Compare commits

..

54 Commits

Author SHA1 Message Date
a5defbc1b9 release : v1.4.2 2023-05-14 19:06:45 +03:00
aaf0d41c7c ggml : add AVX dot products 2023-05-14 18:56:46 +03:00
0cb820e0f9 talk-llama : fix build + sync latest llama.cpp 2023-05-14 18:46:42 +03:00
16564f554f readme : improve Core ML model conversion guidance (#915) 2023-05-14 18:11:08 +03:00
fd01209d09 coreml : support quantized model files 2023-05-14 18:09:44 +03:00
e693074aa6 ggml : sync latest ggml
- New Q4 and Q5 formats
- Various improvements
2023-05-14 18:04:23 +03:00
d652cf12ec main : fix help for --no-timestamps arg (#908) 2023-05-14 17:54:57 +03:00
2b6a074305 extra : update ggml sync script 2023-05-14 10:01:52 +03:00
5300117471 whisper.objc : enable Core ML in example & fix segmentation fault (#910)
* coreml : update endcoder header import path

* coreml : force objc_arc in whisper-encoder.mm

* whisper.objc : create coreml/ group link

* whisper.objc : add coreml model link

* whisper.objc : update readme

* coreml : use -fobjc-arc for coreml/whisper-encoder.mm

* ci: create dummy .mlmodelc for pass ios build

* whisper.objc : update readme

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-14 09:47:02 +03:00
70af52a316 coreml : fix seg fault, double free (#919, #917, #899) 2023-05-14 09:42:19 +03:00
1d17cd5bb3 coreml : fix memory leak (#899) 2023-05-09 18:38:12 +03:00
bf2449dfae cmake : fix define used for COREML_ALLOW_FALLBACK (#893) 2023-05-08 21:08:09 +03:00
4e4d00c67a talk-llama : only copy used KV cache in get / set state (#890)
---------

Co-authored-by: ejones <evan.q.jones@gmail.com>
2023-05-08 20:59:21 +03:00
9931d66400 readme : add instructions on converting to GGML + "--no-config" to wget (#874) 2023-05-08 20:58:36 +03:00
1a548c048e cmake : fix options disabling AVX and AVX2 flags (#885) 2023-05-08 20:45:53 +03:00
14bee39b29 cmake : add options to disable CPU flags (#860) 2023-05-04 19:31:04 +03:00
d458fcbc15 ci : add cuBLAS build workflow and fix error causing lines in CMakeLists (#867)
* Add windows build with cuBLAS

* Remove error causing lines for cuBLAS on Windows
2023-05-03 23:47:37 +03:00
919e58b96a readme : partial OpenCL GPU support via CLBlast (#863)
* ggml : CLBlast support as in llama.cpp

Building with CLBlast speeds up whisper.cpp ~2x on low end / older AMD APUs (CPU with integrated GPU) such as the A9.

Usage:
WHISPER_CLBLAST=1 make

* CMake/Makefile : CLBlast support as in llama.cpp

Building with CLBlast speeds up whisper.cpp ~2x on low end / older AMD APUs (CPU with integrated GPU) such as the A9.

Usage:
```
Makefile:
cd whisper.cpp
WHISPER_CLBLAST=1 make

CMake:
cd whisper.cpp ; mkdir build ; cd build
cmake -DWHISPER_CLBLAST=ON  ..
make
```

* Update README.md

Added OpenCL Build Instructions

* Instruction: Partial OpenCL GPU support via CLBlast

Added build instructions and examples for Make and CMake to support OpenCL enabled GPUs.
2023-05-03 19:24:43 +03:00
05bef0f0e9 build : CLBlast support as in llama.cpp (#862)
* ggml : CLBlast support as in llama.cpp

Building with CLBlast speeds up whisper.cpp ~2x on low end / older AMD APUs (CPU with integrated GPU) such as the A9.

Usage:
WHISPER_CLBLAST=1 make

* CMake/Makefile : CLBlast support as in llama.cpp

Building with CLBlast speeds up whisper.cpp ~2x on low end / older AMD APUs (CPU with integrated GPU) such as the A9.

Usage:
```
Makefile:
cd whisper.cpp
WHISPER_CLBLAST=1 make

CMake:
cd whisper.cpp ; mkdir build ; cd build
cmake -DWHISPER_CLBLAST=ON  ..
make
```
2023-05-02 22:50:32 +03:00
5974c8facd ggml : fix 32-bit ARM build + quantization 2023-05-02 21:52:26 +03:00
0bcb64b184 ggml : sync ggml (clBLAST + tensor names) 2023-05-02 21:24:18 +03:00
0bf680fea2 talk-llama : fix session prompt load (#854) 2023-05-02 20:05:27 +03:00
b806420873 whisper : add detect-language mode (#853)
* add detectlanguage flag

* renaming and help

* no idea why that last one didn't commit

* run language detection if dl is set

* help message fix

* various fixes

* fix quitting

* fix language being english on print
2023-05-02 19:51:52 +03:00
be5911a9f3 talk-llama : add --session support (#845)
* feat: adding session support

* readme: adding --session info in examples/talk-llama

* llama: adding session fixes

* readme: updating session doc

* talk-llama: update the value of need_to_save_session to true in order to save the session in the subsequent interaction

* talk-llama: adding missing function which updates session_tokens
2023-05-01 20:18:10 +03:00
d375d73b2e bench : improve benchmarks 2023-05-01 14:44:39 +03:00
7765770f89 whisper : add memory sizes for Q8_0 (close #846) 2023-05-01 10:03:56 +03:00
872a85ae94 whisper.wasm : fix typo in readme (#832) 2023-05-01 09:28:05 +03:00
9c61f5f585 release : v1.4.1 2023-04-30 22:57:42 +03:00
c94c469592 whisper : fix quantize bug (#842)
* whisper : debug

* whisper : fix bug during quantization
2023-04-30 22:50:04 +03:00
feac80dd3f ggml : fix UB (int << 31) 2023-04-30 22:27:30 +03:00
fa8dbdc888 release : v1.4.0 2023-04-30 19:23:37 +03:00
4a7d49af95 examples : fix + refactor Levenshtein distance 2023-04-30 19:12:49 +03:00
794b162a46 whisper : add integer quantization support (#540)
* whisper : add integer quantization support

* examples : add common-ggml + prepare to add "quantize" tool

* whisper : quantization tool ready

* whisper : fix F32 support

* whisper : try to fix shared lib linkage

* wasm : update quantized models to Q5

* bench.wasm : remove "medium" button

* bench.wasm : fix custom model button

* ggml : add Q5_0 and Q5_1 WASM SIMD

* wasm : add quantized models to all WASM examples

* wasm : bump DB version number to 2

* talk-llama : update example to latest llama.cpp

* node : increase test timeout to 10s

* readme : add information for model quantization

* wasm : add links to other examples
2023-04-30 18:51:57 +03:00
5fd1bdd7fc whisper : add GPU support via cuBLAS (#834)
* make : add WHISPER_CUBLAS

* make : fix CUBLAS build

* whisper : disable Flash Attention + adjust memory buffers

* whisper : remove old commented code

* readme : add cuBLAS instructions

* cmake : add WHISPER_CUBLAS option

* gitignore : ignore build-cublas
2023-04-30 12:14:33 +03:00
0ccd6746c9 ggml : fix WASM build 2023-04-29 21:37:23 +03:00
d9b550c0a1 ggml : fix 32-bit ARM NEON (#836)
* ggml : add support for 32-bit ARM

* ggml : fix

* ggml : fix
2023-04-29 21:33:33 +03:00
e9b091c92a ggml : use vzip instead of vuzp for consistency 2023-04-29 21:14:09 +03:00
1f30b99208 ggml : fix WASM build 2023-04-29 20:21:25 +03:00
05c3ea3bc8 ggml : sync with ggml repo (warning fixes + asserts) 2023-04-29 19:33:28 +03:00
6108d3cc58 whisper : use correct seek_end when offset is used (#833)
Whenever an `offset_ms` is provided, the value of `seek_end` is
calculated incorrectly. This causes Whisper to keep transcribing
after the end of the file.

The current behavior looks like
```
[00:34:40.000 --> 00:34:47.000]   This is an example audio file.
[00:34:47.000 --> 00:34:49.000]   The text has been redacted
[00:34:49.000 --> 00:34:51.000]   This is the end of the audio.
[00:34:51.000 --> 00:34:52.000]   ***
[00:34:52.000 --> 00:34:53.000]   ***
[00:34:53.000 --> 00:34:54.000]   ***
[00:34:55.000 --> 00:34:56.000]   ***
...
```

The expected behavior should be
```
[00:34:40.000 --> 00:34:47.000]   This is an example audio file.
[00:34:47.000 --> 00:34:49.000]   The text has been redacted
[00:34:49.000 --> 00:34:51.000]   This is the end of the audio.
- end of program -
```

This commit changes the calculation of the `seek_end` variable to
only add `seek_start` if a custom `duration_ms` is provided.
Otherwise, it defaults to the end of the file.

Signed-off-by: Thijs Raymakers <thijs@raymakers.nl>
2023-04-29 18:55:37 +03:00
bab97c83d0 tests : add "threads" to run-tests.sh 2023-04-29 12:32:28 +03:00
3eaeb030ff extra : add sync-ggml.sh script 2023-04-29 12:32:28 +03:00
acec73ab6e ggml : sync latest ggml + llama.cpp updates (quantization) 2023-04-29 12:32:28 +03:00
5cc17418c7 whisper.android : add some tips (#816) 2023-04-29 11:00:20 +03:00
3efb81dec6 build : add WHISPER_COREML_ALLOW_FALLBACK to make / CMake (#812) 2023-04-29 10:55:24 +03:00
94a7cd2a07 whisper : allow non-CoreML fallback when Core ML cannot be loaded (#812)
if the Core ML model cannot be loaded, continue without Core ML instead of
returning. This allows a single build to transcribe using Core ML models
where available, and regular models when not.
2023-04-29 10:49:02 +03:00
3e82ff4747 whisper : fix bug from previous commit 2023-04-29 10:42:14 +03:00
b5bd2f43c5 whisper : avoid designated initializers 2023-04-29 10:36:50 +03:00
94aa56f19e minor : improve C++ and Python style (#768)
* use some STL functions

* use self.field than setattr, use pathlib.Path

* recover some format

* const some iter

* Keep the original

* 2 space
2023-04-29 10:06:25 +03:00
4d89ee2e59 readme : add logo 2023-04-28 22:41:29 +03:00
70567eff23 main : escape quotes in csv output (#815) 2023-04-23 19:01:59 +03:00
02ec83c5d5 stream : flush upon finishing inference (#811) 2023-04-23 17:00:30 +03:00
2bd4b8d577 examples : add missing #include <cstdint> (#798)
common.cpp uses uint8_t and uint64_t, which are defined in <cstdint>.
2023-04-23 16:52:52 +03:00
eecf2c3d41 main : update escape_double_quotes() function (#776)
Updated the escape_double_quotes() function such that the function now escapes both double quotes and backslashes in the input string.

Changes Made:

- Renamed the function to escape_quotes_and_backslashes

- Modified the condition in the first loop to increment the value of 'escaped_length' for both double quotes and backslashes.

- Modified the condition in second loop to add a backslash before the current character if it is a double quote or a backslash.

Resolves: #769
2023-04-23 16:47:30 +03:00
67 changed files with 12388 additions and 3920 deletions

View File

@ -235,6 +235,61 @@ jobs:
with:
name: whisper-blas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
windows-cublas:
runs-on: windows-latest
strategy:
matrix:
build: [Release]
arch: [x64]
cublas: [ON]
sdl2: [ON]
include:
- arch: x64
s2arc: x64
- sdl2: ON
s2ver: 2.26.0
steps:
- name: Clone
uses: actions/checkout@v1
- name: Add msbuild to PATH
uses: microsoft/setup-msbuild@v1
- name: Install CUDA Toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.10
- name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON'
run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip
7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV
- name: Configure
run: >
cmake -S . -B ./build -A ${{ matrix.arch }}
-DCMAKE_BUILD_TYPE=${{ matrix.build }}
-DWHISPER_CUBLAS=1
- name: Build
run: |
cd ./build
msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
- name: Copy SDL2.dll
if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v1
with:
name: whisper-cublas-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }}
emscripten:
runs-on: ubuntu-latest
@ -278,7 +333,9 @@ jobs:
uses: actions/checkout@v1
- name: Configure
run: cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
run: |
cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
mkdir models/ggml-base.en-encoder.mlmodelc
- name: Build objc example
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build
@ -305,4 +362,4 @@ jobs:
- name: Build
run: |
cd examples/whisper.android
./gradlew assembleRelease --no-daemon
./gradlew assembleRelease --no-daemon

2
.gitignore vendored
View File

@ -12,6 +12,7 @@ build-em/
build-debug/
build-release/
build-static/
build-cublas/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
@ -22,6 +23,7 @@ build-sanitize-thread/
/talk
/talk-llama
/bench
/quantize
arm_neon.h
sync.sh

View File

@ -1,10 +1,6 @@
cmake_minimum_required (VERSION 3.0)
project(whisper.cpp VERSION 1.3.0)
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
add_compile_options(/utf-8)
endif ()
project(whisper.cpp VERSION 1.4.2)
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
@ -39,32 +35,36 @@ endif()
# options
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
option(BUILD_SHARED_LIBS "whisper: build shared libs" ${BUILD_SHARED_LIBS_DEFAULT})
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
option(WHISPER_ALL_WARNINGS "whisper: enable all compiler warnings" ON)
option(WHISPER_ALL_WARNINGS_3RD_PARTY "whisper: enable all compiler warnings in 3rd party libs" OFF)
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
option(WHISPER_SANITIZE_THREAD "whisper: enable thread sanitizer" OFF)
option(WHISPER_SANITIZE_ADDRESS "whisper: enable address sanitizer" OFF)
option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_SUPPORT_SDL2 "whisper: support for libSDL2" OFF)
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_NO_F16C "whisper: disable F16c" OFF)
if (APPLE)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
else()
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
option(WHISPER_OPENBLAS "whisper: support for OpenBLAS" OFF)
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
option(WHISPER_CLBLAST "whisper: use CLBlast" OFF)
endif()
option(WHISPER_PERF "whisper: enable perf timings" OFF)
option(WHISPER_PERF "whisper: enable perf timings" OFF)
# sanitizers
@ -119,10 +119,14 @@ if (APPLE)
else()
message(WARNING "CoreML framework not found")
endif()
if (WHISPER_COREML_ALLOW_FALLBACK)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_COREML_ALLOW_FALLBACK)
endif()
endif()
endif()
if (WHISPER_SUPPORT_OPENBLAS)
if (WHISPER_OPENBLAS)
find_library(OPENBLAS_LIB
NAMES openblas libopenblas
)
@ -136,6 +140,46 @@ if (WHISPER_SUPPORT_OPENBLAS)
endif()
endif()
if (WHISPER_CUBLAS)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found")
enable_language(CUDA)
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
add_compile_definitions(GGML_USE_CUBLAS)
if (WHISPER_STATIC)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
else()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
else()
message(WARNING "cuBLAS not found")
endif()
endif()
if (WHISPER_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_OPENCL_SOURCES ggml-opencl.c ggml-opencl.h)
add_compile_definitions(GGML_USE_CLBLAST)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} clblast)
else()
message(WARNING "CLBlast not found")
endif()
endif()
# compiler flags
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
@ -178,9 +222,17 @@ if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES
else()
message(STATUS "x86 detected")
if (MSVC)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
if(NOT WHISPER_NO_AVX2)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
else()
if(NOT WHISPER_NO_AVX)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX")
endif()
endif()
else()
if (EMSCRIPTEN)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread")
@ -242,6 +294,8 @@ set(TARGET whisper)
add_library(${TARGET}
ggml.h
ggml.c
${GGML_CUDA_SOURCES}
${GGML_OPENCL_SOURCES}
whisper.h
whisper.cpp
)
@ -271,7 +325,19 @@ if (BUILD_SHARED_LIBS)
target_compile_definitions(${TARGET} PUBLIC
WHISPER_SHARED
GGML_SHARED
)
target_compile_definitions(${TARGET} PRIVATE
WHISPER_BUILD
GGML_BUILD
)
endif()
if (GGML_CUDA_SOURCES)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
endif()
if (EMSCRIPTEN)

View File

@ -1,3 +1,5 @@
default: main bench quantize
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
@ -123,6 +125,7 @@ endif
ifeq ($(UNAME_M),amd64)
CFLAGS += -mavx -mavx2 -mfma -mf16c
endif
ifneq ($(filter ppc64%,$(UNAME_M)),)
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
ifneq (,$(findstring POWER9,$(POWER9_M)))
@ -133,6 +136,7 @@ ifneq ($(filter ppc64%,$(UNAME_M)),)
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
endif
endif
ifndef WHISPER_NO_ACCELERATE
# Mac M1 - include Accelerate framework
ifeq ($(UNAME_S),Darwin)
@ -140,36 +144,71 @@ ifndef WHISPER_NO_ACCELERATE
LDFLAGS += -framework Accelerate
endif
endif
ifdef WHISPER_COREML
CXXFLAGS += -DWHISPER_USE_COREML
LDFLAGS += -framework Foundation -framework CoreML
ifdef WHISPER_COREML_ALLOW_FALLBACK
CXXFLAGS += -DWHISPER_COREML_ALLOW_FALLBACK
endif
endif
ifdef WHISPER_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
LDFLAGS += -lopenblas
endif
ifdef WHISPER_CUBLAS
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
WHISPER_OBJ += ggml-cuda.o
NVCC = nvcc
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
endif
ifdef WHISPER_CLBLAST
CFLAGS += -DGGML_USE_CLBLAST
LDFLAGS += -lclblast -lOpenCL
WHISPER_OBJ += ggml-opencl.o
ggml-opencl.o: ggml-opencl.c ggml-opencl.h
$(CC) $(CFLAGS) -c $< -o $@
endif
ifdef WHISPER_GPROF
CFLAGS += -pg
CXXFLAGS += -pg
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
CFLAGS += -mcpu=native
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# 32-bit Raspberry Pi 1, 2, 3
CFLAGS += -mfpu=neon -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter armv7%,$(UNAME_M)),)
# 32-bit ARM, for example on Armbian or possibly raspbian
CFLAGS += -mfpu=neon -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
#CFLAGS += -mfpu=neon -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
#CXXFLAGS += -mfpu=neon -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
# 64-bit ARM, use these (TODO: auto-detect 64-bit)
# CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
# 64-bit ARM on 32-bit OS, use these (TODO: auto-detect 64-bit)
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
endif
ifneq ($(filter armv8%,$(UNAME_M)),)
# Raspberry Pi 4
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -funsafe-math-optimizations -mno-unaligned-access
endif
#
@ -187,28 +226,26 @@ $(info I CC: $(CCV))
$(info I CXX: $(CXXV))
$(info )
default: main bench
#
# Build library
#
ggml.o: ggml.c ggml.h
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@
whisper.o: whisper.cpp whisper.h ggml.h
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
$(CXX) $(CXXFLAGS) -c $< -o $@
ifndef WHISPER_COREML
WHISPER_OBJ = whisper.o
WHISPER_OBJ += whisper.o
else
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder.mm -o whisper-encoder.o
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
WHISPER_OBJ = whisper.o whisper-encoder.o whisper-encoder-impl.o
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
endif
libwhisper.a: ggml.o $(WHISPER_OBJ)
@ -218,7 +255,7 @@ libwhisper.so: ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
clean:
rm -f *.o main stream command talk talk-llama bench libwhisper.a libwhisper.so
rm -f *.o main stream command talk talk-llama bench quantize libwhisper.a libwhisper.so
#
# Examples
@ -226,7 +263,7 @@ clean:
CC_SDL=`sdl2-config --cflags --libs`
SRC_COMMON = examples/common.cpp
SRC_COMMON = examples/common.cpp examples/common-ggml.cpp
SRC_COMMON_SDL = examples/common-sdl.cpp
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
@ -236,6 +273,9 @@ main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
quantize: examples/quantize/quantize.cpp ggml.o $(WHISPER_OBJ) $(SRC_COMMON)
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o quantize $(LDFLAGS)
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)

View File

@ -1,10 +1,12 @@
# whisper.cpp
![whisper.cpp](https://user-images.githubusercontent.com/1991296/235238348-05d0f6a4-da44-4900-a1de-d0707e75b763.jpeg)
[![Actions Status](https://github.com/ggerganov/whisper.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/whisper.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Beta: [v1.3.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.3.0) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Beta: [v1.4.2](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.4.2) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
@ -13,9 +15,12 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
- AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision
- [4-bit and 5-bit integer quantization support](https://github.com/ggerganov/whisper.cpp#quantization)
- Low memory usage (Flash Attention)
- Zero memory allocations at runtime
- Runs on the CPU
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
Supported platforms:
@ -66,6 +71,8 @@ Then, download one of the Whisper models converted in [ggml format](models). For
bash ./models/download-ggml-model.sh base.en
```
If you wish to convert the Whisper models to ggml format yourself, instructions are in [models/README.md](models/README.md).
Now build the [main](examples/main) example and transcribe an audio file like this:
```bash
@ -225,6 +232,22 @@ make large
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
## Quantization
`whisper.cpp` supports integer quantization of the Whisper `ggml` models.
Quantized models require less memory and disk space and depending on the hardware can be processed more efficiently.
Here are the steps for creating and using a quantized model:
```bash
# quantize a model with Q5_0 method
make quantize
./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
# run the examples as usual, specifying the quantized model file
./main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
```
## Core ML support
On Apple Silicon devices, the Encoder inference can be executed on the Apple Neural Engine (ANE) via Core ML. This can result in significant
@ -238,6 +261,12 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
pip install coremltools
```
- To ensure `coremltools` operates correctly, please confirm that [Xcode](https://developer.apple.com/xcode/) is installed and execute `xcode-select --install` to install the command-line tools.
- Python 3.10 is recommended.
- [OPTIONAL] It is recommended to utilize a Python version management system, such as [Miniconda](https://docs.conda.io/en/latest/miniconda.html) for this step:
- To create an environment, use: `conda create -n py310-whisper python=3.10 -y`
- To activate the environment, use: `conda activate py310-whisper`
- Generate a Core ML model. For example, to generate a `base.en` model, use:
```bash
@ -252,7 +281,7 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
# using Makefile
make clean
WHISPER_COREML=1 make -j
# using CMake
cd build
cmake -DWHISPER_COREML=1 ..
@ -269,20 +298,56 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
whisper_init_state: first run on a device may take a while ...
whisper_init_state: Core ML model loaded
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 1 |
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 1 |
...
```
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
Next runs are faster.
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
## NVIDIA GPU support via cuBLAS
With NVIDIA cards, the Encoder processing can be offloaded to the GPU to a large extend through cuBLAS.
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
Now build `whisper.cpp` with cuBLAS support:
```
make clean
WHISPER_CUBLAS=1 make -j
```
## OpenCL GPU support via CLBlast
For cards and integrated GPUs that support OpenCL, the Encoder processing can be largely offloaded to the GPU through CLBlast. This is especially useful for users with AMD APU's or low end devices for up to ~2x speedup.
First, make sure you have installed `CLBlast` for your OS or Distribution: https://github.com/CNugteren/CLBlast
Now build `whisper.cpp` with CLBlast support:
```
Makefile:
cd whisper.cpp
make clean
WHISPER_CLBLAST=1 make -j
CMake:
cd whisper.cpp ; mkdir build ; cd build
cmake -DWHISPER_CLBLAST=ON ..
make clean
make -j
cp bin/* ../
```
Run all the examples as usual.
## Limitations
- Inference only
- No GPU support (yet)
## Another example
@ -427,7 +492,7 @@ system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
[00:00:00.000 --> 00:00:00.320]
[00:00:00.000 --> 00:00:00.320]
[00:00:00.320 --> 00:00:00.370] And
[00:00:00.370 --> 00:00:00.690] so
[00:00:00.690 --> 00:00:00.850] my

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.3.0",
"version": "1.4.2",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

File diff suppressed because one or more lines are too long

View File

@ -1,5 +1,9 @@
#import "coreml/whisper-encoder.h"
#import "coreml/whisper-encoder-impl.h"
#if !__has_feature(objc_arc)
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
#endif
#import "whisper-encoder.h"
#import "whisper-encoder-impl.h"
#import <CoreML/CoreML.h>
@ -51,15 +55,7 @@ void whisper_coreml_encode(
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
MLMultiArray * outMA = outCoreML.output;
//NSArray<NSNumber *> * shape = outMA.shape;
//NSArray<NSNumber *> * strides = outMA.strides;
//printf("shape: %ld %ld %ld %ld\n", [shape[0] longValue], [shape[1] longValue], [shape[2] longValue], [shape[3] longValue]);
//printf("strides: %ld %ld %ld %ld\n", [strides[0] longValue], [strides[1] longValue], [strides[2] longValue], [strides[3] longValue]);
memcpy(out, outMA.dataPointer, outMA.count * sizeof(float));
memcpy(out, outCoreML.output.dataPointer, outCoreML.output.count * sizeof(float));
}
#if __cplusplus

View File

@ -4,7 +4,7 @@ find_package(Threads REQUIRED)
# third-party
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# SDL2
find_package(SDL2 REQUIRED)
@ -21,13 +21,17 @@ set(TARGET common)
add_library(${TARGET} STATIC
common.h
common.cpp
common-ggml.h
common-ggml.cpp
)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE whisper)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# common-sdl
set(TARGET common-sdl)
@ -62,6 +66,7 @@ else()
add_subdirectory(stream)
add_subdirectory(command)
add_subdirectory(bench)
add_subdirectory(quantize)
add_subdirectory(talk)
add_subdirectory(talk-llama)
endif()

View File

@ -14,9 +14,10 @@ const whisperParamsMock = {
};
describe("Run whisper.node", () => {
test("it should receive a non-empty value", async () => {
let result = await whisperAsync(whisperParamsMock);
test("it should receive a non-empty value", async () => {
let result = await whisperAsync(whisperParamsMock);
expect(result.length).toBeGreaterThan(0);
});
expect(result.length).toBeGreaterThan(0);
}, 10000);
});

View File

@ -31,9 +31,9 @@ endif()
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
--bind \
-s USE_PTHREADS=1 \
-s PTHREAD_POOL_SIZE=8 \
-s INITIAL_MEMORY=1024MB \
-s TOTAL_MEMORY=1024MB \
-s PTHREAD_POOL_SIZE_STRICT=0 \
-s INITIAL_MEMORY=2000MB \
-s TOTAL_MEMORY=2000MB \
-s FORCE_FILESYSTEM=1 \
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
${EXTRA_FLAGS} \

View File

@ -35,6 +35,15 @@
<br><br>
<b>More examples:</b>
<a href="https://whisper.ggerganov.com/">main</a> |
<a href="https://whisper.ggerganov.com/bench">bench</a> |
<a href="https://whisper.ggerganov.com/stream">stream</a> |
<a href="https://whisper.ggerganov.com/command">command</a> |
<a href="https://whisper.ggerganov.com/talk">talk</a> |
<br><br>
<hr>
Select the model you would like to use and click the "Bench" button.<br>
@ -44,11 +53,18 @@
<div id="model-whisper">
Whisper model: <span id="model-whisper-status"></span>
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
<span id="fetch-whisper-progress"></span>
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
<button id="fetch-whisper-small-en" onclick="loadWhisper('small.en')">small.en (466 MB)</button>
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
<br><br>
Quantized models:<br><br>
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
<button id="fetch-whisper-small-en-q5_1" onclick="loadWhisper('small-en-q5_1')">small.en (Q5_1, 182 MB)</button>
<button id="fetch-whisper-medium-en-q5_0" onclick="loadWhisper('medium-en-q5_0')">medium.en (Q5_0, 515 MB)</button>
<button id="fetch-whisper-large-q5_0" onclick="loadWhisper('large-q5_0')">large (Q5_0, 1030 MB)</button>
<span id="fetch-whisper-progress"></span>
</div>
<br>
@ -160,6 +176,14 @@
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-small-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
document.getElementById('whisper-file' ).style.display = 'none';
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
}
@ -168,19 +192,42 @@
let urls = {
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
'small.en': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en.bin',
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
'small-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en-q5_1.bin',
'medium-en-q5_0':'https://whisper.ggerganov.com/ggml-model-whisper-medium.en-q5_0.bin',
'large-q5_0': 'https://whisper.ggerganov.com/ggml-model-whisper-large-q5_0.bin',
};
let sizes = {
'tiny.en': 75,
'base.en': 142,
'small.en': 466,
'tiny-en-q5_1': 31,
'base-en-q5_1': 57,
'small-en-q5_1': 182,
'medium-en-q5_0': 515,
'large-q5_0': 1030,
};
let url = urls[model];
let dst = 'whisper.bin';
let size_mb = sizes[model];
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-small-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
document.getElementById('whisper-file' ).style.display = 'none';
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
cbProgress = function(p) {
@ -190,9 +237,18 @@
cbCancel = function() {
var el;
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-small-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-tiny-en-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-small-en-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-medium-en-q5_0'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-large-q5_0' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
};
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);

View File

@ -28,31 +28,6 @@ std::string g_transcribed = "";
std::vector<float> g_pcmf32;
// compute similarity between two strings using Levenshtein distance
static float similarity(const std::string & s0, const std::string & s1) {
const size_t len0 = s0.size() + 1;
const size_t len1 = s1.size() + 1;
std::vector<int> col(len1, 0);
std::vector<int> prevCol(len1, 0);
for (size_t i = 0; i < len1; i++) {
prevCol[i] = i;
}
for (size_t i = 0; i < len0; i++) {
col[0] = i;
for (size_t j = 1; j < len1; j++) {
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
}
col.swap(prevCol);
}
const float dist = prevCol[len1 - 1];
return 1.0f - (dist / std::max(s0.size(), s1.size()));
}
void command_set_status(const std::string & status) {
std::lock_guard<std::mutex> lock(g_mutex);
g_status = status;

View File

@ -35,6 +35,15 @@
<br><br>
<b>More examples:</b>
<a href="https://whisper.ggerganov.com/">main</a> |
<a href="https://whisper.ggerganov.com/bench">bench</a> |
<a href="https://whisper.ggerganov.com/stream">stream</a> |
<a href="https://whisper.ggerganov.com/command">command</a> |
<a href="https://whisper.ggerganov.com/talk">talk</a> |
<br><br>
<hr>
Select the model you would like to use, click the "Start" button and follow the instructions.
@ -45,6 +54,10 @@
Whisper model: <span id="model-whisper-status"></span>
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
<br><br>
Quantized models:<br><br>
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
<span id="fetch-whisper-progress"></span>
<!--
@ -162,11 +175,17 @@
let urls = {
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
};
let sizes = {
'tiny.en': 75,
'base.en': 142,
'tiny-en-q5_1': 31,
'base-en-q5_1': 57,
};
let url = urls[model];
@ -177,6 +196,10 @@
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en-q5_1').style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1').style.display = 'none';
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
cbProgress = function(p) {
@ -188,6 +211,10 @@
var el;
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-tiny-en-q5_1'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en-q5_1'); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
};

View File

@ -1,4 +1,4 @@
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# command
set(TARGET command)
add_executable(${TARGET} command.cpp)

View File

@ -163,31 +163,6 @@ std::string transcribe(whisper_context * ctx, const whisper_params & params, con
return result;
}
// compute similarity between two strings using Levenshtein distance
float similarity(const std::string & s0, const std::string & s1) {
const size_t len0 = s0.size() + 1;
const size_t len1 = s1.size() + 1;
std::vector<int> col(len1, 0);
std::vector<int> prevCol(len1, 0);
for (size_t i = 0; i < len1; i++) {
prevCol[i] = i;
}
for (size_t i = 0; i < len0; i++) {
col[0] = i;
for (size_t j = 1; j < len1; j++) {
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
}
col.swap(prevCol);
}
const float dist = prevCol[len1 - 1];
return 1.0f - (dist / std::max(s0.size(), s1.size()));
}
std::vector<std::string> read_allowed_commands(const std::string & fname) {
std::vector<std::string> allowed_commands;

235
examples/common-ggml.cpp Normal file
View File

@ -0,0 +1,235 @@
#include "common-ggml.h"
#include <regex>
#include <map>
static const std::map<std::string, enum ggml_ftype> GGML_FTYPE_MAP = {
{"q4_0", GGML_FTYPE_MOSTLY_Q4_0},
{"q4_1", GGML_FTYPE_MOSTLY_Q4_1},
{"q5_0", GGML_FTYPE_MOSTLY_Q5_0},
{"q5_1", GGML_FTYPE_MOSTLY_Q5_1},
{"q8_0", GGML_FTYPE_MOSTLY_Q8_0},
};
void ggml_print_ftypes(FILE * fp) {
for (auto it = GGML_FTYPE_MAP.begin(); it != GGML_FTYPE_MAP.end(); it++) {
fprintf(fp, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
}
}
enum ggml_ftype ggml_parse_ftype(const char * str) {
enum ggml_ftype ftype;
if (str[0] == 'q') {
const auto it = GGML_FTYPE_MAP.find(str);
if (it == GGML_FTYPE_MAP.end()) {
fprintf(stderr, "%s: unknown ftype '%s'\n", __func__, str);
return GGML_FTYPE_UNKNOWN;
}
ftype = it->second;
} else {
ftype = (enum ggml_ftype) atoi(str);
}
return ftype;
}
bool ggml_common_quantize_0(
std::ifstream & finp,
std::ofstream & fout,
const ggml_ftype ftype,
const std::vector<std::string> & to_quant,
const std::vector<std::string> & to_skip) {
ggml_type qtype = GGML_TYPE_F32;
switch (ftype) {
case GGML_FTYPE_MOSTLY_Q4_0: qtype = GGML_TYPE_Q4_0; break;
case GGML_FTYPE_MOSTLY_Q4_1: qtype = GGML_TYPE_Q4_1; break;
case GGML_FTYPE_MOSTLY_Q5_0: qtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: qtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: qtype = GGML_TYPE_Q8_0; break;
case GGML_FTYPE_UNKNOWN:
case GGML_FTYPE_ALL_F32:
case GGML_FTYPE_MOSTLY_F16:
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16:
{
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
return false;
}
};
if (!ggml_is_quantized(qtype)) {
fprintf(stderr, "%s: invalid quantization type %d (%s)\n", __func__, qtype, ggml_type_name(qtype));
return false;
}
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<float> work;
std::vector<uint8_t> data_u8;
std::vector<ggml_fp16_t> data_f16;
std::vector<float> data_f32;
std::vector<int64_t> hist_all(1 << 4, 0);
while (true) {
int32_t n_dims;
int32_t length;
int32_t ttype;
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
finp.read(reinterpret_cast<char *>(&length), sizeof(length));
finp.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (finp.eof()) {
break;
}
int32_t nelements = 1;
int32_t ne[4] = { 1, 1, 1, 1 };
for (int i = 0; i < n_dims; ++i) {
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
nelements *= ne[i];
}
std::string name(length, 0);
finp.read (&name[0], length);
printf("%64s - [%5d, %5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ne[2], ggml_type_name((ggml_type) ttype));
bool quantize = false;
// check if we should quantize this tensor
for (const auto & s : to_quant) {
if (std::regex_match(name, std::regex(s))) {
quantize = true;
break;
}
}
// check if we should skip this tensor
for (const auto & s : to_skip) {
if (std::regex_match(name, std::regex(s))) {
quantize = false;
break;
}
}
// quantize only 2D tensors
quantize &= (n_dims == 2);
if (quantize) {
if (ttype != GGML_TYPE_F32 && ttype != GGML_TYPE_F16) {
fprintf(stderr, "%s: unsupported ttype %d (%s) for integer quantization\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
return false;
}
if (ttype == GGML_TYPE_F16) {
data_f16.resize(nelements);
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
data_f32.resize(nelements);
for (int i = 0; i < nelements; ++i) {
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
}
} else {
data_f32.resize(nelements);
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
}
ttype = qtype;
} else {
const int bpe = (ttype == 0) ? sizeof(float) : sizeof(uint16_t);
data_u8.resize(nelements*bpe);
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
}
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fout.write(reinterpret_cast<char *>(&length), sizeof(length));
fout.write(reinterpret_cast<char *>(&ttype), sizeof(ttype));
for (int i = 0; i < n_dims; ++i) {
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
}
fout.write(&name[0], length);
if (quantize) {
work.resize(nelements); // for quantization
size_t cur_size = 0;
std::vector<int64_t> hist_cur(1 << 4, 0);
switch ((ggml_type) ttype) {
case GGML_TYPE_Q4_0:
{
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q4_1:
{
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_0:
{
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q5_1:
{
cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_Q8_0:
{
cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
} break;
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_Q8_1:
case GGML_TYPE_COUNT:
{
fprintf(stderr, "%s: unsupported quantization type %d (%s)\n", __func__, ttype, ggml_type_name((ggml_type) ttype));
return false;
}
}
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
total_size_new += cur_size;
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
for (int i = 0; i < (int) hist_cur.size(); ++i) {
hist_all[i] += hist_cur[i];
}
for (int i = 0; i < (int) hist_cur.size(); ++i) {
printf("%5.3f ", hist_cur[i] / (float)nelements);
}
printf("\n");
} else {
printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
total_size_new += data_u8.size();
}
total_size_org += nelements * sizeof(float);
}
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
printf("%s: quant size = %8.2f MB | ftype = %d (%s)\n", __func__, total_size_new/1024.0/1024.0, ftype, ggml_type_name(qtype));
{
int64_t sum_all = 0;
for (int i = 0; i < (int) hist_all.size(); ++i) {
sum_all += hist_all[i];
}
printf("%s: hist: ", __func__);
for (int i = 0; i < (int) hist_all.size(); ++i) {
printf("%5.3f ", hist_all[i] / (float)sum_all);
}
printf("\n");
}
return true;
}

18
examples/common-ggml.h Normal file
View File

@ -0,0 +1,18 @@
#pragma once
#include "ggml.h"
#include <fstream>
#include <vector>
#include <string>
enum ggml_ftype ggml_parse_ftype(const char * str);
void ggml_print_ftypes(FILE * fp = stderr);
bool ggml_common_quantize_0(
std::ifstream & finp,
std::ofstream & fout,
const ggml_ftype ftype,
const std::vector<std::string> & to_quant,
const std::vector<std::string> & to_skip);

View File

@ -6,12 +6,102 @@
#include "dr_wav.h"
#include <cmath>
#include <fstream>
#include <regex>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-s" || arg == "--seed") {
params.seed = std::stoi(argv[++i]);
} else if (arg == "-t" || arg == "--threads") {
params.n_threads = std::stoi(argv[++i]);
} else if (arg == "-p" || arg == "--prompt") {
params.prompt = argv[++i];
} else if (arg == "-n" || arg == "--n_predict") {
params.n_predict = std::stoi(argv[++i]);
} else if (arg == "--top_k") {
params.top_k = std::stoi(argv[++i]);
} else if (arg == "--top_p") {
params.top_p = std::stof(argv[++i]);
} else if (arg == "--temp") {
params.temp = std::stof(argv[++i]);
} else if (arg == "-b" || arg == "--batch_size") {
params.n_batch = std::stoi(argv[++i]);
} else if (arg == "-m" || arg == "--model") {
params.model = argv[++i];
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, params);
exit(0);
} else if (arg == "-f" || arg == "--file") {
if (++i > argc) {
fprintf(stderr, "Invalid file param");
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
break;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
}
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
fprintf(stderr, " prompt to start generation with (default: random)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " load prompt from a file\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, "\n");
}
std::string gpt_random_prompt(std::mt19937 & rng) {
const int r = rng() % 10;
switch (r) {
case 0: return "So";
case 1: return "Once upon a time";
case 2: return "When";
case 3: return "The";
case 4: return "After";
case 5: return "If";
case 6: return "import";
case 7: return "He";
case 8: return "She";
case 9: return "They";
default: return "To";
}
return "The";
}
std::string trim(const std::string & s) {
std::regex e("^\\s+|\\s+$");
return std::regex_replace(s, e, "");
@ -27,6 +117,269 @@ std::string replace(const std::string & s, const std::string & from, const std::
return result;
}
std::map<std::string, int32_t> json_parse(const std::string & fname) {
std::map<std::string, int32_t> result;
// read file into string
std::string json;
{
std::ifstream ifs(fname);
if (!ifs) {
fprintf(stderr, "Failed to open %s\n", fname.c_str());
exit(1);
}
json = std::string((std::istreambuf_iterator<char>(ifs)),
(std::istreambuf_iterator<char>()));
}
if (json[0] != '{') {
return result;
}
// parse json
{
bool has_key = false;
bool in_token = false;
std::string str_key = "";
std::string str_val = "";
int n = json.size();
for (int i = 1; i < n; ++i) {
if (!in_token) {
if (json[i] == ' ') continue;
if (json[i] == '"') {
in_token = true;
continue;
}
} else {
if (json[i] == '\\' && i+1 < n) {
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
++i;
} else if (json[i] == '"') {
if (has_key == false) {
has_key = true;
++i;
while (json[i] == ' ') ++i;
++i; // :
while (json[i] == ' ') ++i;
if (json[i] != '\"') {
while (json[i] != ',' && json[i] != '}') {
str_val += json[i++];
}
has_key = false;
} else {
in_token = true;
continue;
}
} else {
has_key = false;
}
str_key = ::replace(str_key, "\\u0120", " " ); // \u0120 -> space
str_key = ::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
str_key = ::replace(str_key, "\\\"", "\""); // \\\" -> "
try {
result[str_key] = std::stoi(str_val);
} catch (...) {
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
}
str_key = "";
str_val = "";
in_token = false;
continue;
}
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
}
}
}
return result;
}
void gpt_vocab::add_special_token(const std::string & token) {
special_tokens.push_back(token);
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
// Generate the subpattern from the special_tokens vector if it's not empty
if (!vocab.special_tokens.empty()) {
std::string special_tokens_subpattern;
for (const auto & token : vocab.special_tokens) {
if (!special_tokens_subpattern.empty()) {
special_tokens_subpattern += "|";
}
special_tokens_subpattern += token;
}
// Modify the regex pattern with the generated special tokens subpattern
pat = special_tokens_subpattern + "|" + pat;
}
std::regex re(pat);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
// find the longest tokens that form the words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
if (word.size() == 0) continue;
int i = 0;
int n = word.size();
while (i < n) {
int j = n;
while (j > i) {
auto it = vocab.token_to_id.find(word.substr(i, j-i));
if (it != vocab.token_to_id.end()) {
tokens.push_back(it->second);
i = j;
break;
}
--j;
}
if (i == n) {
break;
}
if (j == i) {
auto sub = word.substr(i, 1);
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
tokens.push_back(vocab.token_to_id.at(sub));
} else {
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
}
++i;
}
}
}
return tokens;
}
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
vocab.token_to_id = ::json_parse(fname);
for (const auto & kv : vocab.token_to_id) {
vocab.id_to_token[kv.second] = kv.first;
}
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
// print the vocabulary
//for (auto kv : vocab.token_to_id) {
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
//}
return true;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const double scale = 1.0/temp;
for (int i = 0; i < n_logits; ++i) {
logits_id.push_back(std::make_pair(logits[i]*scale, i));
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) probs.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
bool read_wav(const std::string & fname, std::vector<float>& pcmf32, std::vector<std::vector<float>>& pcmf32s, bool stereo) {
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
@ -160,3 +513,27 @@ bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float
return true;
}
float similarity(const std::string & s0, const std::string & s1) {
const size_t len0 = s0.size() + 1;
const size_t len1 = s1.size() + 1;
std::vector<int> col(len1, 0);
std::vector<int> prevCol(len1, 0);
for (size_t i = 0; i < len1; i++) {
prevCol[i] = i;
}
for (size_t i = 0; i < len0; i++) {
col[0] = i;
for (size_t j = 1; j < len1; j++) {
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (i > 0 && s0[i - 1] == s1[j - 1] ? 0 : 1));
}
col.swap(prevCol);
}
const float dist = prevCol[len1 - 1];
return 1.0f - (dist / std::max(s0.size(), s1.size()));
}

View File

@ -1,10 +1,44 @@
// Various helper functions and utilities
#pragma once
// needs to match WHISPER_SAMPLE_RATE
#include <string>
#include <map>
#include <vector>
#include <random>
#include <thread>
#define COMMON_SAMPLE_RATE 16000
#include <vector>
#include <string>
//
// CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t n_batch = 8; // batch size for prompt processing
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
std::string trim(const std::string & s);
@ -13,6 +47,55 @@ std::string replace(
const std::string & from,
const std::string & to);
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
std::vector<std::string> special_tokens;
void add_special_token(const std::string & token);
};
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
// split text into tokens
//
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
//
// Regex (Python):
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
//
// Regex (C++):
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
// TODO: not sure if this implementation is correct
// TODO: temperature is not implemented
//
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng);
//
// Audio utils
//
// Read WAV audio file and store the PCM data into pcmf32
// The sample rate of the audio must be equal to COMMON_SAMPLE_RATE
// If stereo flag is set and the audio has 2 channels, the pcmf32s will contain 2 channel PCM
@ -38,3 +121,5 @@ bool vad_simple(
float freq_thold,
bool verbose);
// compute similarity between two strings using Levenshtein distance
float similarity(const std::string & s0, const std::string & s1);

View File

@ -145,7 +145,15 @@ function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
var db = event.target.result;
var tx = db.transaction(['models'], 'readwrite');
var os = tx.objectStore('models');
var rq = os.put(data, url);
var rq = null;
try {
var rq = os.put(data, url);
} catch (e) {
cbPrint('loadRemote: failed to store "' + url + '" in the IndexedDB: \n' + e);
cbCancel();
return;
}
rq.onsuccess = function (event) {
cbPrint('loadRemote: "' + url + '" stored in the IndexedDB');
@ -180,7 +188,6 @@ function loadRemote(url, dst, size_mb, cbProgress, cbReady, cbCancel, cbPrint) {
rq.onabort = function (event) {
cbPrint('loadRemote: failed to open IndexedDB: abort');
cbCancel();
};
}

View File

@ -66,6 +66,7 @@ struct whisper_params {
bool speed_up = false;
bool translate = false;
bool detect_language= false;
bool diarize = false;
bool split_on_word = false;
bool no_fallback = false;
@ -141,6 +142,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-dl" || arg == "--detect-language"){ params.detect_language= true; }
else if ( arg == "--prompt") { params.prompt = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); }
@ -189,8 +191,9 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pc, --print-colors [%-7s] print colors\n", params.print_colors ? "true" : "false");
fprintf(stderr, " -pp, --print-progress [%-7s] print progress\n", params.print_progress ? "true" : "false");
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "false" : "true");
fprintf(stderr, " -nt, --no-timestamps [%-7s] do not print timestamps\n", params.no_timestamps ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language ('auto' for auto-detect)\n", params.language.c_str());
fprintf(stderr, " -dl, --detect-language [%-7s] exit after automatically detecting language\n", params.detect_language ? "true" : "false");
fprintf(stderr, " --prompt PROMPT [%-7s] initial prompt\n", params.prompt.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] input WAV file path\n", "");
@ -352,6 +355,37 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
return true;
}
char *escape_double_quotes_and_backslashes(const char *str) {
if (str == NULL) {
return NULL;
}
size_t escaped_length = strlen(str) + 1;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"' || str[i] == '\\') {
escaped_length++;
}
}
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
if (escaped == NULL) {
return NULL;
}
size_t pos = 0;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"' || str[i] == '\\') {
escaped[pos++] = '\\';
}
escaped[pos++] = str[i];
}
// no need to set zero due to calloc() being used prior
return escaped;
}
bool output_csv(struct whisper_context * ctx, const char * fname) {
std::ofstream fout(fname);
if (!fout.is_open()) {
@ -367,47 +401,15 @@ bool output_csv(struct whisper_context * ctx, const char * fname) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
char * text_escaped = escape_double_quotes_and_backslashes(text);
//need to multiply times returned from whisper_full_get_segment_t{0,1}() by 10 to get milliseconds.
fout << 10 * t0 << "," << 10 * t1 << ",\"" << text << "\"\n";
fout << 10 * t0 << "," << 10 * t1 << ",\"" << text_escaped << "\"\n";
}
return true;
}
char *escape_double_quotes(const char *str) {
if (str == NULL) {
return NULL;
}
size_t escaped_length = strlen(str) + 1;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"') {
escaped_length++;
}
}
char *escaped = (char *)calloc(escaped_length, 1); // pre-zeroed
if (escaped == NULL) {
return NULL;
}
size_t pos = 0;
for (size_t i = 0; str[i] != '\0'; i++) {
if (str[i] == '"') {
escaped[pos++] = '\\';
escaped[pos++] = '"';
} else {
escaped[pos++] = str[i];
}
}
// no need to set zero due to calloc() being used prior
return escaped;
}
bool output_json(struct whisper_context * ctx, const char * fname, const whisper_params & params) {
std::ofstream fout(fname);
int indent = 0;
@ -451,7 +453,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
auto value_s = [&](const char *name, const char *val, bool end = false) {
start_value(name);
char * val_escaped = escape_double_quotes(val);
char * val_escaped = escape_double_quotes_and_backslashes(val);
fout << "\"" << val_escaped << (end ? "\"\n" : "\",\n");
free(val_escaped);
};
@ -497,7 +499,7 @@ bool output_json(struct whisper_context * ctx, const char * fname, const whisper
value_i("layer", whisper_model_n_text_layer(ctx), true);
end_obj();
value_i("mels", whisper_model_n_mels(ctx));
value_i("f16", whisper_model_f16(ctx), true);
value_i("ftype", whisper_model_ftype(ctx), true);
end_obj();
start_obj("params");
value_s("model", params.model.c_str());
@ -740,6 +742,9 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
if (params.detect_language) {
params.language = "auto";
}
fprintf(stderr, "%s: processing '%s' (%d samples, %.1f sec), %d threads, %d processors, lang = %s, task = %s, timestamps = %d ...\n",
__func__, fname_inp.c_str(), int(pcmf32.size()), float(pcmf32.size())/WHISPER_SAMPLE_RATE,
params.n_threads, params.n_processors,
@ -762,6 +767,7 @@ int main(int argc, char ** argv) {
wparams.print_special = params.print_special;
wparams.translate = params.translate;
wparams.language = params.language.c_str();
wparams.detect_language = params.detect_language;
wparams.n_threads = params.n_threads;
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
wparams.offset_ms = params.offset_t_ms;

View File

@ -0,0 +1,6 @@
set(TARGET quantize)
add_executable(${TARGET} quantize.cpp)
include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})

View File

@ -0,0 +1,3 @@
# quantize
Tool for integer quantization of Whisper `ggml` model files

View File

@ -0,0 +1,221 @@
#include "ggml.h"
#include "common.h"
#include "common-ggml.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <regex>
// default hparams (Whisper tiny)
struct whisper_hparams {
int32_t n_vocab = 51864;
int32_t n_audio_ctx = 1500;
int32_t n_audio_state = 384;
int32_t n_audio_head = 6;
int32_t n_audio_layer = 4;
int32_t n_text_ctx = 448;
int32_t n_text_state = 384;
int32_t n_text_head = 6;
int32_t n_text_layer = 4;
int32_t n_mels = 80;
int32_t ftype = 1;
};
struct whisper_filters {
int32_t n_mel;
int32_t n_fft;
std::vector<float> data;
};
// quantize a model
bool whisper_model_quantize(const std::string & fname_inp, const std::string & fname_out, ggml_ftype ftype) {
gpt_vocab vocab;
printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
auto finp = std::ifstream(fname_inp, std::ios::binary);
if (!finp) {
fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
return false;
}
auto fout = std::ofstream(fname_out, std::ios::binary);
if (!fout) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
return false;
}
// verify magic
{
uint32_t magic;
finp.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
return false;
}
fout.write((char *) &magic, sizeof(magic));
}
whisper_hparams hparams;
// load hparams
{
finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
finp.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
finp.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
finp.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
finp.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
finp.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
finp.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
finp.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
finp.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
finp.read((char *) &hparams.n_mels, sizeof(hparams.n_mels));
finp.read((char *) &hparams.ftype, sizeof(hparams.ftype));
const int32_t qntvr_src = hparams.ftype / GGML_QNT_VERSION_FACTOR;
const int32_t ftype_dst = GGML_QNT_VERSION * GGML_QNT_VERSION_FACTOR + ftype;
fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
fprintf(stderr, "%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx);
fprintf(stderr, "%s: n_audio_state = %d\n", __func__, hparams.n_audio_state);
fprintf(stderr, "%s: n_audio_head = %d\n", __func__, hparams.n_audio_head);
fprintf(stderr, "%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer);
fprintf(stderr, "%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx);
fprintf(stderr, "%s: n_text_state = %d\n", __func__, hparams.n_text_state);
fprintf(stderr, "%s: n_text_head = %d\n", __func__, hparams.n_text_head);
fprintf(stderr, "%s: n_text_layer = %d\n", __func__, hparams.n_text_layer);
fprintf(stderr, "%s: n_mels = %d\n", __func__, hparams.n_mels);
fprintf(stderr, "%s: ftype (src) = %d\n", __func__, hparams.ftype);
fprintf(stderr, "%s: qntvr (src) = %d\n", __func__, qntvr_src);
fprintf(stderr, "%s: ftype (dst) = %d\n", __func__, ftype_dst);
fprintf(stderr, "%s: qntvr (dst) = %d\n", __func__, GGML_QNT_VERSION);
fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
fout.write((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx));
fout.write((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state));
fout.write((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head));
fout.write((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer));
fout.write((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx));
fout.write((char *) &hparams.n_text_state, sizeof(hparams.n_text_state));
fout.write((char *) &hparams.n_text_head, sizeof(hparams.n_text_head));
fout.write((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer));
fout.write((char *) &hparams.n_mels, sizeof(hparams.n_mels));
fout.write((char *) &ftype_dst, sizeof(hparams.ftype));
}
// load mel filters
{
whisper_filters filters;
finp.read ((char *) &filters.n_mel, sizeof(filters.n_mel));
fout.write((char *) &filters.n_mel, sizeof(filters.n_mel));
finp.read ((char *) &filters.n_fft, sizeof(filters.n_fft));
fout.write((char *) &filters.n_fft, sizeof(filters.n_fft));
filters.data.resize(filters.n_mel * filters.n_fft);
finp.read ((char *) filters.data.data(), filters.data.size() * sizeof(float));
fout.write((char *) filters.data.data(), filters.data.size() * sizeof(float));
}
// load vocab
{
int32_t n_vocab = 0;
finp.read ((char *) &n_vocab, sizeof(n_vocab));
fout.write((char *) &n_vocab, sizeof(n_vocab));
//if (n_vocab != hparams.n_vocab) {
// fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
// __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
// return false;
//}
std::string word;
for (int i = 0; i < n_vocab; i++) {
uint32_t len;
finp.read ((char *) &len, sizeof(len));
fout.write((char *) &len, sizeof(len));
word.resize(len);
finp.read ((char *) word.data(), len);
fout.write((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// regexes of tensor names to not be quantized
const std::vector<std::string> to_skip = {
//"encoder.*",
"encoder.conv1.bias",
"encoder.conv2.bias",
"encoder.positional_embedding",
"decoder.positional_embedding",
};
if (!ggml_common_quantize_0(finp, fout, ftype, { ".*" }, to_skip)) {
fprintf(stderr, "%s: failed to quantize model '%s'\n", __func__, fname_inp.c_str());
return false;
}
finp.close();
fout.close();
return true;
}
int main(int argc, char ** argv) {
if (argc != 4) {
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
ggml_print_ftypes(stderr);
return 1;
}
// needed to initialize f16 tables
{
struct ggml_init_params params = { 0, NULL, false };
struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx);
}
const std::string fname_inp = argv[1];
const std::string fname_out = argv[2];
const ggml_ftype ftype = ggml_parse_ftype(argv[3]);
const int64_t t_main_start_us = ggml_time_us();
int64_t t_quantize_us = 0;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!whisper_model_quantize(fname_inp, fname_out, ggml_ftype(ftype))) {
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}
t_quantize_us = ggml_time_us() - t_start_us;
}
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
}
return 0;
}

View File

@ -35,6 +35,15 @@
<br><br>
<b>More examples:</b>
<a href="https://whisper.ggerganov.com/">main</a> |
<a href="https://whisper.ggerganov.com/bench">bench</a> |
<a href="https://whisper.ggerganov.com/stream">stream</a> |
<a href="https://whisper.ggerganov.com/command">command</a> |
<a href="https://whisper.ggerganov.com/talk">talk</a> |
<br><br>
<hr>
Select the model you would like to use, click the "Start" button and start speaking
@ -45,6 +54,10 @@
Whisper model: <span id="model-whisper-status"></span>
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
<br><br>
Quantized models:<br><br>
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
<span id="fetch-whisper-progress"></span>
<!--
@ -162,11 +175,17 @@
let urls = {
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
};
let sizes = {
'tiny.en': 75,
'base.en': 142,
'tiny-en-q5_1': 31,
'base-en-q5_1': 57,
};
let url = urls[model];
@ -177,6 +196,10 @@
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en-q5_1').style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1').style.display = 'none';
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
cbProgress = function(p) {
@ -188,6 +211,10 @@
var el;
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-tiny-en-q5_1'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en-q5_1'); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
};

View File

@ -1,4 +1,4 @@
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# stream
set(TARGET stream)
add_executable(${TARGET} stream.cpp)

View File

@ -383,6 +383,7 @@ int main(int argc, char ** argv) {
}
}
}
fflush(stdout);
}
}

View File

@ -1,4 +1,4 @@
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# talk-llama
set(TARGET talk-llama)
#add_executable(${TARGET} talk-llama.cpp llama.cpp)

View File

@ -25,6 +25,20 @@ make talk-llama
- The `-mw` argument specifies the Whisper model that you would like to use. Recommended `base` or `small` for real-time experience
- The `-ml` argument specifies the LLaMA model that you would like to use. Read the instructions in https://github.com/ggerganov/llama.cpp for information about how to obtain a `ggml` compatible LLaMA model
## Session
The `talk-llama` tool supports session management to enable more coherent and continuous conversations. By maintaining context from previous interactions, it can better understand and respond to user requests in a more natural way.
To enable session support, use the `--session FILE` command line option when running the program. The `talk-llama` model state will be saved to the specified file after each interaction. If the file does not exist, it will be created. If the file exists, the model state will be loaded from it, allowing you to resume a previous session.
This feature is especially helpful for maintaining context in long conversations or when interacting with the AI assistant across multiple sessions. It ensures that the assistant remembers the previous interactions and can provide more relevant and contextual responses.
Example usage:
```bash
./talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/13B/ggml-model-q4_0.bin -p "Georgi" -t 8
```
## TTS
For best experience, this example needs a TTS tool to convert the generated text responses to voice.

View File

@ -21,12 +21,17 @@
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
@ -41,8 +46,12 @@
} while (0)
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
@ -55,7 +64,7 @@ static std::string format(const char * fmt, ...) {
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
};
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
@ -162,7 +171,7 @@ struct llama_mmap {
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file) {
llama_mmap(struct llama_file * file, bool prefetch = true) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
@ -170,15 +179,16 @@ struct llama_mmap {
flags |= MAP_POPULATE;
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
close(fd);
if (addr == MAP_FAILED) {
throw format("mmap failed: %s", strerror(errno));
}
// Advise the kernel to preload the mapped memory
if (madvise(addr, file->size, MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
if (prefetch) {
// Advise the kernel to preload the mapped memory
if (madvise(addr, file->size, MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
}
@ -188,14 +198,13 @@ struct llama_mmap {
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file) {
llama_mmap(struct llama_file * file, bool prefetch = true) {
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
CloseHandle(hFile);
if (hMapping == NULL) {
throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str());
@ -209,14 +218,20 @@ struct llama_mmap {
throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str());
}
// Advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
if (prefetch) {
// Advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
}
~llama_mmap() {
@ -291,8 +306,18 @@ struct llama_mlock {
if (!mlock(addr, size)) {
return true;
} else {
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n" MLOCK_SUGGESTION,
size, this->size, std::strerror(errno));
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
// Check if the resource limit is fine after all
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
suggest = false;
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
suggest = false;
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
}
@ -338,8 +363,8 @@ struct llama_mlock {
// Hopefully a megabyte is enough overhead:
size_t increment = size + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += size;
max_ws_size += size;
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
@ -380,4 +405,29 @@ struct llama_buffer {
delete[] addr;
}
};
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
struct llama_ctx_buffer {
uint8_t * addr = NULL;
size_t size = 0;
void resize(size_t size) {
if (addr) {
ggml_cuda_host_free(addr);
}
addr = (uint8_t *) ggml_cuda_host_malloc(size);
this->size = size;
}
~llama_ctx_buffer() {
if (addr) {
ggml_cuda_host_free(addr);
}
}
};
#else
typedef llama_buffer llama_ctx_buffer;
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -19,9 +19,11 @@
# define LLAMA_API
#endif
#define LLAMA_FILE_VERSION 1
#define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
#define LLAMA_FILE_VERSION 2
#define LLAMA_FILE_MAGIC 'ggjt'
#define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml'
#define LLAMA_SESSION_MAGIC 'ggsn'
#define LLAMA_SESSION_VERSION 1
#ifdef __cplusplus
extern "C" {
@ -39,18 +41,23 @@ extern "C" {
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
float p; // probability of the token
float plog; // log probability of the token
} llama_token_data;
typedef struct llama_token_data_array {
llama_token_data * data;
size_t size;
bool sorted;
} llama_token_data_array;
typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params {
int n_ctx; // text context
int n_parts; // -1 for default
int seed; // RNG seed, 0 for random
int n_ctx; // text context
int n_parts; // -1 for default
int n_gpu_layers; // number of layers to store in VRAM
int seed; // RNG seed, -1 for random
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
@ -65,6 +72,20 @@ extern "C" {
void * progress_callback_user_data;
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 (6) support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
};
LLAMA_API struct llama_context_params llama_context_default_params();
LLAMA_API bool llama_mmap_supported();
@ -82,27 +103,47 @@ extern "C" {
// TODO: not great API - very likely to change
// Returns 0 on success
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
LLAMA_API int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
int itype);
enum llama_ftype ftype,
int nthread);
// Returns the KV cache that will contain the context for the
// ongoing prediction with the model.
LLAMA_API const uint8_t * llama_get_kv_cache(struct llama_context * ctx);
// Returns the size of the KV cache
LLAMA_API size_t llama_get_kv_cache_size(struct llama_context * ctx);
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API int llama_apply_lora_from_file(
struct llama_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Sets the KV cache containing the current context for the model
LLAMA_API void llama_set_kv_cache(
struct llama_context * ctx,
const uint8_t * kv_cache,
size_t n_size,
int n_token_count);
// Sets the current rng seed.
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
// Save/load session file
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
@ -127,9 +168,9 @@ extern "C" {
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_n_vocab(struct llama_context * ctx);
LLAMA_API int llama_n_ctx (struct llama_context * ctx);
LLAMA_API int llama_n_embd (struct llama_context * ctx);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
@ -143,21 +184,57 @@ extern "C" {
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token);
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos();
LLAMA_API llama_token llama_token_eos();
LLAMA_API llama_token llama_token_nl();
// TODO: improve the last_n_tokens interface ?
LLAMA_API llama_token llama_sample_top_p_top_k(
struct llama_context * ctx,
const llama_token * last_n_tokens_data,
int last_n_tokens_size,
int top_k,
float top_p,
float temp,
float repeat_penalty);
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
// Performance information
LLAMA_API void llama_print_timings(struct llama_context * ctx);
@ -170,4 +247,15 @@ extern "C" {
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
#include <vector>
#include <string>
struct ggml_tensor;
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif
#endif // LLAMA_H

View File

@ -1,12 +0,0 @@
// Internal header to be included by llama.cpp and tests/benchmarks only.
#ifndef LLAMA_INTERNAL_H
#define LLAMA_INTERNAL_H
#include <vector>
#include <string>
struct ggml_tensor;
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif // LLAMA_INTERNAL_H

View File

@ -52,6 +52,7 @@ struct whisper_params {
std::string speak = "./examples/talk-llama/speak.sh";
std::string prompt = "";
std::string fname_out;
std::string path_session = ""; // path to file for saving/loading model eval state
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
@ -78,6 +79,7 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "--verbose-prompt") { params.verbose_prompt = true; }
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
else if (arg == "--session") { params.path_session = argv[++i];}
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; }
@ -124,6 +126,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " --n-parts-llama N [%-7d] num parts in llama model file\n", params.n_parts_llama);
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
fprintf(stderr, " --prompt-file FNAME [%-7s] file with custom prompt to start dialog\n", "");
fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n");
fprintf(stderr, " --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false");
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, "\n");
@ -330,10 +333,38 @@ int main(int argc, char ** argv) {
prompt_llama = ::replace(prompt_llama, "{4}", chat_symb);
// evaluate the initial prompt
// init session
std::string path_session = params.path_session;
std::vector<llama_token> session_tokens;
auto embd_inp = ::llama_tokenize(ctx_llama, prompt_llama, true);
if (!path_session.empty()) {
fprintf(stderr, "%s: attempting to load saved session from %s\n", __func__, path_session.c_str());
// fopen to check for existing session
FILE * fp = std::fopen(path_session.c_str(), "rb");
if (fp != NULL) {
std::fclose(fp);
session_tokens.resize(lparams.n_ctx);
size_t n_token_count_out = 0;
if (!llama_load_session_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
session_tokens.resize(n_token_count_out);
for (size_t i = 0; i < session_tokens.size(); i++) {
embd_inp[i] = session_tokens[i];
}
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
} else {
fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
}
}
// evaluate the initial prompt
printf("\n");
printf("%s : initializing - please wait ...\n", __func__);
@ -348,6 +379,31 @@ int main(int argc, char ** argv) {
fflush(stdout);
}
// debug message about similarity of saved session, if applicable
size_t n_matching_session_tokens = 0;
if (session_tokens.size()) {
for (llama_token id : session_tokens) {
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
break;
}
n_matching_session_tokens++;
}
if (n_matching_session_tokens >= embd_inp.size()) {
fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
__func__, n_matching_session_tokens, embd_inp.size());
} else {
fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
__func__, n_matching_session_tokens, embd_inp.size());
}
}
// HACK - because session saving incurs a non-negligible delay, for now skip re-saving session
// if we loaded a session with at least 75% similarity. It's currently just used to speed up the
// initial prompt so it doesn't need to be an exact match.
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < (embd_inp.size() * 3 / 4);
printf("%s : done! start speaking in the microphone\n", __func__);
printf("\n");
printf("%s%s", params.person.c_str(), chat_symb.c_str());
@ -363,6 +419,7 @@ int main(int argc, char ** argv) {
int n_past = n_keep;
int n_prev = 64; // TODO arg
int n_session_consumed = !path_session.empty() && session_tokens.size() > 0 ? session_tokens.size() : 0;
std::vector<llama_token> embd;
@ -439,6 +496,11 @@ int main(int argc, char ** argv) {
embd = ::llama_tokenize(ctx_llama, text_heard, false);
// Append the new input tokens to the session_tokens vector
if (!path_session.empty()) {
session_tokens.insert(session_tokens.end(), tokens.begin(), tokens.end());
}
// text inference
bool done = false;
std::string text_to_speak;
@ -450,7 +512,8 @@ int main(int argc, char ** argv) {
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end());
// stop saving session if we run out of context
path_session = "";
//printf("\n---\n");
//printf("resetting: '");
//for (int i = 0; i < (int) embd.size(); i++) {
@ -460,16 +523,44 @@ int main(int argc, char ** argv) {
//printf("\n---\n");
}
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
// REVIEW
if (n_session_consumed < (int) session_tokens.size()) {
size_t i = 0;
for ( ; i < embd.size(); i++) {
if (embd[i] != session_tokens[n_session_consumed]) {
session_tokens.resize(n_session_consumed);
break;
}
n_past++;
n_session_consumed++;
if (n_session_consumed >= (int) session_tokens.size()) {
i++;
break;
}
}
if (i > 0) {
embd.erase(embd.begin(), embd.begin() + i);
}
}
if (embd.size() > 0 && !path_session.empty()) {
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
n_session_consumed = session_tokens.size();
}
if (llama_eval(ctx_llama, embd.data(), embd.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
//printf("n_iter = %d, n_past = %d, n_ctx = %d, n_keep = %d, n_prev = %d, embd.size() = %d\n", n_iter, n_past, n_ctx, n_keep, n_prev, (int) embd.size());
embd_inp.insert(embd_inp.end(), embd.begin(), embd.end());
n_past += embd.size();
embd.clear();
if (done) break;
@ -483,15 +574,46 @@ int main(int argc, char ** argv) {
const int repeat_last_n = 256;
if (!path_session.empty() && need_to_save_session) {
need_to_save_session = false;
llama_save_session_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
auto n_vocab = llama_n_vocab(ctx_llama);
logits[llama_token_eos()] = 0;
id = llama_sample_top_p_top_k(ctx_llama,
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// apply repeat penalty
const float nl_logit = logits[llama_token_nl()];
llama_sample_repetition_penalty(ctx_llama, &candidates_p,
embd_inp.data() + std::max(0, n_past - repeat_last_n),
repeat_last_n, top_k, top_p, temp, repeat_penalty);
repeat_last_n, repeat_penalty);
logits[llama_token_nl()] = nl_logit;
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
} else {
// Temperature sampling
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
llama_sample_temperature(ctx_llama, &candidates_p, temp);
id = llama_sample_token(ctx_llama, &candidates_p);
}
}
if (id != llama_token_eos()) {
@ -516,6 +638,7 @@ int main(int argc, char ** argv) {
done = true;
text_to_speak = ::replace(text_to_speak, antiprompt, "");
fflush(stdout);
need_to_save_session = true;
break;
}
}

View File

@ -13,6 +13,7 @@ include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE
whisper
common
)
unset(EXTRA_FLAGS)

View File

@ -1,4 +1,6 @@
#include "ggml.h"
#include "common-ggml.h"
#include "gpt-2.h"
#include <cmath>
@ -14,150 +16,6 @@
/////////////////////// GPT-2 BEGIN /////////////////////////
//
// Vocab utils
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
std::regex re(pat);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
// find the longest tokens that form the words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
if (word.size() == 0) continue;
int i = 0;
int n = word.size();
while (i < n) {
int j = n;
while (j > i) {
auto it = vocab.token_to_id.find(word.substr(i, j-i));
if (it != vocab.token_to_id.end()) {
tokens.push_back(it->second);
i = j;
break;
}
--j;
}
if (i == n) {
break;
}
if (j == i) {
auto sub = word.substr(i, 1);
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
tokens.push_back(vocab.token_to_id.at(sub));
} else {
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
}
++i;
}
}
}
return tokens;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
for (int i = 0; i < n_logits; i++) {
logits_id.push_back(std::make_pair(logits[i], i));
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
// normalize
{
double sum = 0.0f;
for (int i = 0; i < (int)logits_id.size(); i++) {
sum += logits_id[i].first;
}
sum = 1.0/sum;
for (int i = 0; i < (int)logits_id.size(); i++) {
logits_id[i].first *= sum;
}
}
if (top_p < 1.0f) {
{
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += logits_id[i].first;
if (cumsum >= top_p) {
logits_id.resize(i+1);
break;
}
}
}
// normalize again
{
double sum = 0.0f;
for (int i = 0; i < (int)logits_id.size(); i++) {
sum += logits_id[i].first;
}
sum = 1.0/sum;
for (int i = 0; i < (int)logits_id.size(); i++) {
logits_id[i].first *= sum;
}
}
}
//printf("\n");
//for (int i = 0; i < (int)logits_id.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
//}
//exit(0);
// sample from the obtained distribution
std::vector<double> probs;
probs.reserve(logits_id.size());
for (int i = 0; i < (int) logits_id.size(); i++) {
probs.push_back(logits_id[i].first);
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
// default hparams (GPT-2 117M)
struct gpt2_hparams {
int32_t n_vocab = 50257;
@ -165,7 +23,7 @@ struct gpt2_hparams {
int32_t n_embd = 768;
int32_t n_head = 12;
int32_t n_layer = 12;
int32_t f16 = 1;
int32_t ftype = 1;
};
struct gpt2_layer {
@ -187,7 +45,7 @@ struct gpt2_layer {
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
@ -198,8 +56,9 @@ struct gpt2_model {
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * wpe; // token embedding
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * wpe; // token embedding
struct ggml_tensor * lm_head; // language model head
std::vector<gpt2_layer> layers;
@ -241,14 +100,14 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: f16 = %d\n", __func__, hparams.f16);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
}
// load vocab
@ -275,9 +134,14 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
}
}
// for the big tensors, we have the option to store the data in 16-bit floats
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return false;
}
auto & ctx = model.ctx;
@ -291,32 +155,33 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte
ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
ctx_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w
ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
ctx_size += (6 + 12*n_layer)*256; // object overhead
@ -325,9 +190,11 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
// create the ggml context
{
struct ggml_init_params params;
params.mem_size = ctx_size;
params.mem_buffer = NULL;
struct ggml_init_params params = {
.mem_size = ctx_size,
.mem_buffer = NULL,
.no_alloc = false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
@ -350,36 +217,38 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
// map by name
model.tensors["model/ln_f/g"] = model.ln_f_g;
model.tensors["model/ln_f/b"] = model.ln_f_b;
model.tensors["model/wte"] = model.wte;
model.tensors["model/wpe"] = model.wpe;
model.tensors["model/wte"] = model.wte;
model.tensors["model/wpe"] = model.wpe;
model.tensors["model/lm_head"] = model.lm_head;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
@ -397,7 +266,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
}
}
@ -425,14 +294,16 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
{
size_t total_size = 0;
bool has_lm_head = false;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
@ -461,13 +332,18 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
return false;
}
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
if (nelements*bpe != ggml_nbytes(tensor)) {
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
@ -475,7 +351,15 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
// GPT-2 models share the WTE tensor as the LM head
if (name == "model/wte" && has_lm_head == false) {
memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor));
}
if (name == "model/lm_head") {
has_lm_head = true;
}
total_size += ggml_nbytes(tensor);
}
@ -493,7 +377,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted probabilities of the next token
// - embd_w: the predicted logits for the next token
//
bool gpt2_eval(
const gpt2_model & model,
@ -512,12 +396,12 @@ bool gpt2_eval(
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
static size_t buf_size = 640u*1024*1024;
static size_t buf_size = 512u*1024*1024;
static void * buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
@ -528,13 +412,14 @@ bool gpt2_eval(
}
}
struct ggml_init_params params;
params.mem_size = buf_size;
params.mem_buffer = buf;
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = { };
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
@ -578,7 +463,7 @@ bool gpt2_eval(
// [2304, N]
{
cur = ggml_mul_mat(ctx0,
ggml_transpose(ctx0, model.layers[il].c_attn_attn_w),
model.layers[il].c_attn_attn_w,
cur);
cur = ggml_add(ctx0,
@ -654,11 +539,13 @@ bool gpt2_eval(
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
// [n_past + N, 64, 12]
struct ggml_tensor * V_trans =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3);
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
// [64, N, 12]
@ -685,7 +572,7 @@ bool gpt2_eval(
// [768, N]
{
cur = ggml_mul_mat(ctx0,
ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
model.layers[il].c_attn_proj_w,
cur);
cur = ggml_add(ctx0,
@ -722,7 +609,7 @@ bool gpt2_eval(
// cur = fc_w*cur + fc_b
// [3072, N]
cur = ggml_mul_mat(ctx0,
ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
model.layers[il].c_mlp_fc_w,
cur);
cur = ggml_add(ctx0,
@ -742,7 +629,7 @@ bool gpt2_eval(
// cur = proj_w*cur + proj_b
// [768, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w_trans,
model.layers[il].c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
@ -769,12 +656,12 @@ bool gpt2_eval(
}
// inpL = WTE * inpL
// [ 768, 50257] - model.wte
// [ 768, 50257] - model.lm_head
// [ 768, N] - inpL
inpL = ggml_mul_mat(ctx0, model.wte, inpL);
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
// logits -> probs
inpL = ggml_soft_max(ctx0, inpL);
//inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
@ -788,7 +675,7 @@ bool gpt2_eval(
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
// return result just for the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
@ -825,7 +712,7 @@ Me too.
int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
// sampling parameters
int32_t top_k = 40;
int32_t top_k = 5;
float top_p = 0.9f;
float temp = 1.0f;
};
@ -833,14 +720,14 @@ Me too.
struct gpt2_context * gpt2_init(const char * path_model) {
gpt2_context * ctx = new gpt2_context;
ctx->rng = std::mt19937(time(NULL));
ctx->rng = std::mt19937(time(nullptr));
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "gpt-2.bin");
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model);
delete ctx;
return nullptr;
}
@ -885,9 +772,9 @@ std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens)
std::string result;
for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) {
for (int i = embd.size(); i < (int) embd_inp.size() + n_predict; i++) {
// predict
if (embd.size() > 0) {
if (!embd.empty()) {
if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) {
printf("gpt-2: failed to generate text\n");
return "";
@ -914,10 +801,7 @@ std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens)
result += ctx->vocab.id_to_token[embd[0]];
// end of text token
if (embd.back() == 50256 ||
ctx->vocab.id_to_token[embd.back()] == "." ||
ctx->vocab.id_to_token[embd.back()] == "!" ||
ctx->vocab.id_to_token[embd.back()] == "?") {
if (embd.back() == 50256) {
break;
}
}

View File

@ -2,18 +2,12 @@
// TODO: Change to C-style API and move to ./examples for easy reuse.
#include "common.h"
#include <vector>
#include <map>
#include <string>
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
};
struct gpt2_context;
struct gpt2_context * gpt2_init(const char * path_model);

View File

@ -44,6 +44,15 @@
<br><br>
<b>More examples:</b>
<a href="https://whisper.ggerganov.com/">main</a> |
<a href="https://whisper.ggerganov.com/bench">bench</a> |
<a href="https://whisper.ggerganov.com/stream">stream</a> |
<a href="https://whisper.ggerganov.com/command">command</a> |
<a href="https://whisper.ggerganov.com/talk">talk</a> |
<br><br>
<hr>
Select the models you would like to use and click the "Start" button to begin the conversation
@ -54,6 +63,10 @@
Whisper model: <span id="model-whisper-status"></span>
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
<br><br>
Quantized models:<br><br>
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
<span id="fetch-whisper-progress"></span>
<!--
@ -266,11 +279,17 @@
let urls = {
'tiny.en': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en.bin',
'base.en': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en.bin',
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
};
let sizes = {
'tiny.en': 75,
'base.en': 142,
'tiny-en-q5_1': 31,
'base-en-q5_1': 57,
};
let url = urls[model];
@ -281,6 +300,10 @@
document.getElementById('fetch-whisper-tiny-en').style.display = 'none';
document.getElementById('fetch-whisper-base-en').style.display = 'none';
document.getElementById('fetch-whisper-tiny-en-q5_1').style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1').style.display = 'none';
document.getElementById('model-whisper-status').innerHTML = 'loading "' + model + '" ... ';
cbProgress = function(p) {
@ -292,6 +315,10 @@
var el;
el = document.getElementById('fetch-whisper-tiny-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-tiny-en-q5_1'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en-q5_1'); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
};

View File

@ -1,16 +1,8 @@
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# talk
set(TARGET talk)
#add_executable(${TARGET} talk.cpp gpt-2.cpp)
#target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
#target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
# TODO: this is temporary
# need to export ggml symbols for MSVC, but too lazy ..
add_executable(${TARGET} talk.cpp gpt-2.cpp ../common.cpp ../common-sdl.cpp ../../ggml.c ../../whisper.cpp)
add_executable(${TARGET} talk.cpp gpt-2.cpp)
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
include(DefaultTargetOptions)
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS} ../../)
target_link_libraries(${TARGET} PRIVATE ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
endif ()

View File

@ -1,4 +1,6 @@
#include "ggml.h"
#include "common-ggml.h"
#include "gpt-2.h"
#include <cmath>
@ -14,150 +16,6 @@
/////////////////////// GPT-2 BEGIN /////////////////////////
//
// Vocab utils
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
std::regex re(pat);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
// find the longest tokens that form the words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
if (word.empty()) continue;
int i = 0;
int n = word.size();
while (i < n) {
int j = n;
while (j > i) {
auto it = vocab.token_to_id.find(word.substr(i, j-i));
if (it != vocab.token_to_id.end()) {
tokens.push_back(it->second);
i = j;
break;
}
--j;
}
if (i == n) {
break;
}
if (j == i) {
auto sub = word.substr(i, 1);
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
tokens.push_back(vocab.token_to_id.at(sub));
} else {
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
}
++i;
}
}
}
return tokens;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double /*temp*/,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
for (int i = 0; i < n_logits; i++) {
logits_id.emplace_back(logits[i], i);
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
// normalize
{
double sum = 0.0f;
for (int i = 0; i < (int)logits_id.size(); i++) {
sum += logits_id[i].first;
}
sum = 1.0/sum;
for (int i = 0; i < (int)logits_id.size(); i++) {
logits_id[i].first *= sum;
}
}
if (top_p < 1.0f) {
{
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += logits_id[i].first;
if (cumsum >= top_p) {
logits_id.resize(i+1);
break;
}
}
}
// normalize again
{
double sum = 0.0f;
for (int i = 0; i < (int)logits_id.size(); i++) {
sum += logits_id[i].first;
}
sum = 1.0/sum;
for (int i = 0; i < (int)logits_id.size(); i++) {
logits_id[i].first *= sum;
}
}
}
//printf("\n");
//for (int i = 0; i < (int) logits_id.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
//}
//exit(0);
// sample from the obtained distribution
std::vector<double> probs;
probs.reserve(logits_id.size());
for (int i = 0; i < (int) logits_id.size(); i++) {
probs.push_back(logits_id[i].first);
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}
// default hparams (GPT-2 117M)
struct gpt2_hparams {
int32_t n_vocab = 50257;
@ -165,7 +23,7 @@ struct gpt2_hparams {
int32_t n_embd = 768;
int32_t n_head = 12;
int32_t n_layer = 12;
int32_t f16 = 1;
int32_t ftype = 1;
};
struct gpt2_layer {
@ -187,7 +45,7 @@ struct gpt2_layer {
struct ggml_tensor * c_mlp_fc_w;
struct ggml_tensor * c_mlp_fc_b;
struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency
struct ggml_tensor * c_mlp_proj_w;
struct ggml_tensor * c_mlp_proj_b;
};
@ -198,8 +56,9 @@ struct gpt2_model {
struct ggml_tensor * ln_f_g;
struct ggml_tensor * ln_f_b;
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * wpe; // token embedding
struct ggml_tensor * wte; // position embedding
struct ggml_tensor * wpe; // token embedding
struct ggml_tensor * lm_head; // language model head
std::vector<gpt2_layer> layers;
@ -241,14 +100,14 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
printf("%s: n_head = %d\n", __func__, hparams.n_head);
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
printf("%s: f16 = %d\n", __func__, hparams.f16);
printf("%s: ftype = %d\n", __func__, hparams.ftype);
}
// load vocab
@ -268,16 +127,21 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
fin.read((char *) &len, sizeof(len));
word.resize(len);
fin.read((char *) &word[0], len);
fin.read((char *) word.data(), len);
vocab.token_to_id[word] = i;
vocab.id_to_token[i] = word;
}
}
// for the big tensors, we have the option to store the data in 16-bit floats
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype) (model.hparams.ftype));
if (wtype == GGML_TYPE_COUNT) {
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
__func__, fname.c_str(), model.hparams.ftype);
return false;
}
auto & ctx = model.ctx;
@ -291,32 +155,33 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
const int n_ctx = hparams.n_ctx;
const int n_vocab = hparams.n_vocab;
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b
ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte
ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // wte
ctx_size += n_ctx*n_embd*ggml_type_sizef(GGML_TYPE_F32); // wpe
ctx_size += n_vocab*n_embd*ggml_type_sizef(wtype); // lm_head
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_g
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_2_b
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w
ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_attn_w
ctx_size += n_layer*( 3*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_attn_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_attn_proj_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w
ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
ctx_size += (6 + 12*n_layer)*256; // object overhead
@ -325,9 +190,11 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
// create the ggml context
{
struct ggml_init_params params;
params.mem_size = ctx_size;
params.mem_buffer = nullptr;
struct ggml_init_params params = {
.mem_size = ctx_size,
.mem_buffer = NULL,
.no_alloc = false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
@ -350,36 +217,38 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
model.lm_head = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
// map by name
model.tensors["model/ln_f/g"] = model.ln_f_g;
model.tensors["model/ln_f/b"] = model.ln_f_b;
model.tensors["model/wte"] = model.wte;
model.tensors["model/wpe"] = model.wpe;
model.tensors["model/wte"] = model.wte;
model.tensors["model/wpe"] = model.wpe;
model.tensors["model/lm_head"] = model.lm_head;
for (int i = 0; i < n_layer; ++i) {
auto & layer = model.layers[i];
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 3*n_embd);
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd);
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
// map by name
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
@ -397,7 +266,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w;
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
}
}
@ -425,14 +294,16 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
{
size_t total_size = 0;
bool has_lm_head = false;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
int32_t ttype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
if (fin.eof()) {
break;
@ -448,7 +319,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
std::string name(length, 0);
fin.read(&name[0], length);
if (model.tensors.find(name) == model.tensors.end()) {
if (model.tensors.find(name.data()) == model.tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
return false;
}
@ -461,13 +332,18 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], ne[0], ne[1]);
return false;
}
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
// for debugging
if (0) {
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor));
}
if (nelements*bpe != ggml_nbytes(tensor)) {
const size_t bpe = ggml_type_size(ggml_type(ttype));
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
return false;
@ -475,7 +351,15 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
// GPT-2 models share the WTE tensor as the LM head
if (name == "model/wte" && has_lm_head == false) {
memcpy(model.lm_head->data, tensor->data, ggml_nbytes(tensor));
}
if (name == "model/lm_head") {
has_lm_head = true;
}
total_size += ggml_nbytes(tensor);
}
@ -493,7 +377,7 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
// - n_threads: number of threads to use
// - n_past: the context size so far
// - embd_inp: the embeddings of the tokens in the context
// - embd_w: the predicted probabilities of the next token
// - embd_w: the predicted logits for the next token
//
bool gpt2_eval(
const gpt2_model & model,
@ -512,12 +396,12 @@ bool gpt2_eval(
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
static size_t buf_size = 5640ull*1024*1024;
static size_t buf_size = 512u*1024*1024;
static void * buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
@ -528,13 +412,14 @@ bool gpt2_eval(
}
}
struct ggml_init_params params;
params.mem_size = buf_size;
params.mem_buffer = buf;
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = { };
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
@ -578,7 +463,7 @@ bool gpt2_eval(
// [2304, N]
{
cur = ggml_mul_mat(ctx0,
ggml_transpose(ctx0, model.layers[il].c_attn_attn_w),
model.layers[il].c_attn_attn_w,
cur);
cur = ggml_add(ctx0,
@ -654,11 +539,13 @@ bool gpt2_eval(
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
// [n_past + N, 64, 12]
struct ggml_tensor * V_trans =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3);
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
n_embd/n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd/n_head, n_head));
// KQV = transpose(V) * KQ_soft_max
// [64, N, 12]
@ -685,7 +572,7 @@ bool gpt2_eval(
// [768, N]
{
cur = ggml_mul_mat(ctx0,
ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
model.layers[il].c_attn_proj_w,
cur);
cur = ggml_add(ctx0,
@ -722,7 +609,7 @@ bool gpt2_eval(
// cur = fc_w*cur + fc_b
// [3072, N]
cur = ggml_mul_mat(ctx0,
ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
model.layers[il].c_mlp_fc_w,
cur);
cur = ggml_add(ctx0,
@ -742,7 +629,7 @@ bool gpt2_eval(
// cur = proj_w*cur + proj_b
// [768, N]
cur = ggml_mul_mat(ctx0,
model.layers[il].c_mlp_proj_w_trans,
model.layers[il].c_mlp_proj_w,
cur);
cur = ggml_add(ctx0,
@ -769,12 +656,12 @@ bool gpt2_eval(
}
// inpL = WTE * inpL
// [ 768, 50257] - model.wte
// [ 768, 50257] - model.lm_head
// [ 768, N] - inpL
inpL = ggml_mul_mat(ctx0, model.wte, inpL);
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
// logits -> probs
inpL = ggml_soft_max(ctx0, inpL);
//inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand(&gf, inpL);
@ -788,7 +675,7 @@ bool gpt2_eval(
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
// return result for just the last token
// return result just for the last token
embd_w.resize(n_vocab);
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);

View File

@ -2,18 +2,12 @@
// TODO: Change to C-style API and move to ./examples for easy reuse.
#include "common.h"
#include <vector>
#include <map>
#include <string>
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
};
struct gpt2_context;
struct gpt2_context * gpt2_init(const char * path_model);

View File

@ -9,4 +9,6 @@ To use:
5. Select the "release" active build variant, and use Android Studio to run and deploy to your device.
[^1]: I recommend the tiny or base models for running on an Android device.
(PS: Do not move this android project folder individually to other folders, because this android project folder depends on the files of the whole project.)
<img width="300" alt="image" src="https://user-images.githubusercontent.com/1670775/221613663-a17bf770-27ef-45ab-9a46-a5f99ba65d2a.jpg">

View File

@ -14,15 +14,24 @@ https://user-images.githubusercontent.com/1991296/204126266-ce4177c6-6eca-4bd9-b
```java
git clone https://github.com/ggerganov/whisper.cpp
open whisper.cpp/examples/whisper.objc/whisper.objc.xcodeproj/
// If you don't want to convert a Core ML model, you can skip this step by create dummy model
mkdir models/ggml-base.en-encoder.mlmodelc
```
Make sure to build the project in `Release`:
<img width="947" alt="image" src="https://user-images.githubusercontent.com/1991296/197382607-9e1e6d1b-79fa-496f-9d16-b71dc1535701.png">
Also, don't forget to add the `-DGGML_USE_ACCELERATE` compiler flag in Build Phases.
Also, don't forget to add the `-DGGML_USE_ACCELERATE` compiler flag for `ggml.c` in Build Phases.
This can significantly improve the performance of the transcription:
<img width="1072" alt="image" src="https://user-images.githubusercontent.com/1991296/208511239-8d7cdbd1-aa48-41b5-becd-ca288d53cc07.png">
If you want to enable Core ML support, you can add the `-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK` compiler flag for `whisper.cpp` in Build Phases:
<img width="1072" alt="image" src="https://github.com/ggerganov/whisper.cpp/assets/3001525/103e8f57-6eb6-490d-a60c-f6cf6c319324">
Then follow the [`Core ML support` section of readme](../../README.md#core-ml-support) for convert the model.
In this project, it also added `-O3 -DNDEBUG` to `Other C Flags`, but adding flags to app proj is not ideal in real world (applies to all C/C++ files), consider splitting xcodeproj in workspace in your own project.

View File

@ -14,9 +14,13 @@
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8529052BE000BD2A04 /* Assets.xcassets */; };
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */ = {isa = PBXBuildFile; fileRef = 18627C8729052BE000BD2A04 /* LaunchScreen.storyboard */; };
18627C8C29052BE000BD2A04 /* main.m in Sources */ = {isa = PBXBuildFile; fileRef = 18627C8B29052BE000BD2A04 /* main.m */; };
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; };
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9329052C4900BD2A04 /* whisper.cpp */; settings = {COMPILER_FLAGS = "-DWHISPER_USE_COREML -DWHISPER_COREML_ALLOW_FALLBACK"; }; };
18627C9629052C5800BD2A04 /* ggml.c in Sources */ = {isa = PBXBuildFile; fileRef = 18627C9529052C5800BD2A04 /* ggml.c */; settings = {COMPILER_FLAGS = "-DGGML_USE_ACCELERATE"; }; };
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */ = {isa = PBXBuildFile; fileRef = 18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */; };
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */; };
7FE3424C2A0C3FA20015A058 /* whisper-encoder.mm in Sources */ = {isa = PBXBuildFile; fileRef = 7FE342472A0C3FA20015A058 /* whisper-encoder.mm */; };
7FE3424D2A0C3FA20015A058 /* whisper-decoder-impl.m in Sources */ = {isa = PBXBuildFile; fileRef = 7FE3424A2A0C3FA20015A058 /* whisper-decoder-impl.m */; };
7FE3424F2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc in Resources */ = {isa = PBXBuildFile; fileRef = 7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */; };
/* End PBXBuildFile section */
/* Begin PBXFileReference section */
@ -37,6 +41,13 @@
18627C9529052C5800BD2A04 /* ggml.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; name = ggml.c; path = ../../../ggml.c; sourceTree = "<group>"; };
18627C9729052C6600BD2A04 /* ggml.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; name = ggml.h; path = ../../../ggml.h; sourceTree = "<group>"; };
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */ = {isa = PBXFileReference; lastKnownFileType = archive.macbinary; name = "ggml-base.en.bin"; path = "../../../models/ggml-base.en.bin"; sourceTree = "<group>"; };
7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = "whisper-encoder-impl.m"; sourceTree = "<group>"; };
7FE342462A0C3FA20015A058 /* whisper-encoder.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "whisper-encoder.h"; sourceTree = "<group>"; };
7FE342472A0C3FA20015A058 /* whisper-encoder.mm */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.objcpp; path = "whisper-encoder.mm"; sourceTree = "<group>"; };
7FE342482A0C3FA20015A058 /* whisper-decoder-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "whisper-decoder-impl.h"; sourceTree = "<group>"; };
7FE342492A0C3FA20015A058 /* whisper-encoder-impl.h */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.h; path = "whisper-encoder-impl.h"; sourceTree = "<group>"; };
7FE3424A2A0C3FA20015A058 /* whisper-decoder-impl.m */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.objc; path = "whisper-decoder-impl.m"; sourceTree = "<group>"; };
7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = "ggml-base.en-encoder.mlmodelc"; path = "../../../models/ggml-base.en-encoder.mlmodelc"; sourceTree = "<group>"; };
/* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */
@ -69,6 +80,8 @@
18627C7829052BDF00BD2A04 /* whisper.objc */ = {
isa = PBXGroup;
children = (
7FE3424E2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc */,
7FE342442A0C3FA20015A058 /* coreml */,
18627C9A29052CFF00BD2A04 /* ggml-base.en.bin */,
18627C9729052C6600BD2A04 /* ggml.h */,
18627C9529052C5800BD2A04 /* ggml.c */,
@ -89,6 +102,20 @@
path = whisper.objc;
sourceTree = "<group>";
};
7FE342442A0C3FA20015A058 /* coreml */ = {
isa = PBXGroup;
children = (
7FE342452A0C3FA20015A058 /* whisper-encoder-impl.m */,
7FE342462A0C3FA20015A058 /* whisper-encoder.h */,
7FE342472A0C3FA20015A058 /* whisper-encoder.mm */,
7FE342482A0C3FA20015A058 /* whisper-decoder-impl.h */,
7FE342492A0C3FA20015A058 /* whisper-encoder-impl.h */,
7FE3424A2A0C3FA20015A058 /* whisper-decoder-impl.m */,
);
name = coreml;
path = ../../../coreml;
sourceTree = "<group>";
};
/* End PBXGroup section */
/* Begin PBXNativeTarget section */
@ -147,6 +174,7 @@
buildActionMask = 2147483647;
files = (
18627C8929052BE000BD2A04 /* LaunchScreen.storyboard in Resources */,
7FE3424F2A0C418A0015A058 /* ggml-base.en-encoder.mlmodelc in Resources */,
18627C8629052BE000BD2A04 /* Assets.xcassets in Resources */,
18627C8429052BDF00BD2A04 /* Main.storyboard in Resources */,
18627C9B29052CFF00BD2A04 /* ggml-base.en.bin in Resources */,
@ -161,11 +189,14 @@
buildActionMask = 2147483647;
files = (
18627C8129052BDF00BD2A04 /* ViewController.m in Sources */,
7FE3424C2A0C3FA20015A058 /* whisper-encoder.mm in Sources */,
18627C9429052C4900BD2A04 /* whisper.cpp in Sources */,
18627C9629052C5800BD2A04 /* ggml.c in Sources */,
18627C7B29052BDF00BD2A04 /* AppDelegate.m in Sources */,
7FE3424D2A0C3FA20015A058 /* whisper-decoder-impl.m in Sources */,
18627C8C29052BE000BD2A04 /* main.m in Sources */,
18627C7E29052BDF00BD2A04 /* SceneDelegate.m in Sources */,
7FE3424B2A0C3FA20015A058 /* whisper-encoder-impl.m in Sources */,
);
runOnlyForDeploymentPostprocessing = 0;
};

View File

@ -31,9 +31,9 @@ endif()
set_target_properties(${TARGET} PROPERTIES LINK_FLAGS " \
--bind \
-s USE_PTHREADS=1 \
-s PTHREAD_POOL_SIZE=8 \
-s INITIAL_MEMORY=1500MB \
-s TOTAL_MEMORY=1500MB \
-s PTHREAD_POOL_SIZE_STRICT=0 \
-s INITIAL_MEMORY=2000MB \
-s TOTAL_MEMORY=2000MB \
-s FORCE_FILESYSTEM=1 \
-s EXPORTED_RUNTIME_METHODS=\"['print', 'printErr', 'ccall', 'cwrap']\" \
${EXTRA_FLAGS} \

View File

@ -37,6 +37,6 @@ emcmake cmake ..
make -j
# copy the produced page to your HTTP path
cp bin/whisper.wasm/* /path/to/html/
cp bin/libwhisper.worker.js /path/to/html/
cp bin/whisper.wasm/* /path/to/html/
cp bin/libmain.worker.js /path/to/html/
```

View File

@ -10,6 +10,12 @@ std::thread g_worker;
std::vector<struct whisper_context *> g_contexts(4, nullptr);
static inline int mpow2(int n) {
int p = 1;
while (p <= n) p *= 2;
return p/2;
}
EMSCRIPTEN_BINDINGS(whisper) {
emscripten::function("init", emscripten::optional_override([](const std::string & path_model) {
if (g_worker.joinable()) {
@ -43,7 +49,7 @@ EMSCRIPTEN_BINDINGS(whisper) {
}
}));
emscripten::function("full_default", emscripten::optional_override([](size_t index, const emscripten::val & audio, const std::string & lang, bool translate) {
emscripten::function("full_default", emscripten::optional_override([](size_t index, const emscripten::val & audio, const std::string & lang, int nthreads, bool translate) {
if (g_worker.joinable()) {
g_worker.join();
}
@ -66,7 +72,7 @@ EMSCRIPTEN_BINDINGS(whisper) {
params.print_special = false;
params.translate = translate;
params.language = whisper_is_multilingual(g_contexts[index]) ? lang.c_str() : "en";
params.n_threads = std::min(8, (int) std::thread::hardware_concurrency());
params.n_threads = std::min(nthreads, std::min(16, mpow2(std::thread::hardware_concurrency())));
params.offset_ms = 0;
std::vector<float> pcmf32;

View File

@ -40,21 +40,42 @@
Note that the computation is quite heavy and may take a few seconds to complete.<br>
The transcription results will be displayed in the text area below.<br><br>
<b>Important: your browser must support WASM SIMD instructions for this to work.</b>
<b>Important:</b>
<ul>
<li>your browser must support WASM SIMD instructions for this to work</li>
<li>Firefox cannot load files larger than 256 MB - use Chrome instead</li>
</ul>
<br><br><hr>
<b>More examples:</b>
<a href="https://whisper.ggerganov.com/">main</a> |
<a href="https://whisper.ggerganov.com/bench">bench</a> |
<a href="https://whisper.ggerganov.com/stream">stream</a> |
<a href="https://whisper.ggerganov.com/command">command</a> |
<a href="https://whisper.ggerganov.com/talk">talk</a> |
<hr>
<div id="model">
Whisper model: <span id="model-whisper-status"></span>
Whisper models: <span id="model-whisper-status"></span><br><br>
<button id="fetch-whisper-tiny-en" onclick="loadWhisper('tiny.en')">tiny.en (75 MB)</button>
<button id="fetch-whisper-tiny" onclick="loadWhisper('tiny')">tiny (75 MB)</button>
<button id="fetch-whisper-base-en" onclick="loadWhisper('base.en')">base.en (142 MB)</button>
<button id="fetch-whisper-base" onclick="loadWhisper('base')">base (142 MB)</button>
<button id="fetch-whisper-small-en" onclick="loadWhisper('small.en')">small.en (466 MB)</button>
<button id="fetch-whisper-small" onclick="loadWhisper('small')">small (466 MB)</button>
<span id="fetch-whisper-progress"></span>
<input type="file" id="whisper-file" name="file" onchange="loadFile(event, 'whisper.bin')" />
<br><br>
Quantized models:<br><br>
<button id="fetch-whisper-tiny-en-q5_1" onclick="loadWhisper('tiny-en-q5_1')">tiny.en (Q5_1, 31 MB)</button>
<button id="fetch-whisper-tiny-q5_1" onclick="loadWhisper('tiny-q5_1')">tiny (Q5_1, 31 MB)</button>
<button id="fetch-whisper-base-en-q5_1" onclick="loadWhisper('base-en-q5_1')">base.en (Q5_1, 57 MB)</button>
<button id="fetch-whisper-base-q5_1" onclick="loadWhisper('base-q5_1')">base (Q5_1, 57 MB)</button>
<button id="fetch-whisper-small-en-q5_1" onclick="loadWhisper('small-en-q5_1')">small.en (Q5_1, 182 MB)</button>
<button id="fetch-whisper-small-q5_1" onclick="loadWhisper('small-q5_1')">small (Q5_1, 182 MB)</button><br>
<button id="fetch-whisper-medium-en-q5_0" onclick="loadWhisper('medium-en-q5_0')">medium.en (Q5_0, 515 MB)</button>
<button id="fetch-whisper-medium-q5_0" onclick="loadWhisper('medium-q5_0')">medium (Q5_0, 515 MB)</button>
<button id="fetch-whisper-large-q5_0" onclick="loadWhisper('large-q5_0')">large (Q5_0, 1030 MB)</button>
<span id="fetch-whisper-progress"></span>
</div>
<br>
@ -161,6 +182,12 @@
<option value="yi">Yiddish</option>
</select>
</td>
<!-- Slider to select number of threads between 1 and 16 -->
<td>
Threads:
<input type="range" id="threads" name="threads" min="1" max="16" value="8" onchange="changeThreads(this.value)" />
<span id="threads-value">8</span>
</td>
<td>
<button onclick="onProcess(false);">Transcribe</button>
</td>
@ -263,11 +290,13 @@
Module.FS_createDataFile("/", fname, buf, true, true);
model_whisper = fname;
//model_whisper = fname;
document.getElementById('model-whisper-status').innerHTML = 'loaded "' + model_whisper + '"!';
printTextarea('storeFS: stored model: ' + fname + ' size: ' + buf.length);
document.getElementById('model').innerHTML = 'Model fetched: ' + model_whisper;
}
function loadFile(event, fname) {
@ -292,6 +321,17 @@
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
document.getElementById('fetch-whisper-base' ).style.display = 'none';
document.getElementById('fetch-whisper-small' ).style.display = 'none';
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-tiny-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-base-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-small-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
document.getElementById('fetch-whisper-medium-q5_0' ).style.display = 'none';
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
document.getElementById('whisper-file' ).style.display = 'none';
document.getElementById('model-whisper-status' ).innerHTML = 'loaded model: ' + file.name;
}
@ -304,6 +344,16 @@
'base': 'https://whisper.ggerganov.com/ggml-model-whisper-base.bin',
'small.en': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en.bin',
'small': 'https://whisper.ggerganov.com/ggml-model-whisper-small.bin',
'tiny-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny.en-q5_1.bin',
'tiny-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-tiny-q5_1.bin',
'base-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base.en-q5_1.bin',
'base-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-base-q5_1.bin',
'small-en-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-small.en-q5_1.bin',
'small-q5_1': 'https://whisper.ggerganov.com/ggml-model-whisper-small-q5_1.bin',
'medium-en-q5_0':'https://whisper.ggerganov.com/ggml-model-whisper-medium.en-q5_0.bin',
'medium-q5_0': 'https://whisper.ggerganov.com/ggml-model-whisper-medium-q5_0.bin',
'large-q5_0': 'https://whisper.ggerganov.com/ggml-model-whisper-large-q5_0.bin',
};
let sizes = {
@ -313,6 +363,16 @@
'base': 142,
'small.en': 466,
'small': 466,
'tiny-en-q5_1': 31,
'tiny-q5_1': 31,
'base-en-q5_1': 57,
'base-q5_1': 57,
'small-en-q5_1': 182,
'small-q5_1': 182,
'medium-en-q5_0': 515,
'medium-q5_0': 515,
'large-q5_0': 1030,
};
let url = urls[model];
@ -327,8 +387,19 @@
document.getElementById('fetch-whisper-tiny' ).style.display = 'none';
document.getElementById('fetch-whisper-base' ).style.display = 'none';
document.getElementById('fetch-whisper-small' ).style.display = 'none';
document.getElementById('whisper-file' ).style.display = 'none';
document.getElementById('model-whisper-status' ).innerHTML = 'loading model: ' + model;
document.getElementById('fetch-whisper-tiny-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-tiny-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-base-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-base-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-small-en-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-small-q5_1' ).style.display = 'none';
document.getElementById('fetch-whisper-medium-en-q5_0').style.display = 'none';
document.getElementById('fetch-whisper-medium-q5_0' ).style.display = 'none';
document.getElementById('fetch-whisper-large-q5_0' ).style.display = 'none';
document.getElementById('whisper-file' ).style.display = 'none';
document.getElementById('model-whisper-status').innerHTML = 'loading model: ' + model;
cbProgress = function(p) {
let el = document.getElementById('fetch-whisper-progress');
@ -337,14 +408,26 @@
cbCancel = function() {
var el;
el = document.getElementById('fetch-whisper-tiny-en' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-small-en'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-tiny' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-small' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status' ); if (el) el.innerHTML = '';
el = document.getElementById('fetch-whisper-tiny-en-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-tiny-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-en-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-base-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-small-en-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-small-q5_1' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-medium-en-q5_0'); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-medium-q5_0' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('fetch-whisper-large-q5_0' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('whisper-file' ); if (el) el.style.display = 'inline-block';
el = document.getElementById('model-whisper-status'); if (el) el.innerHTML = '';
};
loadRemote(url, dst, size_mb, cbProgress, storeFS, cbCancel, printTextarea);
@ -354,7 +437,8 @@
// audio file
//
const kMaxAudio_s = 120;
const kMaxAudio_s = 30*60;
const kMaxRecording_s = 2*60;
const kSampleRate = 16000;
window.AudioContext = window.AudioContext || window.webkitAudioContext;
@ -423,7 +507,7 @@
doRecording = false;
}
// record up to kMaxAudio_s seconds of audio from the microphone
// record up to kMaxRecording_s seconds of audio from the microphone
// check if doRecording is false every 1000 ms and stop recording if so
// update progress information
function startRecording() {
@ -479,9 +563,9 @@
printTextarea('js: audio recorded, size: ' + audio.length);
// truncate to first 30 seconds
if (audio.length > kMaxAudio_s*kSampleRate) {
audio = audio.slice(0, kMaxAudio_s*kSampleRate);
printTextarea('js: truncated audio to first ' + kMaxAudio_s + ' seconds');
if (audio.length > kMaxRecording_s*kSampleRate) {
audio = audio.slice(0, kMaxRecording_s*kSampleRate);
printTextarea('js: truncated audio to first ' + kMaxRecording_s + ' seconds');
}
setAudio(audio);
});
@ -509,24 +593,31 @@
});
}
document.getElementById('progress-bar').style.width = (100*(Date.now() - startTime)/1000/kMaxAudio_s) + '%';
document.getElementById('progress-text').innerHTML = (100*(Date.now() - startTime)/1000/kMaxAudio_s).toFixed(0) + '%';
document.getElementById('progress-bar').style.width = (100*(Date.now() - startTime)/1000/kMaxRecording_s) + '%';
document.getElementById('progress-text').innerHTML = (100*(Date.now() - startTime)/1000/kMaxRecording_s).toFixed(0) + '%';
}, 1000);
printTextarea('js: recording ...');
setTimeout(function() {
if (doRecording) {
printTextarea('js: recording stopped after ' + kMaxAudio_s + ' seconds');
printTextarea('js: recording stopped after ' + kMaxRecording_s + ' seconds');
stopRecording();
}
}, kMaxAudio_s*1000);
}, kMaxRecording_s*1000);
}
//
// transcribe
//
var nthreads = 8;
function changeThreads(value) {
nthreads = value;
document.getElementById('threads-value').innerHTML = nthreads;
}
function onProcess(translate) {
if (!instance) {
instance = Module.init('whisper.bin');
@ -553,7 +644,7 @@
printTextarea('');
setTimeout(function() {
var ret = Module.full_default(instance, audio, document.getElementById('language').value, translate);
var ret = Module.full_default(instance, audio, document.getElementById('language').value, nthreads, translate);
console.log('js: full_default returned: ' + ret);
if (ret) {
printTextarea("js: whisper returned: " + ret);

View File

@ -2,7 +2,7 @@
# Helper script to run the bench tool on all models and print the results in share-able format
printf "Usage: ./bench.sh [n_threads]\n"
printf "Usage: ./bench.sh [n_threads] [encoder-only]\n"
if [ -z "$1" ]; then
n_threads=4
@ -10,24 +10,39 @@ else
n_threads=$1
fi
models=( "tiny" "base" "small" "medium" "large" )
encoder_only=0
if [ -z "$2" ]; then
encoder_only=0
else
encoder_only=$2
fi
printf "\n"
printf "Running memcpy benchmark with 1 thread\n"
printf "\n"
models=( \
"tiny" "tiny-q5_0" "tiny-q5_1" "tiny-q8_0" \
"base" "base-q5_0" "base-q5_1" "base-q8_0" \
"small" "small-q5_0" "small-q5_1" "small-q8_0" \
"medium" "medium-q5_0" "medium-q5_1" "medium-q8_0" \
"large" "large-q5_0" "large-q5_1" "large-q8_0" \
)
./bench -w 1 -t 1 2>&1
if [ "$encoder_only" -eq 0 ]; then
printf "\n"
printf "Running memcpy benchmark\n"
printf "\n"
printf "\n"
printf "Running ggml_mul_mat benchmark with $n_threads threads\n"
printf "\n"
./bench -w 1 -t $n_threads 2>&1
./bench -w 2 -t $n_threads 2>&1
printf "\n"
printf "Running ggml_mul_mat benchmark with $n_threads threads\n"
printf "\n"
printf "\n"
printf "Running benchmark for all models\n"
printf "This can take a while!\n"
printf "\n"
./bench -w 2 -t $n_threads 2>&1
printf "\n"
printf "Running benchmark for all models\n"
printf "This can take a while!\n"
printf "\n"
fi
printf "| CPU | OS | Config | Model | Th | Load | Enc. | Commit |\n"
printf "| --- | -- | ------ | ----- | -- | ---- | ---- | ------ |\n"
@ -39,6 +54,7 @@ for model in "${models[@]}"; do
# actual run
# store stderr output in a variable in order to parse it later
output=$(./bench -m ./models/ggml-$model.bin -t $n_threads 2>&1)
ret=$?
# parse the output:
load_time=$(echo "$output" | grep "load time" | awk '{print $5}')
@ -70,5 +86,7 @@ for model in "${models[@]}"; do
commit=$(git rev-parse --short HEAD)
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n"
if [ $ret -eq 0 ]; then
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n"
fi
done

45
extra/quantize-all.sh Executable file
View File

@ -0,0 +1,45 @@
#!/bin/bash
printf "Usage: $0 <upload>"
if [ $# -ne 1 ]; then
printf "\nError: Invalid number of arguments\n"
exit 1
fi
qtype0="q5_0"
qtype1="q5_1"
upload="$1"
cd `dirname $0`
cd ../
./quantize ./models/ggml-tiny.en.bin ./models/ggml-tiny.en-${qtype1}.bin ${qtype1}
./quantize ./models/ggml-tiny.bin ./models/ggml-tiny-${qtype1}.bin ${qtype1}
./quantize ./models/ggml-base.en.bin ./models/ggml-base.en-${qtype1}.bin ${qtype1}
./quantize ./models/ggml-base.bin ./models/ggml-base-${qtype1}.bin ${qtype1}
./quantize ./models/ggml-small.en.bin ./models/ggml-small.en-${qtype1}.bin ${qtype1}
./quantize ./models/ggml-small.bin ./models/ggml-small-${qtype1}.bin ${qtype1}
./quantize ./models/ggml-medium.en.bin ./models/ggml-medium.en-${qtype0}.bin ${qtype0}
./quantize ./models/ggml-medium.bin ./models/ggml-medium-${qtype0}.bin ${qtype0}
./quantize ./models/ggml-large.bin ./models/ggml-large-${qtype0}.bin ${qtype0}
if [ "$upload" == "1" ]; then
scp ./models/ggml-tiny.en-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-tiny.en-${qtype1}.bin
scp ./models/ggml-tiny-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-tiny-${qtype1}.bin
scp ./models/ggml-base.en-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-base.en-${qtype1}.bin
scp ./models/ggml-base-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-base-${qtype1}.bin
scp ./models/ggml-small.en-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-small.en-${qtype1}.bin
scp ./models/ggml-small-${qtype1}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-small-${qtype1}.bin
scp ./models/ggml-medium.en-${qtype0}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-medium.en-${qtype0}.bin
scp ./models/ggml-medium-${qtype0}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-medium-${qtype0}.bin
scp ./models/ggml-large-${qtype0}.bin root@linode0:/mnt/Data/ggml/ggml-model-whisper-large-${qtype0}.bin
fi

18
extra/sync-ggml.sh Executable file
View File

@ -0,0 +1,18 @@
#!/bin/bash
cp -rpv ../ggml/src/ggml.c ./ggml.c
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
cp -rpv ../ggml/src/ggml-opencl.c ./ggml-opencl.c
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
cp -rpv ../ggml/examples/common.h ./examples/common.h
cp -rpv ../ggml/examples/common.cpp ./examples/common.cpp
cp -rpv ../ggml/examples/common-ggml.h ./examples/common-ggml.h
cp -rpv ../ggml/examples/common-ggml.cpp ./examples/common-ggml.cpp
cp -rpv ../ggml/examples/whisper/whisper.h ./whisper.h
cp -rpv ../ggml/examples/whisper/whisper.cpp ./whisper.cpp
cp -rpv ../ggml/examples/whisper/main.cpp ./examples/main/main.cpp
cp -rpv ../ggml/examples/whisper/quantize.cpp ./examples/quantize/quantize.cpp

898
ggml-cuda.cu Normal file
View File

@ -0,0 +1,898 @@
#include <cstddef>
#include <cstdint>
#include <stdint.h>
#include <stdio.h>
#include <atomic>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>
#include "ggml-cuda.h"
#include "ggml.h"
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
#define CUDA_CHECK(err) \
do { \
cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \
fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \
exit(1); \
} \
} while (0)
#define CUBLAS_CHECK(err) \
do { \
cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1);
typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream);
// QK = number of values after dequantization
// QR = QK / number of values before dequantization
#define QK4_0 32
#define QR4_0 2
typedef struct {
float d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define QK4_1 32
#define QR4_1 2
typedef struct {
float d; // delta
float m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
#define QR5_0 2
typedef struct {
half d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
#define QK5_1 32
#define QR5_1 2
typedef struct {
half d; // delta
half m; // min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
#define QK8_0 32
#define QR8_0 1
typedef struct {
float d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
#define CUDA_DMMV_BLOCK_SIZE 32
static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
const block_q4_0 * x = (const block_q4_0 *) vx;
const float d = x[ib].d;
const uint8_t vui = x[ib].qs[iqs];
const int8_t vi0 = vui & 0xF;
const int8_t vi1 = vui >> 4;
v0 = (vi0 - 8)*d;
v1 = (vi1 - 8)*d;
}
static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
const block_q4_1 * x = (const block_q4_1 *) vx;
const float d = x[ib].d;
const float m = x[ib].m;
const uint8_t vui = x[ib].qs[iqs];
const int8_t vi0 = vui & 0xF;
const int8_t vi1 = vui >> 4;
v0 = vi0*d + m;
v1 = vi1*d + m;
}
static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
const block_q5_0 * x = (const block_q5_0 *) vx;
const float d = x[ib].d;
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
v0 = x0*d;
v1 = x1*d;
}
static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
const block_q5_1 * x = (const block_q5_1 *) vx;
const float d = x[ib].d;
const float m = x[ib].m;
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
v0 = x0*d + m;
v1 = x1*d + m;
}
static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
const block_q8_0 * x = (const block_q8_0 *) vx;
const float d = x[ib].d;
const int8_t vi0 = x[ib].qs[iqs + 0];
const int8_t vi1 = x[ib].qs[iqs + 1];
v0 = vi0*d;
v1 = vi1*d;
}
static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){
const half * x = (const half *) vx;
v0 = __half2float(x[ib + 0]);
v1 = __half2float(x[ib + 1]);
}
static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
static const int qk = QK4_0;
const block_q4_0 * x = (const block_q4_0 *) vx;
const int i = blockIdx.x;
const float d = x[i].d;
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0xf) - 8;
const int x1 = (x[i].qs[j] >> 4) - 8;
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
}
static __global__ void dequantize_block_q4_1(const void * vx, float * y) {
static const int qk = QK4_1;
const block_q4_1 * x = (const block_q4_1 *) vx;
const int i = blockIdx.x;
const float d = x[i].d;
const float m = x[i].m;
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0xf);
const int x1 = (x[i].qs[j] >> 4);
y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + j + qk/2] = x1*d + m;
}
}
static __global__ void dequantize_block_q5_0(const void * vx, float * y) {
static const int qk = QK5_0;
const block_q5_0 * x = (const block_q5_0 *) vx;
const int i = blockIdx.x;
const float d = x[i].d;
uint32_t qh;
memcpy(&qh, x[i].qh, sizeof(qh));
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = ((x[i].qs[j] & 0xf) | xh_0) - 16;
const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
}
static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
static const int qk = QK5_1;
const block_q5_1 * x = (const block_q5_1 *) vx;
const int i = blockIdx.x;
const float d = x[i].d;
const float m = x[i].m;
uint32_t qh;
memcpy(&qh, x[i].qh, sizeof(qh));
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int x0 = (x[i].qs[j] & 0xf) | xh_0;
const int x1 = (x[i].qs[j] >> 4) | xh_1;
y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + j + qk/2] = x1*d + m;
}
}
static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
static const int qk = QK8_0;
const block_q8_0 * x = (const block_q8_0 *) vx;
const int i = blockIdx.x;
const float d = x[i].d;
for (int j = 0; j < qk; ++j) {
y[i*qk + j] = x[i].qs[j]*d;
}
}
template <int block_size, int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) {
const int row = blockIdx.x;
const int tid = threadIdx.x;
const int y_offset = qr == 1 ? 1 : qk/2;
__shared__ float tmp[block_size]; // separate sum for each thread
tmp[tid] = 0;
for (int i = 0; i < ncols/block_size; i += 2) {
const int col = i*block_size + 2*tid;
const int ib = (row*ncols + col)/qk; // block index
const int iqs = (col%qk)/qr; // quant index
const int iybs = col - col%qk; // y block start index
// dequantize
float v0, v1;
dequantize_kernel(vx, ib, iqs, v0, v1);
// matrix multiplication
tmp[tid] += v0 * y[iybs + iqs + 0];
tmp[tid] += v1 * y[iybs + iqs + y_offset];
}
// sum up partial sums and write back result
__syncthreads();
for (int s=block_size/2; s>0; s>>=1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
__syncthreads();
}
if (tid == 0) {
dst[row] = tmp[0];
}
}
static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_0;
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
}
static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_1;
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
}
static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_0;
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
}
static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_1;
dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
}
static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK8_0;
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
}
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_0, QR4_0, dequantize_q4_0>
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_1, QR4_1, dequantize_q4_1>
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_0, QR5_0, dequantize_q5_0>
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_1, QR5_1, dequantize_q5_1>
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK8_0, QR8_0, dequantize_q8_0>
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}
// TODO: optimize
static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
const half * x = (const half *) vx;
const int i = blockIdx.x;
y[i] = __half2float(x[i]);
}
static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
}
static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, 32, 1, convert_f16>
<<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}
static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
return dequantize_row_q4_0_cuda;
case GGML_TYPE_Q4_1:
return dequantize_row_q4_1_cuda;
case GGML_TYPE_Q5_0:
return dequantize_row_q5_0_cuda;
case GGML_TYPE_Q5_1:
return dequantize_row_q5_1_cuda;
case GGML_TYPE_Q8_0:
return dequantize_row_q8_0_cuda;
case GGML_TYPE_F16:
return convert_fp16_to_fp32_cuda;
default:
return nullptr;
}
}
static dequantize_mul_mat_vec_cuda_t ggml_get_dequantize_mul_mat_vec_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
return dequantize_mul_mat_vec_q4_0_cuda;
case GGML_TYPE_Q4_1:
return dequantize_mul_mat_vec_q4_1_cuda;
case GGML_TYPE_Q5_0:
return dequantize_mul_mat_vec_q5_0_cuda;
case GGML_TYPE_Q5_1:
return dequantize_mul_mat_vec_q5_1_cuda;
case GGML_TYPE_Q8_0:
return dequantize_mul_mat_vec_q8_0_cuda;
case GGML_TYPE_F16:
return convert_mul_mat_vec_f16_cuda;
default:
return nullptr;
}
}
// buffer pool for cuda
#define MAX_CUDA_BUFFERS 256
struct scoped_spin_lock {
std::atomic_flag& lock;
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
while (lock.test_and_set(std::memory_order_acquire)) {
; // spin
}
}
~scoped_spin_lock() {
lock.clear(std::memory_order_release);
}
scoped_spin_lock(const scoped_spin_lock&) = delete;
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
};
struct cuda_buffer {
void * ptr = nullptr;
size_t size = 0;
};
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
cuda_buffer& b = g_cuda_buffer_pool[i];
if (b.size >= size && b.ptr != nullptr) {
void * ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
}
void * ptr;
CUDA_CHECK(cudaMalloc((void **) &ptr, size));
*actual_size = size;
return ptr;
}
static void ggml_cuda_pool_free(void * ptr, size_t size) {
scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
cuda_buffer& b = g_cuda_buffer_pool[i];
if (b.ptr == nullptr) {
b.ptr = ptr;
b.size = size;
return;
}
}
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
CUDA_CHECK(cudaFree(ptr));
}
#define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
#define GGML_CUDA_MAX_EVENTS 64
static cublasHandle_t g_cublasH = nullptr;
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
void ggml_init_cublas() {
if (g_cublasH == nullptr) {
// create streams
for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
}
// create events
for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
}
// create cublas handle
CUBLAS_CHECK(cublasCreate(&g_cublasH));
CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
// configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
}
}
void * ggml_cuda_host_malloc(size_t size) {
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
return nullptr;
}
void * ptr = nullptr;
cudaError_t err = cudaMallocHost((void **) &ptr, size);
if (err != cudaSuccess) {
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
size/1024.0/1024.0, cudaGetErrorString(err));
return nullptr;
}
return ptr;
}
void ggml_cuda_host_free(void * ptr) {
CUDA_CHECK(cudaFreeHost(ptr));
}
static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
const uint64_t ne0 = src->ne[0];
const uint64_t ne1 = src->ne[1];
const uint64_t nb0 = src->nb[0];
const uint64_t nb1 = src->nb[1];
const uint64_t nb2 = src->nb[2];
const uint64_t nb3 = src->nb[3];
const enum ggml_type type = src->type;
const size_t ts = ggml_type_size(type);
const size_t bs = ggml_blck_size(type);
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
if (nb0 == ts && nb1 == ts*ne0/bs) {
return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
} else if (nb0 == ts) {
return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
} else {
for (uint64_t i1 = 0; i1 < ne1; i1++) {
const void * rx = (const void *) ((const char *) x + i1*nb1);
void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
// pretend the row is a matrix with cols=1
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
if (r != cudaSuccess) return r;
}
return cudaSuccess;
}
}
static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const int n_mm = ne03 * ne02;
size_t x_size, y_size, d_size;
float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
int i = i03*ne02 + i02;
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
float * c_X = d_X + i * x_ne;
float * c_Y = d_Y + i * y_ne;
float * c_D = d_D + i * d_ne;
// copy data to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
// compute
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
CUBLAS_CHECK(
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, c_X, ne00,
c_Y, ne10,
&beta, c_D, ne01));
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
}
}
CUDA_CHECK(cudaDeviceSynchronize());
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
}
static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb10 = src1->nb[0];
const int nb11 = src1->nb[1];
const int nb12 = src1->nb[2];
const int nb13 = src1->nb[3];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const int n_mm = ne03 * ne02;
size_t x_size, y_size, d_size;
half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
bool src1_cont_rows = nb10 == sizeof(float);
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
int i = i03*ne02 + i02;
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
half * c_X = d_X + i * x_ne;
half * c_Y = d_Y + i * y_ne;
float * c_D = d_D + i * d_ne;
// copy src0 to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
// convert src1 to fp16
// TODO: use multiple threads
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
if (src1_cont_rows) {
if (src1_cont_cols) {
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
}
}
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
for (int64_t i00 = 0; i00 < ne10; i00++) {
// very slow due to no inlining
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
}
}
}
// copy src1 to device
CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
// compute
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
CUBLAS_CHECK(
cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, c_X, CUDA_R_16F, ne00,
c_Y, CUDA_R_16F, ne10,
&beta, c_D, CUDA_R_32F, ne01,
CUBLAS_COMPUTE_32F_FAST_16F,
CUBLAS_GEMM_DEFAULT));
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
}
}
CUDA_CHECK(cudaDeviceSynchronize());
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
}
static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const ggml_type type = src0->type;
const bool mul_mat_vec = ne11 == 1;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const int n_mm = ne03 * ne02;
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
size_t x_size, y_size, d_size, q_size;
float * d_X = nullptr;
if (!mul_mat_vec) {
d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
}
float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
dequantize_mul_mat_vec_cuda_t dmmv = ggml_get_dequantize_mul_mat_vec_cuda(type);
GGML_ASSERT(to_fp32_cuda != nullptr);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
int i = i03*ne02 + i02;
cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
float * c_Y = d_Y + i * y_ne;
float * c_D = d_D + i * d_ne;
char * c_Q = d_Q + i * q_sz;
// copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) {
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
} else if (src0->backend == GGML_BACKEND_CUDA) {
c_Q = ((char *) src0->data) + i * q_sz;
} else {
GGML_ASSERT(false);
}
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
// copy src1 to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
// wait for data
CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
// compute
dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream);
CUDA_CHECK(cudaGetLastError());
} else { // general dequantization kernel + cuBLAS matrix matrix multiplication
float * c_X = d_X + i * x_ne;
// convert src0 to fp32 on device
to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
// copy src1 to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
// wait for conversion
CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
// compute
CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
CUBLAS_CHECK(
cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
&alpha, c_X, ne00,
c_Y, ne10,
&beta, c_D, ne01));
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
}
}
CUDA_CHECK(cudaDeviceSynchronize());
if (!mul_mat_vec) {
ggml_cuda_pool_free(d_X, x_size);
}
ggml_cuda_pool_free(d_Y, y_size);
ggml_cuda_pool_free(d_D, d_size);
ggml_cuda_pool_free(d_Q, q_size);
}
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 &&
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CUDA)) {
return true;
}
return false;
}
bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
size_t src0_sz = ggml_nbytes(src0);
size_t src1_sz = ggml_nbytes(src1);
// mul_mat_q: src0 is converted to fp32 on device
size_t mul_mat_q_transfer = src0_sz + src1_sz;
// mul_mat_f16: src1 is converted to fp16 on cpu
size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
// choose the smaller one to transfer to the device
// TODO: this is not always the best choice due to the overhead of converting to fp16
return mul_mat_f16_transfer < mul_mat_q_transfer;
}
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
if (src0->type == GGML_TYPE_F32) {
ggml_cuda_mul_mat_f32(src0, src1, dst);
}
else if (src0->type == GGML_TYPE_F16) {
if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
}
else {
ggml_cuda_mul_mat_q_f32(src0, src1, dst);
}
}
else if (ggml_is_quantized(src0->type)) {
ggml_cuda_mul_mat_q_f32(src0, src1, dst);
}
else {
GGML_ASSERT(false);
}
}
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
return ggml_nelements(src1) * sizeof(ggml_fp16_t);
}
else {
return 0;
}
}
void ggml_cuda_transform_tensor(ggml_tensor * tensor) {
const int64_t ne0 = tensor->ne[0];
const int64_t ne1 = tensor->ne[1];
const int64_t ne2 = tensor->ne[2];
const int64_t ne3 = tensor->ne[3];
const ggml_type type = tensor->type;
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
size_t q_size;
char * d_Q = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
cudaStream_t cudaStream2 = g_cudaStreams2[0];
// copy tensor to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, tensor, 0, 0, cudaStream2));
CUDA_CHECK(cudaDeviceSynchronize());
tensor->data = d_Q;
tensor->backend = GGML_BACKEND_CUDA;
}

21
ggml-cuda.h Normal file
View File

@ -0,0 +1,21 @@
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
void ggml_init_cublas(void);
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
// TODO: export these with GGML_API
void * ggml_cuda_host_malloc(size_t size);
void ggml_cuda_host_free(void * ptr);
void ggml_cuda_transform_tensor(struct ggml_tensor * tensor);
#ifdef __cplusplus
}
#endif

361
ggml-opencl.c Normal file
View File

@ -0,0 +1,361 @@
#include "ggml-opencl.h"
#define CL_TARGET_OPENCL_VERSION 110
#include <clblast_c.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "ggml.h"
#define MULTILINE_QUOTE(...) #__VA_ARGS__
const char * clblast_dequant = MULTILINE_QUOTE(
typedef uchar uint8_t;
typedef int int32_t;
typedef uint uint32_t;
constant uint QK4_0 = 32;
struct block_q4_0
{
float d;
uint8_t qs[QK4_0 / 2];
};
constant uint QK4_1 = 32;
struct block_q4_1
{
float d;
float m;
uint8_t qs[QK4_1 / 2];
};
constant uint QK5_0 = 32;
struct __attribute__ ((packed)) block_q5_0
{
half d;
uint32_t qh;
uint8_t qs[QK5_0 / 2];
};
constant uint QK5_1 = 32;
struct block_q5_1
{
half d;
half m;
uint32_t qh;
uint8_t qs[QK5_1 / 2];
};
constant uint QK8_0 = 32;
struct block_q8_0
{
float d;
uint8_t qs[QK8_0];
};
__kernel void dequantize_row_q4_0(__global struct block_q4_0* x, __global float* y) {
constant uint qk = QK4_0;
const uint i = get_global_id(0) / qk;
const uint j = get_local_id(0);
const float d = x[i].d;
const int x0 = (x[i].qs[j] & 0xf) - 8;
const int x1 = (x[i].qs[j] >> 4) - 8;
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
__kernel void dequantize_row_q4_1(__global struct block_q4_1* x, __global float* y) {
constant uint qk = QK4_1;
const uint i = get_global_id(0) / qk;
const uint j = get_local_id(0);
const float d = x[i].d;
const float m = x[i].m;
const int x0 = (x[i].qs[j] & 0xf);
const int x1 = (x[i].qs[j] >> 4);
y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + j + qk/2] = x1*d + m;
}
__kernel void dequantize_row_q5_0(__global struct block_q5_0* x, __global float* y) {
constant uint qk = QK5_0;
const uint i = get_global_id(0) / qk;
const uint j = get_local_id(0);
const float d = vload_half(0, (__global half*) &x[i].d);
uint32_t qh = x[i].qh;
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = ((x[i].qs[j] & 0xf) | xh_0) - 16;
const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
__kernel void dequantize_row_q5_1(__global struct block_q5_1* x, __global float* y) {
constant uint qk = QK5_1;
const uint i = get_global_id(0) / qk;
const uint j = get_local_id(0);
const float d = vload_half(0, (__global half*) &x[i].d);
const float m = vload_half(0, (__global half*) &x[i].m);
uint32_t qh = x[i].qh;
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int x0 = (x[i].qs[j] & 0xf) | xh_0;
const int x1 = (x[i].qs[j] >> 4) | xh_1;
y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + j + qk/2] = x1*d + m;
}
__kernel void dequantize_row_q8_0(__global struct block_q8_0* x, __global float* y) {
constant uint qk = QK8_0;
const uint i = get_global_id(0) / qk;
const uint j = get_local_id(0);
const float d = x[i].d;
y[i*qk + j] = x[i].qs[j]*d;
}
);
#define CL_CHECK(err, name) \
do { \
cl_int err_ = (err); \
if (err_ != CL_SUCCESS) { \
fprintf(stderr, "OpenCL %s error %d at %s:%d\n", name, err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
static cl_platform_id platform;
static cl_device_id device;
static cl_context context;
static cl_command_queue queue;
static cl_program program;
static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q5_0, kernel_q5_1, kernel_q8_0;
static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c;
static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0;
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
cl_program p;
char *program_log;
size_t program_size, log_size;
int err;
program_size = strlen(program_buffer);
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
if(err < 0) {
fprintf(stderr, "OpenCL error creating program");
exit(1);
}
err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL);
if(err < 0) {
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
program_log = (char*) malloc(log_size + 1);
program_log[log_size] = '\0';
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
printf("%s\n", program_log);
free(program_log);
exit(1);
}
return p;
}
void ggml_cl_init(void) {
cl_int err = 0;
char * GGML_CLBLAST_PLATFORM = getenv("GGML_CLBLAST_PLATFORM");
char * GGML_CLBLAST_DEVICE = getenv("GGML_CLBLAST_DEVICE");
int plat_num = (GGML_CLBLAST_PLATFORM == NULL ? 0 : atoi(GGML_CLBLAST_PLATFORM));
int dev_num = (GGML_CLBLAST_DEVICE == NULL ? 0 : atoi(GGML_CLBLAST_DEVICE));
printf("\nInitializing CLBlast (First Run)...");
printf("\nAttempting to use: Platform=%d, Device=%d (If invalid, program will crash)\n",plat_num,dev_num);
cl_uint num_platforms;
clGetPlatformIDs(0, NULL, &num_platforms);
cl_platform_id* platforms = (cl_platform_id*)malloc(num_platforms*sizeof(cl_platform_id));
clGetPlatformIDs(num_platforms, platforms, NULL);
platform = platforms[plat_num];
char platform_buffer[1024];
clGetPlatformInfo(platform, CL_PLATFORM_NAME, sizeof(platform_buffer), &platform_buffer, NULL);
cl_uint num_devices;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);
cl_device_id* devices = (cl_device_id*)malloc(num_devices*sizeof(cl_device_id));
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);
device = devices[dev_num];
char device_buffer[1024];
clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(device_buffer), &device_buffer, NULL);
printf("Using Platform: %s Device: %s\n", platform_buffer, device_buffer);
context = clCreateContext(NULL, 1, &device, NULL, NULL, &err);
CL_CHECK(err, "clCreateContext");
queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err);
CL_CHECK(err, "clCreateCommandQueue");
free(platforms);
free(devices);
program = build_program_from_source(context, device, clblast_dequant);
// Prepare dequantize kernels
kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err);
CL_CHECK(err, "clCreateKernel");
kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err);
CL_CHECK(err, "clCreateKernel");
kernel_q5_0 = clCreateKernel(program, "dequantize_row_q5_0", &err);
CL_CHECK(err, "clCreateKernel");
kernel_q5_1 = clCreateKernel(program, "dequantize_row_q5_1", &err);
CL_CHECK(err, "clCreateKernel");
kernel_q8_0 = clCreateKernel(program, "dequantize_row_q8_0", &err);
CL_CHECK(err, "clCreateKernel");
}
static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) {
if (req_size <= *cur_size) {
return;
}
// Reallocate buffer with enough space
if (*cur_size > 0) {
clReleaseMemObject(*buf);
}
cl_int err;
*buf = clCreateBuffer(context, flags, req_size, NULL, &err);
*cur_size = req_size;
CL_CHECK(err, "clCreateBuffer");
}
void ggml_cl_sgemm_wrapper(
const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b,
const int m, const int n, const int k,
const float alpha, const void *host_a, const int lda,
const float *host_b, const int ldb, const float beta,
float *host_c, const int ldc, const int btype) {
cl_int err = 0;
cl_kernel kernel;
size_t global = n * k, local, size_qb;
bool dequant;
switch (btype) {
case GGML_TYPE_F32:
dequant = false;
break;
case GGML_TYPE_Q4_0:
dequant = true;
kernel = kernel_q4_0;
local = 16;
size_qb = global * (sizeof(float) + local) / 32;
break;
case GGML_TYPE_Q4_1:
dequant = true;
kernel = kernel_q4_1;
local = 16;
size_qb = global * (sizeof(float) * 2 + local) / 32;
break;
case GGML_TYPE_Q5_0:
dequant = true;
kernel = kernel_q5_0;
local = 16;
size_qb = global * (sizeof(ggml_fp16_t) + sizeof(uint32_t) + local) / 32;
break;
case GGML_TYPE_Q5_1:
dequant = true;
kernel = kernel_q5_1;
local = 16;
size_qb = global * (sizeof(ggml_fp16_t) * 2 + sizeof(uint32_t) + local) / 32;
break;
case GGML_TYPE_Q8_0:
dequant = true;
kernel = kernel_q8_0;
local = 32;
size_qb = global * (sizeof(float) + local) / 32;
break;
default:
fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype);
abort();
}
const size_t size_a = m * k * sizeof(float);
const size_t size_b = n * k * sizeof(float);
const size_t size_c = m * n * sizeof(float);
// Prepare buffers
ggml_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a);
if (dequant) {
ggml_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb);
}
ggml_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b);
ggml_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c);
cl_event ev_a, ev_qb, ev_b;
if (dequant) {
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b);
CL_CHECK(err, "clSetKernelArg");
err = clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb);
CL_CHECK(err, "clEnqueueWriteBuffer qb");
} else {
err = clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b);
CL_CHECK(err, "clEnqueueWriteBuffer b");
}
err = clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a);
CL_CHECK(err, "clEnqueueWriteBuffer a");
if (dequant) {
err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b);
CL_CHECK(err, "clEnqueueNDRangeKernel");
clReleaseEvent(ev_qb);
}
clWaitForEvents(1, &ev_a);
clWaitForEvents(1, &ev_b);
clReleaseEvent(ev_a);
clReleaseEvent(ev_b);
cl_event ev_sgemm;
CLBlastStatusCode status = CLBlastSgemm((CLBlastLayout)order,
(CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b,
m, n, k,
alpha,
cl_buffer_a, 0, lda,
cl_buffer_b, 0, ldb,
beta,
cl_buffer_c, 0, ldc,
&queue, &ev_sgemm);
if (status != CLBlastSuccess) {
fprintf(stderr, "Error: CLBlast SGEMM %d\n", status);
abort();
}
cl_event ev_c;
clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c);
// Wait for completion
clWaitForEvents(1, &ev_c);
clReleaseEvent(ev_sgemm);
clReleaseEvent(ev_c);
}

24
ggml-opencl.h Normal file
View File

@ -0,0 +1,24 @@
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
void ggml_cl_init(void);
enum ggml_blas_order {
GGML_BLAS_ORDER_ROW_MAJOR = 101,
GGML_BLAS_ORDER_COLUMN_MAJOR = 102,
};
enum ggml_blas_op {
GGML_BLAS_OP_N = 111,
GGML_BLAS_OP_T = 112,
GGML_BLAS_OP_C = 113,
};
void ggml_cl_sgemm_wrapper(const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype);
#ifdef __cplusplus
}
#endif

7472
ggml.c

File diff suppressed because it is too large Load Diff

1582
ggml.h

File diff suppressed because it is too large Load Diff

View File

@ -1,15 +1,17 @@
## Whisper model files in custom ggml format
The [original Whisper PyTorch models provided by OpenAI](https://github.com/openai/whisper/blob/main/whisper/__init__.py#L17-L27)
have been converted to custom `ggml` format in order to be able to load them in C/C++. The conversion has been performed
using the [convert-pt-to-ggml.py](convert-pt-to-ggml.py) script. You can either obtain the original models and generate
the `ggml` files yourself using the conversion script, or you can use the [download-ggml-model.sh](download-ggml-model.sh)
script to download the already converted models. Currently, they are hosted on the following locations:
are converted to custom `ggml` format in order to be able to load them in C/C++.
Conversion is performed using the [convert-pt-to-ggml.py](convert-pt-to-ggml.py) script.
You can either obtain the original models and generate the `ggml` files yourself using the conversion script,
or you can use the [download-ggml-model.sh](download-ggml-model.sh) script to download the already converted models.
Currently, they are hosted on the following locations:
- https://huggingface.co/ggerganov/whisper.cpp
- https://ggml.ggerganov.com
Sample usage:
Sample download:
```java
$ ./download-ggml-model.sh base.en
@ -21,6 +23,16 @@ You can now use it like this:
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
```
To convert the files yourself, use the convert-pt-to-ggml.py script. Here is an example usage.
The original PyTorch files are assumed to have been downloaded into ~/.cache/whisper
Change `~/path/to/repo/whisper/` to the location for your copy of the Whisper source:
```
mkdir models/whisper-medium
python models/convert-pt-to-ggml.py ~/.cache/whisper/medium.pt ~/path/to/repo/whisper/ ./models/whisper-medium
mv ./models/whisper-medium/ggml-model.bin models/ggml-medium.bin
rmdir models/whisper-medium
```
A third option to obtain the model files is to download them from Hugging Face:
https://huggingface.co/ggerganov/whisper.cpp/tree/main

View File

@ -23,6 +23,7 @@ import json
import code
import torch
import numpy as np
from pathlib import Path
from transformers import WhisperForConditionalGeneration
@ -75,16 +76,13 @@ if len(sys.argv) < 4:
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
sys.exit(1)
dir_model = sys.argv[1]
dir_whisper = sys.argv[2]
dir_out = sys.argv[3]
dir_model = Path(sys.argv[1])
dir_whisper = Path(sys.argv[2])
dir_out = Path(sys.argv[3])
with open(dir_model + "/vocab.json", "r", encoding="utf8") as f:
encoder = json.load(f)
with open(dir_model + "/added_tokens.json", "r", encoding="utf8") as f:
encoder_added = json.load(f)
with open(dir_model + "/config.json", "r", encoding="utf8") as f:
hparams = json.load(f)
encoder = json.load((dir_model / "vocab.json").open("r", encoding="utf8"))
encoder_added = json.load((dir_model / "added_tokens.json").open( "r", encoding="utf8"))
hparams = json.load((dir_model / "config.json").open("r", encoding="utf8") )
model = WhisperForConditionalGeneration.from_pretrained(dir_model)
@ -96,16 +94,15 @@ with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as
dir_tokenizer = dir_model
fname_out = dir_out + "/ggml-model.bin"
fname_out = dir_out / "ggml-model.bin"
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f:
tokens = json.load(f)
tokens = json.load(open(dir_tokenizer / "vocab.json", "r", encoding="utf8"))
# use 16-bit or 32-bit floats
use_f16 = True
if len(sys.argv) > 4:
use_f16 = False
fname_out = dir_out + "/ggml-model-f32.bin"
fname_out = dir_out / "ggml-model-f32.bin"
fout = open(fname_out, "wb")
@ -171,10 +168,9 @@ for name in list_vars.keys():
data = data.astype(np.float16)
# reshape conv bias from [n] to [n, 1]
if name == "encoder.conv1.bias" or \
name == "encoder.conv2.bias":
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
data = data.reshape(data.shape[0], 1)
print(" Reshaped variable: " + name + " to shape: ", data.shape)
print(" Reshaped variable: " , name , " to shape: ", data.shape)
n_dims = len(data.shape)
print(name, n_dims, data.shape)
@ -182,7 +178,7 @@ for name in list_vars.keys():
# looks like the whisper models are in f16 by default
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
# ftype == 0 -> float32, ftype == 1 -> float16
ftype = 1;
ftype = 1
if use_f16:
if n_dims < 2 or \
name == "encoder.conv1.bias" or \
@ -197,16 +193,16 @@ for name in list_vars.keys():
ftype = 0
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype))
str_ = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str_), ftype))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str);
fout.write(str_)
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("Done. Output file: " , fname_out)
print("")

View File

@ -40,7 +40,7 @@ import code
import torch
import numpy as np
import base64
from pathlib import Path
#from transformers import GPTJForCausalLM
#from transformers import GPT2TokenizerFast
@ -194,17 +194,17 @@ if len(sys.argv) < 4:
print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n")
sys.exit(1)
fname_inp = sys.argv[1]
dir_whisper = sys.argv[2]
dir_out = sys.argv[3]
fname_inp = Path(sys.argv[1])
dir_whisper = Path(sys.argv[2])
dir_out = Path(sys.argv[3])
# try to load PyTorch binary data
try:
model_bytes = open(fname_inp, "rb").read()
with io.BytesIO(model_bytes) as fp:
checkpoint = torch.load(fp, map_location="cpu")
except:
print("Error: failed to load PyTorch model file: %s" % fname_inp)
except Exception:
print("Error: failed to load PyTorch model file:" , fname_inp)
sys.exit(1)
hparams = checkpoint["dims"]
@ -218,17 +218,17 @@ list_vars = checkpoint["model_state_dict"]
# load mel filters
n_mels = hparams["n_mels"]
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f:
with np.load(dir_whisper / "whisper" / "assets" / "mel_filters.npz") as f:
filters = torch.from_numpy(f[f"mel_{n_mels}"])
#print (filters)
#code.interact(local=locals())
multilingual = hparams["n_vocab"] == 51865
tokenizer = os.path.join(dir_whisper, "whisper/assets", multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
tokenizer = dir_whisper / "whisper" / "assets" / (multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
# output in the same directory as the model
fname_out = dir_out + "/ggml-model.bin"
fname_out = dir_out / "ggml-model.bin"
with open(tokenizer, "rb") as f:
contents = f.read()
@ -238,9 +238,9 @@ with open(tokenizer, "rb") as f:
use_f16 = True
if len(sys.argv) > 4:
use_f16 = False
fname_out = dir_out + "/ggml-model-f32.bin"
fname_out = dir_out / "ggml-model-f32.bin"
fout = open(fname_out, "wb")
fout = fname_out.open("wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["n_vocab"]))
@ -273,20 +273,19 @@ for key in tokens:
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable: " + name + " with shape: ", data.shape)
print("Processing variable: " , name , " with shape: ", data.shape)
# reshape conv bias from [n] to [n, 1]
if name == "encoder.conv1.bias" or \
name == "encoder.conv2.bias":
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
data = data.reshape(data.shape[0], 1)
print(" Reshaped variable: " + name + " to shape: ", data.shape)
print(f" Reshaped variable: {name} to shape: ", data.shape)
n_dims = len(data.shape);
n_dims = len(data.shape)
# looks like the whisper models are in f16 by default
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
# ftype == 0 -> float32, ftype == 1 -> float16
ftype = 1;
ftype = 1
if use_f16:
if n_dims < 2 or \
name == "encoder.conv1.bias" or \
@ -307,16 +306,16 @@ for name in list_vars.keys():
# data = data.transpose()
# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype))
str_ = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str_), ftype))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str);
fout.write(str_)
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " + fname_out)
print("Done. Output file: " , fname_out)
print("")

View File

@ -20,7 +20,7 @@ def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict,
"""
for k in state_dict:
is_attention = all(substr in k for substr in ['attn', '.weight'])
is_mlp = any([k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight']])
is_mlp = any(k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight'])
if (is_attention or is_mlp) and len(state_dict[k].shape) == 2:
state_dict[k] = state_dict[k][:, :, None, None]
@ -42,11 +42,10 @@ class LayerNormANE(LayerNormANEBase):
class MultiHeadAttentionANE(MultiHeadAttention):
def __init__(self, n_state: int, n_head: int):
super().__init__(n_state, n_head)
setattr(self, 'query', nn.Conv2d(n_state, n_state, kernel_size=1))
setattr(self, 'key', nn.Conv2d(n_state, n_state, kernel_size=1, bias=False))
setattr(self, 'value', nn.Conv2d(n_state, n_state, kernel_size=1))
setattr(self, 'out', nn.Conv2d(n_state, n_state, kernel_size=1))
self.query = nn.Conv2d(n_state, n_state, kernel_size=1)
self.key = nn.Conv2d(n_state, n_state, kernel_size=1, bias=False)
self.value = nn.Conv2d(n_state, n_state, kernel_size=1)
self.out = nn.Conv2d(n_state, n_state, kernel_size=1)
def forward(self,
x: Tensor,
@ -104,30 +103,28 @@ class MultiHeadAttentionANE(MultiHeadAttention):
class ResidualAttentionBlockANE(ResidualAttentionBlock):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
super().__init__(n_state, n_head, cross_attention)
setattr(self, 'attn', MultiHeadAttentionANE(n_state, n_head))
setattr(self, 'attn_ln', LayerNormANE(n_state))
setattr(self, 'cross_attn', MultiHeadAttentionANE(n_state, n_head) if cross_attention else None)
setattr(self, 'cross_attn_ln', LayerNormANE(n_state) if cross_attention else None)
self.attn = MultiHeadAttentionANE(n_state, n_head)
self.attn_ln = LayerNormANE(n_state)
self.cross_attn = MultiHeadAttentionANE(n_state, n_head) if cross_attention else None
self.cross_attn_ln = LayerNormANE(n_state) if cross_attention else None
n_mlp = n_state * 4
setattr(self, 'mlp', nn.Sequential(
self.mlp = nn.Sequential(
nn.Conv2d(n_state, n_mlp, kernel_size=1),
nn.GELU(),
nn.Conv2d(n_mlp, n_state, kernel_size=1)
))
setattr(self, 'mlp_ln', LayerNormANE(n_state))
)
self.mlp_ln = LayerNormANE(n_state)
class AudioEncoderANE(AudioEncoder):
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
super().__init__(n_mels, n_ctx, n_state, n_head, n_layer)
setattr(self, 'blocks', nn.ModuleList(
self.blocks = nn.ModuleList(
[ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)]
))
setattr(self, 'ln_post', LayerNormANE(n_state))
)
self.ln_post = LayerNormANE(n_state)
def forward(self, x: Tensor):
"""
@ -168,10 +165,10 @@ class TextDecoderANE(TextDecoder):
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer)
setattr(self, 'blocks', nn.ModuleList(
self.blocks= nn.ModuleList(
[ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
))
setattr(self, 'ln', LayerNormANE(n_state))
)
self.ln= LayerNormANE(n_state)
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
"""
@ -213,20 +210,20 @@ class WhisperANE(Whisper):
def __init__(self, dims: ModelDimensions):
super().__init__(dims)
setattr(self, 'encoder', AudioEncoderANE(
self.encoder = AudioEncoderANE(
self.dims.n_mels,
self.dims.n_audio_ctx,
self.dims.n_audio_state,
self.dims.n_audio_head,
self.dims.n_audio_layer,
))
setattr(self, 'decoder', TextDecoderANE(
)
self.decoder = TextDecoderANE(
self.dims.n_vocab,
self.dims.n_text_ctx,
self.dims.n_text_state,
self.dims.n_text_head,
self.dims.n_text_layer,
))
)
self._register_load_state_dict_pre_hook(linear_to_conv2d_map)

View File

@ -62,7 +62,7 @@ if [ -f "ggml-$model.bin" ]; then
fi
if [ -x "$(command -v wget)" ]; then
wget --quiet --show-progress -O ggml-$model.bin $src/$pfx-$model.bin
wget --no-config --quiet --show-progress -O ggml-$model.bin $src/$pfx-$model.bin
elif [ -x "$(command -v curl)" ]; then
curl -L --output ggml-$model.bin $src/$pfx-$model.bin
else

View File

@ -13,7 +13,7 @@
#
# Usage:
#
# ./tests/run-tests.sh <model_name>
# ./tests/run-tests.sh <model_name> [threads]
#
cd `dirname $0`
@ -32,7 +32,7 @@ function list_models {
}
if [ $# -eq 0 ]; then
printf "Usage: $0 [model]\n\n"
printf "Usage: $0 [model] [threads]\n\n"
printf "No model specified. Aborting\n"
list_models
exit 1
@ -41,6 +41,11 @@ fi
model=$1
main="../main"
threads=""
if [ $# -eq 2 ]; then
threads="-t $2"
fi
if [ ! -f ../models/ggml-$model.bin ]; then
printf "Model $model not found. Aborting\n"
list_models
@ -105,7 +110,7 @@ function run_lang() {
fi
fi
$main -m ../models/ggml-$model.bin -f $fname_dst -l $lang -otxt 2> /dev/null
$main -m ../models/ggml-$model.bin $threads -f $fname_dst -l $lang -otxt 2> /dev/null
git diff --no-index --word-diff=color --word-diff-regex=. $lang-$i-ref.txt $fname_dst.txt

File diff suppressed because it is too large Load Diff

View File

@ -258,7 +258,7 @@ extern "C" {
WHISPER_API int whisper_model_n_text_head (struct whisper_context * ctx);
WHISPER_API int whisper_model_n_text_layer (struct whisper_context * ctx);
WHISPER_API int whisper_model_n_mels (struct whisper_context * ctx);
WHISPER_API int whisper_model_f16 (struct whisper_context * ctx);
WHISPER_API int whisper_model_ftype (struct whisper_context * ctx);
WHISPER_API int whisper_model_type (struct whisper_context * ctx);
// Token logits obtained from the last call to whisper_decode()
@ -365,6 +365,7 @@ extern "C" {
// for auto-detection, set to nullptr, "" or "auto"
const char * language;
bool detect_language;
// common decoding parameters:
bool suppress_blank; // ref: https://github.com/openai/whisper/blob/f82bc59f5ea234d4b97fb2860842ed38519f7e65/whisper/decoding.py#L89