nb, 2);
|
||||
scale_elem_size, scale_ne, scale_nb, 2, ACL_FORMAT_ND,
|
||||
scale_ne_offset);
|
||||
aclTensor* acl_output_tensor = ggml_cann_create_tensor(
|
||||
(char*)output_buffer + batch1 * output_stride, ACL_FLOAT16,
|
||||
output_elem_size, output_ne, output_nb, 2);
|
||||
output_elem_size, output_ne, output_nb, 2, ACL_FORMAT_ND,
|
||||
output_ne_offset);
|
||||
|
||||
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
|
||||
acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr,
|
||||
nullptr, nullptr, nullptr, QK8_0, acl_output_tensor,
|
||||
&workspaceSize, &executor));
|
||||
|
||||
if (workspaceSize > 0 && workspaceAddr == nullptr) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(),
|
||||
workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
if (workspaceAddr == nullptr) {
|
||||
workspaceAddr = workspace_allocator.alloc(workspaceSize);
|
||||
}
|
||||
|
||||
ACL_CHECK(aclnnWeightQuantBatchMatmulV2(
|
||||
workspaceAddr, workspaceSize, executor, ctx.stream()));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_scale_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
|
||||
|
||||
// other splits
|
||||
for (int64_t split = 1; split < split_size; split++) {
|
||||
weight_ne_offset +=
|
||||
weight_elem_size * weight_ne[0] * weight_ne[1];
|
||||
weight_ne[0] = max_elem_size * (split + 1) > src0->ne[1]
|
||||
? src0->ne[1] - (max_elem_size * split)
|
||||
: max_elem_size;
|
||||
scale_ne_offset += scale_elem_size * scale_ne[0] * scale_ne[1];
|
||||
scale_ne[0] = weight_ne[0];
|
||||
output_ne_offset +=
|
||||
output_elem_size * output_ne[0] * output_ne[1];
|
||||
output_ne[0] = weight_ne[0];
|
||||
|
||||
acl_weight_tensor = ggml_cann_create_tensor(
|
||||
(char*)src0->data + batch0 * weight_stride,
|
||||
ggml_cann_type_mapping(type), weight_elem_size, weight_ne,
|
||||
weight_nb, 2, ACL_FORMAT_ND, weight_ne_offset);
|
||||
acl_scale_tensor = ggml_cann_create_tensor(
|
||||
scale_offset + batch0 * scale_stride, ACL_FLOAT16,
|
||||
scale_elem_size, scale_ne, scale_nb, 2, ACL_FORMAT_ND,
|
||||
scale_ne_offset);
|
||||
acl_output_tensor = ggml_cann_create_tensor(
|
||||
(char*)output_buffer + batch1 * output_stride, ACL_FLOAT16,
|
||||
output_elem_size, output_ne, output_nb, 2, ACL_FORMAT_ND,
|
||||
output_ne_offset);
|
||||
|
||||
ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
|
||||
acl_input_tensor, acl_weight_tensor, acl_scale_tensor,
|
||||
nullptr, nullptr, nullptr, nullptr, QK8_0,
|
||||
acl_output_tensor, &workspaceSize, &executor));
|
||||
ACL_CHECK(aclnnWeightQuantBatchMatmulV2(
|
||||
workspaceAddr, workspaceSize, executor, ctx.stream()));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_scale_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
|
||||
}
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
|
||||
}
|
||||
}
|
||||
|
||||
// cast out
|
||||
int64_t* output_cast_ne = dst->ne;
|
||||
size_t output_cast_nb[GGML_MAX_DIMS];
|
||||
output_cast_nb[0] = sizeof(uint16_t);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1];
|
||||
if (dst->type != GGML_TYPE_F16) {
|
||||
int64_t* output_cast_ne = dst->ne;
|
||||
size_t output_cast_nb[GGML_MAX_DIMS];
|
||||
output_cast_nb[0] = sizeof(uint16_t);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1];
|
||||
}
|
||||
|
||||
aclTensor* acl_output_tensor = ggml_cann_create_tensor(
|
||||
output_buffer, ACL_FLOAT16, output_elem_size, output_cast_ne,
|
||||
output_cast_nb, GGML_MAX_DIMS);
|
||||
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
|
||||
aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor,
|
||||
ggml_cann_type_mapping(dst->type));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst_tensor));
|
||||
}
|
||||
|
||||
aclTensor* acl_output_tensor =
|
||||
ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, output_elem_size,
|
||||
output_cast_ne, output_cast_nb, GGML_MAX_DIMS);
|
||||
aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
|
||||
aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor, ACL_FLOAT);
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_output_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst_tensor));
|
||||
}
|
||||
|
||||
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
@ -2714,12 +2964,14 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx,
|
||||
static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
||||
aclTensor* acl_cos_repeat_tensor,
|
||||
aclTensor* acl_sin_repeat_tensor,
|
||||
float theta_scale, bool is_neox) {
|
||||
float theta_scale, float freq_scale,
|
||||
float attn_factor, bool is_neox) {
|
||||
// int sin/cos cache, cache has different repeat method depond on
|
||||
// @param.is_neox
|
||||
|
||||
ggml_tensor* src0 = dst->src[0]; // input
|
||||
ggml_tensor* src1 = dst->src[1]; // position
|
||||
ggml_tensor* src2 = dst->src[2]; // freq_factors
|
||||
|
||||
// arange, [0,1,...,ne0/2]
|
||||
int64_t arange_length = src0->ne[0] / 2;
|
||||
@ -2748,11 +3000,26 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
||||
ggml_cann_pool_alloc theta_scale_allocator(ctx.pool(),
|
||||
arange_length * sizeof(float_t));
|
||||
void* theta_scale_buffer = theta_scale_allocator.get();
|
||||
aclTensor* acl_theta_scale_tensor = aclnn_ones(
|
||||
aclTensor* acl_theta_scale_tensor = aclnn_values(
|
||||
ctx, theta_scale_buffer, arange_length * sizeof(float_t), arange_ne,
|
||||
GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), theta_scale);
|
||||
aclnn_pow_tensor_tensor(ctx, acl_theta_scale_tensor, acl_arange_tensor);
|
||||
|
||||
// freq_scale
|
||||
if (freq_scale != 1) {
|
||||
aclnn_muls(ctx, acl_theta_scale_tensor, freq_scale, nullptr, true);
|
||||
}
|
||||
|
||||
// freq_factors
|
||||
if (src2) {
|
||||
aclTensor* acl_freq_factors_tensor = ggml_cann_create_tensor(
|
||||
src2->data, ggml_cann_type_mapping(src2->type),
|
||||
ggml_type_size(src2->type), arange_ne, arange_nb, GGML_MAX_DIMS);
|
||||
aclnn_div_tensor(ctx, acl_theta_scale_tensor, acl_freq_factors_tensor,
|
||||
nullptr, true);
|
||||
ACL_CHECK(aclDestroyTensor(acl_freq_factors_tensor));
|
||||
}
|
||||
|
||||
// position
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
int64_t position_length = src1->ne[0];
|
||||
@ -2816,6 +3083,12 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
||||
GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_cos(ctx, acl_permute_tensor, acl_cos_tensor);
|
||||
|
||||
// attn_factor
|
||||
if (attn_factor != 1) {
|
||||
aclnn_muls(ctx, acl_sin_tensor, attn_factor, nullptr, true);
|
||||
aclnn_muls(ctx, acl_cos_tensor, attn_factor, nullptr, true);
|
||||
}
|
||||
|
||||
// repeat
|
||||
if (is_neox) {
|
||||
int64_t repeatsArray[] = {1, 1, 1, 2};
|
||||
@ -2841,15 +3114,27 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
|
||||
ACL_CHECK(aclDestroyTensor(acl_cos_tensor));
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
aclnnStatus aclnnRotaryPositionEmbeddingGetWorkspaceSize(
|
||||
const aclTensor* x, const aclTensor* cos, const aclTensor* sin,
|
||||
int64_t mode, const aclTensor* yOut, uint64_t* workspaceSize,
|
||||
aclOpExecutor** executor);
|
||||
aclnnStatus aclnnRotaryPositionEmbedding(void* workspace,
|
||||
uint64_t workspaceSize,
|
||||
aclOpExecutor* executor,
|
||||
aclrtStream stream);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
// TODO: use ascendc
|
||||
// Only test with LLAMA model.
|
||||
ggml_tensor* src0 = dst->src[0]; // input
|
||||
ggml_tensor* src2 = dst->src[2]; // freq_factors
|
||||
|
||||
// TODO: with freq_factors
|
||||
GGML_ASSERT(src2 == NULL);
|
||||
|
||||
// param
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
// const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
@ -2867,13 +3152,11 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
memcpy(&beta_fast, (int32_t*)dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t*)dst->op_params + 10, sizeof(float));
|
||||
|
||||
GGML_ASSERT(n_dims <= ne0);
|
||||
// TODO: n_dims <= ne0
|
||||
GGML_ASSERT(n_dims == ne0);
|
||||
GGML_ASSERT(n_dims % 2 == 0);
|
||||
|
||||
// TODO: ext_factor != 0
|
||||
GGML_ASSERT(ext_factor == 0);
|
||||
// TODO: freq_scale != 1
|
||||
GGML_ASSERT(freq_scale == 1);
|
||||
|
||||
const float theta_scale = powf(freq_base, -2.0f / n_dims);
|
||||
|
||||
@ -2904,7 +3187,13 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float_t),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
aclnn_cache_init(ctx, dst, acl_cos_reshape_tensor, acl_sin_reshape_tensor,
|
||||
theta_scale, is_neox);
|
||||
theta_scale, freq_scale, attn_factor, is_neox);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src0);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
#ifdef ASCEND_310P
|
||||
// Special ROPE operation for 310P
|
||||
|
||||
// roll input
|
||||
void* input_roll_buffer;
|
||||
@ -2947,7 +3236,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
|
||||
}
|
||||
acl_minus_one_tensor = aclnn_ones(
|
||||
acl_minus_one_tensor = aclnn_values(
|
||||
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
|
||||
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
|
||||
int64_t dim = 3;
|
||||
@ -2974,17 +3263,15 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
|
||||
|
||||
// init [-1, -1, -1, 1, 1,1,...]
|
||||
minus_one_scale_buffer = minus_one_scale_allocator.get();
|
||||
|
||||
int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
|
||||
size_t minus_one_nb[GGML_MAX_DIMS];
|
||||
minus_one_nb[0] = sizeof(float_t);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
|
||||
}
|
||||
acl_minus_one_tensor = aclnn_ones(
|
||||
acl_minus_one_tensor = aclnn_values(
|
||||
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
|
||||
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
|
||||
// -1 * first half
|
||||
@ -3026,14 +3313,12 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
acl_input_roll_mul_scale_tensor);
|
||||
|
||||
// output
|
||||
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
void* output_fp32_buffer;
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
aclnn_inplace_mul(ctx, acl_src0, acl_cos_reshape_tensor);
|
||||
aclnn_inplace_mul(ctx, acl_src, acl_cos_reshape_tensor);
|
||||
aclnn_inplace_mul(ctx, acl_input_roll_mul_scale_tensor,
|
||||
acl_sin_reshape_tensor);
|
||||
aclnn_add(ctx, acl_src0, acl_input_roll_mul_scale_tensor, acl_dst);
|
||||
aclnn_add(ctx, acl_src, acl_input_roll_mul_scale_tensor, acl_dst);
|
||||
// TODO: ne0 != n_dims in mode2
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
size_t input_fp32_nb[GGML_MAX_DIMS];
|
||||
@ -3060,7 +3345,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
aclTensor* output_fp32_tensor = ggml_cann_create_tensor(
|
||||
output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne,
|
||||
input_fp32_nb, GGML_MAX_DIMS);
|
||||
aclnn_mul(ctx, acl_src0, acl_cos_reshape_tensor, input_fp32_tensor1);
|
||||
aclnn_mul(ctx, acl_src, acl_cos_reshape_tensor, input_fp32_tensor1);
|
||||
aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor,
|
||||
input_fp32_tensor2);
|
||||
aclnn_add(ctx, input_fp32_tensor1, input_fp32_tensor2,
|
||||
@ -3070,13 +3355,73 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ACL_CHECK(aclDestroyTensor(input_fp32_tensor1));
|
||||
ACL_CHECK(aclDestroyTensor(input_fp32_tensor2));
|
||||
ACL_CHECK(aclDestroyTensor(output_fp32_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_minus_one_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_roll_mul_scale_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_roll_reshape_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
}
|
||||
return;
|
||||
#endif
|
||||
|
||||
// src0 == GGML_TYPE_F16
|
||||
// TODO: optimization this `if` code
|
||||
if (src0->type == GGML_TYPE_F16) {
|
||||
ggml_cann_pool_alloc sin_final_allocator(
|
||||
ctx.pool(), src0->ne[0] * src0->ne[2] * ggml_type_size(src0->type));
|
||||
ggml_cann_pool_alloc cos_final_allocator(
|
||||
ctx.pool(), src0->ne[0] * src0->ne[2] * ggml_type_size(src0->type));
|
||||
void* sin_final_buffer = sin_final_allocator.get();
|
||||
void* cos_final_buffer = cos_final_allocator.get();
|
||||
|
||||
int64_t sin_final_ne[4] = {src0->ne[0], 1, src0->ne[2], 1};
|
||||
size_t sin_final_nb[GGML_MAX_DIMS];
|
||||
sin_final_nb[0] = ggml_type_size(src0->type);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
sin_final_nb[i] = sin_final_nb[i - 1] * sin_final_ne[i - 1];
|
||||
}
|
||||
aclTensor* acl_sin_final_tensor = ggml_cann_create_tensor(
|
||||
sin_final_buffer, ggml_cann_type_mapping(src0->type),
|
||||
ggml_type_size(src0->type), sin_final_ne, sin_final_nb,
|
||||
GGML_MAX_DIMS);
|
||||
aclTensor* acl_cos_final_tensor = ggml_cann_create_tensor(
|
||||
cos_final_buffer, ggml_cann_type_mapping(src0->type),
|
||||
ggml_type_size(src0->type), sin_final_ne, sin_final_nb,
|
||||
GGML_MAX_DIMS);
|
||||
|
||||
aclnn_cast(ctx, acl_sin_reshape_tensor, acl_sin_final_tensor,
|
||||
ggml_cann_type_mapping(src0->type));
|
||||
aclnn_cast(ctx, acl_cos_reshape_tensor, acl_cos_final_tensor,
|
||||
ggml_cann_type_mapping(src0->type));
|
||||
ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
|
||||
acl_sin_reshape_tensor = acl_sin_final_tensor;
|
||||
acl_cos_reshape_tensor = acl_cos_final_tensor;
|
||||
}
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
int acl_mode = mode;
|
||||
if (mode == 0) {
|
||||
acl_mode = 1;
|
||||
}
|
||||
|
||||
ACL_CHECK(aclnnRotaryPositionEmbeddingGetWorkspaceSize(
|
||||
acl_src, acl_cos_reshape_tensor, acl_sin_reshape_tensor, acl_mode,
|
||||
acl_dst, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
ACL_CHECK(aclnnRotaryPositionEmbedding(workspaceAddr, workspaceSize,
|
||||
executor, ctx.stream()));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_minus_one_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_roll_mul_scale_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_input_roll_reshape_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_src0));
|
||||
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
|
@ -211,17 +211,20 @@ struct ggml_cann_pool_alloc {
|
||||
struct ggml_backend_cann_context {
|
||||
int32_t device; /**< Device ID. */
|
||||
std::string name; /**< Name of the device. */
|
||||
std::string description; /**< Description of the device. */
|
||||
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
|
||||
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {
|
||||
{nullptr}}; /**< Array of streams for the device. */
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
|
||||
|
||||
/**
|
||||
* @brief Constructor for initializing the context with a given device.
|
||||
* @param device Device ID.
|
||||
*/
|
||||
explicit ggml_backend_cann_context(int device)
|
||||
: device(device), name("CANN" + std::to_string(device)) {}
|
||||
: device(device), name("CANN" + std::to_string(device)) {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Destructor for cleaning up resources.
|
||||
|
@ -122,6 +122,10 @@ static ggml_cann_device_info ggml_cann_init() {
|
||||
ACL_CHECK(aclrtMemGetAllocationGranularity(
|
||||
&prop, ACL_RT_MEM_ALLOC_GRANULARITY_RECOMMENDED,
|
||||
&info.devices[id].vmm_granularity));
|
||||
|
||||
size_t free, total;
|
||||
ggml_backend_cann_get_device_memory(id, &free, &total);
|
||||
info.devices[id].total_vram = free;
|
||||
}
|
||||
|
||||
// TODO: add more device info later.
|
||||
@ -208,6 +212,11 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
|
||||
* @return A pointer to the allocated buffer.
|
||||
*/
|
||||
void* alloc(size_t size, size_t* actual_size) override {
|
||||
const size_t alignment = 128;
|
||||
size = GGML_PAD(size, alignment);
|
||||
if (size == 0) {
|
||||
size = alignment;
|
||||
}
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
int nnz = 0;
|
||||
size_t max_size = 0;
|
||||
@ -246,13 +255,11 @@ struct ggml_cann_pool_leg : public ggml_cann_pool {
|
||||
return ptr;
|
||||
}
|
||||
void* ptr;
|
||||
size_t look_ahead_size = (size_t)(1.05 * size);
|
||||
look_ahead_size = 256 * ((look_ahead_size + 255) / 256);
|
||||
ggml_cann_set_device(device);
|
||||
ACL_CHECK(
|
||||
aclrtMalloc(&ptr, look_ahead_size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
*actual_size = look_ahead_size;
|
||||
pool_size += look_ahead_size;
|
||||
aclrtMalloc(&ptr, size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
*actual_size = size;
|
||||
pool_size += size;
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO(
|
||||
"%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, "
|
||||
@ -296,7 +303,7 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
/**
|
||||
* @brief The maximum size of the virtual memory pool (32 GB).
|
||||
*/
|
||||
static const size_t CANN_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
|
||||
size_t max_size;
|
||||
|
||||
/**
|
||||
* @brief The device ID associated with this buffer pool.
|
||||
@ -341,7 +348,11 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
*/
|
||||
explicit ggml_cann_pool_vmm(int device)
|
||||
: device(device),
|
||||
granularity(ggml_cann_info().devices[device].vmm_granularity) {}
|
||||
granularity(ggml_cann_info().devices[device].vmm_granularity) {
|
||||
auto dev = ggml_cann_info().devices[device];
|
||||
granularity = dev.vmm_granularity;
|
||||
max_size = dev.total_vram;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Destructor to free all buffers in the virtual memory pool.
|
||||
@ -370,17 +381,19 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
// round up the allocation size to the alignment to ensure that all
|
||||
// allocations are aligned for all data types
|
||||
const size_t alignment = 128;
|
||||
size = alignment * ((size + alignment - 1) / alignment);
|
||||
size = GGML_PAD(size, alignment);
|
||||
if (size == 0) {
|
||||
size = alignment;
|
||||
}
|
||||
|
||||
size_t avail = pool_size - pool_used;
|
||||
|
||||
if (size > avail) {
|
||||
// round up to the next multiple of the granularity
|
||||
size_t reserve_size = size - avail;
|
||||
reserve_size =
|
||||
granularity * ((reserve_size + granularity - 1) / granularity);
|
||||
reserve_size = GGML_PAD(reserve_size, granularity);
|
||||
|
||||
GGML_ASSERT(pool_size + reserve_size <= CANN_POOL_VMM_MAX_SIZE);
|
||||
GGML_ASSERT(pool_size + reserve_size <= max_size);
|
||||
|
||||
// allocate more physical memory
|
||||
aclrtPhysicalMemProp prop = {};
|
||||
@ -396,7 +409,7 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
// reserve virtual address space (if not already reserved)
|
||||
if (pool_addr == 0) {
|
||||
ACL_CHECK(aclrtReserveMemAddress(
|
||||
&pool_addr, CANN_POOL_VMM_MAX_SIZE, 0, NULL, 1));
|
||||
&pool_addr, max_size, 0, NULL, 1));
|
||||
}
|
||||
|
||||
// map at the end of the pool
|
||||
@ -409,10 +422,11 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
// add to the pool
|
||||
pool_size += reserve_size;
|
||||
|
||||
// GGML_LOG_INFO("cann pool[%d]: size increased to %llu MB (
|
||||
// reserved %llu MB)\n",
|
||||
// device, (unsigned long long) (pool_size/1024/1024),
|
||||
// (unsigned long long) (reserve_size/1024/1024));
|
||||
#ifdef DEBUG_CANN_MALLOC
|
||||
GGML_LOG_INFO("cann pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
|
||||
device, (unsigned long long) (pool_size/1024/1024),
|
||||
(unsigned long long) (reserve_size/1024/1024));
|
||||
#endif
|
||||
}
|
||||
|
||||
GGML_ASSERT(pool_addr != 0);
|
||||
@ -457,7 +471,6 @@ struct ggml_cann_pool_vmm : public ggml_cann_pool {
|
||||
*/
|
||||
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(
|
||||
int device) {
|
||||
// return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_leg(device));
|
||||
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
|
||||
}
|
||||
|
||||
@ -1130,10 +1143,10 @@ ggml_backend_cann_buffer_type(int32_t device) {
|
||||
static bool ggml_backend_cann_buffer_type_initialized = false;
|
||||
|
||||
if (!ggml_backend_cann_buffer_type_initialized) {
|
||||
for (int32_t i = 0; i < GGML_CANN_MAX_DEVICES; i++) {
|
||||
for (int32_t i = 0; i < ggml_cann_info().device_count; i++) {
|
||||
ggml_backend_cann_buffer_types[i] = {
|
||||
/* .iface = */ ggml_backend_cann_buffer_type_interface,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cann_reg(), device),
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cann_reg(), i),
|
||||
/* .context = */
|
||||
new ggml_backend_cann_buffer_type_context{
|
||||
i, "CANN" + std::to_string(i)},
|
||||
@ -1199,10 +1212,15 @@ static void * ggml_cann_host_malloc(size_t size) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const size_t alignment = 128;
|
||||
size = GGML_PAD(size, alignment);
|
||||
if (size == 0) {
|
||||
size = alignment;
|
||||
}
|
||||
|
||||
void * hostPtr = nullptr;
|
||||
aclError err = aclrtMallocHost((void **) &hostPtr, size);
|
||||
if (err != ACL_SUCCESS) {
|
||||
|
||||
GGML_LOG_WARN("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
|
||||
size / 1024.0 / 1024.0, aclGetRecentErrMsg());
|
||||
return nullptr;
|
||||
@ -1669,12 +1687,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
}
|
||||
case GGML_OP_MUL_MAT: {
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_Q8_0:
|
||||
// Current groupsize should not be greater than k-1 in
|
||||
// aclnnWeightQuantBatchMatmulV2GetWorkspaceSize
|
||||
if (op->src[0]->ne[0] <= QK8_0) {
|
||||
return false;
|
||||
}
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_Q8_0:
|
||||
// TODO: fix me
|
||||
// Current groupsize should not be greater than k-1 in
|
||||
// aclnnWeightQuantBatchMatmulV2GetWorkspaceSize().
|
||||
case GGML_TYPE_Q4_0:
|
||||
return true;
|
||||
default:
|
||||
@ -1706,9 +1726,41 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
return false;
|
||||
}
|
||||
}
|
||||
case GGML_OP_CONT: {
|
||||
// TODO: support GGML_TYPE_BF16
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
case GGML_OP_ROPE: {
|
||||
// TODO: with ops-test v == 1
|
||||
float * ext_factor = (float*)((int32_t*)op->op_params + 7);
|
||||
// TODO: n_dims <= ne0
|
||||
if (op->src[0]->ne[0] != op->op_params[1]) {
|
||||
return false;
|
||||
}
|
||||
// TODO: ext_factor != 0
|
||||
if (*ext_factor != 0) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
case GGML_OP_UPSCALE: {
|
||||
// aclnnUpsampleNearest2dGetWorkspaceSize not support
|
||||
// selfDimN[2]/outDimN[2] or selfDimC[3]/outDimC[3] not equal
|
||||
if (op->src[0]->ne[2] * op->ne[3] != op->src[0]->ne[3] * op->ne[2]) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_CONCAT:
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
@ -1722,17 +1774,13 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
@ -2064,16 +2112,17 @@ ggml_backend_reg_t ggml_backend_cann_reg() {
|
||||
dev_ctx->name = GGML_CANN_NAME + std::to_string(i);
|
||||
ggml_cann_set_device(i);
|
||||
ggml_backend_dev_t dev = new ggml_backend_device {
|
||||
/* .interface = */ ggml_backend_cann_device_interface,
|
||||
/* .reg = */ ®,
|
||||
/* .context = */ dev_ctx
|
||||
/* .iface = */ ggml_backend_cann_device_interface,
|
||||
/* .reg = */ ®,
|
||||
/* .context = */ dev_ctx
|
||||
};
|
||||
ctx->devices.push_back(dev);
|
||||
}
|
||||
|
||||
reg = ggml_backend_reg {
|
||||
/* .interface = */ ggml_backend_cann_reg_interface,
|
||||
/* .context = */ ctx
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_cann_reg_interface,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
}
|
||||
|
||||
@ -2126,3 +2175,5 @@ void ggml_backend_cann_get_device_memory(int32_t device, size_t* free,
|
||||
ggml_cann_set_device(device);
|
||||
ACL_CHECK(aclrtGetMemInfo(ACL_HBM_MEM, free, total));
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_cann_reg)
|
||||
|
@ -1,7 +1,3 @@
|
||||
if (NOT SOC_TYPE)
|
||||
set (SOC_TYPE "Ascend910B3")
|
||||
endif()
|
||||
|
||||
file(GLOB SRC_FILES
|
||||
get_row_f32.cpp
|
||||
get_row_f16.cpp
|
||||
@ -13,7 +9,6 @@ file(GLOB SRC_FILES
|
||||
dup.cpp
|
||||
)
|
||||
|
||||
string(TOLOWER ${SOC_TYPE} SOC_VERSION)
|
||||
set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
|
||||
set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
|
||||
|
||||
@ -30,4 +25,6 @@ ascendc_library(ascendc_kernels STATIC
|
||||
${SRC_FILES}
|
||||
)
|
||||
|
||||
message(STATUS "CANN: compile ascend kernels witch SOC_TYPE:${SOC_TYPE}, SOC_VERSION:${SOC_VERSION}, compile macro:-D${SOC_TYPE_COMPILE_OPTION}.")
|
||||
ascendc_compile_definitions(ascendc_kernels PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
|
||||
# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
|
||||
|
@ -5,6 +5,7 @@
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
const int64_t SUPPORTED_MAX_DIM = 65535; // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>
|
||||
|
||||
template <typename SRC_T, typename DST_T>
|
||||
class DupByRows {
|
||||
@ -51,24 +52,36 @@ class DupByRows {
|
||||
|
||||
__aicore__ inline void copy_in() {
|
||||
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
|
||||
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = num_elem * sizeof(SRC_T);
|
||||
DataCopyPadExtParams<SRC_T> padParams;
|
||||
DataCopyPad(src_local, src_gm, dataCopyParams, padParams);
|
||||
|
||||
const size_t elem_per_block = 32 / sizeof(SRC_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
|
||||
DataCopy(src_local, src_gm, cpy_elements_len);
|
||||
src_queue.EnQue(src_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out() {
|
||||
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
|
||||
|
||||
#ifdef ASCEND_310P
|
||||
const size_t elem_per_block = 32 / sizeof(DST_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t len = num_elem & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(dst_gm, dst_local, len);
|
||||
}
|
||||
if(tail != 0) {
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
dst_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(dst_gm[len], dst_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
}
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
|
||||
DataCopyPad(dst_gm, dst_local, dataCopyParams);
|
||||
|
||||
#endif
|
||||
dst_queue.FreeTensor(dst_local);
|
||||
}
|
||||
|
||||
|
@ -14,7 +14,7 @@ class GET_ROW_F16 {
|
||||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
// TODO, use template for F16/f32
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
@ -59,32 +59,42 @@ class GET_ROW_F16 {
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
size_t origin_len = len;
|
||||
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
||||
size_t tail = len % 32;
|
||||
len = len & ~31;
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
const size_t elem_per_block = 32 / sizeof(half);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(half);
|
||||
DataCopyPadExtParams<half> padParams;
|
||||
DataCopyPad(input_local[len], input_gm[offset + len],
|
||||
dataCopyParams, padParams);
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
size_t tail = len % 32;
|
||||
len = len & ~31;
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
@ -150,6 +160,7 @@ class GET_ROW_F16 {
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
|
@ -13,7 +13,7 @@ class GET_ROW_F32 {
|
||||
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
||||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
@ -55,31 +55,40 @@ class GET_ROW_F32 {
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
||||
size_t tail = len % 32;
|
||||
len = len & ~31;
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPadExtParams<float> padParams;
|
||||
DataCopyPad(input_local[len], input_gm[offset + len],
|
||||
dataCopyParams, padParams);
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
size_t tail = len % 32;
|
||||
len = len & ~31;
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
@ -144,6 +153,7 @@ class GET_ROW_F32 {
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
|
@ -2,6 +2,15 @@
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support 4bit get row
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support 4bit get row.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
@ -191,3 +200,5 @@ extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
||||
indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
||||
|
@ -1,6 +1,14 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f16->8bit quantization.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
#define QK8_0 32
|
||||
@ -206,3 +214,5 @@ extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
||||
|
@ -1,6 +1,14 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support f32->8bit quantization
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f32->8bit quantization.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
#define QK8_0 32
|
||||
@ -204,3 +212,5 @@ extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
||||
|
@ -1,6 +1,21 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support float->4bit quantization
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f32->4bit quantization.\n");
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f16->4bit quantization.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
#define Group_Size 32
|
||||
@ -276,3 +291,5 @@ extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
||||
|
@ -418,6 +418,12 @@ typedef struct {
|
||||
} block_iq4_xs;
|
||||
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
|
||||
|
||||
typedef struct {
|
||||
ggml_half d[4]; // deltas for 4 iq4_nl blocks
|
||||
uint8_t qs[QK4_NL * 2];// nibbles / quants for 4 iq4_nl blocks
|
||||
} block_iq4_nlx4;
|
||||
static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wrong iq4_nlx4 block size/padding");
|
||||
|
||||
#endif // GGML_COMMON_DECL
|
||||
#endif // GGML_COMMON_DECL
|
||||
|
||||
|
@ -1,261 +1,354 @@
|
||||
add_library(ggml-cpu
|
||||
ggml-cpu.c
|
||||
ggml-cpu.cpp
|
||||
ggml-cpu-aarch64.c
|
||||
ggml-cpu-aarch64.h
|
||||
ggml-cpu-quants.c
|
||||
ggml-cpu-quants.h
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-cpu PRIVATE ggml-base)
|
||||
target_include_directories(ggml-cpu PRIVATE . ..)
|
||||
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
add_compile_definitions(GGML_USE_ACCELERATE)
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
|
||||
|
||||
target_link_libraries(ggml-cpu PRIVATE ${ACCELERATE_FRAMEWORK})
|
||||
function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (tag_name)
|
||||
set(GGML_CPU_NAME ggml-cpu-${tag_name})
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
set(GGML_CPU_NAME ggml-cpu)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP)
|
||||
if (OpenMP_FOUND)
|
||||
message(STATUS "OpenMP found")
|
||||
ggml_add_backend_library(${GGML_CPU_NAME})
|
||||
|
||||
add_compile_definitions(GGML_USE_OPENMP)
|
||||
list (APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/ggml-cpu.c
|
||||
ggml-cpu/ggml-cpu.cpp
|
||||
ggml-cpu/ggml-cpu-aarch64.c
|
||||
ggml-cpu/ggml-cpu-aarch64.h
|
||||
ggml-cpu/ggml-cpu-quants.c
|
||||
ggml-cpu/ggml-cpu-quants.h
|
||||
ggml-cpu/amx/amx.cpp
|
||||
ggml-cpu/amx/amx.h
|
||||
ggml-cpu/amx/mmq.cpp
|
||||
ggml-cpu/amx/mmq.h
|
||||
ggml-cpu/ggml-cpu-impl.h
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-cpu PRIVATE OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
target_compile_features(${GGML_CPU_NAME} PRIVATE c_std_11 cxx_std_17)
|
||||
target_include_directories(${GGML_CPU_NAME} PRIVATE . ggml-cpu)
|
||||
|
||||
# FIXME: should be replaced with a compiler id check
|
||||
#if (GGML_MUSA)
|
||||
# list(APPEND GGML_CPU_EXTRA_INCLUDES "/usr/lib/llvm-14/lib/clang/14.0.0/include")
|
||||
# list(APPEND GGML_CPU_EXTRA_LIBS_PRIVATE "/usr/lib/llvm-14/lib/libomp.so")
|
||||
#endif()
|
||||
else()
|
||||
message(WARNING "OpenMP not found")
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_ACCELERATE)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ACCELERATE_NEW_LAPACK)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ACCELERATE_LAPACK_ILP64)
|
||||
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${ACCELERATE_FRAMEWORK})
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_LLAMAFILE)
|
||||
message(STATUS "Using llamafile")
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP)
|
||||
if (OpenMP_FOUND)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_OPENMP)
|
||||
|
||||
add_compile_definitions(GGML_USE_LLAMAFILE)
|
||||
|
||||
target_sources(ggml-cpu PRIVATE
|
||||
llamafile/sgemm.cpp
|
||||
llamafile/sgemm.h)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
|
||||
message(STATUS "Using memkind for CPU HBM")
|
||||
|
||||
add_compile_definitions(GGML_USE_CPU_HBM)
|
||||
|
||||
target_link_libraries(ggml-cpu PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND
|
||||
NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
|
||||
message(STATUS "ARM detected")
|
||||
|
||||
if (MSVC)
|
||||
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
|
||||
add_compile_definitions(__ARM_NEON)
|
||||
add_compile_definitions(__ARM_FEATURE_FMA)
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS_PREV ${CMAKE_REQUIRED_FLAGS})
|
||||
string(JOIN " " CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "/arch:armv8.2")
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
if (GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
||||
endif ()
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
|
||||
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
add_compile_definitions(__ARM_FEATURE_MATMUL_INT8)
|
||||
endif ()
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
endif ()
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_PREV})
|
||||
else()
|
||||
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
|
||||
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
|
||||
list(APPEND ARCH_FLAGS -mfp16-format=ieee)
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
else()
|
||||
message(WARNING "OpenMP not found")
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
|
||||
# Raspberry Pi 1, Zero
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
|
||||
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
|
||||
# Android armeabi-v7a
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
else()
|
||||
# Raspberry Pi 2
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
endif()
|
||||
|
||||
if (GGML_LLAMAFILE)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_LLAMAFILE)
|
||||
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/llamafile/sgemm.cpp
|
||||
ggml-cpu/llamafile/sgemm.h)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
|
||||
message(STATUS "Using memkind for CPU HBM")
|
||||
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_HBM)
|
||||
|
||||
target_link_libraries(${GGML_CPU_NAME} PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND
|
||||
NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
|
||||
message(STATUS "ARM detected")
|
||||
|
||||
if (MSVC)
|
||||
list(APPEND ARCH_DEFINITIONS __aarch64__) # MSVC defines _M_ARM64 instead
|
||||
list(APPEND ARCH_DEFINITIONS __ARM_NEON)
|
||||
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_FMA)
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS_PREV ${CMAKE_REQUIRED_FLAGS})
|
||||
string(JOIN " " CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "/arch:armv8.2")
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
if (GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_DOTPROD)
|
||||
|
||||
message(STATUS "ARM feature DOTPROD enabled")
|
||||
endif ()
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
|
||||
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_MATMUL_INT8)
|
||||
|
||||
message(STATUS "ARM feature MATMUL_INT8 enabled")
|
||||
endif ()
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
|
||||
message(STATUS "ARM feature FP16_VECTOR_ARITHMETIC enabled")
|
||||
endif ()
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_PREV})
|
||||
elseif (APPLE)
|
||||
if (GGML_NATIVE)
|
||||
set(USER_PROVIDED_MARCH FALSE)
|
||||
foreach(flag_var IN ITEMS CMAKE_C_FLAGS CMAKE_CXX_FLAGS CMAKE_REQUIRED_FLAGS)
|
||||
if ("${${flag_var}}" MATCHES "-march=[a-zA-Z0-9+._-]+")
|
||||
set(USER_PROVIDED_MARCH TRUE)
|
||||
break()
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
if (NOT USER_PROVIDED_MARCH)
|
||||
set(MARCH_FLAGS "-march=armv8.2a")
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
if (GGML_COMPILER_SUPPORT_DOTPROD)
|
||||
set(MARCH_FLAGS "${MARCH_FLAGS}+dotprod")
|
||||
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_DOTPROD)
|
||||
|
||||
message(STATUS "ARM feature DOTPROD enabled")
|
||||
endif ()
|
||||
|
||||
set(TEST_I8MM_FLAGS "-march=armv8.2a+i8mm")
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
|
||||
set(CMAKE_REQUIRED_FLAGS "${CMAKE_REQUIRED_FLAGS} ${TEST_I8MM_FLAGS}")
|
||||
|
||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmmlaq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||
set(MARCH_FLAGS "${MARCH_FLAGS}+i8mm")
|
||||
list(APPEND ARCH_DEFINITIONS __ARM_FEATURE_MATMUL_INT8)
|
||||
|
||||
message(STATUS "ARM feature MATMUL_INT8 enabled")
|
||||
endif ()
|
||||
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
|
||||
|
||||
list(APPEND ARCH_FLAGS "${MARCH_FLAGS}")
|
||||
endif ()
|
||||
endif ()
|
||||
else()
|
||||
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
|
||||
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
|
||||
list(APPEND ARCH_FLAGS -mfp16-format=ieee)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
|
||||
# Raspberry Pi 1, Zero
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
|
||||
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
|
||||
# Android armeabi-v7a
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
else()
|
||||
# Raspberry Pi 2
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
endif()
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
|
||||
# Android arm64-v8a
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
list(APPEND ARCH_FLAGS -mno-unaligned-access)
|
||||
endif()
|
||||
if (GGML_SVE)
|
||||
list(APPEND ARCH_FLAGS -march=armv8.6-a+sve)
|
||||
endif()
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
|
||||
# Android arm64-v8a
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
list(APPEND ARCH_FLAGS -mno-unaligned-access)
|
||||
endif()
|
||||
if (GGML_SVE)
|
||||
list(APPEND ARCH_FLAGS -march=armv8.6-a+sve)
|
||||
endif()
|
||||
endif()
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
# TODO: improve, should not reference files from the parent folder
|
||||
include(cmake/FindSIMD.cmake)
|
||||
endif ()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX512)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (GGML_AVX512_VBMI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
include(ggml-cpu/cmake/FindSIMD.cmake)
|
||||
endif ()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX512)
|
||||
# /arch:AVX512 includes: __AVX512F__, __AVX512CD__, __AVX512BW__, __AVX512DQ__, and __AVX512VL__
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512)
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_DEFINITIONS __AVX512VBMI__)
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_DEFINITIONS __AVX512VNNI__ GGML_AVX512_VNNI)
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_DEFINITIONS __AVX512BF16__ GGML_AVX512_BF16)
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_DEFINITIONS __AMX_TILE__ GGML_AMX_TILE)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_DEFINITIONS __AMX_INT8__ GGML_AMX_INT8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_DEFINITIONS __AMX_BF16__ GGML_AMX_BF16)
|
||||
endif()
|
||||
elseif (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX2 GGML_FMA GGML_F16C)
|
||||
elseif (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX)
|
||||
else ()
|
||||
list(APPEND ARCH_FLAGS /arch:SSE4.2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_SSE42)
|
||||
endif()
|
||||
if (GGML_AVX_VNNI)
|
||||
# MSVC generates AVX512 with AVX-VNNI intrinsics even with /arch:AVX2
|
||||
#list(APPEND ARCH_DEFINITIONS __AVXVNNI__ GGML_AVX_VNNI)
|
||||
endif()
|
||||
else ()
|
||||
if (GGML_NATIVE)
|
||||
list(APPEND ARCH_FLAGS -march=native)
|
||||
else ()
|
||||
list(APPEND ARCH_FLAGS -msse4.2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_SSE42)
|
||||
if (GGML_F16C)
|
||||
list(APPEND ARCH_FLAGS -mf16c)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_F16C)
|
||||
endif()
|
||||
if (GGML_FMA)
|
||||
list(APPEND ARCH_FLAGS -mfma)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_FMA)
|
||||
endif()
|
||||
if (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS -mavx)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX)
|
||||
endif()
|
||||
if (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS -mavx2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX2)
|
||||
endif()
|
||||
if (GGML_AVX_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavxvnni)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX_VNNI)
|
||||
endif()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS -mavx512f)
|
||||
list(APPEND ARCH_FLAGS -mavx512cd)
|
||||
list(APPEND ARCH_FLAGS -mavx512vl)
|
||||
list(APPEND ARCH_FLAGS -mavx512dq)
|
||||
list(APPEND ARCH_FLAGS -mavx512bw)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512)
|
||||
endif()
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512_VBMI)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512_VNNI)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512_BF16)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_FLAGS -mamx-tile)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AMX_TILE)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_FLAGS -mamx-int8)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AMX_INT8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_FLAGS -mamx-bf16)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AMX_BF16)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_TILE__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_TILE__>)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_INT8__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_INT8__>)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_BF16__>)
|
||||
endif()
|
||||
elseif (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX2)
|
||||
elseif (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
message(STATUS "PowerPC detected")
|
||||
execute_process(COMMAND bash -c "grep POWER10 /proc/cpuinfo | head -n 1" OUTPUT_VARIABLE POWER10_M)
|
||||
string(FIND "${POWER10_M}" "POWER10" substring_index)
|
||||
if (NOT DEFINED substring_index OR "${substring_index}" STREQUAL "")
|
||||
set(substring_index -1)
|
||||
endif()
|
||||
|
||||
if (${substring_index} GREATER_EQUAL 0)
|
||||
list(APPEND ARCH_FLAGS -mcpu=power10)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
|
||||
list(APPEND ARCH_FLAGS -mcpu=powerpc64le)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
|
||||
# TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
|
||||
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||
if (GGML_LASX)
|
||||
list(APPEND ARCH_FLAGS -mlasx)
|
||||
endif()
|
||||
if (GGML_LSX)
|
||||
list(APPEND ARCH_FLAGS -mlsx)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
|
||||
message(STATUS "RISC-V detected")
|
||||
if (GGML_RVV)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
|
||||
endif()
|
||||
else()
|
||||
if (GGML_NATIVE)
|
||||
list(APPEND ARCH_FLAGS -march=native)
|
||||
endif()
|
||||
if (GGML_F16C)
|
||||
list(APPEND ARCH_FLAGS -mf16c)
|
||||
endif()
|
||||
if (GGML_FMA)
|
||||
list(APPEND ARCH_FLAGS -mfma)
|
||||
endif()
|
||||
if (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS -mavx)
|
||||
endif()
|
||||
if (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS -mavx2)
|
||||
endif()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS -mavx512f)
|
||||
list(APPEND ARCH_FLAGS -mavx512dq)
|
||||
list(APPEND ARCH_FLAGS -mavx512bw)
|
||||
endif()
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_FLAGS -mamx-tile)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_FLAGS -mamx-int8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_FLAGS -mamx-bf16)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
message(STATUS "PowerPC detected")
|
||||
execute_process(COMMAND bash -c "grep POWER10 /proc/cpuinfo | head -n 1" OUTPUT_VARIABLE POWER10_M)
|
||||
string(FIND "${POWER10_M}" "POWER10" substring_index)
|
||||
if (NOT DEFINED substring_index OR "${substring_index}" STREQUAL "")
|
||||
set(substring_index -1)
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
if (${substring_index} GREATER_EQUAL 0)
|
||||
list(APPEND ARCH_FLAGS -mcpu=power10)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
|
||||
list(APPEND ARCH_FLAGS -mcpu=powerpc64le)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
|
||||
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
|
||||
if (GGML_CPU_AARCH64)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_AARCH64)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
|
||||
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||
if (GGML_LASX)
|
||||
list(APPEND ARCH_FLAGS -mlasx)
|
||||
message(STATUS "Adding CPU backend variant ${GGML_CPU_NAME}: ${ARCH_FLAGS} ${ARCH_DEFINITIONS}")
|
||||
target_sources(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_SOURCES})
|
||||
target_compile_options(${GGML_CPU_NAME} PRIVATE ${ARCH_FLAGS})
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
|
||||
if (GGML_BACKEND_DL)
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
endif()
|
||||
if (GGML_LSX)
|
||||
list(APPEND ARCH_FLAGS -mlsx)
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set_target_properties(${GGML_CPU_NAME} PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_AARCH64)
|
||||
message(STATUS "Using runtime weight conversion of Q4_0 to Q4_0_x_x to enable optimized GEMM/GEMV kernels")
|
||||
add_compile_definitions(GGML_USE_CPU_AARCH64)
|
||||
endif()
|
||||
|
||||
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
|
||||
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set_target_properties(ggml-cpu PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
||||
endfunction()
|
||||
|
196
ggml/src/ggml-cpu/amx/amx.cpp
Normal file
196
ggml/src/ggml-cpu/amx/amx.cpp
Normal file
@ -0,0 +1,196 @@
|
||||
#include "amx.h"
|
||||
#include "common.h"
|
||||
#include "mmq.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#include <sys/syscall.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
|
||||
// AMX buffer interface
|
||||
static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
free(buffer->context);
|
||||
}
|
||||
|
||||
static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *)(buffer->context);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
if (qtype_has_amx_kernels(tensor->type)) {
|
||||
ggml_backend_amx_convert_weight(tensor, data, offset, size);
|
||||
} else {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(!qtype_has_amx_kernels(tensor->type));
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
if (qtype_has_amx_kernels(src->type)) {
|
||||
ggml_backend_amx_convert_weight(dst, src->data, 0, ggml_nbytes(dst));
|
||||
} else {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
memset(buffer->context, value, buffer->size);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_amx_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_amx_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .memset_tensor = */ ggml_backend_amx_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_amx_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_amx_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_amx_buffer_cpy_tensor,
|
||||
/* .clear = */ ggml_backend_amx_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_amx_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * data = aligned_alloc(TENSOR_ALIGNMENT, size);
|
||||
if (data == NULL) {
|
||||
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(buft, ggml_backend_amx_buffer_interface, data, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
|
||||
return ggml_backend_amx_get_alloc_size(tensor);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
#define ARCH_GET_XCOMP_PERM 0x1022
|
||||
#define ARCH_REQ_XCOMP_PERM 0x1023
|
||||
#define XFEATURE_XTILECFG 17
|
||||
#define XFEATURE_XTILEDATA 18
|
||||
|
||||
static bool ggml_amx_init() {
|
||||
#if defined(__gnu_linux__)
|
||||
if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) {
|
||||
fprintf(stderr, "AMX is not ready to be used!\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#elif defined(_WIN32)
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_amx_buffer_type_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
if (!ggml_amx_init()) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return &ggml_backend_buffer_type_amx;
|
||||
}
|
||||
|
||||
bool ggml_backend_amx_buft_is_amx(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_amx_buffer_type_get_name;
|
||||
}
|
||||
|
||||
bool ggml_backend_amx_device_supports_op(const struct ggml_tensor * op) {
|
||||
// handle only 2d gemm for now
|
||||
auto is_contiguous_2d = [](const struct ggml_tensor * t) {
|
||||
return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1;
|
||||
};
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
return true;
|
||||
|
||||
case GGML_OP_MUL_MAT: {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
const int64_t ne0 = op->ne[0];
|
||||
|
||||
// amx kernels enables for Q4_0, Q4_1, Q8_0, F16
|
||||
// Q4_K, Q5_K, Q6_K, IQ4_XS enabled for QK_K = 256
|
||||
bool has_amx_kernels = qtype_has_amx_kernels(type) || (type == GGML_TYPE_F16);
|
||||
|
||||
bool can_use_amx =
|
||||
is_contiguous_2d(src0) && // src0 must be contiguous
|
||||
is_contiguous_2d(src1) && // src1 must be contiguous
|
||||
src1->type == GGML_TYPE_F32 && // src1 must be float32
|
||||
has_amx_kernels && // with amx kernel impls
|
||||
ne0 % (TILE_N * 2) == 0; // out_features is 32x
|
||||
|
||||
return can_use_amx;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
20
ggml/src/ggml-cpu/amx/amx.h
Normal file
20
ggml/src/ggml-cpu/amx/amx.h
Normal file
@ -0,0 +1,20 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
|
||||
bool ggml_backend_amx_buft_is_amx(ggml_backend_buffer_type_t buft);
|
||||
bool ggml_backend_amx_device_supports_op(const struct ggml_tensor * op);
|
||||
void ggml_backend_amx_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
size_t ggml_backend_amx_desired_wsize(const struct ggml_tensor * dst);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
100
ggml/src/ggml-cpu/amx/common.h
Normal file
100
ggml/src/ggml-cpu/amx/common.h
Normal file
@ -0,0 +1,100 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
|
||||
#if defined(_OPENMP)
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#define TILE_M 16
|
||||
#define TILE_N 16
|
||||
#define TILE_K 32
|
||||
#define VNNI_BLK 4
|
||||
|
||||
#define AMX_BLK_SIZE 32
|
||||
|
||||
#define TMM0 0
|
||||
#define TMM1 1
|
||||
#define TMM2 2
|
||||
#define TMM3 3
|
||||
#define TMM4 4
|
||||
#define TMM5 5
|
||||
#define TMM6 6
|
||||
#define TMM7 7
|
||||
|
||||
// parallel routines
|
||||
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
||||
inline T div_up(T x, T y) { return (x + y - 1) / y; }
|
||||
|
||||
template <typename T>
|
||||
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
|
||||
#if 0
|
||||
// onednn partition pattern
|
||||
T& n_my = n_end;
|
||||
if (nth <= 1 || n == 0) {
|
||||
n_start = 0;
|
||||
n_my = n;
|
||||
} else {
|
||||
T n1 = div_up(n, nth);
|
||||
T n2 = n1 - 1;
|
||||
T T1 = n - n2 * nth;
|
||||
n_my = ith < T1 ? n1 : n2;
|
||||
n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
|
||||
}
|
||||
n_end += n_start;
|
||||
#else
|
||||
// pytorch aten partition pattern
|
||||
T n_my = div_up(n, nth);
|
||||
n_start = ith * n_my;
|
||||
n_end = std::min(n_start + n_my, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename func_t>
|
||||
inline void parallel_for(int nth, int n, const func_t& f) {
|
||||
#if defined(_OPENMP)
|
||||
#pragma omp parallel num_threads(nth)
|
||||
{
|
||||
//int nth = omp_get_num_threads();
|
||||
int ith = omp_get_thread_num();
|
||||
int tbegin, tend;
|
||||
balance211(n, nth, ith, tbegin, tend);
|
||||
f(tbegin, tend);
|
||||
}
|
||||
#else
|
||||
f(0, n);
|
||||
|
||||
GGML_UNUSED(nth);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename func_t>
|
||||
inline void parallel_for_ggml(const ggml_compute_params * params, int n, const func_t & f) {
|
||||
int tbegin, tend;
|
||||
balance211(n, params->nth, params->ith, tbegin, tend);
|
||||
f(tbegin, tend);
|
||||
}
|
||||
|
||||
// quantized types that have AMX support
|
||||
inline bool qtype_has_amx_kernels(const enum ggml_type type) {
|
||||
// TODO: fix padding for vnni format
|
||||
return (type == GGML_TYPE_Q4_0) ||
|
||||
(type == GGML_TYPE_Q4_1) ||
|
||||
(type == GGML_TYPE_Q8_0) ||
|
||||
(type == GGML_TYPE_Q4_K) ||
|
||||
(type == GGML_TYPE_Q5_K) ||
|
||||
(type == GGML_TYPE_Q6_K) ||
|
||||
(type == GGML_TYPE_IQ4_XS);
|
||||
}
|
||||
|
||||
// ggml backend context
|
||||
struct ggml_backend_amx_context {
|
||||
int n_threads = GGML_DEFAULT_N_THREADS;
|
||||
std::unique_ptr<char[]> work_data;
|
||||
size_t work_size = 0;
|
||||
};
|
2522
ggml/src/ggml-cpu/amx/mmq.cpp
Normal file
2522
ggml/src/ggml-cpu/amx/mmq.cpp
Normal file
File diff suppressed because it is too large
Load Diff
16
ggml/src/ggml-cpu/amx/mmq.h
Normal file
16
ggml/src/ggml-cpu/amx/mmq.h
Normal file
@ -0,0 +1,16 @@
|
||||
#pragma once
|
||||
#include "common.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor);
|
||||
|
||||
void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
|
||||
void ggml_backend_amx_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
323
ggml/src/ggml-cpu/cpu-feats-x86.cpp
Normal file
323
ggml/src/ggml-cpu/cpu-feats-x86.cpp
Normal file
@ -0,0 +1,323 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
#include <bitset>
|
||||
#include <array>
|
||||
#include <string>
|
||||
|
||||
// ref: https://cdrdv2-public.intel.com/782156/325383-sdm-vol-2abcd.pdf
|
||||
struct cpuid_x86 {
|
||||
bool SSE3(void) { return f_1_ecx[0]; }
|
||||
bool PCLMULQDQ(void) { return f_1_ecx[1]; }
|
||||
bool MONITOR(void) { return f_1_ecx[3]; }
|
||||
bool SSSE3(void) { return f_1_ecx[9]; }
|
||||
bool FMA(void) { return f_1_ecx[12]; }
|
||||
bool CMPXCHG16B(void) { return f_1_ecx[13]; }
|
||||
bool SSE41(void) { return f_1_ecx[19]; }
|
||||
bool SSE42(void) { return f_1_ecx[20]; }
|
||||
bool MOVBE(void) { return f_1_ecx[22]; }
|
||||
bool POPCNT(void) { return f_1_ecx[23]; }
|
||||
bool AES(void) { return f_1_ecx[25]; }
|
||||
bool XSAVE(void) { return f_1_ecx[26]; }
|
||||
bool OSXSAVE(void) { return f_1_ecx[27]; }
|
||||
bool AVX(void) { return f_1_ecx[28]; }
|
||||
bool F16C(void) { return f_1_ecx[29]; }
|
||||
bool RDRAND(void) { return f_1_ecx[30]; }
|
||||
|
||||
bool MSR(void) { return f_1_edx[5]; }
|
||||
bool CX8(void) { return f_1_edx[8]; }
|
||||
bool SEP(void) { return f_1_edx[11]; }
|
||||
bool CMOV(void) { return f_1_edx[15]; }
|
||||
bool CLFSH(void) { return f_1_edx[19]; }
|
||||
bool MMX(void) { return f_1_edx[23]; }
|
||||
bool FXSR(void) { return f_1_edx[24]; }
|
||||
bool SSE(void) { return f_1_edx[25]; }
|
||||
bool SSE2(void) { return f_1_edx[26]; }
|
||||
|
||||
bool FSGSBASE(void) { return f_7_ebx[0]; }
|
||||
bool BMI1(void) { return f_7_ebx[3]; }
|
||||
bool HLE(void) { return is_intel && f_7_ebx[4]; }
|
||||
bool AVX2(void) { return f_7_ebx[5]; }
|
||||
bool BMI2(void) { return f_7_ebx[8]; }
|
||||
bool ERMS(void) { return f_7_ebx[9]; }
|
||||
bool INVPCID(void) { return f_7_ebx[10]; }
|
||||
bool RTM(void) { return is_intel && f_7_ebx[11]; }
|
||||
bool AVX512F(void) { return f_7_ebx[16]; }
|
||||
bool AVX512DQ(void) { return f_7_ebx[17]; }
|
||||
bool RDSEED(void) { return f_7_ebx[18]; }
|
||||
bool ADX(void) { return f_7_ebx[19]; }
|
||||
bool AVX512PF(void) { return f_7_ebx[26]; }
|
||||
bool AVX512ER(void) { return f_7_ebx[27]; }
|
||||
bool AVX512CD(void) { return f_7_ebx[28]; }
|
||||
bool AVX512BW(void) { return f_7_ebx[30]; }
|
||||
bool AVX512VL(void) { return f_7_ebx[31]; }
|
||||
|
||||
bool SHA(void) { return f_7_ebx[29]; }
|
||||
|
||||
bool PREFETCHWT1(void) { return f_7_ecx[0]; }
|
||||
|
||||
bool LAHF(void) { return f_81_ecx[0]; }
|
||||
bool LZCNT(void) { return is_intel && f_81_ecx[5]; }
|
||||
bool ABM(void) { return is_amd && f_81_ecx[5]; }
|
||||
bool SSE4a(void) { return is_amd && f_81_ecx[6]; }
|
||||
bool XOP(void) { return is_amd && f_81_ecx[11]; }
|
||||
bool TBM(void) { return is_amd && f_81_ecx[21]; }
|
||||
|
||||
bool SYSCALL(void) { return is_intel && f_81_edx[11]; }
|
||||
bool MMXEXT(void) { return is_amd && f_81_edx[22]; }
|
||||
bool RDTSCP(void) { return is_intel && f_81_edx[27]; }
|
||||
bool _3DNOWEXT(void) { return is_amd && f_81_edx[30]; }
|
||||
bool _3DNOW(void) { return is_amd && f_81_edx[31]; }
|
||||
|
||||
bool AVX512_VBMI(void) { return f_7_ecx[1]; }
|
||||
bool AVX512_VNNI(void) { return f_7_ecx[11]; }
|
||||
bool AVX512_FP16(void) { return f_7_edx[23]; }
|
||||
bool AVX512_BF16(void) { return f_7_1_eax[5]; }
|
||||
bool AVX_VNNI(void) { return f_7_1_eax[4]; }
|
||||
|
||||
bool AMX_TILE(void) { return f_7_edx[24]; }
|
||||
bool AMX_INT8(void) { return f_7_edx[25]; }
|
||||
bool AMX_FP16(void) { return f_7_1_eax[21]; }
|
||||
bool AMX_BF16(void) { return f_7_edx[22]; }
|
||||
|
||||
#ifdef _MSC_VER
|
||||
static void cpuid(int cpu_info[4], int eax) {
|
||||
__cpuid(cpu_info, eax);
|
||||
}
|
||||
static void cpuidex(int cpu_info[4], int eax, int ecx) {
|
||||
__cpuidex(cpu_info, eax, ecx);
|
||||
}
|
||||
#else
|
||||
static void cpuid(int cpu_info[4], int eax) {
|
||||
__asm__ __volatile__(
|
||||
"cpuid"
|
||||
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
|
||||
: "a"(eax), "c"(0));
|
||||
}
|
||||
static void cpuidex(int cpu_info[4], int eax, int ecx) {
|
||||
__asm__ __volatile__(
|
||||
"cpuid"
|
||||
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
|
||||
: "a"(eax), "c"(ecx));
|
||||
}
|
||||
#endif
|
||||
|
||||
cpuid_x86() {
|
||||
std::array<int, 4> cpui;
|
||||
std::vector<std::array<int, 4>> data;
|
||||
|
||||
// calling __cpuid with 0x0 as the function_id argument
|
||||
// gets the number of the highest valid function ID.
|
||||
cpuid(cpui.data(), 0);
|
||||
int n_ids = cpui[0];
|
||||
|
||||
for (int i = 0; i <= n_ids; ++i) {
|
||||
cpuidex(cpui.data(), i, 0);
|
||||
data.push_back(cpui);
|
||||
}
|
||||
|
||||
// capture vendor string
|
||||
char vendor[0x20] = {};
|
||||
*reinterpret_cast<int *>(vendor) = data[0][1];
|
||||
*reinterpret_cast<int *>(vendor + 4) = data[0][3];
|
||||
*reinterpret_cast<int *>(vendor + 8) = data[0][2];
|
||||
this->vendor = vendor;
|
||||
if (this->vendor == "GenuineIntel") {
|
||||
is_intel = true;
|
||||
} else if (this->vendor == "AuthenticAMD") {
|
||||
is_amd = true;
|
||||
}
|
||||
|
||||
// load bitset with flags for function 0x00000001
|
||||
if (n_ids >= 1) {
|
||||
f_1_ecx = data[1][2];
|
||||
f_1_edx = data[1][3];
|
||||
}
|
||||
|
||||
// load bitset with flags for function 0x00000007
|
||||
if (n_ids >= 7) {
|
||||
f_7_ebx = data[7][1];
|
||||
f_7_ecx = data[7][2];
|
||||
f_7_edx = data[7][3];
|
||||
cpuidex(cpui.data(), 7, 1);
|
||||
f_7_1_eax = cpui[0];
|
||||
}
|
||||
|
||||
// calling __cpuid with 0x80000000 as the function_id argument
|
||||
// gets the number of the highest valid extended ID.
|
||||
cpuid(cpui.data(), 0x80000000);
|
||||
unsigned int n_ex_ids = cpui[0];
|
||||
|
||||
std::vector<std::array<int, 4>> ext_data;
|
||||
for (unsigned int i = 0x80000000; i <= n_ex_ids; ++i) {
|
||||
cpuidex(cpui.data(), i, 0);
|
||||
ext_data.push_back(cpui);
|
||||
}
|
||||
|
||||
// load bitset with flags for function 0x80000001
|
||||
if (n_ex_ids >= 0x80000001) {
|
||||
f_81_ecx = ext_data[1][2];
|
||||
f_81_edx = ext_data[1][3];
|
||||
}
|
||||
|
||||
// interpret CPU brand string if reported
|
||||
char brand[0x40] = {};
|
||||
if (n_ex_ids >= 0x80000004) {
|
||||
std::memcpy(brand, ext_data[2].data(), sizeof(cpui));
|
||||
std::memcpy(brand + 16, ext_data[3].data(), sizeof(cpui));
|
||||
std::memcpy(brand + 32, ext_data[4].data(), sizeof(cpui));
|
||||
this->brand = brand;
|
||||
}
|
||||
}
|
||||
|
||||
bool is_intel = false;
|
||||
bool is_amd = false;
|
||||
std::string vendor;
|
||||
std::string brand;
|
||||
std::bitset<32> f_1_ecx;
|
||||
std::bitset<32> f_1_edx;
|
||||
std::bitset<32> f_7_ebx;
|
||||
std::bitset<32> f_7_ecx;
|
||||
std::bitset<32> f_7_edx;
|
||||
std::bitset<32> f_7_1_eax;
|
||||
std::bitset<32> f_81_ecx;
|
||||
std::bitset<32> f_81_edx;
|
||||
};
|
||||
|
||||
#if 0
|
||||
void test_x86_is() {
|
||||
cpuid_x86 is;
|
||||
printf("CPU Vendor: %s\n", is.vendor.c_str());
|
||||
printf("Brand: %s\n", is.brand.c_str());
|
||||
printf("is_intel: %d\n", is.is_intel);
|
||||
printf("is_amd: %d\n", is.is_amd);
|
||||
printf("sse3: %d\n", is.SSE3());
|
||||
printf("pclmulqdq: %d\n", is.PCLMULQDQ());
|
||||
printf("ssse3: %d\n", is.SSSE3());
|
||||
printf("fma: %d\n", is.FMA());
|
||||
printf("cmpxchg16b: %d\n", is.CMPXCHG16B());
|
||||
printf("sse41: %d\n", is.SSE41());
|
||||
printf("sse42: %d\n", is.SSE42());
|
||||
printf("movbe: %d\n", is.MOVBE());
|
||||
printf("popcnt: %d\n", is.POPCNT());
|
||||
printf("aes: %d\n", is.AES());
|
||||
printf("xsave: %d\n", is.XSAVE());
|
||||
printf("osxsave: %d\n", is.OSXSAVE());
|
||||
printf("avx: %d\n", is.AVX());
|
||||
printf("f16c: %d\n", is.F16C());
|
||||
printf("rdrand: %d\n", is.RDRAND());
|
||||
printf("msr: %d\n", is.MSR());
|
||||
printf("cx8: %d\n", is.CX8());
|
||||
printf("sep: %d\n", is.SEP());
|
||||
printf("cmov: %d\n", is.CMOV());
|
||||
printf("clflush: %d\n", is.CLFSH());
|
||||
printf("mmx: %d\n", is.MMX());
|
||||
printf("fxsr: %d\n", is.FXSR());
|
||||
printf("sse: %d\n", is.SSE());
|
||||
printf("sse2: %d\n", is.SSE2());
|
||||
printf("fsgsbase: %d\n", is.FSGSBASE());
|
||||
printf("bmi1: %d\n", is.BMI1());
|
||||
printf("hle: %d\n", is.HLE());
|
||||
printf("avx2: %d\n", is.AVX2());
|
||||
printf("bmi2: %d\n", is.BMI2());
|
||||
printf("erms: %d\n", is.ERMS());
|
||||
printf("invpcid: %d\n", is.INVPCID());
|
||||
printf("rtm: %d\n", is.RTM());
|
||||
printf("avx512f: %d\n", is.AVX512F());
|
||||
printf("rdseed: %d\n", is.RDSEED());
|
||||
printf("adx: %d\n", is.ADX());
|
||||
printf("avx512pf: %d\n", is.AVX512PF());
|
||||
printf("avx512er: %d\n", is.AVX512ER());
|
||||
printf("avx512cd: %d\n", is.AVX512CD());
|
||||
printf("sha: %d\n", is.SHA());
|
||||
printf("prefetchwt1: %d\n", is.PREFETCHWT1());
|
||||
printf("lahf: %d\n", is.LAHF());
|
||||
printf("lzcnt: %d\n", is.LZCNT());
|
||||
printf("abm: %d\n", is.ABM());
|
||||
printf("sse4a: %d\n", is.SSE4a());
|
||||
printf("xop: %d\n", is.XOP());
|
||||
printf("tbm: %d\n", is.TBM());
|
||||
printf("syscall: %d\n", is.SYSCALL());
|
||||
printf("mmxext: %d\n", is.MMXEXT());
|
||||
printf("rdtscp: %d\n", is.RDTSCP());
|
||||
printf("3dnowext: %d\n", is._3DNOWEXT());
|
||||
printf("3dnow: %d\n", is._3DNOW());
|
||||
printf("avx512_vbmi: %d\n", is.AVX512_VBMI());
|
||||
printf("avx512_vnni: %d\n", is.AVX512_VNNI());
|
||||
printf("avx512_fp16: %d\n", is.AVX512_FP16());
|
||||
printf("avx512_bf16: %d\n", is.AVX512_BF16());
|
||||
printf("amx_tile: %d\n", is.AMX_TILE());
|
||||
printf("amx_int8: %d\n", is.AMX_INT8());
|
||||
printf("amx_fp16: %d\n", is.AMX_FP16());
|
||||
printf("amx_bf16: %d\n", is.AMX_BF16());
|
||||
}
|
||||
#endif
|
||||
|
||||
static int ggml_backend_cpu_x86_score() {
|
||||
// FIXME: this does not check for OS support
|
||||
|
||||
int score = 0;
|
||||
cpuid_x86 is;
|
||||
|
||||
#ifdef GGML_FMA
|
||||
if (!is.FMA()) { return 0; }
|
||||
score += 1;
|
||||
#endif
|
||||
#ifdef GGML_F16C
|
||||
if (!is.F16C()) { return 0; }
|
||||
score += 1<<1;
|
||||
#endif
|
||||
#ifdef GGML_SSE42
|
||||
if (!is.SSE42()) { return 0; }
|
||||
score += 1<<2;
|
||||
#endif
|
||||
#ifdef GGML_AVX
|
||||
if (!is.AVX()) { return 0; }
|
||||
score += 1<<4;
|
||||
#endif
|
||||
#ifdef GGML_AVX2
|
||||
if (!is.AVX2()) { return 0; }
|
||||
score += 1<<5;
|
||||
#endif
|
||||
#ifdef GGML_AVX_VNNI
|
||||
if (!is.AVX_VNNI()) { return 0; }
|
||||
score += 1<<6;
|
||||
#endif
|
||||
#ifdef GGML_AVX512
|
||||
if (!is.AVX512F()) { return 0; }
|
||||
if (!is.AVX512CD()) { return 0; }
|
||||
if (!is.AVX512VL()) { return 0; }
|
||||
if (!is.AVX512DQ()) { return 0; }
|
||||
if (!is.AVX512BW()) { return 0; }
|
||||
score += 1<<7;
|
||||
#endif
|
||||
#ifdef GGML_AVX512_VBMI
|
||||
if (!is.AVX512_VBMI()) { return 0; }
|
||||
score += 1<<8;
|
||||
#endif
|
||||
#ifdef GGML_AVX512_BF16
|
||||
if (!is.AVX512_BF16()) { return 0; }
|
||||
score += 1<<9;
|
||||
#endif
|
||||
#ifdef GGML_AVX512_VNNI
|
||||
if (!is.AVX512_VNNI()) { return 0; }
|
||||
score += 1<<10;
|
||||
#endif
|
||||
#ifdef GGML_AMX_INT8
|
||||
if (!is.AMX_INT8()) { return 0; }
|
||||
score += 1<<11;
|
||||
#endif
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_x86_score)
|
||||
|
||||
#endif // defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
|
@ -1,7 +1,3 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2024 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
#define GGML_COMMON_IMPL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
@ -132,7 +128,7 @@ static inline __m512i sum_i16_pairs_int_32x16(const __m512i x) {
|
||||
}
|
||||
|
||||
static inline __m512i mul_sum_us8_pairs_int32x16(const __m512i ax, const __m512i sy) {
|
||||
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
|
||||
#if defined(__AVX512VNNI__)
|
||||
const __m512i zero = _mm512_setzero_si512();
|
||||
return _mm512_dpbusd_epi32(zero, ax, sy);
|
||||
#else
|
||||
@ -187,6 +183,8 @@ static inline __m256i mul_sum_i8_pairs_int32x8(const __m256i x, const __m256i y)
|
||||
}
|
||||
#endif
|
||||
|
||||
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
|
||||
static void quantize_q8_0_4x4(const float * restrict x, void * restrict vy, int64_t k) {
|
||||
assert(QK8_0 == 32);
|
||||
assert(k % QK8_0 == 0);
|
||||
@ -527,67 +525,47 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
if (ggml_cpu_has_neon()) {
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
float * res_ptr = s;
|
||||
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *)vx;
|
||||
|
||||
__asm__ __volatile__(
|
||||
"movi v31.16b, #0x4\n"
|
||||
"movi v30.16b, #0xf0\n"
|
||||
"add %x[b_ptr], %x[b_ptr], #0x8\n"
|
||||
"1:" // Column loop
|
||||
"add x22, %x[a_ptr], #0x2\n"
|
||||
"movi v29.16b, #0x0\n"
|
||||
"mov x21, %x[nb]\n"
|
||||
"2:" // Block loop
|
||||
"ldr q28, [%x[b_ptr], #0x0]\n"
|
||||
"ldr q27, [x22, #0x0]\n"
|
||||
"movi v26.4s, #0x0\n"
|
||||
"sub x20, x22, #0x2\n"
|
||||
"ldr q25, [x22, #0x10]\n"
|
||||
"ldr q24, [%x[b_ptr], #0x10]\n"
|
||||
"sub x21, x21, #0x1\n"
|
||||
"add x22, x22, #0x22\n"
|
||||
"ldr q23, [%x[b_ptr], #0x20]\n"
|
||||
"ldr q22, [%x[b_ptr], #0x30]\n"
|
||||
"ld1r { v21.8h }, [x20]\n"
|
||||
"ldr q20, [%x[b_ptr], #-0x8]\n"
|
||||
"sshl v16.16b, v28.16b, v31.16b\n"
|
||||
"and v28.16b, v28.16b, v30.16b\n"
|
||||
"sshl v19.16b, v24.16b, v31.16b\n"
|
||||
"and v24.16b, v24.16b, v30.16b\n"
|
||||
"add %x[b_ptr], %x[b_ptr], #0x48\n"
|
||||
"sshl v18.16b, v23.16b, v31.16b\n"
|
||||
"and v23.16b, v23.16b, v30.16b\n"
|
||||
".inst 0x4f9be21a // sdot v26.4s, v16.16b, v27.4b[0]\n"
|
||||
"sshl v17.16b, v22.16b, v31.16b\n"
|
||||
"and v22.16b, v22.16b, v30.16b\n"
|
||||
"fcvtl v21.4s, v21.4h\n"
|
||||
"fcvtl v16.4s, v20.4h\n"
|
||||
".inst 0x4f99e39a // sdot v26.4s, v28.16b, v25.4b[0]\n"
|
||||
"fmul v16.4s, v16.4s, v21.4s\n"
|
||||
".inst 0x4fbbe27a // sdot v26.4s, v19.16b, v27.4b[1]\n"
|
||||
".inst 0x4fb9e31a // sdot v26.4s, v24.16b, v25.4b[1]\n"
|
||||
".inst 0x4f9bea5a // sdot v26.4s, v18.16b, v27.4b[2]\n"
|
||||
".inst 0x4f99eafa // sdot v26.4s, v23.16b, v25.4b[2]\n"
|
||||
".inst 0x4fbbea3a // sdot v26.4s, v17.16b, v27.4b[3]\n"
|
||||
".inst 0x4fb9eada // sdot v26.4s, v22.16b, v25.4b[3]\n"
|
||||
"scvtf v26.4s, v26.4s, #0x4\n"
|
||||
"fmla v29.4s, v26.4s, v16.4s\n"
|
||||
"cbnz x21, 2b\n"
|
||||
"sub %x[nc], %x[nc], #0x4\n"
|
||||
"str q29, [%x[res_ptr], #0x0]\n"
|
||||
"add %x[res_ptr], %x[res_ptr], #0x10\n"
|
||||
"cbnz %x[nc], 1b\n"
|
||||
: [b_ptr] "+&r" (b_ptr), [res_ptr] "+&r" (res_ptr), [nc] "+&r" (nc)
|
||||
: [a_ptr] "r" (a_ptr), [nb] "r" (nb)
|
||||
: "memory", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", "x20", "x21", "x22"
|
||||
);
|
||||
for (int c = 0; c < nc; c += ncols_interleaved) {
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *)vy;
|
||||
float32x4_t acc = vdupq_n_f32(0);
|
||||
for (int b = 0; b < nb; b++) {
|
||||
int8x16_t b0 = vld1q_s8((const int8_t *)b_ptr->qs);
|
||||
int8x16_t b1 = vld1q_s8((const int8_t *)b_ptr->qs + 16);
|
||||
int8x16_t b2 = vld1q_s8((const int8_t *)b_ptr->qs + 32);
|
||||
int8x16_t b3 = vld1q_s8((const int8_t *)b_ptr->qs + 48);
|
||||
float16x4_t bd = vld1_f16((const __fp16 *)b_ptr->d);
|
||||
|
||||
int8x16_t a0 = vld1q_s8(a_ptr->qs);
|
||||
int8x16_t a1 = vld1q_s8(a_ptr->qs + qk/2);
|
||||
float16x4_t ad = vld1_dup_f16((const __fp16 *)&a_ptr->d);
|
||||
|
||||
int32x4_t ret = vdupq_n_s32(0);
|
||||
|
||||
ret = vdotq_laneq_s32(ret, b0 << 4, a0, 0);
|
||||
ret = vdotq_laneq_s32(ret, b1 << 4, a0, 1);
|
||||
ret = vdotq_laneq_s32(ret, b2 << 4, a0, 2);
|
||||
ret = vdotq_laneq_s32(ret, b3 << 4, a0, 3);
|
||||
|
||||
ret = vdotq_laneq_s32(ret, b0 & 0xf0U, a1, 0);
|
||||
ret = vdotq_laneq_s32(ret, b1 & 0xf0U, a1, 1);
|
||||
ret = vdotq_laneq_s32(ret, b2 & 0xf0U, a1, 2);
|
||||
ret = vdotq_laneq_s32(ret, b3 & 0xf0U, a1, 3);
|
||||
|
||||
acc = vfmaq_f32(acc, vcvtq_n_f32_s32(ret, 4),
|
||||
vmulq_f32(vcvt_f32_f16(ad), vcvt_f32_f16(bd)));
|
||||
a_ptr++;
|
||||
b_ptr++;
|
||||
}
|
||||
vst1q_f32(s, acc);
|
||||
s += ncols_interleaved;
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
@ -996,6 +974,102 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 4;
|
||||
const int blocklen = 4;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
const int8x16_t kvalues = vld1q_s8(kvalues_iq4nl);
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
float * res_ptr = s;
|
||||
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
|
||||
float32x4_t sumf = vdupq_n_f32(0);
|
||||
for (int l = 0; l < nb; l++) {
|
||||
uint8x16_t b_0 = vld1q_u8(b_ptr[l].qs + 0);
|
||||
uint8x16_t b_1 = vld1q_u8(b_ptr[l].qs + 16);
|
||||
uint8x16_t b_2 = vld1q_u8(b_ptr[l].qs + 32);
|
||||
uint8x16_t b_3 = vld1q_u8(b_ptr[l].qs + 48);
|
||||
|
||||
int8x16_t b_0_hi = vqtbl1q_s8(kvalues, b_0 >> 4);
|
||||
int8x16_t b_0_lo = vqtbl1q_s8(kvalues, b_0 & 0x0F);
|
||||
int8x16_t b_1_hi = vqtbl1q_s8(kvalues, b_1 >> 4);
|
||||
int8x16_t b_1_lo = vqtbl1q_s8(kvalues, b_1 & 0x0F);
|
||||
int8x16_t b_2_hi = vqtbl1q_s8(kvalues, b_2 >> 4);
|
||||
int8x16_t b_2_lo = vqtbl1q_s8(kvalues, b_2 & 0x0F);
|
||||
int8x16_t b_3_hi = vqtbl1q_s8(kvalues, b_3 >> 4);
|
||||
int8x16_t b_3_lo = vqtbl1q_s8(kvalues, b_3 & 0x0F);
|
||||
|
||||
int8x16_t a_0 = vld1q_s8(a_ptr[l].qs + 0);
|
||||
int8x16_t a_1 = vld1q_s8(a_ptr[l].qs + 16);
|
||||
|
||||
int32x4_t sumi = vdupq_n_s32(0);
|
||||
sumi = vdotq_laneq_s32(sumi, b_0_lo, a_0, 0);
|
||||
sumi = vdotq_laneq_s32(sumi, b_0_hi, a_1, 0);
|
||||
sumi = vdotq_laneq_s32(sumi, b_1_lo, a_0, 1);
|
||||
sumi = vdotq_laneq_s32(sumi, b_1_hi, a_1, 1);
|
||||
sumi = vdotq_laneq_s32(sumi, b_2_lo, a_0, 2);
|
||||
sumi = vdotq_laneq_s32(sumi, b_2_hi, a_1, 2);
|
||||
sumi = vdotq_laneq_s32(sumi, b_3_lo, a_0, 3);
|
||||
sumi = vdotq_laneq_s32(sumi, b_3_hi, a_1, 3);
|
||||
|
||||
float32x4_t a_d = vcvt_f32_f16(vld1_dup_f16((const float16_t *)&a_ptr[l].d));
|
||||
float32x4_t b_d = vcvt_f32_f16(vld1_f16((const float16_t *)b_ptr[l].d));
|
||||
float32x4_t d = a_d * b_d;
|
||||
|
||||
sumf = vmlaq_f32(sumf, d, vcvtq_f32_s32(sumi));
|
||||
}
|
||||
|
||||
vst1q_f32(res_ptr + x * 4, sumf);
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
@ -1017,7 +1091,7 @@ void ggml_gemm_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
if (ggml_cpu_has_neon()) {
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
const void * b_ptr = vx;
|
||||
const void * a_ptr = vy;
|
||||
float * res_ptr = s;
|
||||
@ -3386,6 +3460,117 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 4;
|
||||
const int blocklen = 4;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nr % 4 == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
const int8x16_t kvalues = vld1q_s8(kvalues_iq4nl);
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
|
||||
float32x4_t sumf[4];
|
||||
for (int m = 0; m < 4; m++) {
|
||||
sumf[m] = vdupq_n_f32(0);
|
||||
}
|
||||
|
||||
for (int l = 0; l < nb; l++) {
|
||||
float32x4_t a_d = vcvt_f32_f16(vld1_f16((const float16_t *)a_ptr[l].d));
|
||||
float32x4_t b_d = vcvt_f32_f16(vld1_f16((const float16_t *)b_ptr[l].d));
|
||||
|
||||
int32x4_t sumi_0 = vdupq_n_s32(0);
|
||||
int32x4_t sumi_1 = vdupq_n_s32(0);
|
||||
int32x4_t sumi_2 = vdupq_n_s32(0);
|
||||
int32x4_t sumi_3 = vdupq_n_s32(0);
|
||||
|
||||
for (int k = 0; k < 4; k++) {
|
||||
int8x16_t a_0 = vld1q_s8(a_ptr[l].qs + 16 * k + 0);
|
||||
int8x16_t a_1 = vld1q_s8(a_ptr[l].qs + 16 * k + 64);
|
||||
|
||||
uint8x16_t b = vld1q_u8(b_ptr[l].qs + 16 * k);
|
||||
int8x16_t b_hi = vqtbl1q_s8(kvalues, b >> 4);
|
||||
int8x16_t b_lo = vqtbl1q_s8(kvalues, b & 0xF);
|
||||
|
||||
sumi_0 = vdotq_laneq_s32(sumi_0, b_lo, a_0, 0);
|
||||
sumi_1 = vdotq_laneq_s32(sumi_1, b_lo, a_0, 1);
|
||||
sumi_2 = vdotq_laneq_s32(sumi_2, b_lo, a_0, 2);
|
||||
sumi_3 = vdotq_laneq_s32(sumi_3, b_lo, a_0, 3);
|
||||
sumi_0 = vdotq_laneq_s32(sumi_0, b_hi, a_1, 0);
|
||||
sumi_1 = vdotq_laneq_s32(sumi_1, b_hi, a_1, 1);
|
||||
sumi_2 = vdotq_laneq_s32(sumi_2, b_hi, a_1, 2);
|
||||
sumi_3 = vdotq_laneq_s32(sumi_3, b_hi, a_1, 3);
|
||||
}
|
||||
|
||||
sumf[0] = vmlaq_f32(sumf[0], vmulq_laneq_f32(b_d, a_d, 0), vcvtq_f32_s32(sumi_0));
|
||||
sumf[1] = vmlaq_f32(sumf[1], vmulq_laneq_f32(b_d, a_d, 1), vcvtq_f32_s32(sumi_1));
|
||||
sumf[2] = vmlaq_f32(sumf[2], vmulq_laneq_f32(b_d, a_d, 2), vcvtq_f32_s32(sumi_2));
|
||||
sumf[3] = vmlaq_f32(sumf[3], vmulq_laneq_f32(b_d, a_d, 3), vcvtq_f32_s32(sumi_3));
|
||||
}
|
||||
|
||||
for (int m = 0; m < 4; m++) {
|
||||
vst1q_f32(s + (y * 4 + m) * bs + x * 4, sumf[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4][4];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: this code is duplicated from ggml-aarch64.c
|
||||
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) {
|
||||
block_q4_0x4 out;
|
||||
@ -3518,6 +3703,70 @@ static int repack_q4_0_to_q4_0_8_bl(struct ggml_tensor *t, int interleave_block,
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_size_interleave) {
|
||||
block_iq4_nlx4 out;
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
out.d[i] = in[i].d;
|
||||
}
|
||||
|
||||
const int end = QK4_NL * 2 / blck_size_interleave;
|
||||
|
||||
if (blck_size_interleave == 8) {
|
||||
for (int i = 0; i < end; ++i) {
|
||||
int src_id = i % 4;
|
||||
int src_offset = (i / 4) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
// Using memcpy to avoid unaligned memory accesses
|
||||
memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t));
|
||||
}
|
||||
} else if (blck_size_interleave == 4) {
|
||||
for (int i = 0; i < end; ++i) {
|
||||
int src_id = i % 4;
|
||||
int src_offset = (i / 4) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint32_t));
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * restrict data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
|
||||
GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
|
||||
|
||||
block_iq4_nlx4 * dst = (block_iq4_nlx4 *)t->data;
|
||||
const block_iq4_nl * src = (const block_iq4_nl *)data;
|
||||
block_iq4_nl dst_tmp[4];
|
||||
int nrow = t->ne[1]; // Number of rows
|
||||
int nrows_interleaved = 4;
|
||||
int nblocks = t->ne[0] / QK4_0;
|
||||
|
||||
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
|
||||
|
||||
if (nrow % nrows_interleaved != 0 || t->ne[0] % 8 != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (int b = 0; b < nrow; b += nrows_interleaved) {
|
||||
for (int64_t x = 0; x < nblocks; x++) {
|
||||
for (int i = 0; i < nrows_interleaved; i++) {
|
||||
dst_tmp[i] = src[x + i * nblocks];
|
||||
}
|
||||
*dst++ = make_block_iq4_nlx4(dst_tmp, interleave_block);
|
||||
}
|
||||
src += nrows_interleaved * nblocks;
|
||||
}
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
// Prepare for optimized kernels if applicable
|
||||
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * restrict data, size_t data_size) {
|
||||
if (cur->type == repack_type) {
|
||||
@ -3525,20 +3774,30 @@ void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(cur->type == GGML_TYPE_Q4_0);
|
||||
|
||||
switch (repack_type) {
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
repack_q4_0_to_q4_0_8_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 4, data, data_size);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported type");
|
||||
if (cur->type == GGML_TYPE_Q4_0) {
|
||||
switch (repack_type) {
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
repack_q4_0_to_q4_0_8_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 8, data, data_size);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
repack_q4_0_to_q4_0_4_bl(cur, 4, data, data_size);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported type");
|
||||
}
|
||||
} else if (cur->type == GGML_TYPE_IQ4_NL) {
|
||||
switch (repack_type) {
|
||||
case GGML_TYPE_IQ4_NL_4_4:
|
||||
repack_iq4_nl_to_iq4_nl_4_bl(cur, 4, data, data_size);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupported type");
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("Unsupported type");
|
||||
}
|
||||
}
|
||||
|
||||
@ -3551,9 +3810,13 @@ enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * c
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
|
||||
return GGML_TYPE_Q4_0_4_8;
|
||||
}
|
||||
if (ggml_cpu_has_neon()) {
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
return GGML_TYPE_Q4_0_4_4;
|
||||
}
|
||||
} else if (cur->type == GGML_TYPE_IQ4_NL) {
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
return GGML_TYPE_IQ4_NL_4_4;
|
||||
}
|
||||
}
|
||||
|
||||
return cur->type;
|
||||
|
@ -15,11 +15,13 @@ void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// GEMM
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * data, size_t data_size);
|
||||
enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur);
|
||||
|
@ -15,6 +15,18 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_compute_params {
|
||||
// ith = thread index, nth = number of threads
|
||||
int ith, nth;
|
||||
|
||||
// work buffer for all threads
|
||||
size_t wsize;
|
||||
void * wdata;
|
||||
|
||||
struct ggml_threadpool * threadpool;
|
||||
};
|
||||
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define m512bh(p) p
|
||||
@ -366,6 +378,9 @@ static __m256 __lasx_xvreplfr2vr_s(float val) {
|
||||
}
|
||||
#endif
|
||||
|
||||
// TODO: move to ggml-threading
|
||||
void ggml_barrier(struct ggml_threadpool * tp);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -1791,11 +1791,12 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
||||
const int8x16_t y1_l = vld1q_s8(b_y1->qs);
|
||||
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
|
||||
|
||||
float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
|
||||
|
||||
float32_t _scale[4] = {
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
|
||||
};
|
||||
float32x4_t scale = vld1q_f32(_scale);
|
||||
|
||||
int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
|
||||
@ -1811,13 +1812,15 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
||||
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
|
||||
|
||||
sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
}
|
||||
float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
|
||||
|
||||
float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
|
||||
float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
|
||||
|
||||
vst1_f32(s, vget_low_f32(sumv2));
|
||||
vst1_f32(s, vget_low_f32 (sumv2));
|
||||
vst1_f32(s + bs, vget_high_f32(sumv2));
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
@ -2345,10 +2348,12 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r
|
||||
const block_q8_1 * restrict b_y0 = &vy0[i];
|
||||
const block_q8_1 * restrict b_y1 = &vy1[i];
|
||||
|
||||
float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
|
||||
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
|
||||
GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
|
||||
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
|
||||
float32_t summs_t[4] = {
|
||||
GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
|
||||
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
|
||||
GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
|
||||
GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)
|
||||
};
|
||||
summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0F);
|
||||
@ -2369,10 +2374,12 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r
|
||||
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
|
||||
|
||||
// mmla into int32x4_t
|
||||
float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
|
||||
GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
|
||||
GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
|
||||
GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
|
||||
float32_t _scale[4] = {
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
|
||||
};
|
||||
float32x4_t scale = vld1q_f32(_scale);
|
||||
|
||||
int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
|
||||
@ -2387,15 +2394,17 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r
|
||||
int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
|
||||
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
|
||||
sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
}
|
||||
|
||||
float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
|
||||
float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
|
||||
float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
|
||||
|
||||
sumv2 = vaddq_f32(sumv2, summs0);
|
||||
|
||||
vst1_f32(s, vget_low_f32 (sumv2));
|
||||
vst1_f32(s + bs, vget_high_f32(sumv2));
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
@ -3372,10 +3381,12 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
||||
const int8x16_t y1_l = vld1q_s8(b_y1->qs);
|
||||
const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
|
||||
|
||||
float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
|
||||
float32_t _scale[4] = {
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
|
||||
GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
|
||||
};
|
||||
float32x4_t scale = vld1q_f32(_scale);
|
||||
|
||||
int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
|
||||
@ -3391,13 +3402,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r
|
||||
int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
|
||||
|
||||
sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
l1, r1)), l2, r2)), l3, r3))), scale);
|
||||
}
|
||||
float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
|
||||
|
||||
float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
|
||||
float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
|
||||
|
||||
vst1_f32(s, vget_low_f32(sumv2));
|
||||
vst1_f32(s, vget_low_f32 (sumv2));
|
||||
vst1_f32(s + bs, vget_high_f32(sumv2));
|
||||
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
@ -10,6 +10,7 @@
|
||||
#include "ggml-quants.h"
|
||||
#include "ggml-cpu-quants.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "amx/amx.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
@ -109,10 +110,11 @@ static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
|
||||
#if defined(__ARM_ARCH)
|
||||
struct ggml_arm_arch_features_type {
|
||||
int has_neon;
|
||||
int has_dotprod;
|
||||
int has_i8mm;
|
||||
int has_sve;
|
||||
int sve_cnt;
|
||||
} ggml_arm_arch_features = {-1, -1, -1, 0};
|
||||
} ggml_arm_arch_features = {-1, -1, -1, -1, 0};
|
||||
#endif
|
||||
|
||||
|
||||
@ -446,6 +448,15 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_IQ4_NL_4_4] = {
|
||||
.from_float = NULL,
|
||||
.vec_dot = NULL,
|
||||
.vec_dot_type = GGML_TYPE_Q8_0,
|
||||
.nrows = 1,
|
||||
.ncols = 4,
|
||||
.gemv = ggml_gemv_iq4_nl_4x4_q8_0,
|
||||
.gemm = ggml_gemm_iq4_nl_4x4_q8_0,
|
||||
},
|
||||
};
|
||||
|
||||
const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
|
||||
@ -614,7 +625,7 @@ do { \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
res = _mm512_reduce_add_ps(x[0]); \
|
||||
res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
|
||||
} while (0)
|
||||
|
||||
// TODO: is this optimal ?
|
||||
@ -664,7 +675,7 @@ do { \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
res = _mm512_reduce_add_ps(x[0]); \
|
||||
res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
|
||||
} while (0)
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx16
|
||||
@ -675,8 +686,8 @@ do { \
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
|
||||
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
|
||||
#elif defined(__AVX__)
|
||||
|
||||
#define GGML_SIMD
|
||||
@ -745,7 +756,7 @@ do { \
|
||||
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
|
||||
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
|
||||
#else
|
||||
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
|
||||
static inline __m256 __avx_f32cx8_load(const ggml_fp16_t * x) {
|
||||
float tmp[8];
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
@ -1168,28 +1179,28 @@ static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
|
||||
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
|
||||
#define GGML_F32x4_ADD __lsx_vfadd_s
|
||||
#define GGML_F32x4_MUL __lsx_vfmul_s
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
|
||||
} \
|
||||
__m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
|
||||
tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
|
||||
tmp = __lsx_vsrli_d((__m128i)t0, 32); \
|
||||
tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
|
||||
} \
|
||||
__m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
|
||||
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
|
||||
tmp = __lsx_vsrli_d((__m128i) t0, 32); \
|
||||
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
|
||||
}
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
@ -1357,31 +1368,18 @@ struct ggml_compute_state {
|
||||
int ith;
|
||||
};
|
||||
|
||||
struct ggml_compute_params {
|
||||
// ith = thread index, nth = number of threads
|
||||
int ith, nth;
|
||||
|
||||
// work buffer for all threads
|
||||
size_t wsize;
|
||||
void * wdata;
|
||||
|
||||
struct ggml_threadpool * threadpool;
|
||||
};
|
||||
|
||||
//
|
||||
// fundamental operations
|
||||
//
|
||||
|
||||
inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
|
||||
inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
|
||||
inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
inline static void ggml_vec_cpy_i32(const int n, int32_t * y, const int32_t * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
|
||||
|
||||
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
|
||||
inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
|
||||
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
|
||||
inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
|
||||
inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
|
||||
@ -2276,7 +2274,7 @@ struct ggml_state {
|
||||
|
||||
static struct ggml_state g_state = {0};
|
||||
|
||||
static void ggml_barrier(struct ggml_threadpool * tp) {
|
||||
void ggml_barrier(struct ggml_threadpool * tp) {
|
||||
int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
|
||||
if (n_threads == 1) {
|
||||
return;
|
||||
@ -2430,7 +2428,7 @@ bool ggml_is_numa(void) {
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_I8MM)
|
||||
#define HWCAP2_I8MM 0
|
||||
#define HWCAP2_I8MM (1 << 13)
|
||||
#endif
|
||||
|
||||
static void ggml_init_arm_arch_features(void) {
|
||||
@ -2439,6 +2437,7 @@ static void ggml_init_arm_arch_features(void) {
|
||||
uint32_t hwcap2 = getauxval(AT_HWCAP2);
|
||||
|
||||
ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
|
||||
ggml_arm_arch_features.has_dotprod = !!(hwcap && HWCAP_ASIMDDP);
|
||||
ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
|
||||
ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
|
||||
|
||||
@ -2453,6 +2452,11 @@ static void ggml_init_arm_arch_features(void) {
|
||||
}
|
||||
ggml_arm_arch_features.has_neon = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
ggml_arm_arch_features.has_dotprod = oldp;
|
||||
|
||||
if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
|
||||
oldp = 0;
|
||||
}
|
||||
@ -7439,6 +7443,13 @@ static void ggml_compute_forward_mul_mat(
|
||||
type = (enum ggml_type)(intptr_t)src0->extra;
|
||||
}
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
if (src0->buffer && ggml_backend_amx_buft_is_amx(src0->buffer->buft)) {
|
||||
ggml_backend_amx_mul_mat(params, dst);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
|
||||
ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
|
||||
ggml_from_float_to_mat_t const from_float_to_mat = type_traits_cpu[vec_dot_type].from_float_to_mat;
|
||||
@ -7560,14 +7571,6 @@ UseGgmlGemm2:;
|
||||
// This is the size of the rest of the dimensions of the result
|
||||
const int64_t nr1 = ne1 * ne2 * ne3;
|
||||
|
||||
// dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
|
||||
int64_t num_rows_per_vec_dot = vec_dot_num_rows;
|
||||
// TODO: currently the mmla kernels support only even numbered rows/cols.
|
||||
// this check can be removed once they are extended to support odd numbered rows/cols too
|
||||
if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
|
||||
num_rows_per_vec_dot = 1;
|
||||
}
|
||||
|
||||
// Now select a reasonable chunk size.
|
||||
int chunk_size = 16;
|
||||
|
||||
@ -7630,6 +7633,15 @@ UseGgmlGemm2:;
|
||||
const int64_t ir1_start = dr1 * ith1;
|
||||
const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
|
||||
|
||||
// dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
|
||||
int64_t num_rows_per_vec_dot = vec_dot_num_rows;
|
||||
|
||||
// these checks are needed to avoid crossing dim1 boundaries
|
||||
// can be optimized, but the logic would become more complicated, so keeping it like this for simplicity
|
||||
if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
|
||||
num_rows_per_vec_dot = 1;
|
||||
}
|
||||
|
||||
ggml_compute_forward_mul_mat_one_chunk(params, dst, type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
|
||||
|
||||
if (nth >= nchunk0 * nchunk1) {
|
||||
@ -8239,6 +8251,77 @@ static void ggml_compute_forward_set_f32(
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_set_i32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||||
|
||||
// view src0 and dst with these strides and data offset inbytes during set
|
||||
// nb0 is implicitly element_size because src0 and dst are contiguous
|
||||
size_t nb1 = ((int32_t *) dst->op_params)[0];
|
||||
size_t nb2 = ((int32_t *) dst->op_params)[1];
|
||||
size_t nb3 = ((int32_t *) dst->op_params)[2];
|
||||
size_t offset = ((int32_t *) dst->op_params)[3];
|
||||
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
||||
|
||||
if (!inplace) {
|
||||
if (params->ith == 0) {
|
||||
// memcpy needs to be synchronized across threads to avoid race conditions.
|
||||
// => do it in INIT phase
|
||||
memcpy(
|
||||
((char *) dst->data),
|
||||
((char *) src0->data),
|
||||
ggml_nbytes(dst));
|
||||
}
|
||||
ggml_barrier(params->threadpool);
|
||||
}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nr = ggml_nrows(src1);
|
||||
const int nc = src1->ne[0];
|
||||
|
||||
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
|
||||
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
||||
|
||||
// src0 and dst as viewed during set
|
||||
const size_t nb0 = ggml_element_size(src0);
|
||||
|
||||
const int im0 = (ne10 == 0 ? 0 : ne10-1);
|
||||
const int im1 = (ne11 == 0 ? 0 : ne11-1);
|
||||
const int im2 = (ne12 == 0 ? 0 : ne12-1);
|
||||
const int im3 = (ne13 == 0 ? 0 : ne13-1);
|
||||
|
||||
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
|
||||
|
||||
GGML_ASSERT(nb10 == sizeof(int32_t));
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int ir = ir0; ir < ir1; ++ir) {
|
||||
// src0 and dst are viewed with shape of src1 and offset
|
||||
// => same indices
|
||||
const int i3 = ir/(ne12*ne11);
|
||||
const int i2 = (ir - i3*ne12*ne11)/ne11;
|
||||
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
|
||||
|
||||
ggml_vec_cpy_i32(nc,
|
||||
(int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
|
||||
(int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_set(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
@ -8250,6 +8333,10 @@ static void ggml_compute_forward_set(
|
||||
{
|
||||
ggml_compute_forward_set_f32(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_I32:
|
||||
{
|
||||
ggml_compute_forward_set_i32(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_BF16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
@ -9133,6 +9220,7 @@ static void ggml_compute_forward_clamp(
|
||||
case GGML_TYPE_Q4_0_4_4:
|
||||
case GGML_TYPE_Q4_0_4_8:
|
||||
case GGML_TYPE_Q4_0_8_8:
|
||||
case GGML_TYPE_IQ4_NL_4_4:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
case GGML_TYPE_I32:
|
||||
@ -10429,6 +10517,40 @@ static void ggml_compute_forward_pad(
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_pad_reflect_1d
|
||||
|
||||
static void ggml_compute_forward_pad_reflect_1d(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int32_t * opts = (const int32_t *) dst->op_params;
|
||||
const int p0 = opts[0];
|
||||
const int p1 = opts[1];
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
||||
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
||||
float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
|
||||
float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
|
||||
|
||||
ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
|
||||
|
||||
for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
|
||||
for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_arange
|
||||
|
||||
@ -12525,6 +12647,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_pad(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
{
|
||||
ggml_compute_forward_pad_reflect_1d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_ARANGE:
|
||||
{
|
||||
ggml_compute_forward_arange(params, tensor);
|
||||
@ -12867,6 +12993,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
@ -13276,10 +13403,16 @@ struct ggml_cplan ggml_graph_plan(
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
if (node->src[0]->buffer && ggml_backend_amx_buft_is_amx(node->src[0]->buffer->buft)) {
|
||||
cur = ggml_backend_amx_desired_wsize(node);
|
||||
}
|
||||
#endif
|
||||
const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type;
|
||||
|
||||
if (node->src[1]->type != vec_dot_type) {
|
||||
cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
|
||||
size_t cur2 = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
|
||||
cur = MAX(cur, cur2);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
@ -13578,29 +13711,6 @@ static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int
|
||||
|
||||
#endif // GGML_USE_OPENMP
|
||||
|
||||
void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
|
||||
p->n_threads = n_threads;
|
||||
p->prio = 0; // default priority (usually means normal or inherited)
|
||||
p->poll = 50; // hybrid-polling enabled
|
||||
p->strict_cpu = false; // no strict placement (all threads share same cpumask)
|
||||
p->paused = false; // threads are ready to go
|
||||
memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
|
||||
}
|
||||
|
||||
struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
|
||||
struct ggml_threadpool_params p;
|
||||
ggml_threadpool_params_init(&p, n_threads);
|
||||
return p;
|
||||
}
|
||||
|
||||
bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
|
||||
if (p0->n_threads != p1->n_threads ) return false;
|
||||
if (p0->prio != p1->prio ) return false;
|
||||
if (p0->poll != p1->poll ) return false;
|
||||
if (p0->strict_cpu != p1->strict_cpu ) return false;
|
||||
return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
|
||||
}
|
||||
|
||||
static struct ggml_threadpool * ggml_threadpool_new_impl(
|
||||
struct ggml_threadpool_params * tpp,
|
||||
struct ggml_cgraph * cgraph,
|
||||
@ -13896,15 +14006,23 @@ int ggml_cpu_has_vsx(void) {
|
||||
}
|
||||
|
||||
int ggml_cpu_has_neon(void) {
|
||||
#if defined(__ARM_ARCH)
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
|
||||
return ggml_arm_arch_features.has_neon;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_dotprod(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD)
|
||||
return ggml_arm_arch_features.has_dotprod;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_sve(void) {
|
||||
#if defined(__ARM_ARCH)
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
|
||||
return ggml_arm_arch_features.has_sve;
|
||||
#else
|
||||
return 0;
|
||||
@ -13912,7 +14030,7 @@ int ggml_cpu_has_sve(void) {
|
||||
}
|
||||
|
||||
int ggml_cpu_has_matmul_int8(void) {
|
||||
#if defined(__ARM_ARCH)
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
return ggml_arm_arch_features.has_i8mm;
|
||||
#else
|
||||
return 0;
|
||||
@ -13920,7 +14038,7 @@ int ggml_cpu_has_matmul_int8(void) {
|
||||
}
|
||||
|
||||
int ggml_cpu_get_sve_cnt(void) {
|
||||
#if defined(__ARM_ARCH)
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
|
||||
return ggml_arm_arch_features.sve_cnt;
|
||||
#else
|
||||
return 0;
|
||||
|
@ -3,6 +3,7 @@
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-aarch64.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "amx/amx.h"
|
||||
#include <cctype>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
@ -134,12 +135,16 @@ static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backen
|
||||
static std::vector<ggml_backend_buffer_type_t> bufts = []() {
|
||||
std::vector<ggml_backend_buffer_type_t> bufts;
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
bufts.push_back(ggml_backend_cpu_hbm_buffer_type());
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
if (ggml_backend_amx_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_amx_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
|
||||
if (ggml_backend_cpu_aarch64_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
bufts.push_back(NULL);
|
||||
@ -456,12 +461,27 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
if (op->op == GGML_OP_NONE || op->op == GGML_OP_RESHAPE || op->op == GGML_OP_VIEW || op->op == GGML_OP_PERMUTE || op->op == GGML_OP_TRANSPOSE) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (src0 && src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
|
||||
if (op->op != GGML_OP_MUL_MAT || src0->type != GGML_TYPE_Q4_0 || ggml_aarch64_get_optimal_repack_type(src0) == GGML_TYPE_Q4_0) {
|
||||
if (op->op != GGML_OP_MUL_MAT || src0->type == ggml_aarch64_get_optimal_repack_type(src0)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
if (src0 && src0->buffer && ggml_backend_amx_buft_is_amx(src0->buffer->buft)) {
|
||||
return ggml_backend_amx_device_supports_op(op);
|
||||
}
|
||||
for (int i = 1; i < GGML_MAX_SRC; i++) {
|
||||
if (op->src[i] && op->src[i]->buffer && ggml_backend_amx_buft_is_amx(op->src[i]->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
for (int i = 1; i < GGML_MAX_SRC; i++) {
|
||||
if (op->src[i] && op->src[i]->buffer && ggml_backend_cpu_buft_is_aarch64(op->src[i]->buffer->buft)) {
|
||||
return false;
|
||||
@ -491,7 +511,13 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft) || ggml_backend_cpu_buft_is_aarch64(buft);
|
||||
bool supported = ggml_backend_buft_is_host(buft) || ggml_backend_cpu_buft_is_aarch64(buft);
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
supported = supported || ggml_backend_amx_buft_is_amx(buft);
|
||||
#endif
|
||||
|
||||
return supported;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
@ -541,16 +567,12 @@ static ggml_backend_dev_t ggml_backend_cpu_reg_get_device(ggml_backend_reg_t reg
|
||||
return &ggml_backend_cpu_device;
|
||||
}
|
||||
|
||||
struct ggml_backend_feature {
|
||||
const char * name;
|
||||
const char * value;
|
||||
};
|
||||
|
||||
// Not used yet
|
||||
// This is intended to replace the the ggml_cpu_has_* functions when loading the CPU backend dynamically,
|
||||
// and additionally to allow other backends to expose their own list of features that applications can query using the same API.
|
||||
// and additionally to allow other backends to expose their own list of features that applications can query using the same API
|
||||
static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t reg) {
|
||||
static std::vector<ggml_backend_feature> features = []() {
|
||||
ggml_cpu_init();
|
||||
|
||||
std::vector<ggml_backend_feature> features;
|
||||
if (ggml_cpu_has_sse3()) {
|
||||
features.push_back({ "SSE3", "1" });
|
||||
@ -561,6 +583,9 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
if (ggml_cpu_has_avx()) {
|
||||
features.push_back({ "AVX", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx_vnni()) {
|
||||
features.push_back({ "AVX_VNNI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx2()) {
|
||||
features.push_back({ "AVX2", "1" });
|
||||
}
|
||||
@ -570,9 +595,6 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
if (ggml_cpu_has_fma()) {
|
||||
features.push_back({ "FMA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx_vnni()) {
|
||||
features.push_back({ "AVX_VNNI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512()) {
|
||||
features.push_back({ "AVX512", "1" });
|
||||
}
|
||||
@ -619,6 +641,18 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
if (ggml_cpu_has_llamafile()) {
|
||||
features.push_back({ "LLAMAFILE", "1" });
|
||||
}
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
features.push_back({ "ACCELERATE", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
features.push_back({ "CPU_HBM", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_OPENMP
|
||||
features.push_back({ "OPENMP", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
features.push_back({ "AARCH64_REPACK", "1" });
|
||||
#endif
|
||||
|
||||
features.push_back({ nullptr, nullptr });
|
||||
|
||||
@ -637,6 +671,29 @@ static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const ch
|
||||
if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
|
||||
return (void *)ggml_backend_cpu_get_extra_bufts;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_get_features") == 0) {
|
||||
return (void *)ggml_backend_cpu_get_features;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_set_abort_callback") == 0) {
|
||||
return (void *)ggml_backend_cpu_set_abort_callback;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_cpu_numa_init") == 0) {
|
||||
return (void *)ggml_numa_init;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_cpu_is_numa") == 0) {
|
||||
return (void *)ggml_is_numa;
|
||||
}
|
||||
|
||||
// threadpool - TODO: move to ggml-base
|
||||
if (strcmp(name, "ggml_threadpool_new") == 0) {
|
||||
return (void *)ggml_threadpool_new;
|
||||
}
|
||||
if (strcmp(name, "ggml_threadpool_free") == 0) {
|
||||
return (void *)ggml_threadpool_free;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_cpu_set_threadpool") == 0) {
|
||||
return (void *)ggml_backend_cpu_set_threadpool;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
|
||||
@ -655,9 +712,12 @@ ggml_backend_reg_t ggml_backend_cpu_reg(void) {
|
||||
ggml_cpu_init();
|
||||
|
||||
static struct ggml_backend_reg ggml_backend_cpu_reg = {
|
||||
/* .iface = */ ggml_backend_cpu_reg_i,
|
||||
/* .context = */ NULL,
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_cpu_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_reg;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_cpu_reg)
|
||||
|
@ -50,8 +50,7 @@
|
||||
|
||||
#include "sgemm.h"
|
||||
#include "ggml-impl.h"
|
||||
// hack until moved into the CPU backend
|
||||
#include "../ggml-cpu-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-quants.h"
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
@ -46,13 +46,10 @@ if (CUDAToolkit_FOUND)
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
endif()
|
||||
|
||||
add_library(ggml-cuda
|
||||
${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_CUDA}
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-cuda PRIVATE ggml-base)
|
||||
target_include_directories(ggml-cuda PRIVATE . ..)
|
||||
ggml_add_backend_library(ggml-cuda
|
||||
${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_CUDA}
|
||||
)
|
||||
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
|
||||
@ -135,7 +132,7 @@ if (CUDAToolkit_FOUND)
|
||||
|
||||
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
|
||||
get_flags(${CUDA_CCID} ${CUDA_CCVER})
|
||||
ggml_get_flags(${CUDA_CCID} ${CUDA_CCVER})
|
||||
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later
|
||||
endif()
|
||||
|
||||
|
@ -1,57 +1,69 @@
|
||||
#include "common.cuh"
|
||||
#include "argmax.cuh"
|
||||
#include "sum.cuh"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
|
||||
static __global__ void argmax_f32(
|
||||
const float * x, int32_t * dst, const int64_t ncols, const int64_t nrows) {
|
||||
#include "argmax.cuh"
|
||||
#include "common.cuh"
|
||||
#include "sum.cuh"
|
||||
|
||||
int argmax_thread = 0;
|
||||
const int64_t row0 = (int64_t)blockIdx.x*WARP_SIZE;
|
||||
static __global__ void argmax_f32(const float * __restrict__ x, int32_t * __restrict__ dst, const int64_t ncols) {
|
||||
const int64_t row = blockIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int64_t row1 = 0; row1 < WARP_SIZE; ++row1) {
|
||||
const int64_t row = row0 + row1;
|
||||
float maxval = -FLT_MAX;
|
||||
int argmax = -1;
|
||||
const float * rowx = x + row * ncols;
|
||||
|
||||
if (row >= nrows) {
|
||||
break;
|
||||
for (int32_t col = threadIdx.x; col < ncols; col += blockDim.x) {
|
||||
const float val = rowx[col];
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
argmax = col;
|
||||
}
|
||||
|
||||
float maxval = -FLT_MAX;
|
||||
int argmax = -1;
|
||||
|
||||
for (int32_t col = threadIdx.x; col < ncols; col += WARP_SIZE) {
|
||||
const float val = x[row*ncols + col];
|
||||
const int bigger = val > maxval;
|
||||
const int not_bigger = bigger ^ 0x00000001;
|
||||
|
||||
maxval = maxval*not_bigger + val*bigger;
|
||||
argmax = argmax*not_bigger + col*bigger;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, mask, WARP_SIZE);
|
||||
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, mask, WARP_SIZE);
|
||||
const int bigger = val > maxval;
|
||||
const int not_bigger = bigger ^ 0x00000001;
|
||||
|
||||
maxval = maxval*not_bigger + val*bigger;
|
||||
argmax = argmax*not_bigger + col*bigger;
|
||||
}
|
||||
|
||||
const int store = row1 == threadIdx.x;
|
||||
argmax_thread += store*argmax;
|
||||
}
|
||||
|
||||
const int row = row0 + threadIdx.x;
|
||||
|
||||
if (row >= nrows) {
|
||||
return;
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE);
|
||||
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE);
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
argmax = col;
|
||||
}
|
||||
}
|
||||
|
||||
dst[row] = argmax_thread;
|
||||
const int n_warps = blockDim.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
if (n_warps > 1) {
|
||||
constexpr int max_warps = 1024 / WARP_SIZE;
|
||||
__shared__ float shared_maxval[max_warps];
|
||||
__shared__ int shared_argmax[max_warps];
|
||||
if (lane_id == 0) {
|
||||
shared_maxval[warp_id] = maxval;
|
||||
shared_argmax[warp_id] = argmax;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (warp_id == 0) {
|
||||
if (lane_id < n_warps) {
|
||||
maxval = shared_maxval[lane_id];
|
||||
argmax = shared_argmax[lane_id];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE);
|
||||
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE);
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
argmax = col;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (warp_id == 0 && lane_id == 0) {
|
||||
dst[row] = argmax;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@ -70,10 +82,10 @@ void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t num_blocks = (nrows + WARP_SIZE - 1) / WARP_SIZE;
|
||||
|
||||
const dim3 blocks_dim(WARP_SIZE, 1, 1);
|
||||
const int64_t num_blocks = nrows;
|
||||
const int64_t num_threads = std::min<int64_t>(1024, (ne00 + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE);
|
||||
const dim3 blocks_dim(num_threads, 1, 1);
|
||||
const dim3 blocks_num(num_blocks, 1, 1);
|
||||
|
||||
argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00, nrows);
|
||||
argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00);
|
||||
}
|
||||
|
@ -47,9 +47,20 @@
|
||||
#define CC_TURING 750
|
||||
#define CC_AMPERE 800
|
||||
#define CC_OFFSET_AMD 1000000
|
||||
#define CC_RDNA1 (CC_OFFSET_AMD + 1010)
|
||||
#define CC_RDNA2 (CC_OFFSET_AMD + 1030)
|
||||
#define CC_RDNA3 (CC_OFFSET_AMD + 1100)
|
||||
|
||||
// GCN/CNDA, wave size is 64
|
||||
#define CC_GCN4 (CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16
|
||||
#define CC_VEGA (CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue
|
||||
#define CC_VEGA20 (CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a
|
||||
#define CC_CDNA (CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers
|
||||
#define CC_CDNA2 (CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing
|
||||
#define CC_CDNA3 (CC_OFFSET_AMD + 942) // MI300
|
||||
|
||||
// RNDA removes MFMA, dp4a, xnack, acc registers, wave size is 32
|
||||
#define CC_RDNA1 (CC_OFFSET_AMD + 1010) // RX 5000
|
||||
#define CC_RDNA2 (CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a
|
||||
#define CC_RDNA3 (CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA
|
||||
|
||||
#define CC_QY1 210
|
||||
#define CC_QY2 220
|
||||
|
||||
@ -180,8 +191,8 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
||||
return __reduce_add_sync(0xffffffff, x);
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
|
||||
}
|
||||
return x;
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
|
||||
@ -189,17 +200,17 @@ static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
|
||||
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
a.x += __shfl_xor_sync(0xffffffff, a.x, offset, 32);
|
||||
a.y += __shfl_xor_sync(0xffffffff, a.y, offset, 32);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
@ -209,16 +220,16 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
const half2 a_other = __shfl_xor_sync(0xffffffff, a, offset, 32);
|
||||
reinterpret_cast<half&>(a.x) += __low2half(a_other);
|
||||
reinterpret_cast<half&>(a.y) += __high2half(a_other);
|
||||
}
|
||||
return a;
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, offset, 32));
|
||||
}
|
||||
return a;
|
||||
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
@ -231,8 +242,8 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
|
||||
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
|
||||
}
|
||||
return x;
|
||||
}
|
||||
@ -275,8 +286,8 @@ static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const hal
|
||||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
|
||||
#pragma unroll
|
||||
for (int mask = 16; mask > 0; mask >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
|
||||
}
|
||||
return x;
|
||||
#else
|
||||
|
@ -220,7 +220,6 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
||||
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||
}
|
||||
|
@ -206,7 +206,6 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float kqmax_new_j = kqmax_new_arr[j];
|
||||
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||
}
|
||||
|
@ -1107,6 +1107,11 @@ static void ggml_cuda_op_mul_mat_cublas(
|
||||
const half alpha_f16 = 1.0f;
|
||||
const half beta_f16 = 0.0f;
|
||||
|
||||
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
|
||||
if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) {
|
||||
cu_compute_type = CUBLAS_COMPUTE_32F;
|
||||
}
|
||||
|
||||
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
|
||||
CUBLAS_CHECK(
|
||||
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
|
||||
@ -1114,7 +1119,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
||||
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
|
||||
src1_ptr, CUDA_R_16F, ne10,
|
||||
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
|
||||
CUBLAS_COMPUTE_16F,
|
||||
cu_compute_type,
|
||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
|
||||
@ -1607,6 +1612,10 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
||||
cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
|
||||
cudaDataType_t cu_data_type = CUDA_R_16F;
|
||||
|
||||
if (ggml_cuda_info().devices[ctx.device].cc == CC_CDNA) {
|
||||
cu_compute_type = CUBLAS_COMPUTE_32F;
|
||||
}
|
||||
|
||||
// dst strides
|
||||
size_t nbd2 = dst->nb[2];
|
||||
size_t nbd3 = dst->nb[3];
|
||||
@ -3126,6 +3135,61 @@ static ggml_backend_dev_t ggml_backend_cuda_reg_get_device(ggml_backend_reg_t re
|
||||
return ctx->devices[index];
|
||||
}
|
||||
|
||||
static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t reg) {
|
||||
static std::vector<ggml_backend_feature> features = []() {
|
||||
std::vector<ggml_backend_feature> features;
|
||||
#define _STRINGIFY(...) #__VA_ARGS__
|
||||
#define STRINGIFY(...) _STRINGIFY(__VA_ARGS__)
|
||||
|
||||
#ifdef __CUDA_ARCH_LIST__
|
||||
features.push_back({ "ARCHS", STRINGIFY(__CUDA_ARCH_LIST__) });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_FORCE_MMQ
|
||||
features.push_back({ "FORCE_MMQ", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_FORCE_CUBLAS
|
||||
features.push_back({ "FORCE_CUBLAS", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_NO_VMM
|
||||
features.push_back({ "NO_VMM", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_NO_PEER_COPY
|
||||
features.push_back({ "NO_PEER_COPY", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
features.push_back({ "F16", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_USE_GRAPHS
|
||||
features.push_back({ "USE_GRAPHS", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_PEER_MAX_BATCH_SIZE
|
||||
features.push_back({ "PEER_MAX_BATCH_SIZE", STRINGIFY(GGML_CUDA_PEER_MAX_BATCH_SIZE) });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
features.push_back({ "FA_ALL_QUANTS", "1" });
|
||||
#endif
|
||||
|
||||
#undef _STRINGIFY
|
||||
#undef STRINGIFY
|
||||
|
||||
features.push_back({ nullptr, nullptr });
|
||||
|
||||
return features;
|
||||
}();
|
||||
|
||||
return features.data();
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
GGML_UNUSED(reg);
|
||||
if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
|
||||
@ -3137,6 +3201,9 @@ static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, con
|
||||
if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) {
|
||||
return (void *)ggml_backend_cuda_unregister_host_buffer;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_get_features") == 0) {
|
||||
return (void *)ggml_backend_cuda_get_features;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@ -3169,16 +3236,17 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
dev_ctx->description = prop.name;
|
||||
|
||||
ggml_backend_dev_t dev = new ggml_backend_device {
|
||||
/* .interface = */ ggml_backend_cuda_device_interface,
|
||||
/* .reg = */ ®,
|
||||
/* .context = */ dev_ctx
|
||||
/* .iface = */ ggml_backend_cuda_device_interface,
|
||||
/* .reg = */ ®,
|
||||
/* .context = */ dev_ctx
|
||||
};
|
||||
ctx->devices.push_back(dev);
|
||||
}
|
||||
|
||||
reg = ggml_backend_reg {
|
||||
/* .interface = */ ggml_backend_cuda_reg_interface,
|
||||
/* .context = */ ctx
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_cuda_reg_interface,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
}
|
||||
|
||||
@ -3209,3 +3277,5 @@ ggml_backend_t ggml_backend_cuda_init(int device) {
|
||||
|
||||
return cuda_backend;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_cuda_reg)
|
||||
|
@ -1,155 +0,0 @@
|
||||
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "CUDA Toolkit found")
|
||||
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# native == GPUs available at build time
|
||||
# 52 == Maxwell, lowest CUDA 12 standard
|
||||
# 60 == P100, FP16 CUDA intrinsics
|
||||
# 61 == Pascal, __dp4a instruction (per-byte integer dot product)
|
||||
# 70 == V100, FP16 tensor cores
|
||||
# 75 == Turing, int8 tensor cores
|
||||
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52;61;70;75")
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
file(GLOB GGML_HEADERS_CUDA "*.cuh")
|
||||
list(APPEND GGML_HEADERS_CUDA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_CUDA "*.cu")
|
||||
file(GLOB SRCS "template-instances/fattn-wmma*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "template-instances/fattn-vec*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||
else()
|
||||
file(GLOB SRCS "template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/fattn-vec*f16-f16.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
endif()
|
||||
|
||||
add_library(ggml-cuda
|
||||
${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_CUDA}
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-cuda PRIVATE ggml-base)
|
||||
target_include_directories(ggml-cuda PRIVATE . ..)
|
||||
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
|
||||
if (GGML_CUDA_GRAPHS)
|
||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_CUBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
add_compile_definitions(GGML_CUDA_NO_VMM)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
if (WIN32)
|
||||
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
|
||||
else ()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
endif()
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
# No VMM requested, no need to link directly with the cuda driver lib (libcuda.so)
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cuda_driver)
|
||||
endif()
|
||||
|
||||
set(CUDA_CXX_FLAGS "")
|
||||
|
||||
set(CUDA_FLAGS -use_fast_math)
|
||||
|
||||
if (GGML_FATAL_WARNINGS)
|
||||
list(APPEND CUDA_FLAGS -Werror all-warnings)
|
||||
endif()
|
||||
|
||||
if (GGML_ALL_WARNINGS AND NOT MSVC)
|
||||
set(NVCC_CMD ${CMAKE_CUDA_COMPILER} .c)
|
||||
if (NOT CMAKE_CUDA_HOST_COMPILER STREQUAL "")
|
||||
list(APPEND NVCC_CMD -ccbin ${CMAKE_CUDA_HOST_COMPILER})
|
||||
endif()
|
||||
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler --version
|
||||
OUTPUT_VARIABLE CUDA_CCFULLVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
|
||||
if (NOT CUDA_CCFULLVER MATCHES clang)
|
||||
set(CUDA_CCID "GNU")
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
|
||||
OUTPUT_VARIABLE CUDA_CCVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
else()
|
||||
if (CUDA_CCFULLVER MATCHES Apple)
|
||||
set(CUDA_CCID "AppleClang")
|
||||
else()
|
||||
set(CUDA_CCID "Clang")
|
||||
endif()
|
||||
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
|
||||
endif()
|
||||
|
||||
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
|
||||
get_flags(${CUDA_CCID} ${CUDA_CCVER})
|
||||
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
list(APPEND CUDA_CXX_FLAGS -Wno-pedantic)
|
||||
endif()
|
||||
|
||||
list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument
|
||||
|
||||
if (NOT CUDA_CXX_FLAGS_JOINED STREQUAL "")
|
||||
list(APPEND CUDA_FLAGS -Xcompiler ${CUDA_CXX_FLAGS_JOINED})
|
||||
endif()
|
||||
|
||||
target_compile_options(ggml-cuda PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:${CUDA_FLAGS}>")
|
||||
else()
|
||||
message(FATAL_ERROR "CUDA Toolkit not found")
|
||||
endif()
|
@ -148,5 +148,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
return cc < CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
return cc < CC_RDNA3 || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
return (cc < CC_RDNA3 && cc != CC_CDNA && cc != CC_VEGA20) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
@ -2570,9 +2570,9 @@ static __device__ void mul_mat_q_process_tile(
|
||||
|
||||
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
|
||||
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
|
||||
#if defined(RDNA3) || defined(RDNA2)
|
||||
#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 2)
|
||||
#endif // defined(RDNA3) || defined(RDNA2)
|
||||
#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
|
||||
#else
|
||||
#if __CUDA_ARCH__ >= CC_VOLTA
|
||||
__launch_bounds__(WARP_SIZE*nwarps, 1)
|
||||
|
@ -142,7 +142,7 @@ static void mul_mat_vec_q_cuda(
|
||||
int64_t nwarps = 1;
|
||||
int64_t rows_per_cuda_block = 1;
|
||||
|
||||
if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
|
||||
if (ggml_cuda_info().devices[id].cc < CC_CDNA || ggml_cuda_info().devices[id].cc == CC_RDNA1) { // NVIDIA and AMD older than RDNA2 but not CDNA
|
||||
switch(ncols_y) {
|
||||
case 1:
|
||||
nwarps = 4;
|
||||
|
@ -69,8 +69,8 @@ static __global__ void quantize_mmq_q8_1(
|
||||
|
||||
// Exchange max. abs. value between vals_per_scale/4 threads.
|
||||
#pragma unroll
|
||||
for (int mask = vals_per_scale/8; mask > 0; mask >>= 1) {
|
||||
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, WARP_SIZE));
|
||||
for (int offset = vals_per_scale/8; offset > 0; offset >>= 1) {
|
||||
amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, offset, WARP_SIZE));
|
||||
}
|
||||
|
||||
float sum;
|
||||
@ -79,8 +79,8 @@ static __global__ void quantize_mmq_q8_1(
|
||||
|
||||
// Exchange calculate sum across vals_per_sum/4 threads.
|
||||
#pragma unroll
|
||||
for (int mask = vals_per_sum/8; mask > 0; mask >>= 1) {
|
||||
sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, WARP_SIZE);
|
||||
for (int offset = vals_per_sum/8; offset > 0; offset >>= 1) {
|
||||
sum += __shfl_xor_sync(0xFFFFFFFF, sum, offset, WARP_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,89 +0,0 @@
|
||||
#include "common.cuh"
|
||||
#include "rwkv-wkv.cuh"
|
||||
|
||||
static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) {
|
||||
const int tid = threadIdx.x;
|
||||
const int bid = blockIdx.x;
|
||||
|
||||
const int head_size = CUDA_WKV_BLOCK_SIZE;
|
||||
const int batch_i = bid / H;
|
||||
const int head_i = bid % H;
|
||||
const int state_size = C * head_size;
|
||||
const int n_seq_tokens = T / B;
|
||||
|
||||
float state[head_size];
|
||||
__shared__ float _k[head_size], _r[head_size], _tf[head_size], _td[head_size];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < head_size; i++) {
|
||||
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
_tf[tid] = tf[head_i * head_size + tid];
|
||||
__syncthreads();
|
||||
|
||||
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
|
||||
__syncthreads();
|
||||
_k[tid] = k[t];
|
||||
_r[tid] = r[t];
|
||||
_td[tid] = td[t];
|
||||
__syncthreads();
|
||||
|
||||
const float _v = v[t];
|
||||
float y = 0;
|
||||
for (int j = 0; j < head_size; j += 4) {
|
||||
const float4& k = (float4&)(_k[j]);
|
||||
const float4& r = (float4&)(_r[j]);
|
||||
const float4& tf = (float4&)(_tf[j]);
|
||||
const float4& td = (float4&)(_td[j]);
|
||||
float4& s = (float4&)(state[j]);
|
||||
float4 kv;
|
||||
|
||||
kv.x = k.x * _v;
|
||||
kv.y = k.y * _v;
|
||||
kv.z = k.z * _v;
|
||||
kv.w = k.w * _v;
|
||||
|
||||
y += r.x * (tf.x * kv.x + s.x);
|
||||
y += r.y * (tf.y * kv.y + s.y);
|
||||
y += r.z * (tf.z * kv.z + s.z);
|
||||
y += r.w * (tf.w * kv.w + s.w);
|
||||
|
||||
s.x = s.x * td.x + kv.x;
|
||||
s.y = s.y * td.y + kv.y;
|
||||
s.z = s.z * td.z + kv.z;
|
||||
s.w = s.w * td.w + kv.w;
|
||||
}
|
||||
dst[t] = y;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < head_size; i++) {
|
||||
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const float * k_d = (const float *)dst->src[0]->data;
|
||||
const float * v_d = (const float *)dst->src[1]->data;
|
||||
const float * r_d = (const float *)dst->src[2]->data;
|
||||
const float * tf_d = (const float *)dst->src[3]->data;
|
||||
const float * td_d = (const float *)dst->src[4]->data;
|
||||
const float * s_d = (const float *)dst->src[5]->data;
|
||||
|
||||
const int64_t B = dst->src[5]->ne[1];
|
||||
const int64_t T = dst->src[0]->ne[3];
|
||||
const int64_t C = dst->ne[0];
|
||||
const int64_t H = dst->src[0]->ne[2];
|
||||
|
||||
float * dst_d = (float *)dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(C % H == 0);
|
||||
GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE);
|
||||
|
||||
rwkv_wkv_f32<<<B * H, C / H, 0, stream>>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d);
|
||||
}
|
@ -1,5 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_WKV_BLOCK_SIZE 64
|
||||
|
||||
void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
8
ggml/src/ggml-cuda/vendors/hip.h
vendored
8
ggml/src/ggml-cuda/vendors/hip.h
vendored
@ -95,6 +95,14 @@
|
||||
|
||||
#define __CUDA_ARCH__ 1300
|
||||
|
||||
#if defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__)
|
||||
#define GCN
|
||||
#endif
|
||||
|
||||
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx942__)
|
||||
#define CDNA
|
||||
#endif
|
||||
|
||||
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
|
||||
defined(__gfx1150__) || defined(__gfx1151__)
|
||||
#define RDNA3
|
||||
|
@ -64,12 +64,10 @@ else()
|
||||
list(APPEND GGML_SOURCES_ROCM ${SRCS})
|
||||
endif()
|
||||
|
||||
add_library(ggml-hip
|
||||
${GGML_HEADERS_ROCM}
|
||||
${GGML_SOURCES_ROCM})
|
||||
|
||||
target_link_libraries(ggml-hip PRIVATE ggml-base)
|
||||
target_include_directories(ggml-hip PRIVATE . ..)
|
||||
ggml_add_backend_library(ggml-hip
|
||||
${GGML_HEADERS_ROCM}
|
||||
${GGML_SOURCES_ROCM}
|
||||
)
|
||||
|
||||
# TODO: do not use CUDA definitions for HIP
|
||||
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
||||
|
@ -14,7 +14,7 @@
|
||||
#include <arm_sve.h>
|
||||
#endif // __ARM_FEATURE_SVE
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
#if defined(__ARM_NEON) && !defined(__CUDACC__)
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
||||
@ -30,11 +30,13 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
#ifndef MIN
|
||||
# define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#endif
|
||||
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#ifndef MAX
|
||||
# define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#endif
|
||||
|
||||
// required for mmap as gguf only guarantees 32-byte alignment
|
||||
#define TENSOR_ALIGNMENT 32
|
||||
@ -295,6 +297,9 @@ struct ggml_cgraph {
|
||||
enum ggml_cgraph_eval_order order;
|
||||
};
|
||||
|
||||
// returns a slice of cgraph with nodes [i0, i1)
|
||||
// the slice does not have leafs or gradients
|
||||
// if you need the gradients, get them from the original graph
|
||||
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
|
||||
// Memory allocation
|
||||
@ -305,14 +310,14 @@ void ggml_aligned_free(void * ptr, size_t size);
|
||||
// FP16 to FP32 conversion
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
#ifdef _MSC_VER
|
||||
#if defined(_MSC_VER) || (defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11)
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
#else
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
#if defined(__ARM_NEON) && !defined(_MSC_VER) && !(defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11)
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
||||
|
||||
|
@ -6,13 +6,13 @@ if (NOT glslc_executable)
|
||||
message(FATAL_ERROR "glslc not found")
|
||||
endif()
|
||||
|
||||
add_library(ggml-kompute
|
||||
ggml-kompute.cpp
|
||||
../../include/ggml-kompute.h
|
||||
)
|
||||
ggml_add_backend_library(ggml-kompute
|
||||
ggml-kompute.cpp
|
||||
../../include/ggml-kompute.h
|
||||
)
|
||||
|
||||
target_link_libraries(ggml-kompute PRIVATE ggml-base kompute)
|
||||
target_include_directories(ggml-kompute PRIVATE . .. ${CMAKE_CURRENT_BINARY_DIR})
|
||||
target_include_directories(ggml-kompute PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
add_compile_definitions(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1)
|
||||
|
||||
@ -105,8 +105,10 @@ if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt")
|
||||
kompute-shaders/op_getrows_q4_0.comp
|
||||
kompute-shaders/op_getrows_q4_1.comp
|
||||
kompute-shaders/op_getrows_q6_k.comp
|
||||
kompute-shaders/op_rope_f16.comp
|
||||
kompute-shaders/op_rope_f32.comp
|
||||
kompute-shaders/op_rope_norm_f16.comp
|
||||
kompute-shaders/op_rope_norm_f32.comp
|
||||
kompute-shaders/op_rope_neox_f16.comp
|
||||
kompute-shaders/op_rope_neox_f32.comp
|
||||
kompute-shaders/op_cpy_f16_f16.comp
|
||||
kompute-shaders/op_cpy_f16_f32.comp
|
||||
kompute-shaders/op_cpy_f32_f16.comp
|
||||
@ -139,8 +141,10 @@ if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt")
|
||||
shaderop_getrows_q4_0.h
|
||||
shaderop_getrows_q4_1.h
|
||||
shaderop_getrows_q6_k.h
|
||||
shaderop_rope_f16.h
|
||||
shaderop_rope_f32.h
|
||||
shaderop_rope_norm_f16.h
|
||||
shaderop_rope_norm_f32.h
|
||||
shaderop_rope_neox_f16.h
|
||||
shaderop_rope_neox_f32.h
|
||||
shaderop_cpy_f16_f16.h
|
||||
shaderop_cpy_f16_f32.h
|
||||
shaderop_cpy_f32_f16.h
|
||||
|
@ -28,8 +28,10 @@
|
||||
#include "shaderop_getrows_q4_0.h"
|
||||
#include "shaderop_getrows_q4_1.h"
|
||||
#include "shaderop_getrows_q6_k.h"
|
||||
#include "shaderop_rope_f16.h"
|
||||
#include "shaderop_rope_f32.h"
|
||||
#include "shaderop_rope_norm_f16.h"
|
||||
#include "shaderop_rope_norm_f32.h"
|
||||
#include "shaderop_rope_neox_f16.h"
|
||||
#include "shaderop_rope_neox_f32.h"
|
||||
#include "shaderop_cpy_f16_f16.h"
|
||||
#include "shaderop_cpy_f16_f32.h"
|
||||
#include "shaderop_cpy_f32_f16.h"
|
||||
@ -345,7 +347,7 @@ void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t
|
||||
std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
|
||||
vk::DescriptorPoolSize(
|
||||
vk::DescriptorType::eStorageBuffer,
|
||||
3 * size // Descriptor count is number of possible tensors to pass into an algorithm
|
||||
4 * size // Descriptor count is number of possible tensors to pass into an algorithm
|
||||
)
|
||||
};
|
||||
|
||||
@ -788,7 +790,8 @@ static void ggml_vk_soft_max(
|
||||
const std::shared_ptr<kp::Tensor>& out,
|
||||
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
||||
int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
|
||||
float scale
|
||||
float scale, float max_bias, float m0, float m1,
|
||||
uint32_t n_head_log2
|
||||
) {
|
||||
const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
|
||||
kp::shader_data::op_softmax_comp_spv_len);
|
||||
@ -796,12 +799,14 @@ static void ggml_vk_soft_max(
|
||||
struct PushConstants {
|
||||
uint32_t inAOff, inBOff, outOff;
|
||||
int32_t ne00, ne01, ne02;
|
||||
float scale;
|
||||
float scale, max_bias, m0, m1;
|
||||
uint32_t n_head_log2;
|
||||
int32_t mask;
|
||||
} pushConsts {
|
||||
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
||||
ne00, ne01, ne02,
|
||||
scale,
|
||||
scale, max_bias, m0, m1,
|
||||
n_head_log2,
|
||||
bool(inB)
|
||||
};
|
||||
|
||||
@ -911,9 +916,9 @@ static void ggml_vk_mul_mat_f16(
|
||||
const std::shared_ptr<kp::Tensor>& out,
|
||||
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
||||
int32_t ne00, int32_t ne01, int32_t ne02,
|
||||
uint32_t nb00, uint32_t nb01, uint32_t nb02,
|
||||
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
||||
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
||||
uint32_t nb10, uint32_t nb11, uint32_t nb12,
|
||||
uint32_t nb10, uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
||||
int32_t ne0, int32_t ne1,
|
||||
uint32_t r2, uint32_t r3
|
||||
) {
|
||||
@ -923,17 +928,17 @@ static void ggml_vk_mul_mat_f16(
|
||||
struct PushConstants {
|
||||
uint32_t inAOff, inBOff, outOff;
|
||||
int32_t ne00, ne01, ne02;
|
||||
uint32_t nb00, nb01, nb02;
|
||||
uint32_t nb00, nb01, nb02, nb03;
|
||||
int32_t ne10, ne11, ne12;
|
||||
uint32_t nb10, nb11, nb12;
|
||||
uint32_t nb10, nb11, nb12, nb13;
|
||||
int32_t ne0, ne1;
|
||||
uint32_t r2, r3;
|
||||
} pushConsts {
|
||||
safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
||||
ne00, ne01, ne02,
|
||||
nb00, nb01, nb02,
|
||||
nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12,
|
||||
nb10, nb11, nb12,
|
||||
nb10, nb11, nb12, nb13,
|
||||
ne0, ne1,
|
||||
r2, r3
|
||||
};
|
||||
@ -1013,6 +1018,8 @@ static void ggml_vk_mul_mat_impl(
|
||||
int32_t ne00, int32_t ne01, int32_t ne02,
|
||||
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
||||
int32_t ne0, int32_t ne1,
|
||||
uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
||||
uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
||||
uint32_t r2, uint32_t r3
|
||||
) {
|
||||
struct PushConstants {
|
||||
@ -1020,19 +1027,23 @@ static void ggml_vk_mul_mat_impl(
|
||||
int32_t ne00, ne01, ne02;
|
||||
int32_t ne10, ne12;
|
||||
int32_t ne0, ne1;
|
||||
uint32_t nb01, nb02, nb03;
|
||||
uint32_t nb11, nb12, nb13;
|
||||
uint32_t r2, r3;
|
||||
} pushConsts {
|
||||
safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
||||
ne00, ne01, ne02,
|
||||
ne10, ne12,
|
||||
ne0, ne1,
|
||||
nb01, nb02, nb03,
|
||||
nb11, nb12, nb13,
|
||||
r2, r3
|
||||
};
|
||||
|
||||
auto name = std::string(__func__) + "_" + suffix;
|
||||
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
||||
if (!komputeManager()->hasAlgorithm(name)) {
|
||||
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
|
||||
const uint32_t local_x = (ggml_vk_current_device().subgroupSize * 2) / 8;
|
||||
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
|
||||
} else {
|
||||
s_algo = komputeManager()->getAlgorithm(name);
|
||||
@ -1074,19 +1085,26 @@ static void ggml_vk_mul_mat_q4_k(
|
||||
const std::shared_ptr<kp::Tensor>& inB,
|
||||
const std::shared_ptr<kp::Tensor>& out,
|
||||
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
||||
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne10,
|
||||
int32_t ne11, int32_t ne12, int32_t ne13, int32_t ne0,
|
||||
int32_t ne1, int32_t r2, int32_t r3
|
||||
int32_t ne00, int32_t ne01, int32_t ne02,
|
||||
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
||||
int32_t ne0, int32_t ne1,
|
||||
uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
||||
uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
||||
uint32_t r2, uint32_t r3
|
||||
) {
|
||||
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_k_comp_spv,
|
||||
kp::shader_data::op_mul_mat_q4_k_comp_spv_len);
|
||||
|
||||
struct PushConstants {
|
||||
uint32_t inAOff, inBOff, outOff;
|
||||
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12, r2, r3;
|
||||
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12;
|
||||
uint32_t nb01, nb02, nb03, nb11, nb12, nb13;
|
||||
uint32_t r2, r3;
|
||||
} pushConsts {
|
||||
0, 0, 0,
|
||||
ne00, ne10, ne0, ne1, ne01, ne02, ne12, r2, r3
|
||||
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
||||
ne00, ne10, ne0, ne1, ne01, ne02, ne12,
|
||||
nb01, nb02, nb03, nb11, nb12, nb13,
|
||||
r2, r3
|
||||
};
|
||||
|
||||
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
||||
@ -1108,28 +1126,37 @@ static void ggml_vk_mul_mat_q6_k(
|
||||
const std::shared_ptr<kp::Tensor>& inB,
|
||||
const std::shared_ptr<kp::Tensor>& out,
|
||||
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
||||
int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1,
|
||||
int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02
|
||||
int32_t ne00, int32_t ne01, int32_t ne02,
|
||||
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
||||
int32_t ne0, int32_t ne1,
|
||||
uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
||||
uint32_t nb11, uint32_t nb12, uint32_t nb13,
|
||||
uint32_t r2, uint32_t r3
|
||||
) {
|
||||
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
|
||||
kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
|
||||
|
||||
struct PushConstants {
|
||||
uint32_t inAOff, inBOff, outOff;
|
||||
int32_t ne00, ne10, ne0, ne1, ne01, gqa;
|
||||
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12;
|
||||
uint32_t nb01, nb02, nb03, nb11, nb12, nb13;
|
||||
uint32_t r2, r3;
|
||||
} pushConsts {
|
||||
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
||||
ne00, ne10, ne0, ne1, ne01, ne12/ne02
|
||||
ne00, ne10, ne0, ne1, ne01, ne02, ne12,
|
||||
nb01, nb02, nb03, nb11, nb12, nb13,
|
||||
r2, r3
|
||||
};
|
||||
|
||||
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
||||
if (!komputeManager()->hasAlgorithm(__func__)) {
|
||||
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
|
||||
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts});
|
||||
const uint32_t local_x = 2;
|
||||
const uint32_t local_y = ggml_vk_current_device().subgroupSize;
|
||||
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)*unsigned(ne13)}, {local_x, local_y}, {pushConsts});
|
||||
} else {
|
||||
s_algo = komputeManager()->getAlgorithm(__func__);
|
||||
s_algo->setTensors({inA, inB, out});
|
||||
s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)});
|
||||
s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)*unsigned(ne13)});
|
||||
s_algo->setPushConstants<PushConstants>({pushConsts});
|
||||
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
||||
}
|
||||
@ -1217,10 +1244,11 @@ static void ggml_vk_rope(
|
||||
kp::Sequence& seq,
|
||||
const std::shared_ptr<kp::Tensor>& inA,
|
||||
const std::shared_ptr<kp::Tensor>& inB,
|
||||
const std::shared_ptr<kp::Tensor>& inC,
|
||||
const std::shared_ptr<kp::Tensor>& out,
|
||||
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
||||
uint32_t inAOff, uint32_t inBOff, uint32_t inCOff, uint32_t outOff,
|
||||
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig,
|
||||
float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
|
||||
float freq_base, float freq_scale, bool has_freq_factors, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
|
||||
int32_t ne01, int32_t ne02, int32_t ne03,
|
||||
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
||||
int32_t ne0,
|
||||
@ -1228,11 +1256,17 @@ static void ggml_vk_rope(
|
||||
) {
|
||||
GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
|
||||
|
||||
static const auto spirv_f16 = getSpirvShader(
|
||||
kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len
|
||||
static const auto spirv_norm_f16 = getSpirvShader(
|
||||
kp::shader_data::op_rope_norm_f16_comp_spv, kp::shader_data::op_rope_norm_f16_comp_spv_len
|
||||
);
|
||||
static const auto spirv_f32 = getSpirvShader(
|
||||
kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len
|
||||
static const auto spirv_norm_f32 = getSpirvShader(
|
||||
kp::shader_data::op_rope_norm_f32_comp_spv, kp::shader_data::op_rope_norm_f32_comp_spv_len
|
||||
);
|
||||
static const auto spirv_neox_f16 = getSpirvShader(
|
||||
kp::shader_data::op_rope_neox_f16_comp_spv, kp::shader_data::op_rope_neox_f16_comp_spv_len
|
||||
);
|
||||
static const auto spirv_neox_f32 = getSpirvShader(
|
||||
kp::shader_data::op_rope_neox_f32_comp_spv, kp::shader_data::op_rope_neox_f32_comp_spv_len
|
||||
);
|
||||
|
||||
int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
|
||||
@ -1247,32 +1281,40 @@ static void ggml_vk_rope(
|
||||
GGML_ASSERT(nb0 % type_size == 0);
|
||||
|
||||
struct PushConstants {
|
||||
uint32_t inAOff, inBOff, outOff;
|
||||
uint32_t inAOff, inBOff, inCOff, outOff;
|
||||
int32_t n_dims, mode, n_ctx_orig;
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
float freq_base, freq_scale;
|
||||
bool has_freq_factors;
|
||||
float ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
uint32_t nb00, nb01, nb02, nb03;
|
||||
int32_t ne0;
|
||||
uint32_t nb0, nb1, nb2, nb3;
|
||||
} pushConsts {
|
||||
safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
|
||||
safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(inCOff, type_size), safe_divide(outOff, type_size),
|
||||
n_dims, mode, n_ctx_orig,
|
||||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
|
||||
freq_base, freq_scale,
|
||||
has_freq_factors,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow,
|
||||
nb00, nb01, nb02, nb03,
|
||||
ne0,
|
||||
nb0, nb1, nb2, nb3
|
||||
};
|
||||
|
||||
auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
|
||||
auto & inC_ = inC ? inC : inA;
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_f16 = src0t == GGML_TYPE_F16;
|
||||
|
||||
auto name = std::string(__func__) + (is_neox ? "_neox" : "_norm") + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
|
||||
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
||||
if (!komputeManager()->hasAlgorithm(name)) {
|
||||
auto & spirv = is_neox ? is_f16 ? spirv_neox_f16 : spirv_neox_f32 : is_f16 ? spirv_norm_f16 : spirv_norm_f32;
|
||||
s_algo = komputeManager()->algorithm<float, PushConstants>(
|
||||
name, s_kompute_context->pool.get(), {inA, inB, out},
|
||||
src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32,
|
||||
name, s_kompute_context->pool.get(), {inA, inB, inC_, out}, spirv,
|
||||
{unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
|
||||
);
|
||||
} else {
|
||||
s_algo = komputeManager()->getAlgorithm(name);
|
||||
s_algo->setTensors({inA, inB, out});
|
||||
s_algo->setTensors({inA, inB, inC_, out});
|
||||
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
||||
s_algo->setPushConstants<PushConstants>({pushConsts});
|
||||
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
||||
@ -1351,11 +1393,15 @@ static void ggml_vk_cpy_f16_f32(Args&&... args) {
|
||||
}
|
||||
|
||||
static bool ggml_backend_kompute_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
int64_t n = ggml_nelements(op);
|
||||
switch (op->op) {
|
||||
case GGML_OP_UNARY:
|
||||
if (n % 4 != 0) return false;
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_GELU:
|
||||
if (n % 8 != 0) return false;
|
||||
// fall through
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
default:
|
||||
@ -1413,8 +1459,8 @@ static bool ggml_backend_kompute_device_supports_op(ggml_backend_dev_t dev, cons
|
||||
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_Q6_K:
|
||||
return op->ne[3] == 1;
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q4_0:
|
||||
@ -1515,9 +1561,11 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
||||
const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
|
||||
uint32_t off_src0 = 0;
|
||||
uint32_t off_src1 = 0;
|
||||
uint32_t off_src2 = 0;
|
||||
uint32_t off_dst = 0;
|
||||
const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
|
||||
const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
|
||||
const std::shared_ptr<kp::Tensor>& id_src2 = src2 ? ggml_vk_get_tensor(src2, &off_src2) : nullTensor;
|
||||
const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor;
|
||||
|
||||
switch (dst->op) {
|
||||
@ -1593,11 +1641,16 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
||||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
|
||||
GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32);
|
||||
|
||||
#pragma message("TODO: add ALiBi support")
|
||||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192")
|
||||
GGML_ASSERT(max_bias == 0.0f);
|
||||
const int64_t nrows_x = ggml_nrows(src0);
|
||||
const int64_t nrows_y = src0->ne[1];
|
||||
|
||||
ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
|
||||
const uint32_t n_head = nrows_x/nrows_y;
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
|
||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale, max_bias, m0, m1, n_head_log2);
|
||||
} break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
{
|
||||
@ -1649,38 +1702,44 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
||||
case GGML_TYPE_F16:
|
||||
ggml_vk_mul_mat_f16(
|
||||
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
||||
ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12,
|
||||
ne00, ne01, ne02, nb00, nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13, nb10, nb11, nb12, nb13,
|
||||
ne0, ne1, r2, r3
|
||||
);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
ggml_vk_mul_mat_q8_0(
|
||||
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
||||
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
|
||||
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
||||
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
||||
);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
ggml_vk_mul_mat_q4_0(
|
||||
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
||||
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
|
||||
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
||||
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
||||
);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
ggml_vk_mul_mat_q4_1(
|
||||
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
||||
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
|
||||
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
||||
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
||||
);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
ggml_vk_mul_mat_q4_k(
|
||||
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
||||
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, ne12/ne02, ne13/ne03
|
||||
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
||||
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
||||
);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
ggml_vk_mul_mat_q6_k(
|
||||
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
||||
ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02
|
||||
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1,
|
||||
nb01, nb02, nb03, nb11, nb12, nb13, r2, r3
|
||||
);
|
||||
break;
|
||||
default: {
|
||||
@ -1709,13 +1768,6 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
||||
} break;
|
||||
case GGML_OP_ROPE:
|
||||
{
|
||||
#pragma message("TODO: implement phi3 frequency factors support")
|
||||
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
|
||||
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
|
||||
|
||||
#pragma message("TODO: update rope NORM mode to match NEOX mode")
|
||||
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
|
||||
|
||||
GGML_ASSERT(ne10 == ne02);
|
||||
GGML_ASSERT(src0t == dstt);
|
||||
// const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
@ -1724,6 +1776,8 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
||||
// skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
|
||||
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
||||
|
||||
const bool has_freq_factors = dst->src[2] != nullptr;
|
||||
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||
@ -1732,8 +1786,8 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
ggml_vk_rope(
|
||||
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_ctx_orig,
|
||||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
|
||||
seq, id_src0, id_src1, id_src2, id_dst, off_src0, off_src1, off_src2, off_dst, src0t, n_dims, mode, n_ctx_orig,
|
||||
freq_base, freq_scale, has_freq_factors, ext_factor, attn_factor, beta_fast, beta_slow,
|
||||
ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
|
||||
);
|
||||
} break;
|
||||
@ -2176,9 +2230,12 @@ static const struct ggml_backend_reg_i ggml_backend_kompute_reg_i = {
|
||||
|
||||
ggml_backend_reg_t ggml_backend_kompute_reg() {
|
||||
static ggml_backend_reg reg = {
|
||||
/* .iface = */ ggml_backend_kompute_reg_i,
|
||||
/* .context = */ nullptr,
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_kompute_reg_i,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return ®
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_kompute_reg)
|
||||
|
@ -3,6 +3,7 @@
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int64: require
|
||||
#extension GL_EXT_control_flow_attributes: enable
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
#extension GL_EXT_debug_printf : enable
|
||||
|
@ -20,12 +20,14 @@ layout (push_constant) uniform parameter {
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
uint nb10;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
uint nb13;
|
||||
int ne0;
|
||||
int ne1;
|
||||
uint r2;
|
||||
@ -42,7 +44,7 @@ void main() {
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = r0*pcs.nb01 + (i12/pcs.r2)*pcs.nb02 + (i13/pcs.r3)*pcs.nb02*pcs.ne02;
|
||||
const uint offset0 = r0*pcs.nb01 + (i12/pcs.r2)*pcs.nb02 + (i13/pcs.r3)*pcs.nb03;
|
||||
|
||||
const uint x = offset0 / 2 + pcs.inAOff; // Based from inA
|
||||
|
||||
@ -52,7 +54,7 @@ void main() {
|
||||
break;
|
||||
}
|
||||
|
||||
const uint y = (r1*pcs.nb11 + im*pcs.nb12) / 4 + pcs.inBOff; // Based from inB
|
||||
const uint y = (r1*pcs.nb11 + i12*pcs.nb12 + i13*pcs.nb13) / 4 + pcs.inBOff;
|
||||
|
||||
float sumf = 0;
|
||||
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
|
||||
|
@ -24,8 +24,14 @@ layout (push_constant) uniform parameter {
|
||||
int ne01;
|
||||
int ne02;
|
||||
int ne12;
|
||||
int r2;
|
||||
int r3;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
uint nb13;
|
||||
uint r2;
|
||||
uint r3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
@ -50,10 +56,11 @@ void main() {
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
const uint offset0 = first_row*(pcs.nb01/SIZE_OF_BLOCK) + (i12/pcs.r2)*(pcs.nb02/SIZE_OF_BLOCK) + (i13/pcs.r3)*(pcs.nb03/SIZE_OF_BLOCK);
|
||||
const uint offset1 = r1*pcs.nb11 + (i12 )*pcs.nb12 + (i13 )*pcs.nb13;
|
||||
|
||||
const uint xblk = ib_row + offset0 + pcs.inAOff;
|
||||
const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff;
|
||||
const uint xblk = offset0 + pcs.inAOff;
|
||||
const uint y = (offset1 / 4) + pcs.inBOff;
|
||||
|
||||
float yl[16];
|
||||
float yh[16];
|
||||
@ -74,7 +81,7 @@ void main() {
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
uint row_idx = row * nb;
|
||||
uint row_idx = row * (pcs.nb01 / SIZE_OF_BLOCK);
|
||||
|
||||
uint16_t sc_0 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 0);
|
||||
uint16_t sc_1 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 2);
|
||||
|
@ -21,7 +21,16 @@ layout (push_constant) uniform parameter {
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne01;
|
||||
int gqa;
|
||||
int ne02;
|
||||
int ne12;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
uint nb13;
|
||||
uint r2;
|
||||
uint r3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
@ -34,12 +43,15 @@ void main() {
|
||||
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint r2 = gl_WorkGroupID.z;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint row = (r0 * gl_NumSubgroups + gl_SubgroupID);
|
||||
const uint offset0 = r2/pcs.gqa*(nb*pcs.ne0);
|
||||
const uint x = row * nb + offset0; // Based from inA without base offset
|
||||
const uint yy = r1*pcs.ne10 + r2*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint x = row*(pcs.nb01/SIZE_OF_BLOCK) + (i12/pcs.r2)*(pcs.nb02/SIZE_OF_BLOCK) + (i13/pcs.r3)*(pcs.nb03/SIZE_OF_BLOCK);
|
||||
const uint yy = (r1*pcs.nb11 + i12*pcs.nb12 + i13*pcs.nb13) / 4 + pcs.inBOff;
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
@ -89,6 +101,6 @@ void main() {
|
||||
|
||||
const float tot = subgroupAdd(sumf);
|
||||
if (subgroupElect()) {
|
||||
out_[r1*pcs.ne0 + r2*pcs.ne0*pcs.ne1 + row + pcs.outOff] = tot;
|
||||
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + row + pcs.outOff] = tot;
|
||||
}
|
||||
}
|
||||
|
@ -14,10 +14,15 @@ void main() {
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
// pointers to src0 rows
|
||||
uint ax[N_ROWS];
|
||||
for (int row = 0; row < N_ROWS; ++row) {
|
||||
const uint offset0 = (first_row + row)*(pcs.nb01/SIZE_OF_BLOCK) + (i12/pcs.r2)*(pcs.nb02/SIZE_OF_BLOCK) + (i13/pcs.r3)*(pcs.nb03/SIZE_OF_BLOCK);
|
||||
|
||||
const uint x = offset0; // Based from inA without base offset
|
||||
const uint y = r1*uint(pcs.ne10)+im*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
|
||||
ax[row] = offset0 + pcs.inAOff;
|
||||
}
|
||||
|
||||
const uint y = (r1*pcs.nb11 + i12*pcs.nb12 + i13*pcs.nb13) / 4 + pcs.inBOff;
|
||||
|
||||
float sumf[N_ROWS] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
@ -32,8 +37,7 @@ void main() {
|
||||
|
||||
for (uint ib = ix; ib < nb; ib += 16) {
|
||||
for (int row = 0; row < N_ROWS; row++) {
|
||||
const uint block_index = x + ib + row * nb;
|
||||
sumf[row] += block_q_n_dot_y(block_index, yb, il);
|
||||
sumf[row] += block_q_n_dot_y(ax[row] + ib, yb, il);
|
||||
}
|
||||
|
||||
yb += BLOCKS_IN_QUANT * 16;
|
||||
|
@ -1,5 +1,5 @@
|
||||
layout(local_size_x_id = 0) in;
|
||||
layout(local_size_y = 1) in;
|
||||
layout(local_size_y = 8) in;
|
||||
layout(local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
@ -17,6 +17,12 @@ layout (push_constant) uniform parameter {
|
||||
int ne12;
|
||||
int ne0;
|
||||
int ne1;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
uint nb13;
|
||||
uint r2;
|
||||
uint r3;
|
||||
} pcs;
|
||||
|
@ -1,73 +0,0 @@
|
||||
#version 450
|
||||
|
||||
#include "rope_common.comp"
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float16_t out_[]; };
|
||||
|
||||
void main() {
|
||||
const uint i3 = gl_WorkGroupID.z;
|
||||
const uint i2 = gl_WorkGroupID.y;
|
||||
const uint i1 = gl_WorkGroupID.x;
|
||||
|
||||
const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0;
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||
|
||||
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
||||
|
||||
const int p = inB[pcs.inBOff + i2];
|
||||
|
||||
float theta = float(p);
|
||||
|
||||
if (!is_neox) {
|
||||
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = float(inA[src]);
|
||||
const float x1 = float(inA[src+1]);
|
||||
|
||||
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
||||
out_[dst_data+1] = float16_t(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
} else {
|
||||
const float inv_ndims = -1.f/pcs.n_dims;
|
||||
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
||||
const uint cur_rot = ic;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint i0 = ic/2;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = float(inA[src]);
|
||||
const float x1 = float(inA[src+pcs.n_dims/2]);
|
||||
|
||||
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
||||
out_[dst_data+pcs.n_dims/2] = float16_t(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
|
||||
for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
|
||||
const uint i0 = ic;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
out_[dst_data + 0] = inA[src + 0];
|
||||
out_[dst_data + 1] = inA[src + 1];
|
||||
}
|
||||
}
|
||||
}
|
@ -1,73 +0,0 @@
|
||||
#version 450
|
||||
|
||||
#include "rope_common.comp"
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
void main() {
|
||||
const uint i3 = gl_WorkGroupID.z;
|
||||
const uint i2 = gl_WorkGroupID.y;
|
||||
const uint i1 = gl_WorkGroupID.x;
|
||||
|
||||
const bool is_neox = (pcs.mode & GGML_ROPE_TYPE_NEOX) != 0;
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||
|
||||
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
||||
|
||||
const int p = inB[pcs.inBOff + i2];
|
||||
|
||||
float theta = float(p);
|
||||
|
||||
if (!is_neox) {
|
||||
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = inA[src];
|
||||
const float x1 = inA[src+1];
|
||||
|
||||
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
||||
out_[dst_data+1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
} else {
|
||||
const float inv_ndims = -1.f/pcs.n_dims;
|
||||
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
||||
const uint cur_rot = ic;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint i0 = ic/2;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = inA[src];
|
||||
const float x1 = inA[src+pcs.n_dims/2];
|
||||
|
||||
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
||||
out_[dst_data+pcs.n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
|
||||
const uint i0 = ic;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
out_[dst_data + 0] = inA[src + 0];
|
||||
out_[dst_data + 1] = inA[src + 1];
|
||||
}
|
||||
}
|
||||
}
|
52
ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f16.comp
Normal file
52
ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f16.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "rope_common.comp"
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
||||
layout(binding = 2) buffer restrict readonly tensorInC { float inC[]; };
|
||||
layout(binding = 3) buffer restrict writeonly tensorOut { float16_t out_[]; };
|
||||
|
||||
void main() {
|
||||
const uint i3 = gl_WorkGroupID.z;
|
||||
const uint i2 = gl_WorkGroupID.y;
|
||||
const uint i1 = gl_WorkGroupID.x;
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_ctx_orig, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||
|
||||
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
||||
|
||||
float theta_base = float(inB[pcs.inBOff + i2]);
|
||||
float inv_ndims = -1.f/pcs.n_dims;
|
||||
|
||||
float cos_theta;
|
||||
float sin_theta;
|
||||
|
||||
for (uint i0 = 2*gl_LocalInvocationIndex; i0 < pcs.ne0; i0 += 2*gl_WorkGroupSize.x) {
|
||||
if (i0 < pcs.n_dims) {
|
||||
uint ic = i0/2;
|
||||
|
||||
float theta = theta_base * pow(pcs.freq_base, inv_ndims*i0);
|
||||
|
||||
const float freq_factor = pcs.has_freq_factors ? inC[pcs.inCOff + ic] : 1.0f;
|
||||
|
||||
rope_yarn(theta/freq_factor, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + ic*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + ic*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = float(inA[src]);
|
||||
const float x1 = float(inA[src+pcs.n_dims/2]);
|
||||
|
||||
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
||||
out_[dst_data+pcs.n_dims/2] = float16_t(x0*sin_theta + x1*cos_theta);
|
||||
} else {
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
out_[dst_data] = inA[src];
|
||||
out_[dst_data+1] = inA[src+1];
|
||||
}
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user