Compare commits

...

10 Commits

Author SHA1 Message Date
0055356fbc cli : avoid std::exchange
ggml-ci
2025-05-07 13:23:06 +03:00
eeaa1cd035 sync : ggml
ggml-ci
2025-05-07 13:17:48 +03:00
a652c8bf72 vulkan : fix lint (llama/0) 2025-05-07 13:17:42 +03:00
0630539c8a ggml : Enable MMA for BF16 in llamafile_sgemm (llama/13148)
This patch upstreams llamafile's cpu matrix multiplication kernels for ppc64le using MMA builtins for BF16 data type.

This change results in 9x - 40x gains
in total speed S t/s (ie all tokens/total time), across various batch sizes tested using llama-batched-bench benchmark.

The patch is tested with Meta-Lllama-3-8B,
and Mistral-7B models (BF16 models generated by using llama-quantize from corresponding FP32 models) on an IBM POWER10 machine.

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-05-07 13:17:41 +03:00
a7988d76db rpc : avoid uninitialized memory in serialize_tensor (llama/13210)
Zero out the name and padding buffers.
2025-05-07 13:17:41 +03:00
37ac0264ef ggml: Don't assert fail when tensor data changes (llama/13222)
The following scenario will cause an assertion failure in the graph
allocator:
 - Build and allocate a graph containing a tensor with a non-NULL data
   pointer
 - Build and allocate a new graph where that data is NULL

Result:
ggml-alloc.c:819: GGML_ASSERT(talloc->buffer_id >= 0) failed

This happens during revalidation because we think that memory should
have been previously allocated based on the current graph but in
reality the previous graph was different. In this situation, we
should do a full reallocation pass.
2025-05-07 13:17:41 +03:00
5a9ccde7da build : fix build info on windows (llama/13239)
* build : fix build info on windows

* fix cuda host compiler msg
2025-05-07 13:17:41 +03:00
cde0e50536 vulkan: Add bfloat16 support (llama/12554)
* vulkan: Add bfloat16 support

This adds bfloat16 matrix multiply support based on VK_KHR_shader_bfloat16.
The extension is required for coopmat multiply support, but matrix-vector
multiply trivially promotes bf16 to fp32 and doesn't require the extension.
The copy/get_rows shaders also don't require the extension.

It's probably possible to fall back to non-coopmat and promote to fp32 when
the extension isn't supported, but this change doesn't do that.

The coopmat support also requires a glslc that supports the extension, which
currently requires a custom build.

* vulkan: Support bf16 tensors without the bf16 extension or coopmat support

Compile a variant of the scalar mul_mm shader that will promote the bf16
values to float, and use that when either the bf16 extension or the coopmat
extensions aren't available.

* vulkan: bfloat16 fixes (really works without bfloat16 support now)

* vulkan: fix spirv-val failure and reenable -O
2025-05-07 13:17:41 +03:00
df458380d6 vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader (llama/13191)
* vulkan: Handle src1 batch dimension in non-contiguous mat-vec-mul shader
2025-05-07 13:17:41 +03:00
87b88ed01c vulkan : kernels for depthwise 2D convolution (CONV_2D_DW) (ggml/1204)
* vulkan : add kernels for depthwise 2d convolution (OP_CONV_2D_DW)

* review: remove src_x/y < 0 checks; add performance tests
2025-05-07 13:17:39 +03:00
21 changed files with 1070 additions and 77 deletions

View File

@ -9,7 +9,6 @@
#include <cstdio>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include <cstring>
@ -1019,10 +1018,12 @@ int main(int argc, char ** argv) {
bool open(const char * ext, const char * function) {
if (is_stdout) {
if (std::exchange(used_stdout, true)) {
if (used_stdout) {
fprintf(stderr, "warning: Not appending multiple file formats to stdout\n");
return false;
}
used_stdout = true;
#ifdef _WIN32
fout = std::ofstream{"CON"};
#else
@ -1032,6 +1033,7 @@ int main(int argc, char ** argv) {
// Also assuming /dev is mounted
return true;
}
fname_out.resize(basename_length);
fname_out += ext;
fout = std::ofstream{fname_out};

View File

@ -816,7 +816,10 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
size_t node_size = 0;
if (!node->data && !node->view_src) {
GGML_ASSERT(talloc->buffer_id >= 0); // prevent segfault when misusing the API
// If we previously had data but don't now then reallocate
if (talloc->buffer_id < 0) {
return false;
}
node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
}
return talloc->size_max >= node_size;

View File

@ -1054,6 +1054,493 @@ class tinyBLAS_Q0_AVX {
} \
} \
template <typename TA, typename TB, typename TC>
class tinyBLAS_BF16_PPC {
public:
tinyBLAS_BF16_PPC(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
private:
void vector_permute_store(vec_t *c, int numVec, unsigned char *vecOffset) {
vec_t t[8], s[8];
vec_t swiz1 = {0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23};
vec_t swiz2 = {8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31};
vec_t swiz3 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
vec_t swiz4 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
if (numVec == 2) {
t[0] = vec_perm(c[0], c[1], swiz1);
t[1] = vec_perm(c[2], c[3], swiz1);
s[0] = vec_perm(t[0], t[1], swiz3);
s[1] = vec_perm(t[0], t[1], swiz4);
vec_xst(s[0], 0, (vec_t*)vecOffset);
vec_xst(s[1], 0, (vec_t*)(vecOffset + 16));
} else if (numVec == 4) {
t[0] = vec_perm(c[0], c[1], swiz1);
t[1] = vec_perm(c[0], c[1], swiz2);
t[2] = vec_perm(c[2], c[3], swiz1);
t[3] = vec_perm(c[2], c[3], swiz2);
s[0] = vec_perm(t[0], t[2], swiz3);
s[1] = vec_perm(t[0], t[2], swiz4);
s[2] = vec_perm(t[1], t[3], swiz3);
s[3] = vec_perm(t[1], t[3], swiz4);
for (int i = 0; i < 4; ++i)
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
} else if (numVec == 8) {
for (int i = 0; i < 4; i += 2) {
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
}
for (int i = 4; i < 8; i += 2) {
t[i+0] = vec_perm(c[i+0], c[i+1], swiz1);
t[i+1] = vec_perm(c[i+0], c[i+1], swiz2);
}
s[0] = vec_perm(t[0], t[2], swiz3);
s[1] = vec_perm(t[0], t[2], swiz4);
s[2] = vec_perm(t[1], t[3], swiz3);
s[3] = vec_perm(t[1], t[3], swiz4);
s[4] = vec_perm(t[4], t[6], swiz3);
s[5] = vec_perm(t[4], t[6], swiz4);
s[6] = vec_perm(t[5], t[7], swiz3);
s[7] = vec_perm(t[5], t[7], swiz4);
for (int i = 0; i < 8; ++i)
vec_xst(s[i], 0, (vec_t*)(vecOffset + i * 16));
}
}
void packNormal(const TA* a, int64_t lda, int rows, int cols, unsigned char* vec) {
int64_t i, j;
TA *aoffset = NULL;
unsigned char *vecOffset = NULL;
TA * aoffsets[8];
vector unsigned char c_arr[8];
aoffset = const_cast<TA*>(a);
vecOffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
if (cols == 4) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; ++it)
aoffsets[it] = aoffsets[it-1] + lda;
aoffset += 4 * lda;
for (int i = 0; i < 4; ++i)
c_arr[i] = vec_xl(0, (vector unsigned char*)aoffsets[i]);
vector_permute_store(c_arr, 4, vecOffset);
for (int i = 0; i<4; i++)
aoffsets[i] = aoffsets[i]+lda;
vecOffset +=64;
}
i = (cols >> 3);
if (i > 0) {
aoffsets[0] = aoffset;
for (int it = 1; it < 8; ++it) {
aoffsets[it] = aoffsets[it-1] + lda;
}
aoffset += 8 * lda;
do {
for (int it = 0; it < 8; ++it)
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
vector_permute_store(c_arr, 8, vecOffset);
for (int it = 0; it < 8; ++it)
aoffsets[it] = aoffsets[it] + 8*lda;
vecOffset += 128;
i--;
} while(i > 0);
}
j--;
} while(j > 0);
}
if (rows & 4) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; ++it)
aoffsets[it] = aoffsets[it-1] + lda;
aoffset += 4 * lda;
if (cols == 4) {
for (int it = 0; it < 4; ++it)
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
vector_permute_store(c_arr, 2, vecOffset);
for (int it = 0; it< 4; it++)
aoffsets[it] = aoffsets[it] + lda;
vecOffset += 32;
}
i = (cols >> 3);
if (i > 0) {
do {
for (int it = 0; it < 4; ++it)
c_arr[it] = vec_xl(0, (vector unsigned char*)aoffsets[it]);
vector_permute_store(c_arr, 4, vecOffset);
for (int it = 0; it< 4; it++)
aoffsets[it] = aoffsets[it] + 8*lda;
vecOffset += 64;
i--;
} while(i > 0);
}
}
if (rows & 3) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; ++it)
aoffsets[it] = aoffsets[it-1] + lda;
if (cols == 4) {
switch(rows) {
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
break;
}
vector_permute_store(c_arr, 2, vecOffset);
for (int it = 0; it< 4; it++)
aoffsets[it] = aoffsets[it] + lda;
vecOffset += 32;
}
i = (cols >> 3);
if (i > 0) {
do {
switch(rows) {
case 3: c_arr[2] = vec_xl(0, (vector unsigned char*)aoffsets[2]);
case 2: c_arr[1] = vec_xl(0, (vector unsigned char*)aoffsets[1]);
case 1: c_arr[0] = vec_xl(0, (vector unsigned char*)aoffsets[0]);
break;
}
vector_permute_store(c_arr, 4, vecOffset);
for (int it = 0; it <4; it++)
aoffsets[it] = aoffsets[it] + 8* lda;
vecOffset += 64;
i--;
} while(i > 0);
}
}
}
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
int m_rem = MIN(m - m0, 8);
int n_rem = MIN(n - n0, 8);
if (m_rem >= 8 && n_rem >= 8) {
mc = 8;
nc = 8;
gemm<8,8>(m0, m, n0, n);
} else if (m_rem >= 4 && n_rem >= 8) {
mc = 4;
nc = 8;
gemm<4,8>(m0, m, n0, n);
} else if (m_rem >=8 && n_rem >=4){
mc = 8;
nc = 4;
gemm<8,4>(m0, m, n0, n);
} else if ((m_rem < 4) && (n_rem >= 8)) {
nc = 8;
switch(m_rem) {
case 1:
mc = 1;
gemm_Mx8<1>(m0, m, n0, n);
break;
case 2:
mc = 2;
gemm_Mx8<2>(m0, m, n0, n);
break;
case 3:
mc = 3;
gemm_Mx8<3>(m0, m, n0, n);
break;
default:
return;
}
} else if (m_rem >= 4 && n_rem >= 4) {
mc = 4;
nc = 4;
gemm_small<4, 4>(m0, m, n0, n);
} else if ((m_rem > 4) && (n_rem < 4)) {
mc = 4;
switch(n_rem) {
case 1:
nc = 1;
gemm_small<4, 1>(m0, m, n0, n);
break;
case 2:
nc = 2;
gemm_small<4, 2>(m0, m, n0, n);
break;
case 3:
nc = 3;
gemm_small<4, 3>(m0, m, n0, n);
break;
default:
return;
}
} else {
switch((m_rem << 4) | n_rem) {
case 0x43:
mc = 4;
nc = 3;
gemm_small<4, 3>(m0, m, n0, n);
break;
case 0x42:
mc = 4;
nc = 2;
gemm_small<4, 2>(m0, m, n0, n);
break;
case 0x41:
mc = 4;
nc = 1;
gemm_small<4, 1>(m0, m, n0, n);
break;
case 0x34:
mc = 3;
nc = 4;
gemm_small<3, 4>(m0, m, n0, n);
break;
case 0x33:
mc = 3;
nc = 3;
gemm_small<3, 3>(m0, m, n0, n);
break;
case 0x32:
mc = 3;
nc = 2;
gemm_small<3, 2>(m0, m, n0, n);
break;
case 0x31:
mc = 3;
nc = 1;
gemm_small<3, 1>(m0, m, n0, n);
break;
case 0x24:
mc = 2;
nc = 4;
gemm_small<2,4>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm_small<2, 3>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm_small<2, 2>(m0, m, n0, n);
break;
case 0x21:
mc = 2;
nc = 1;
gemm_small<2, 1>(m0, m, n0, n);
break;
case 0x14:
mc = 1;
nc = 4;
gemm_small<1, 4>(m0, m, n0, n);
break;
case 0x13:
mc = 1;
nc = 3;
gemm_small<1, 3>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm_small<1, 2>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm_small<1, 1>(m0, m, n0, n);
break;
default:
return;
}
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
void KERNEL_4x8(int64_t ii, int64_t jj) {
vec_t vec_A[4], vec_B[8] , vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int l = 0; l < k; l+=8) {
packNormal((A+(ii*lda)+l), lda, 4, 8, (uint8_t*)vec_A);
packNormal((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B);
for (int x = 0; x < 4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
}
void KERNEL_8x4(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[4] , vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int l = 0; l < k; l+=8) {
packNormal((A+(ii*lda)+l), lda, 8, 8, (uint8_t*)vec_A);
packNormal((B+(jj*ldb)+l), ldb, 8, 4, (uint8_t*)vec_B);
for (int x = 0; x < 4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x+4], vec_B[x]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii+4, jj);
}
void KERNEL_8x8(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[8], vec_C[4];
acc_t acc_0, acc_1, acc_2, acc_3;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
__builtin_mma_xxsetaccz(&acc_2);
__builtin_mma_xxsetaccz(&acc_3);
for (int l = 0; l < k; l+=8) {
packNormal(A+(ii*lda)+l, lda, 8, 8, (uint8_t*)vec_A);
packNormal(B+(jj*ldb)+l, ldb, 8, 8, (uint8_t*)vec_B);
for (int x = 0; x < 4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, (vec_t)vec_A[x], (vec_t)vec_B[x+4]);
__builtin_mma_xvbf16ger2pp(&acc_2, (vec_t)vec_A[x+4], (vec_t)vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_3, (vec_t)vec_A[x+4], (vec_t)vec_B[x+4]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
SAVE_ACC(&acc_2, ii+4, jj);
SAVE_ACC(&acc_3, ii+4, jj+4);
}
template<int RM, int RN>
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
vec_t vec_C[4];
acc_t acc_0;
__builtin_mma_xxsetaccz(&acc_0);
vec_t vec_A[2], vec_B[2];
for (int l=0; l<k; l+=4) {
packNormal(A+(ii*lda)+l, lda, RM, 4, (uint8_t*)vec_A);
packNormal(B+(jj*ldb)+l, ldb, RN, 4, (uint8_t*)vec_B);
for (int x = 0; x<2; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_0);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
}
}
template<int RM>
void gemm_Mx8(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int RN = 8;
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
vec_t vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
vec_t vec_A[4], vec_B[8];
for (int l=0; l<k; l+=8) {
packNormal(A+(ii*lda)+l, lda, RM, 8, (uint8_t*)vec_A);
packNormal(B+(jj*ldb)+l, ldb, RN, 8, (uint8_t*)vec_B);
for (int x = 0; x<4; x++) {
__builtin_mma_xvbf16ger2pp(&acc_0, vec_A[x], vec_B[x]);
__builtin_mma_xvbf16ger2pp(&acc_1, vec_A[x], vec_B[x+4]);
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_0);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < 4; J++) {
*((TC*)(C+ii+((jj+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_1);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < 4; J++) {
*((TC*)(C+ii+((jj+4+J)*ldc)+I)) = *((TC*)&vec_C[I]+J);
}
}
}
}
template<int RM, int RN>
inline void kernel(int64_t ii, int64_t jj) {
if constexpr(RM == 4 && RN == 8) {
KERNEL_4x8(ii,jj);
} else if constexpr(RM == 8 && RN == 8) {
KERNEL_8x8(ii,jj);
} else if constexpr(RM == 8 && RN == 4) {
KERNEL_8x4(ii,jj);
} else {
static_assert(false, "RN/RM values not supported");
}
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
kernel<RM, RN>(ii, jj);
}
}
const TA *const A;
const TB *const B;
TC *C;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
template <typename TA, typename TB, typename TC>
class tinyBLAS_Q0_PPC {
public:
@ -2202,6 +2689,7 @@ class tinyBLAS_PPC {
boffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
@ -2875,9 +3363,22 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
(float *)C, ldc};
return tb.matmul(m, n);
}
#elif defined(__MMA__)
if ((k % 8))
return false;
if(Btype == GGML_TYPE_BF16) {
tinyBLAS_BF16_PPC<ggml_bf16_t, ggml_bf16_t, float> tb{ k,
(const ggml_bf16_t *)A, lda,
(const ggml_bf16_t *)B, ldb,
(float *)C, ldc,
params->ith, params->nth};
tb.matmul(m, n);
return true;
}
#endif
return false;
}
case GGML_TYPE_F16: {
#if defined(__AVX512F__)
if (Btype == GGML_TYPE_F16) {

View File

@ -133,6 +133,7 @@ if (CUDAToolkit_FOUND)
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
OUTPUT_VARIABLE CUDA_CCVER
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE
)
else()
if (CUDA_CCFULLVER MATCHES Apple)
@ -143,7 +144,7 @@ if (CUDAToolkit_FOUND)
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
endif()
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
message(STATUS "CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
ggml_get_flags(${CUDA_CCID} ${CUDA_CCVER})
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later

View File

@ -518,6 +518,11 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
result.view_offs = tensor->view_offs;
result.data = reinterpret_cast<uint64_t>(tensor->data);
// Avoid sending uninitialized data over the wire
memset(result.name, 0, sizeof(result.name));
memset(result.padding, 0, sizeof(result.padding));
snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
return result;
}

View File

@ -71,6 +71,22 @@ if (Vulkan_FOUND)
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
endif()
# Compile a test shader to determine whether GL_EXT_bfloat16 is supported.
# If it's not, there will be an error to stderr.
# If it's supported, set a define to indicate that we should compile those shaders
execute_process(COMMAND ${Vulkan_GLSLC_EXECUTABLE} -o - -fshader-stage=compute --target-env=vulkan1.3 "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_bfloat16_support.comp"
OUTPUT_VARIABLE glslc_output
ERROR_VARIABLE glslc_error)
if (${glslc_error} MATCHES ".*extension not supported: GL_EXT_bfloat16.*")
message(STATUS "GL_EXT_bfloat16 not supported by glslc")
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT OFF)
else()
message(STATUS "GL_EXT_bfloat16 supported by glslc")
set(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT ON)
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
endif()
target_link_libraries(ggml-vulkan PRIVATE Vulkan::Vulkan)
target_include_directories(ggml-vulkan PRIVATE ${CMAKE_CURRENT_BINARY_DIR})
@ -142,6 +158,7 @@ if (Vulkan_FOUND)
-DGGML_VULKAN_COOPMAT_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT_GLSLC_SUPPORT}
-DGGML_VULKAN_COOPMAT2_GLSLC_SUPPORT=${GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT}
-DGGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT=${GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT}
-DGGML_VULKAN_BFLOAT16_GLSLC_SUPPORT=${GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT}
BUILD_COMMAND ${CMAKE_COMMAND} --build .
INSTALL_COMMAND ${CMAKE_COMMAND} --install .
INSTALL_DIR ${CMAKE_BINARY_DIR}

View File

@ -51,6 +51,24 @@
#include "ggml-vulkan-shaders.hpp"
// remove this once it's more widely available in the SDK
#if !defined(VK_KHR_shader_bfloat16)
#define VK_KHR_shader_bfloat16 1
#define VK_KHR_SHADER_BFLOAT16_SPEC_VERSION 1
#define VK_KHR_SHADER_BFLOAT16_EXTENSION_NAME "VK_KHR_shader_bfloat16"
#define VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR ((VkStructureType)1000141000)
#define VK_COMPONENT_TYPE_BFLOAT16_KHR ((VkComponentTypeKHR)1000141000)
typedef struct VkPhysicalDeviceShaderBfloat16FeaturesKHR {
VkStructureType sType;
void* pNext;
VkBool32 shaderBFloat16Type;
VkBool32 shaderBFloat16DotProduct;
VkBool32 shaderBFloat16CooperativeMatrix;
} VkPhysicalDeviceShaderBfloat16FeaturesKHR;
#endif
#define ROUNDUP_POW2(M, N) (((M) + (N) - 1) & ~((N) - 1))
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
@ -266,8 +284,9 @@ struct vk_device_struct {
bool subgroup_require_full_support;
bool coopmat_support;
bool coopmat_acc_f32_support;
bool coopmat_acc_f16_support;
bool coopmat_acc_f32_support {};
bool coopmat_acc_f16_support {};
bool coopmat_bf16_support {};
uint32_t coopmat_m;
uint32_t coopmat_n;
uint32_t coopmat_k;
@ -293,6 +312,7 @@ struct vk_device_struct {
vk_matmul_pipeline pipeline_matmul_f32 {};
vk_matmul_pipeline pipeline_matmul_f32_f16 {};
vk_matmul_pipeline pipeline_matmul_bf16 {};
vk_matmul_pipeline2 pipeline_matmul_f16;
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
@ -301,6 +321,7 @@ struct vk_device_struct {
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_q8_1[GGML_TYPE_COUNT];
vk_matmul_pipeline pipeline_matmul_id_f32 {};
vk_matmul_pipeline pipeline_matmul_id_bf16 {};
vk_matmul_pipeline2 pipeline_matmul_id_f16;
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
@ -333,8 +354,8 @@ struct vk_device_struct {
vk_pipeline pipeline_clamp_f32;
vk_pipeline pipeline_pad_f32;
vk_pipeline pipeline_repeat_f32, pipeline_repeat_back_f32;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16, pipeline_cpy_f32_bf16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16, pipeline_contig_cpy_f32_bf16;
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_norm_f32;
@ -368,6 +389,8 @@ struct vk_device_struct {
vk_pipeline pipeline_rwkv_wkv6_f32;
vk_pipeline pipeline_rwkv_wkv7_f32;
vk_pipeline pipeline_opt_step_adamw_f32;
vk_pipeline pipeline_conv2d_dw_whcn_f32;
vk_pipeline pipeline_conv2d_dw_cwhn_f32;
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2];
@ -680,6 +703,24 @@ struct vk_op_rwkv_wkv7_push_constants {
uint32_t H;
};
struct vk_op_conv2d_dw_push_constants {
uint32_t ne;
uint32_t batches;
uint32_t channels;
uint32_t dst_w;
uint32_t dst_h;
uint32_t src_w;
uint32_t src_h;
uint32_t knl_w;
uint32_t knl_h;
int32_t stride_x;
int32_t stride_y;
int32_t pad_x;
int32_t pad_y;
int32_t dilation_x;
int32_t dilation_y;
};
struct vk_op_upscale_push_constants {
uint32_t ne; uint32_t a_offset; uint32_t d_offset;
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
@ -1791,6 +1832,12 @@ static void ggml_vk_load_shaders(vk_device& device) {
if (!device->pipeline_matmul_id_f32) {
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_bf16) {
device->pipeline_matmul_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
}
if (!device->pipeline_matmul_id_bf16) {
device->pipeline_matmul_id_bf16 = std::make_shared<vk_matmul_pipeline_struct>();
}
std::vector<std::future<void>> compiles;
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
@ -1900,6 +1947,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
}
#endif
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
@ -1921,6 +1973,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
}
#endif
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
@ -1974,6 +2031,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, )
}
#endif
if (device->coopmat_acc_f16_support) {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@ -2022,6 +2084,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F32, pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
#if defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (device->coopmat_bf16_support) {
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
}
#endif
if (device->coopmat_acc_f16_support) {
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@ -2104,6 +2171,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@ -2139,6 +2208,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(GGML_TYPE_F16, pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@ -2191,6 +2262,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
@ -2226,6 +2299,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_F16, pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q4_1, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_Q5_0, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
@ -2246,8 +2321,26 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(GGML_TYPE_IQ3_S, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ3_S].f32acc, matmul_id_iq3_s_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_XS, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_XS].f32acc, matmul_id_iq4_xs_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(GGML_TYPE_IQ4_NL, pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
#undef CREATE_MM
}
// reusing CREATE_MM from the fp32 path
if ((device->coopmat2 || device->coopmat_support)
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
&& !device->coopmat_bf16_support
#endif
) {
// use scalar tile sizes
l_warptile = { 128, 128, 128, 16, subgroup_size_8 * 2, 64, 2, 4, 4, 1, subgroup_size_8 };
m_warptile = { 128, 64, 64, 16, subgroup_size_8, 32, 2, 4, 2, 1, subgroup_size_8 };
s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, 2, 2, 1, subgroup_size_8 };
l_wg_denoms = {128, 128, 1 };
m_wg_denoms = { 64, 64, 1 };
s_wg_denoms = { 32, 32, 1 };
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4, _id);
}
#undef CREATE_MM
// mul mat vec
@ -2266,6 +2359,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
for (uint32_t i = 0; i < mul_mat_vec_max_cols; ++i) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f32_f32_"+std::to_string(i+1), mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f32_f32_"+std::to_string(i+1), mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f32_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f32_f32_len, mul_mat_vec_bf16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f32_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f32_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
@ -2288,6 +2382,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ][i], "mul_mat_vec_f32_f16_f32_"+std::to_string(i+1), mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ][i], "mul_mat_vec_f16_f16_f32_"+std::to_string(i+1), mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_BF16][i], "mul_mat_vec_bf16_f16_f32_"+std::to_string(i+1), mul_mat_vec_bf16_f16_f32_len, mul_mat_vec_bf16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2, i+1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0][i], "mul_mat_vec_q4_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1][i], "mul_mat_vec_q4_1_f16_f32_"+std::to_string(i+1), mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0][i], "mul_mat_vec_q5_0_f16_f32_"+std::to_string(i+1), mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq, i+1}, 1, true);
@ -2311,6 +2406,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_BF16], "mul_mat_vec_id_bf16_f32", mul_mat_vec_id_bf16_f32_len, mul_mat_vec_id_bf16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm_stdq, 1, 1}, {device->subgroup_size, 2*rm_stdq}, 1, true);
@ -2356,6 +2452,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
// get_rows
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_BF16], "get_rows_bf16", get_rows_bf16_len, get_rows_bf16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
@ -2373,6 +2470,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_BF16], "get_rows_bf16_f32", get_rows_bf16_f32_len, get_rows_bf16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
@ -2399,7 +2497,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true);
}
}
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 9 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
@ -2410,10 +2508,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_bf16,"cpy_f32_bf16",cpy_f32_bf16_len,cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_bf16,"contig_cpy_f32_bf16",contig_cpy_f32_bf16_len,contig_cpy_f32_bf16_data,"main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
@ -2529,6 +2630,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_opt_step_adamw_f32, "opt_step_adamw_f32", opt_step_adamw_f32_len, opt_step_adamw_f32_data, "main", 5, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f32, "conv2d_dw_whcn_f32", conv2d_dw_whcn_f32_len, conv2d_dw_whcn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f32, "conv2d_dw_cwhn_f32", conv2d_dw_cwhn_f32_len, conv2d_dw_cwhn_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
for (auto &c : compiles) {
c.wait();
}
@ -2578,6 +2682,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
bool coopmat2_support = false;
device->coopmat_support = false;
device->integer_dot_product = false;
bool bfloat16_support = false;
for (const auto& properties : ext_props) {
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
@ -2608,6 +2713,9 @@ static vk_device ggml_vk_get_device(size_t idx) {
!getenv("GGML_VK_DISABLE_INTEGER_DOT_PRODUCT")) {
device->integer_dot_product = true;
#endif
} else if (strcmp("VK_KHR_shader_bfloat16", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_BFLOAT16")) {
bfloat16_support = true;
}
}
@ -2794,6 +2902,17 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
#endif
#if defined(VK_KHR_shader_bfloat16)
VkPhysicalDeviceShaderBfloat16FeaturesKHR bfloat16_features {};
bfloat16_features.pNext = nullptr;
bfloat16_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_BFLOAT16_FEATURES_KHR;
if (bfloat16_support) {
last_struct->pNext = (VkBaseOutStructure *)&bfloat16_features;
last_struct = (VkBaseOutStructure *)&bfloat16_features;
device_extensions.push_back("VK_KHR_shader_bfloat16");
}
#endif
VkPhysicalDeviceMaintenance4Features maint4_features {};
maint4_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES;
if (maintenance4_support) {
@ -2991,6 +3110,25 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->coopmat_int_n = prop.NSize;
device->coopmat_int_k = prop.KSize;
}
#if defined(VK_KHR_shader_bfloat16) && defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (prop.AType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
prop.BType == VK_COMPONENT_TYPE_BFLOAT16_KHR &&
prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
(vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup
) {
// coopmat sizes not set yet
if (device->coopmat_m == 0) {
device->coopmat_bf16_support = true;
device->coopmat_m = prop.MSize;
device->coopmat_n = prop.NSize;
device->coopmat_k = prop.KSize;
} else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
// Only enable if shape is identical
device->coopmat_bf16_support = true;
}
}
#endif
}
if (device->coopmat_m == 0 || !device->coopmat_acc_f32_support) {
@ -2998,11 +3136,19 @@ static vk_device ggml_vk_get_device(size_t idx) {
GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n");
device->coopmat_support = false;
}
if (getenv("GGML_VK_DISABLE_BFLOAT16")) {
device->coopmat_bf16_support = false;
}
}
if (device->coopmat_support) {
device_extensions.push_back("VK_KHR_cooperative_matrix");
}
#if defined(VK_KHR_shader_bfloat16)
if (device->coopmat_bf16_support) {
device_extensions.push_back("VK_KHR_shader_bfloat16");
}
#endif
#endif
device->name = GGML_VK_NAME + std::to_string(idx);
@ -3459,6 +3605,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
return ctx->device->pipeline_matmul_f32_f16;
}
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
return ctx->device->pipeline_matmul_bf16;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_f16_f32.f16acc;
@ -3530,6 +3679,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context *
switch (a_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@ -3562,6 +3712,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f32;
}
if (src0_type == GGML_TYPE_BF16 && src1_type == GGML_TYPE_BF16) {
return ctx->device->pipeline_matmul_id_bf16;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f16_f32.f16acc;
@ -3615,6 +3768,7 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
switch (a_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@ -4350,6 +4504,13 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_cpy_f16_f16;
}
}
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_BF16) {
if (contig) {
return ctx->device->pipeline_contig_cpy_f32_bf16;
} else {
return ctx->device->pipeline_cpy_f32_bf16;
}
}
if (src->type == GGML_TYPE_F32) {
switch (to) {
case GGML_TYPE_Q4_0:
@ -4477,8 +4638,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
!ggml_vk_dim01_contiguous(src1);
// If src0 is BF16, try to use a BF16 x BF16 multiply
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
bool quantize_y = ctx->device->integer_dot_product && src1->type == GGML_TYPE_F32 && ggml_is_contiguous(src1) && (ne11 * ne10) % 4 == 0;
@ -4488,25 +4653,25 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
if (mmp == nullptr) {
// Fall back to f16 dequant mul mat
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
quantize_y = false;
}
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
const bool qy_needs_dequant = !quantize_y && ((src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig);
const bool qy_needs_dequant = !quantize_y && ((src1->type != f16_type && !y_f32_kernel) || y_non_contig);
if (qx_needs_dequant) {
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
}
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
const uint32_t kpad = quantize_y ? 0 : ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type)));
const bool aligned = !quantize_y && ne10 == kpad && ne01 > 8 && ne11 > 8;
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, qx_needs_dequant ? f16_type : src0->type, quantize_y ? GGML_TYPE_Q8_1 : (y_f32_kernel ? GGML_TYPE_F32 : src1->type));
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) : ne11;
@ -4527,12 +4692,12 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
vk_pipeline to_q8_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@ -4949,6 +5114,8 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const uint64_t nb01 = src0->nb[1];
const uint64_t nb02 = src0->nb[2];
const uint64_t nb12 = src1->nb[2];
// const uint64_t ne10 = src1->ne[0];
const uint64_t ne11 = src1->ne[1];
const uint64_t ne12 = src1->ne[2];
@ -4974,6 +5141,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
const uint32_t channel_stride_y = nb12 / sizeof(float);
const uint64_t qx_sz = ggml_nbytes(src0);
const uint64_t qy_sz = ggml_nbytes(src1);
@ -5004,7 +5172,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
// compute
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
const std::array<uint32_t, 9> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, channel_stride_y, (uint32_t)(ne12 / ne02), (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
@ -5029,7 +5197,7 @@ static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, c
// mul_mat_vec supports batching ne12*ne13 when ne11==1, or treating ne11 as the batch size (up to four)
// when ne12 and ne13 are one.
} else if ((dst->ne[1] == 1 || (dst->ne[1] <= mul_mat_vec_max_cols && src1->ne[2] * src1->ne[3] == 1)) &&
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16 || ggml_is_quantized(src0->type))) {
ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
} else {
ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
@ -5097,27 +5265,31 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
(src0->type == GGML_TYPE_BF16 && src1->type != GGML_TYPE_BF16) ||
!ggml_vk_dim01_contiguous(src1);
// If src0 is BF16, try to use a BF16 x BF16 multiply
ggml_type f16_type = src0->type == GGML_TYPE_BF16 ? GGML_TYPE_BF16 : GGML_TYPE_F16;
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? f16_type : src1->type, (ggml_prec)dst->op_params[0]);
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
const bool qy_needs_dequant = (src1->type != f16_type && !y_f32_kernel) || y_non_contig;
if (qx_needs_dequant) {
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, f16_type, y_f32_kernel ? GGML_TYPE_F32 : f16_type, (ggml_prec)dst->op_params[0]);
}
// Not implemented
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? GGML_TYPE_F16 : src0->type));
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1, qx_needs_dequant ? f16_type : src0->type));
const bool aligned = ne10 == kpad && ne01 > 8 && nei1 > 8;
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? GGML_TYPE_F16 : src0->type);
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned, qx_needs_dequant ? f16_type : src0->type);
// Reserve extra storage in the N dimension for the Y matrix, so we can avoid bounds-checking
uint32_t padded_n = qy_needs_dequant ? ROUNDUP_POW2(ne11, pipeline->wg_denoms[1]) :ne11;
@ -5136,12 +5308,12 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
vk_pipeline to_fp16_vk_1 = nullptr;
if (x_non_contig) {
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, f16_type);
} else {
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
}
if (y_non_contig) {
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, f16_type);
} else {
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
}
@ -5988,6 +6160,15 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_leaky_relu_f32;
}
return nullptr;
case GGML_OP_CONV_2D_DW:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
if (ggml_is_contiguous(src1)) {
return ctx->device->pipeline_conv2d_dw_whcn_f32;
} else if (ggml_is_contiguous_channels(src1)) {
return ctx->device->pipeline_conv2d_dw_cwhn_f32;
}
}
return nullptr;
default:
return nullptr;
}
@ -6014,6 +6195,7 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
case GGML_OP_REPEAT_BACK:
case GGML_OP_ROPE:
case GGML_OP_RMS_NORM:
case GGML_OP_CONV_2D_DW:
return true;
default:
return false;
@ -6310,6 +6492,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
case GGML_OP_CONCAT:
case GGML_OP_UPSCALE:
case GGML_OP_UNARY:
case GGML_OP_CONV_2D_DW:
{
const uint32_t ne = ggml_nelements(dst);
if (ne > 262144) {
@ -7096,6 +7279,30 @@ static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, c
}, dryrun);
}
static void ggml_vk_conv_2d_dw(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
vk_op_conv2d_dw_push_constants p{};
p.ne = ggml_nelements(dst);
p.channels = dst->ne[2];
p.batches = dst->ne[3];
p.dst_w = dst->ne[0];
p.dst_h = dst->ne[1];
p.src_w = src1->ne[0];
p.src_h = src1->ne[1];
p.knl_w = src0->ne[0];
p.knl_h = src0->ne[1];
p.stride_x = dst->op_params[0];
p.stride_y = dst->op_params[1];
p.pad_x = dst->op_params[2];
p.pad_y = dst->op_params[3];
p.dilation_x = dst->op_params[4];
p.dilation_y = dst->op_params[5];
GGML_ASSERT(src0->ne[3] == p.channels);
GGML_ASSERT(src1->ne[3] == p.batches);
ggml_vk_op_f32(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONV_2D_DW, std::move(p), dryrun);
}
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const float * op_params = (const float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
@ -8116,6 +8323,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
@ -8179,6 +8387,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_LEAKY_RELU:
{
// These operations all go through ggml_vk_op_f32, so short-circuit and
@ -8352,6 +8561,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_POOL_2D:
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_CONV_2D_DW:
ggml_vk_conv_2d_dw(ctx, compute_ctx, src0, src1, node, dryrun);
break;
case GGML_OP_LEAKY_RELU:
ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun);
@ -8473,6 +8686,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_CONV_2D_DW:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
case GGML_OP_LEAKY_RELU:
@ -9227,6 +9441,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
switch (src0_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@ -9262,10 +9477,15 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
if (a->ne[3] != b->ne[3]) {
return false;
}
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) ||
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_BF16) ||
!(ggml_vk_dim01_contiguous(op->src[1]) || op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16)) {
return false;
}
if (op->src[0]->type == GGML_TYPE_BF16 && op->src[1]->type == GGML_TYPE_F16) {
// We currently don't have a bf16 x f16 shader, or an fp16->bf16 copy shader.
// So don't support this combination for now.
return false;
}
return true;
} break;
@ -9338,6 +9558,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
switch (op->src[0]->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@ -9368,6 +9589,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
switch (src1_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
@ -9442,6 +9664,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_COUNT_EQUAL:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_CONV_2D_DW:
case GGML_OP_POOL_2D:
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:

View File

@ -12,6 +12,9 @@ endif()
if (GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
add_compile_definitions(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
endif()
if (GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
add_compile_definitions(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
endif()
set(TARGET vulkan-shaders-gen)
add_executable(${TARGET} vulkan-shaders-gen.cpp)
install(TARGETS ${TARGET} RUNTIME)

View File

@ -18,7 +18,11 @@ void main() {
// fast path for when all four iterations are in-bounds
if (idx + (num_iter-1)*num_threads < p.ne) {
[[unroll]] for (uint i = 0; i < num_iter; ++i) {
#ifndef OPTIMIZATION_ERROR_WORKAROUND
#if defined(DATA_D_BF16)
float f = float(data_a[get_aoffset() + idx]);
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
#else
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];
@ -31,7 +35,10 @@ void main() {
continue;
}
#ifndef OPTIMIZATION_ERROR_WORKAROUND
#if defined(DATA_D_BF16)
float f = float(data_a[get_aoffset() + idx]);
data_d[get_doffset() + idx] = D_TYPE(fp32_to_bf16(f));
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
data_d[get_doffset() + idx] = D_TYPE(data_a[get_aoffset() + idx]);
#else
data_d[get_doffset() + idx] = data_a[get_aoffset() + idx];

View File

@ -0,0 +1,105 @@
#version 450
#include "types.comp"
layout (push_constant) uniform parameter
{
uint ne;
uint batches;
uint channels;
uint dst_w;
uint dst_h;
uint src_w;
uint src_h;
uint knl_w;
uint knl_h;
int stride_x;
int stride_y;
int pad_x;
int pad_y;
int dilation_x;
int dilation_y;
} p;
layout (binding = 0) readonly buffer A {A_TYPE knl_data[];};
layout (binding = 1) readonly buffer B {B_TYPE src_data[];};
layout (binding = 2) writeonly buffer D {D_TYPE dst_data[];};
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
FLOAT_TYPE conv_2d_dw_whcn(uint idx) {
uint i0 = idx / p.dst_w;
uint dst_x = idx - i0 * p.dst_w;
uint i1 = i0 / p.dst_h;
uint dst_y = i0 - i1 * p.dst_h;
uint n = i1 / p.channels;
uint c = i1 - n * p.channels;
uint src_i = n * p.channels * p.src_h * p.src_w + c * p.src_h * p.src_w;
uint knl_i = c * p.knl_h * p.knl_w;
FLOAT_TYPE sum = 0.0;
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
continue;
}
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
continue;
}
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * p.src_w + src_x]);
FLOAT_TYPE k = FLOAT_TYPE(knl_data[knl_i + knl_y * p.knl_w + knl_x]);
sum = fma(v, k, sum);
}
}
return sum;
}
FLOAT_TYPE conv_2d_dw_cwhn(uint idx) {
uint i0 = idx / p.channels;
uint c = idx - i0 * p.channels;
uint i1 = i0 / p.dst_w;
uint dst_x = i0 - i1 * p.dst_w;
uint n = i1 / p.dst_h;
uint dst_y = i1 - n * p.dst_h;
uint src_i = n * p.channels * p.src_h * p.src_w;
uint src_row = p.src_w * p.channels;
uint knl_row = p.knl_w * p.channels;
FLOAT_TYPE sum = 0.0;
for (uint knl_y = 0; knl_y < p.knl_h; ++knl_y) {
uint src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
if (src_y >= p.src_h) { // src_y < 0 will wrap to a large unsigned int
continue;
}
for (uint knl_x = 0; knl_x < p.knl_w; ++knl_x) {
uint src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
if (src_x >= p.src_w) { // src_x < 0 will wrap to a large unsigned int
continue;
}
FLOAT_TYPE v = FLOAT_TYPE(src_data[src_i + src_y * src_row + src_x * p.channels + c]);
FLOAT_TYPE k = FLOAT_TYPE(knl_data[ knl_y * knl_row + knl_x * p.channels + c]);
sum = fma(v, k, sum);
}
}
return sum;
}
void main() {
uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
if (idx >= p.ne) {
return;
}
FLOAT_TYPE result =
#ifdef WHCN
conv_2d_dw_whcn(idx);
#else
conv_2d_dw_cwhn(idx);
#endif
dst_data[idx] = D_TYPE(result);
}

View File

@ -12,7 +12,10 @@ void main() {
return;
}
#ifndef OPTIMIZATION_ERROR_WORKAROUND
#if defined(DATA_D_BF16)
float f = float(data_a[get_aoffset() + src0_idx(idx)]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(fp32_to_bf16(f));
#elif !defined(OPTIMIZATION_ERROR_WORKAROUND)
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(data_a[get_aoffset() + src0_idx(idx)]);
#else
data_d[get_doffset() + dst_idx(idx)] = data_a[get_aoffset() + src0_idx(idx)];

View File

@ -23,6 +23,12 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
}
#endif
#if defined(DATA_A_BF16)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
return vec2(bf16_to_fp32(data_a[a_offset + ib]), bf16_to_fp32(data_a[a_offset + ib + 1]));
}
#endif
#if defined(DATA_A_Q4_0)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
@ -428,7 +434,7 @@ vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
}
#endif
#if defined(DATA_A_F32) || defined(DATA_A_F16)
#if defined(DATA_A_F32) || defined(DATA_A_F16) || defined(DATA_A_BF16)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(0, 0);
}

View File

@ -20,9 +20,14 @@ void main() {
const uint a_offset = get_aoffset() + i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]);
#if defined(DATA_A_BF16)
FLOAT_TYPE v = FLOAT_TYPE(bf16_to_fp32(data_a[a_offset + i00]));
#else
data_d[d_offset + i00] = data_a[a_offset + i00];
FLOAT_TYPE v = FLOAT_TYPE(data_a[a_offset + i00]);
#endif
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[d_offset + i00] = D_TYPE(v);
#else
data_d[d_offset + i00] = D_TYPE(v);
#endif
}

View File

@ -6,7 +6,7 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
#if !defined(DATA_A_F32) && !defined(DATA_A_F16) && !defined(DATA_A_BF16)
#define K_PER_ITER 8
#else
#define K_PER_ITER 2

View File

@ -21,7 +21,9 @@ layout (push_constant) uniform parameter
uint nrows_x;
uint row_stride_x;
uint channel_stride_x;
uint channel_stride_y;
uint channel_x_divisor;
uint ne12;
uint b_offset;
uint d_offset;
} p;
@ -33,6 +35,7 @@ void main() {
const uint row_x = gl_GlobalInvocationID.y;
const uint channel = gl_GlobalInvocationID.z;
const uint channel_x = channel / p.channel_x_divisor;
const uint channel_y = channel % p.ne12;
const uint nrows_y = p.ncols_x;
const uint nrows_dst = p.nrows_x;
@ -56,7 +59,7 @@ void main() {
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const uint iy = channel_y*p.channel_stride_y + row_y;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
@ -72,7 +75,7 @@ void main() {
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const uint iy = channel_y*p.channel_stride_y + row_y;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
@ -89,7 +92,7 @@ void main() {
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const uint iy = channel_y*p.channel_stride_y + row_y;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);

View File

@ -10,6 +10,10 @@
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#endif
#if defined(DATA_A_BF16) && defined(COOPMAT)
#extension GL_EXT_bfloat16 : enable
#endif
#ifdef COOPMAT
#extension GL_KHR_cooperative_matrix : enable
#extension GL_KHR_memory_scope_semantics : enable
@ -29,6 +33,10 @@
#define LOAD_VEC_B 1
#endif
#if !defined(TO_FLOAT_TYPE)
#define TO_FLOAT_TYPE FLOAT_TYPE
#endif
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
@ -202,8 +210,8 @@ void main() {
#endif
#ifdef COOPMAT
coopmat<float16_t, gl_ScopeSubgroup, TM, TK, gl_MatrixUseA> cache_a;
coopmat<float16_t, gl_ScopeSubgroup, TK, TN, gl_MatrixUseB> cache_b;
coopmat<FLOAT_TYPE, gl_ScopeSubgroup, TM, TK, gl_MatrixUseA> cache_a;
coopmat<FLOAT_TYPE, gl_ScopeSubgroup, TK, TN, gl_MatrixUseB> cache_b;
coopmat<ACC_TYPE, gl_ScopeSubgroup, TM, TN, gl_MatrixUseAccumulator> sums[cms_per_row * cms_per_col];
[[unroll]] for (uint i = 0; i < cms_per_row * cms_per_col; i++) {
@ -248,6 +256,21 @@ void main() {
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = FLOAT_TYPE(0.0f);
}
#endif
#elif defined(DATA_A_BF16)
#if LOAD_VEC_A == 4
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + loadr_a * LOAD_VEC_A;
buf_a[buf_idx ] = TO_FLOAT_TYPE(data_a[idx].x);
buf_a[buf_idx + 1] = TO_FLOAT_TYPE(data_a[idx].y);
buf_a[buf_idx + 2] = TO_FLOAT_TYPE(data_a[idx].z);
buf_a[buf_idx + 3] = TO_FLOAT_TYPE(data_a[idx].w);
#else
if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
} else {
buf_a[(loadc_a + l) * SHMEM_STRIDE + loadr_a] = TO_FLOAT_TYPE(uint16_t(0));
}
#endif
#elif defined(DATA_A_Q4_0)
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * SHMEM_STRIDE + 4 * loadr_a;
@ -695,13 +718,13 @@ void main() {
const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
#endif
const uint buf_idx = (loadc_b + l) * SHMEM_STRIDE + loadr_b * LOAD_VEC_B;
buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x);
buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y);
buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z);
buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w);
buf_b[buf_idx + 0] = TO_FLOAT_TYPE(data_b[idx].x);
buf_b[buf_idx + 1] = TO_FLOAT_TYPE(data_b[idx].y);
buf_b[buf_idx + 2] = TO_FLOAT_TYPE(data_b[idx].z);
buf_b[buf_idx + 3] = TO_FLOAT_TYPE(data_b[idx].w);
#elif !MUL_MAT_ID
if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
} else {
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
}
@ -709,7 +732,7 @@ void main() {
const uint row_i = ic * BN + loadc_b + l;
if (row_i < _ne1) {
const u16vec2 row_idx = row_ids[row_i];
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = TO_FLOAT_TYPE(data_b[pos_b + row_idx.y * p.batch_stride_b + (row_idx.x % p.ne11) * p.stride_b + loadr_b]);
} else {
buf_b[(loadc_b + l) * SHMEM_STRIDE + loadr_b] = FLOAT_TYPE(0.0f);
}

View File

@ -14,6 +14,9 @@
#extension GL_EXT_buffer_reference : enable
#extension GL_KHR_shader_subgroup_ballot : enable
#extension GL_KHR_shader_subgroup_vote : enable
#ifdef DATA_A_BF16
#extension GL_EXT_bfloat16 : enable
#endif
#include "types.comp"
@ -80,6 +83,12 @@ layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#define store_scales(a)
#endif
#if defined(DATA_A_BF16)
#define MAT_TYPE bfloat16_t
#else
#define MAT_TYPE FLOAT_TYPE
#endif
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
@ -271,8 +280,8 @@ void main() {
// Manually partial unroll
[[unroll]] for (uint j = 0; j < unroll_count; ++j) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose);
@ -286,8 +295,8 @@ void main() {
store_scales(tid);
}
while (block_k < end_k) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover4, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover4, block_k, BK), tensorViewTranspose);
@ -310,8 +319,8 @@ void main() {
// Manually partial unroll
[[unroll]] for (uint j = 0; j < unroll_count; ++j) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose);
@ -325,8 +334,8 @@ void main() {
store_scales(tid);
}
while (block_k < end_k) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BNover2, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BNover2, block_k, BK), tensorViewTranspose);
@ -350,8 +359,8 @@ void main() {
// Manually partial unroll
[[unroll]] for (uint j = 0; j < unroll_count; ++j) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose);
@ -365,8 +374,8 @@ void main() {
store_scales(tid);
}
while (block_k < end_k) {
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose);
@ -405,8 +414,8 @@ void main() {
fetch_scales(ir * BM, pos_a, stride_a, block_k + BK, tid, false);
}
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
#ifdef MUL_MAT_ID

View File

@ -0,0 +1,7 @@
#version 460
#extension GL_EXT_bfloat16 : require
void main()
{
}

View File

@ -33,6 +33,19 @@
#endif
#endif
#if defined(DATA_A_BF16)
#define QUANT_K 1
#define QUANT_R 1
#if !defined(LOAD_VEC_A) || LOAD_VEC_A == 1
#define A_TYPE uint16_t
#elif LOAD_VEC_A == 4
#define A_TYPE u16vec4
#elif LOAD_VEC_A == 8
#error unsupported
#endif
#endif
#define QUANT_K_Q4_0 32
#define QUANT_R_Q4_0 2
@ -1343,4 +1356,18 @@ void init_iq_shmem(uvec3 wgsize)
}
#endif
// returns the bfloat value in the low 16b.
// See ggml_compute_fp32_to_bf16
uint32_t fp32_to_bf16(float f)
{
uint32_t u = floatBitsToUint(f);
u = (u + (0x7fff + ((u >> 16) & 1))) >> 16;
return u;
}
float bf16_to_fp32(uint32_t u)
{
return uintBitsToFloat(u << 16);
}
#endif // !defined(GGML_TYPES_COMP)

View File

@ -63,7 +63,8 @@ const std::vector<std::string> type_names = {
"iq3_xxs",
"iq3_s",
"iq4_xs",
"iq4_nl"
"iq4_nl",
"bf16",
};
namespace {
@ -296,7 +297,6 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
std::string aligned_b_type_f16 = coopmat2 ? "float16_t" : fp16 ? "f16mat2x4" : "f16vec4";
std::map<std::string, std::string> base_dict = {
{"FLOAT_TYPE", (coopmat2 || fp16) ? "float16_t" : "float"},
{"FLOAT_TYPE_VEC2", (coopmat2 || fp16) ? "f16vec2" : "vec2"},
};
std::string shader_name = "matmul";
@ -318,12 +318,45 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
const std::string source_name = coopmat2 ? "mul_mm_cm2.comp" : "mul_mm.comp";
// Shaders with f16 B_TYPE
string_to_spv(shader_name + "_f32_f16", source_name, merge_maps(base_dict, {{"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, }), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f32_f16_aligned", source_name, merge_maps(base_dict, {{"DATA_A_F32", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
auto const &FLOAT_TYPE = [&](const std::string &t) -> std::string {
if (t == "bf16") {
// scalar path promotes to float
if (!coopmat && !coopmat2) {
return "float";
}
return "bfloat16_t";
}
if (coopmat2 || fp16) {
return "float16_t";
}
return "float";
};
string_to_spv(shader_name + "_f16_aligned", source_name, merge_maps(base_dict, {{"DATA_A_F16", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f16", source_name, merge_maps(base_dict, {{"DATA_A_F16", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
// Shaders with f16 B_TYPE
string_to_spv(shader_name + "_f32_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F32", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, }), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f32_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F32", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F16", "1"}, {"LOAD_VEC_A", load_vec}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("f16")}, {"DATA_A_F16", "1"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
// bf16
{
std::string load_vec_a_unaligned = "1";
// For aligned matmul loads
std::string load_vec_a = coopmat2 ? "1" : "4";
// scalar path promotes to float
std::string to_float_type = (coopmat || coopmat2) ? "uintBitsToBFloat16EXT" : "bf16_to_fp32";
// If bfloat16 is not supported, then only compile the scalar (promote to fp32) shader
#if !defined(GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT)
if (!(coopmat || coopmat2))
#endif
{
string_to_spv(shader_name + "_bf16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("bf16")}, {"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", "4"}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "u16vec4"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_bf16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE("bf16")}, {"TO_FLOAT_TYPE", to_float_type}, {"DATA_A_BF16", "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", coopmat2 ? "bfloat16_t" : "uint16_t"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
}
for (const auto& tname : type_names) {
std::string load_vec_quant = "2";
@ -332,26 +365,30 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
else if ((tname == "q5_0") || (tname == "q5_1") || (tname == "q8_0") || (tname == "iq4_nl"))
load_vec_quant = "4";
if (tname == "bf16") {
continue;
}
std::string data_a_key = "DATA_A_" + to_uppercase(tname);
// For unaligned, load one at a time for f32/f16, or two at a time for quants
std::string load_vec_a_unaligned = (coopmat2 || tname == "f32" || tname == "f16") ? "1" : load_vec_quant;
std::string load_vec_a_unaligned = (coopmat2 || tname == "f32" || tname == "f16" || tname == "bf16") ? "1" : load_vec_quant;
// For aligned matmul loads
std::string load_vec_a = (coopmat2 || tname == "f32" || tname == "f16") ? load_vec : load_vec_quant;
std::string load_vec_a = (coopmat2 || tname == "f32" || tname == "f16" || tname == "bf16") ? load_vec : load_vec_quant;
// don't generate f32 variants for coopmat2
if (!coopmat2) {
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
if (tname != "f16" && tname != "f32") {
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f16_aligned", source_name, merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f16}, {"D_TYPE", "float"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
#if defined(GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT)
if (!coopmat && !coopmat2 && !matmul_id && (tname == "q4_0" || tname == "q4_1" || tname == "q5_0" || tname == "q5_1" || tname == "q8_0")) {
string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_q8_1", "mul_mmq.comp", merge_maps(base_dict, {{"FLOAT_TYPE", FLOAT_TYPE(tname)}, {data_a_key, "1"}, {"D_TYPE", "float"},}), fp16, coopmat, coopmat2, f16acc);
}
#endif
}
@ -393,6 +430,7 @@ void process_shaders() {
if (tname == "f32") {
continue;
}
if (tname == "bf16") continue;
if (tname == "f16") {
string_to_spv("flash_attn_f32_f16_" + tname, "flash_attn_cm2.comp",
@ -417,12 +455,12 @@ void process_shaders() {
string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}}));
// Dequant shaders
if (tname != "f16") {
if (tname != "f16" && tname != "bf16") {
string_to_spv("dequant_" + tname, "dequant_" + tname + ".comp", merge_maps(base_dict, {{data_a_key, "1"}, {"D_TYPE", "float16_t"}}));
}
if (!string_ends_with(tname, "_k")) {
shader = (tname == "f32" || tname == "f16") ? "get_rows.comp" : "get_rows_quant.comp";
shader = (tname == "f32" || tname == "f16" || tname == "bf16") ? "get_rows.comp" : "get_rows_quant.comp";
if (tname == "f16") {
string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}));
@ -447,9 +485,11 @@ void process_shaders() {
string_to_spv("cpy_f32_f32", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("cpy_f32_f16", "copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("cpy_f16_f16", "copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("cpy_f32_bf16","copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "uint16_t"}, {"DATA_D_BF16", "1"}});
string_to_spv("contig_cpy_f32_f32", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("contig_cpy_f32_f16", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("contig_cpy_f16_f16", "contig_copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
string_to_spv("contig_cpy_f32_bf16","contig_copy.comp",{{"A_TYPE", "float"}, {"D_TYPE", "uint16_t"}, {"DATA_D_BF16", "1"}});
for (std::string t : {"q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "iq4_nl"}) {
string_to_spv("cpy_f32_" + t, "copy_to_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
@ -544,6 +584,9 @@ void process_shaders() {
string_to_spv("opt_step_adamw_f32", "opt_step_adamw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}}));
string_to_spv("conv2d_dw_whcn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"WHCN", "1"}}));
string_to_spv("conv2d_dw_cwhn_f32", "conv2d_dw.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"CWHN", "1"}}));
for (auto &c : compiles) {
c.wait();
}

View File

@ -1 +1 @@
5d22a79efe9cf2738da1ee80a596c970d629f44d
17733de6a7854b9696be7a563711c9aa4a34b2d3