Compare commits

..

1 Commits

Author SHA1 Message Date
c456ca476b llama podcast 2023-04-01 13:13:27 +03:00
48 changed files with 2068 additions and 4695 deletions

View File

@ -265,44 +265,3 @@ jobs:
popd
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make
ios:
runs-on: macos-latest
strategy:
matrix:
build: [Release]
steps:
- name: Clone
uses: actions/checkout@v1
- name: Configure
run: cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
- name: Build objc example
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build
- name: Build swiftui example
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphonesimulator build
android:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v1
- name: Install Java
uses: actions/setup-java@v3
with:
distribution: zulu
java-version: 17
- name: Setup Android SDK
uses: android-actions/setup-android@v2
- name: Build
run: |
cd examples/whisper.android
./gradlew assembleRelease --no-daemon

6
.gitignore vendored
View File

@ -1,8 +1,6 @@
*.o
*.a
.cache/
.coreml/
.test/
.vs/
.vscode/
.DS_Store
@ -36,6 +34,4 @@ examples/whisper.objc/whisper.objc.xcodeproj/project.xcworkspace/xcuserdata
extra/bench-gg.txt
models/*.mlmodel
models/*.mlmodelc
models/*.mlpackage
*.mlmodel*

View File

@ -1,10 +1,6 @@
cmake_minimum_required (VERSION 3.0)
project(whisper.cpp VERSION 1.3.0)
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
add_compile_options(/utf-8)
endif ()
project(whisper.cpp VERSION 1.2.1)
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
@ -58,8 +54,6 @@ if (APPLE)
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
option(WHISPER_NO_FMA "whisper: disable FMA" OFF)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
else()
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
endif()
@ -92,33 +86,16 @@ endif()
find_package(Threads REQUIRED)
# on APPLE
if (APPLE)
# include Accelerate framework
if (NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
# on APPLE - include Accelerate framework
if (APPLE AND NOT WHISPER_NO_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
if (WHISPER_COREML)
find_library(FOUNDATION_FRAMEWORK Foundation)
find_library(COREML_FRAMEWORK CoreML)
if (COREML_FRAMEWORK)
message(STATUS "CoreML framework found")
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DWHISPER_USE_COREML)
else()
message(WARNING "CoreML framework not found")
endif()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_USE_ACCELERATE)
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
@ -206,33 +183,6 @@ if (WHISPER_PERF)
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
endif()
#
# whisper.coreml - Core ML support
#
if (WHISPER_COREML)
set(TARGET whisper.coreml)
add_library(${TARGET}
coreml/whisper-encoder.h
coreml/whisper-encoder.mm
coreml/whisper-encoder-impl.h
coreml/whisper-encoder-impl.m
)
include(DefaultTargetOptions)
target_include_directories(${TARGET} PUBLIC
.
)
target_link_libraries(${TARGET} PRIVATE ${FOUNDATION_FRAMEWORK} ${COREML_FRAMEWORK})
set_target_properties(${TARGET} PROPERTIES
COMPILE_FLAGS "-fobjc-arc"
)
endif()
#
# whisper - this is the main library of the project
#
@ -252,10 +202,6 @@ target_include_directories(${TARGET} PUBLIC
.
)
if (WHISPER_COREML)
target_link_libraries(${TARGET} PRIVATE whisper.coreml)
endif()
if (MSVC)
target_link_libraries(${TARGET} PRIVATE ${WHISPER_EXTRA_LIBS} ${CMAKE_THREAD_LIBS_INIT})

View File

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023 Georgi Gerganov
Copyright (c) 2022 Georgi Gerganov
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@ -77,6 +77,10 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
CFLAGS += -mavx2
endif
else ifeq ($(UNAME_S),Linux)
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
ifneq (,$(findstring avx2,$(AVX2_M)))
CFLAGS += -mavx2
@ -88,17 +92,16 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
ifneq (,$(findstring f16c,$(F16C_M)))
CFLAGS += -mf16c
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
endif
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
ifneq (,$(findstring sse3,$(SSE3_M)))
CFLAGS += -msse3
endif
else ifeq ($(UNAME_S),Haiku)
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell sysinfo -cpu | grep "AVX2 ")
ifneq (,$(findstring avx2,$(AVX2_M)))
CFLAGS += -mavx2
@ -110,11 +113,6 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
F16C_M := $(shell sysinfo -cpu | grep "F16C ")
ifneq (,$(findstring f16c,$(F16C_M)))
CFLAGS += -mf16c
AVX1_M := $(shell sysinfo -cpu | grep "AVX ")
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
endif
else
CFLAGS += -mfma -mf16c -mavx -mavx2
@ -140,10 +138,6 @@ ifndef WHISPER_NO_ACCELERATE
LDFLAGS += -framework Accelerate
endif
endif
ifdef WHISPER_COREML
CXXFLAGS += -DWHISPER_USE_COREML
LDFLAGS += -framework Foundation -framework CoreML
endif
ifdef WHISPER_OPENBLAS
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
LDFLAGS += -lopenblas
@ -196,26 +190,14 @@ default: main bench
ggml.o: ggml.c ggml.h
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
whisper.o: whisper.cpp whisper.h ggml.h
whisper.o: whisper.cpp whisper.h
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
ifndef WHISPER_COREML
WHISPER_OBJ = whisper.o
else
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
libwhisper.a: ggml.o whisper.o
$(AR) rcs libwhisper.a ggml.o whisper.o
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
WHISPER_OBJ = whisper.o whisper-encoder.o whisper-encoder-impl.o
endif
libwhisper.a: ggml.o $(WHISPER_OBJ)
$(AR) rcs libwhisper.a ggml.o $(WHISPER_OBJ)
libwhisper.so: ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o $(WHISPER_OBJ) $(LDFLAGS)
libwhisper.so: ggml.o whisper.o
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
clean:
rm -f *.o main stream command talk talk-llama bench libwhisper.a libwhisper.so
@ -229,24 +211,24 @@ CC_SDL=`sdl2-config --cflags --libs`
SRC_COMMON = examples/common.cpp
SRC_COMMON_SDL = examples/common-sdl.cpp
main: examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o $(WHISPER_OBJ) -o main $(LDFLAGS)
main: examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/main/main.cpp $(SRC_COMMON) ggml.o whisper.o -o main $(LDFLAGS)
./main -h
bench: examples/bench/bench.cpp ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o $(WHISPER_OBJ) -o bench $(LDFLAGS)
bench: examples/bench/bench.cpp ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o stream $(CC_SDL) $(LDFLAGS)
stream: examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o command $(CC_SDL) $(LDFLAGS)
command: examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/command/command.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk $(CC_SDL) $(LDFLAGS)
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ)
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o $(WHISPER_OBJ) -o talk-llama $(CC_SDL) $(LDFLAGS)
talk-llama: examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o
$(CXX) $(CXXFLAGS) examples/talk-llama/talk-llama.cpp examples/talk-llama/llama.cpp $(SRC_COMMON) $(SRC_COMMON_SDL) ggml.o whisper.o -o talk-llama $(CC_SDL) $(LDFLAGS)
#
# Audio samples

View File

@ -4,12 +4,12 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Beta: [v1.3.0](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.3.0) / Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
Stable: [v1.2.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.2.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
- Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate framework and [Core ML](https://github.com/ggerganov/whisper.cpp#core-ml-support)
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
- AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures
- Mixed F16 / F32 precision
@ -58,9 +58,7 @@ the Accelerate framework utilizes the special-purpose AMX coprocessor available
## Quick start
First clone the repository.
Then, download one of the Whisper models converted in [ggml format](models). For example:
First, download one of the Whisper models converted in [ggml format](models). For example:
```bash
bash ./models/download-ggml-model.sh base.en
@ -225,60 +223,6 @@ make large
| medium | 1.5 GB | ~1.7 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| large | 2.9 GB | ~3.3 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
## Core ML support
On Apple Silicon devices, the Encoder inference can be executed on the Apple Neural Engine (ANE) via Core ML. This can result in significant
speed-up - more than x3 faster compared with CPU-only execution. Here are the instructions for generating a Core ML model and using it with `whisper.cpp`:
- Install Python dependencies needed for the creation of the Core ML model:
```bash
pip install ane_transformers
pip install openai-whisper
pip install coremltools
```
- Generate a Core ML model. For example, to generate a `base.en` model, use:
```bash
./models/generate-coreml-model.sh base.en
```
This will generate the folder `models/ggml-base.en-encoder.mlmodelc`
- Build `whisper.cpp` with Core ML support:
```bash
# using Makefile
make clean
WHISPER_COREML=1 make -j
# using CMake
cd build
cmake -DWHISPER_COREML=1 ..
```
- Run the examples as usual. For example:
```bash
./main -m models/ggml-base.en.bin -f samples/jfk.wav
...
whisper_init_state: loading Core ML model from 'models/ggml-base.en-encoder.mlmodelc'
whisper_init_state: first run on a device may take a while ...
whisper_init_state: Core ML model loaded
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 | COREML = 1 |
...
```
The first run on a device is slow, since the ANE service compiles the Core ML model to some device-specific format.
Next runs are faster.
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
## Limitations
- Inference only
@ -384,10 +328,6 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
Adding the `--print-colors` argument will print the transcribed text using an experimental color coding strategy
to highlight words with high or low confidence:
```java
./main -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
```
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
## Controlling the length of the generated text segments (experimental)
@ -540,7 +480,6 @@ in [models](models).
- [X] Go: [bindings/go](bindings/go) | [#312](https://github.com/ggerganov/whisper.cpp/discussions/312)
- [X] Ruby: [bindings/ruby](bindings/ruby) | [#507](https://github.com/ggerganov/whisper.cpp/discussions/507)
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm) | [#313](https://github.com/ggerganov/whisper.cpp/discussions/313)
- [exPHAT/SwiftWhisper](https://github.com/exPHAT/SwiftWhisper)
- [X] .NET: | [#422](https://github.com/ggerganov/whisper.cpp/discussions/422)
- [sandrohanea/whisper.net](https://github.com/sandrohanea/whisper.net)
- [NickDarvey/whisper](https://github.com/NickDarvey/whisper)
@ -548,7 +487,6 @@ in [models](models).
- [stlukey/whispercpp.py](https://github.com/stlukey/whispercpp.py) (Cython)
- [aarnphm/whispercpp](https://github.com/aarnphm/whispercpp) (Pybind11)
- [X] R: [bnosac/audio.whisper](https://github.com/bnosac/audio.whisper)
- [X] Unity: [macoron/whisper.unity](https://github.com/Macoron/whisper.unity)
## Examples

View File

@ -105,10 +105,6 @@ func (p *Params) SetMaxSegmentLength(n int) {
p.max_len = C.int(n)
}
func (p *Params) SetTokenTimestamps(b bool) {
p.token_timestamps = toBool(b)
}
// Set max tokens per segment (0 = no limit)
func (p *Params) SetMaxTokensPerSegment(n int) {
p.max_tokens = C.int(n)

View File

@ -111,11 +111,6 @@ func (context *context) SetMaxSegmentLength(n uint) {
context.params.SetMaxSegmentLength(int(n))
}
// Set token timestamps flag
func (context *context) SetTokenTimestamps(b bool) {
context.params.SetTokenTimestamps(b)
}
// Set max tokens per segment (0 = no limit)
func (context *context) SetMaxTokensPerSegment(n uint) {
context.params.SetMaxTokensPerSegment(int(n))
@ -285,14 +280,10 @@ func toSegment(ctx *whisper.Context, n int) Segment {
func toTokens(ctx *whisper.Context, n int) []Token {
result := make([]Token, ctx.Whisper_full_n_tokens(n))
for i := 0; i < len(result); i++ {
data := ctx.Whisper_full_get_token_data(n, i)
result[i] = Token{
Id: int(ctx.Whisper_full_get_token_id(n, i)),
Text: ctx.Whisper_full_get_token_text(n, i),
P: ctx.Whisper_full_get_token_p(n, i),
Start: time.Duration(data.T0()) * time.Millisecond * 10,
End: time.Duration(data.T1()) * time.Millisecond * 10,
Id: int(ctx.Whisper_full_get_token_id(n, i)),
Text: strings.TrimSpace(ctx.Whisper_full_get_token_text(n, i)),
P: ctx.Whisper_full_get_token_p(n, i),
}
}
return result

View File

@ -41,7 +41,6 @@ type Context interface {
SetTokenThreshold(float32) // Set timestamp token probability threshold
SetTokenSumThreshold(float32) // Set timestamp token sum probability threshold
SetMaxSegmentLength(uint) // Set max segment length in characters
SetTokenTimestamps(bool) // Set token timestamps flag
SetMaxTokensPerSegment(uint) // Set max tokens per segment (0 = no limit)
// Process mono audio data and return any errors.
@ -86,8 +85,7 @@ type Segment struct {
// Token is a text or special token
type Token struct {
Id int
Text string
P float32
Start, End time.Duration
Id int
Text string
P float32
}

View File

@ -356,7 +356,7 @@ func (ctx *Context) Whisper_full_get_token_id(segment int, token int) Token {
// Get token data for the specified token in the specified segment.
// This contains probabilities, timestamps, etc.
func (ctx *Context) Whisper_full_get_token_data(segment int, token int) TokenData {
func (ctx *Context) whisper_full_get_token_data(segment int, token int) TokenData {
return TokenData(C.whisper_full_get_token_data((*C.struct_whisper_context)(ctx), C.int(segment), C.int(token)))
}
@ -407,11 +407,3 @@ func callEncoderBegin(user_data unsafe.Pointer) C.bool {
}
return true
}
func (t TokenData) T0() int64 {
return int64(t.t0)
}
func (t TokenData) T1() int64 {
return int64(t.t1)
}

View File

@ -1,6 +1,6 @@
{
"name": "whisper.cpp",
"version": "1.3.0",
"version": "1.2.1",
"description": "Whisper speech recognition",
"main": "whisper.js",
"scripts": {

File diff suppressed because one or more lines are too long

View File

@ -1,146 +0,0 @@
//
// whisper-decoder-impl.h
//
// This file was automatically generated and should not be edited.
//
#import <Foundation/Foundation.h>
#import <CoreML/CoreML.h>
#include <stdint.h>
#include <os/log.h>
NS_ASSUME_NONNULL_BEGIN
/// Model Prediction Input Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_decoder_implInput : NSObject<MLFeatureProvider>
/// token_data as 1 by 1 matrix of 32-bit integers
@property (readwrite, nonatomic, strong) MLMultiArray * token_data;
/// audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * audio_data;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data NS_DESIGNATED_INITIALIZER;
@end
/// Model Prediction Output Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_decoder_implOutput : NSObject<MLFeatureProvider>
/// var_1346 as multidimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * var_1346;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 NS_DESIGNATED_INITIALIZER;
@end
/// Class for model loading and prediction
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_decoder_impl : NSObject
@property (readonly, nonatomic, nullable) MLModel * model;
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle;
/**
Initialize whisper_decoder_impl instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
/**
Initialize whisper_decoder_impl instance with the model in this bundle.
*/
- (nullable instancetype)init;
/**
Initialize whisper_decoder_impl instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize whisper_decoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize whisper_decoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Construct whisper_decoder_impl instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
/**
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler;
/**
Make a prediction using the standard interface
@param input an instance of whisper_decoder_implInput to predict from
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_decoder_implOutput
*/
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the standard interface
@param input an instance of whisper_decoder_implInput to predict from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_decoder_implOutput
*/
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the convenience interface
@param token_data as 1 by 1 matrix of 32-bit integers:
@param audio_data as 1 × 384 × 1 × 1500 4-dimensional array of floats:
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_decoder_implOutput
*/
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Batch prediction
@param inputArray array of whisper_decoder_implInput instances to obtain predictions from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the predictions as NSArray<whisper_decoder_implOutput *>
*/
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
@end
NS_ASSUME_NONNULL_END

View File

@ -1,201 +0,0 @@
//
// whisper-decoder-impl.m
//
// This file was automatically generated and should not be edited.
//
#if !__has_feature(objc_arc)
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
#endif
#import "whisper-decoder-impl.h"
@implementation whisper_decoder_implInput
- (instancetype)initWithToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data {
self = [super init];
if (self) {
_token_data = token_data;
_audio_data = audio_data;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"token_data", @"audio_data"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"token_data"]) {
return [MLFeatureValue featureValueWithMultiArray:self.token_data];
}
if ([featureName isEqualToString:@"audio_data"]) {
return [MLFeatureValue featureValueWithMultiArray:self.audio_data];
}
return nil;
}
@end
@implementation whisper_decoder_implOutput
- (instancetype)initWithVar_1346:(MLMultiArray *)var_1346 {
self = [super init];
if (self) {
_var_1346 = var_1346;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"var_1346"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"var_1346"]) {
return [MLFeatureValue featureValueWithMultiArray:self.var_1346];
}
return nil;
}
@end
@implementation whisper_decoder_impl
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle {
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_decoder_impl" ofType:@"mlmodelc"];
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-decoder-impl.mlmodelc in the bundle resource"); return nil; }
return [NSURL fileURLWithPath:assetPath];
}
/**
Initialize whisper_decoder_impl instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of whisper_decoder_impl.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model {
self = [super init];
if (!self) { return nil; }
_model = model;
if (_model == nil) { return nil; }
return self;
}
/**
Initialize whisper_decoder_impl instance with the model in this bundle.
*/
- (nullable instancetype)init {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
}
/**
Initialize whisper_decoder_impl instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
}
/**
Initialize whisper_decoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Initialize whisper_decoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_decoder_impl.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Construct whisper_decoder_impl instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
configuration:configuration
completionHandler:handler];
}
/**
Construct whisper_decoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_decoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_decoder_impl * _Nullable model, NSError * _Nullable error))handler {
[MLModel loadContentsOfURL:modelURL
configuration:configuration
completionHandler:^(MLModel *model, NSError *error) {
if (model != nil) {
whisper_decoder_impl *typedModel = [[whisper_decoder_impl alloc] initWithMLModel:model];
handler(typedModel, nil);
} else {
handler(nil, error);
}
}];
}
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
}
- (nullable whisper_decoder_implOutput *)predictionFromFeatures:(whisper_decoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
if (!outFeatures) { return nil; }
return [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[outFeatures featureValueForName:@"var_1346"].multiArrayValue];
}
- (nullable whisper_decoder_implOutput *)predictionFromToken_data:(MLMultiArray *)token_data audio_data:(MLMultiArray *)audio_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
whisper_decoder_implInput *input_ = [[whisper_decoder_implInput alloc] initWithToken_data:token_data audio_data:audio_data];
return [self predictionFromFeatures:input_ error:error];
}
- (nullable NSArray<whisper_decoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_decoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
if (!outBatch) { return nil; }
NSMutableArray<whisper_decoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
for (NSInteger i = 0; i < outBatch.count; i++) {
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
whisper_decoder_implOutput * result = [[whisper_decoder_implOutput alloc] initWithVar_1346:(MLMultiArray *)[resultProvider featureValueForName:@"var_1346"].multiArrayValue];
[results addObject:result];
}
return results;
}
@end

View File

@ -1,142 +0,0 @@
//
// whisper-encoder-impl.h
//
// This file was automatically generated and should not be edited.
//
#import <Foundation/Foundation.h>
#import <CoreML/CoreML.h>
#include <stdint.h>
#include <os/log.h>
NS_ASSUME_NONNULL_BEGIN
/// Model Prediction Input Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_encoder_implInput : NSObject<MLFeatureProvider>
/// logmel_data as 1 × 80 × 3000 3-dimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * logmel_data;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data NS_DESIGNATED_INITIALIZER;
@end
/// Model Prediction Output Type
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_encoder_implOutput : NSObject<MLFeatureProvider>
/// output as multidimensional array of floats
@property (readwrite, nonatomic, strong) MLMultiArray * output;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithOutput:(MLMultiArray *)output NS_DESIGNATED_INITIALIZER;
@end
/// Class for model loading and prediction
API_AVAILABLE(macos(12.0), ios(15.0), watchos(8.0), tvos(15.0)) __attribute__((visibility("hidden")))
@interface whisper_encoder_impl : NSObject
@property (readonly, nonatomic, nullable) MLModel * model;
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle;
/**
Initialize whisper_encoder_impl instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model NS_DESIGNATED_INITIALIZER;
/**
Initialize whisper_encoder_impl instance with the model in this bundle.
*/
- (nullable instancetype)init;
/**
Initialize whisper_encoder_impl instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize whisper_encoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Initialize whisper_encoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Construct whisper_encoder_impl instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
/**
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler;
/**
Make a prediction using the standard interface
@param input an instance of whisper_encoder_implInput to predict from
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_encoder_implOutput
*/
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the standard interface
@param input an instance of whisper_encoder_implInput to predict from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_encoder_implOutput
*/
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Make a prediction using the convenience interface
@param logmel_data as 1 × 80 × 3000 3-dimensional array of floats:
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as whisper_encoder_implOutput
*/
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error;
/**
Batch prediction
@param inputArray array of whisper_encoder_implInput instances to obtain predictions from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the predictions as NSArray<whisper_encoder_implOutput *>
*/
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error;
@end
NS_ASSUME_NONNULL_END

View File

@ -1,197 +0,0 @@
//
// whisper-encoder-impl.m
//
// This file was automatically generated and should not be edited.
//
#if !__has_feature(objc_arc)
#error This file must be compiled with automatic reference counting enabled (-fobjc-arc)
#endif
#import "whisper-encoder-impl.h"
@implementation whisper_encoder_implInput
- (instancetype)initWithLogmel_data:(MLMultiArray *)logmel_data {
self = [super init];
if (self) {
_logmel_data = logmel_data;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"logmel_data"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"logmel_data"]) {
return [MLFeatureValue featureValueWithMultiArray:self.logmel_data];
}
return nil;
}
@end
@implementation whisper_encoder_implOutput
- (instancetype)initWithOutput:(MLMultiArray *)output {
self = [super init];
if (self) {
_output = output;
}
return self;
}
- (NSSet<NSString *> *)featureNames {
return [NSSet setWithArray:@[@"output"]];
}
- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
if ([featureName isEqualToString:@"output"]) {
return [MLFeatureValue featureValueWithMultiArray:self.output];
}
return nil;
}
@end
@implementation whisper_encoder_impl
/**
URL of the underlying .mlmodelc directory.
*/
+ (nullable NSURL *)URLOfModelInThisBundle {
NSString *assetPath = [[NSBundle bundleForClass:[self class]] pathForResource:@"whisper_encoder_impl" ofType:@"mlmodelc"];
if (nil == assetPath) { os_log_error(OS_LOG_DEFAULT, "Could not load whisper-encoder-impl.mlmodelc in the bundle resource"); return nil; }
return [NSURL fileURLWithPath:assetPath];
}
/**
Initialize whisper_encoder_impl instance from an existing MLModel object.
Usually the application does not use this initializer unless it makes a subclass of whisper_encoder_impl.
Such application may want to use `-[MLModel initWithContentsOfURL:configuration:error:]` and `+URLOfModelInThisBundle` to create a MLModel object to pass-in.
*/
- (instancetype)initWithMLModel:(MLModel *)model {
self = [super init];
if (!self) { return nil; }
_model = model;
if (_model == nil) { return nil; }
return self;
}
/**
Initialize whisper_encoder_impl instance with the model in this bundle.
*/
- (nullable instancetype)init {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle error:nil];
}
/**
Initialize whisper_encoder_impl instance with the model in this bundle.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self initWithContentsOfURL:(NSURL * _Nonnull)self.class.URLOfModelInThisBundle configuration:configuration error:error];
}
/**
Initialize whisper_encoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Initialize whisper_encoder_impl instance from the model URL.
@param modelURL URL to the .mlmodelc directory for whisper_encoder_impl.
@param configuration The model configuration object
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
*/
- (nullable instancetype)initWithContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable __autoreleasing * _Nullable)error {
MLModel *model = [MLModel modelWithContentsOfURL:modelURL configuration:configuration error:error];
if (model == nil) { return nil; }
return [self initWithMLModel:model];
}
/**
Construct whisper_encoder_impl instance asynchronously with configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadWithConfiguration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
[self loadContentsOfURL:(NSURL * _Nonnull)[self URLOfModelInThisBundle]
configuration:configuration
completionHandler:handler];
}
/**
Construct whisper_encoder_impl instance asynchronously with URL of .mlmodelc directory and optional configuration.
Model loading may take time when the model content is not immediately available (e.g. encrypted model). Use this factory method especially when the caller is on the main thread.
@param modelURL The model URL.
@param configuration The model configuration
@param handler When the model load completes successfully or unsuccessfully, the completion handler is invoked with a valid whisper_encoder_impl instance or NSError object.
*/
+ (void)loadContentsOfURL:(NSURL *)modelURL configuration:(MLModelConfiguration *)configuration completionHandler:(void (^)(whisper_encoder_impl * _Nullable model, NSError * _Nullable error))handler {
[MLModel loadContentsOfURL:modelURL
configuration:configuration
completionHandler:^(MLModel *model, NSError *error) {
if (model != nil) {
whisper_encoder_impl *typedModel = [[whisper_encoder_impl alloc] initWithMLModel:model];
handler(typedModel, nil);
} else {
handler(nil, error);
}
}];
}
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input error:(NSError * _Nullable __autoreleasing * _Nullable)error {
return [self predictionFromFeatures:input options:[[MLPredictionOptions alloc] init] error:error];
}
- (nullable whisper_encoder_implOutput *)predictionFromFeatures:(whisper_encoder_implInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLFeatureProvider> outFeatures = [self.model predictionFromFeatures:input options:options error:error];
if (!outFeatures) { return nil; }
return [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[outFeatures featureValueForName:@"output"].multiArrayValue];
}
- (nullable whisper_encoder_implOutput *)predictionFromLogmel_data:(MLMultiArray *)logmel_data error:(NSError * _Nullable __autoreleasing * _Nullable)error {
whisper_encoder_implInput *input_ = [[whisper_encoder_implInput alloc] initWithLogmel_data:logmel_data];
return [self predictionFromFeatures:input_ error:error];
}
- (nullable NSArray<whisper_encoder_implOutput *> *)predictionsFromInputs:(NSArray<whisper_encoder_implInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable __autoreleasing * _Nullable)error {
id<MLBatchProvider> inBatch = [[MLArrayBatchProvider alloc] initWithFeatureProviderArray:inputArray];
id<MLBatchProvider> outBatch = [self.model predictionsFromBatch:inBatch options:options error:error];
if (!outBatch) { return nil; }
NSMutableArray<whisper_encoder_implOutput*> *results = [NSMutableArray arrayWithCapacity:(NSUInteger)outBatch.count];
for (NSInteger i = 0; i < outBatch.count; i++) {
id<MLFeatureProvider> resultProvider = [outBatch featuresAtIndex:i];
whisper_encoder_implOutput * result = [[whisper_encoder_implOutput alloc] initWithOutput:(MLMultiArray *)[resultProvider featureValueForName:@"output"].multiArrayValue];
[results addObject:result];
}
return results;
}
@end

View File

@ -1,22 +0,0 @@
// Wrapper of the Core ML Whisper Encoder model
//
// Code is derived from the work of Github user @wangchou
// ref: https://github.com/wangchou/callCoreMLFromCpp
#if __cplusplus
extern "C" {
#endif
struct whisper_coreml_context;
struct whisper_coreml_context * whisper_coreml_init(const char * path_model);
void whisper_coreml_free(struct whisper_coreml_context * ctx);
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
float * mel,
float * out);
#if __cplusplus
}
#endif

View File

@ -1,67 +0,0 @@
#import "coreml/whisper-encoder.h"
#import "coreml/whisper-encoder-impl.h"
#import <CoreML/CoreML.h>
#include <stdlib.h>
#if __cplusplus
extern "C" {
#endif
struct whisper_coreml_context {
const void * data;
};
struct whisper_coreml_context * whisper_coreml_init(const char * path_model) {
NSString * path_model_str = [[NSString alloc] initWithUTF8String:path_model];
NSURL * url_model = [NSURL fileURLWithPath: path_model_str];
const void * data = CFBridgingRetain([[whisper_encoder_impl alloc] initWithContentsOfURL:url_model error:nil]);
if (data == NULL) {
return NULL;
}
whisper_coreml_context * ctx = new whisper_coreml_context;
ctx->data = data;
return ctx;
}
void whisper_coreml_free(struct whisper_coreml_context * ctx) {
CFRelease(ctx->data);
delete ctx;
}
void whisper_coreml_encode(
const whisper_coreml_context * ctx,
float * mel,
float * out) {
MLMultiArray * inMultiArray = [
[MLMultiArray alloc] initWithDataPointer: mel
shape: @[@1, @80, @3000]
dataType: MLMultiArrayDataTypeFloat32
strides: @[@(240000), @(3000), @1]
deallocator: nil
error: nil
];
whisper_encoder_implOutput * outCoreML = [(__bridge id) ctx->data predictionFromLogmel_data:inMultiArray error:nil];
MLMultiArray * outMA = outCoreML.output;
//NSArray<NSNumber *> * shape = outMA.shape;
//NSArray<NSNumber *> * strides = outMA.strides;
//printf("shape: %ld %ld %ld %ld\n", [shape[0] longValue], [shape[1] longValue], [shape[2] longValue], [shape[3] longValue]);
//printf("strides: %ld %ld %ld %ld\n", [strides[0] longValue], [strides[1] longValue], [strides[2] longValue], [strides[3] longValue]);
memcpy(out, outMA.dataPointer, outMA.count * sizeof(float));
}
#if __cplusplus
}
#endif

View File

@ -57,7 +57,7 @@ struct whisper_params {
int32_t duration_ms = 0;
int32_t max_context = -1;
int32_t max_len = 0;
int32_t best_of = 2;
int32_t best_of = 5;
int32_t beam_size = -1;
float word_thold = 0.01f;
@ -75,7 +75,6 @@ struct whisper_params {
bool output_wts = false;
bool output_csv = false;
bool output_jsn = false;
bool output_lrc = false;
bool print_special = false;
bool print_colors = false;
bool print_progress = false;
@ -131,7 +130,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-ovtt" || arg == "--output-vtt") { params.output_vtt = true; }
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; }
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
@ -180,7 +178,6 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -otxt, --output-txt [%-7s] output result in a text file\n", params.output_txt ? "true" : "false");
fprintf(stderr, " -ovtt, --output-vtt [%-7s] output result in a vtt file\n", params.output_vtt ? "true" : "false");
fprintf(stderr, " -osrt, --output-srt [%-7s] output result in a srt file\n", params.output_srt ? "true" : "false");
fprintf(stderr, " -olrc, --output-lrc [%-7s] output result in a lrc file\n", params.output_lrc ? "true" : "false");
fprintf(stderr, " -owts, --output-words [%-7s] output script for generating karaoke video\n", params.output_wts ? "true" : "false");
fprintf(stderr, " -fp, --font-path [%-7s] path to a monospace font for karaoke video\n", params.font_path.c_str());
fprintf(stderr, " -ocsv, --output-csv [%-7s] output result in a CSV file\n", params.output_csv ? "true" : "false");
@ -211,8 +208,8 @@ void whisper_print_segment_callback(struct whisper_context * ctx, struct whisper
std::string speaker = "";
int64_t t0 = 0;
int64_t t1 = 0;
int64_t t0;
int64_t t1;
// print the last n_new segments
const int s0 = n_segments - n_new;
@ -650,39 +647,6 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
return true;
}
bool output_lrc(struct whisper_context * ctx, const char * fname) {
std::ofstream fout(fname);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname);
return false;
}
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
fout << "[by:whisper.cpp]\n";
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
const int64_t t = whisper_full_get_segment_t0(ctx, i);
int64_t msec = t * 10;
int64_t min = msec / (1000 * 60);
msec = msec - min * (1000 * 60);
int64_t sec = msec / 1000;
msec = msec - sec * 1000;
char buf[16];
snprintf(buf, sizeof(buf), "%02d:%02d.%02d", (int) min, (int) sec, (int) ( msec / 10));
std::string timestamp_lrc = std::string(buf);
fout << '[' << timestamp_lrc << ']' << text << "\n";
}
return true;
}
int main(int argc, char ** argv) {
whisper_params params;
@ -849,12 +813,6 @@ int main(int argc, char ** argv) {
const auto fname_jsn = fname_out + ".json";
output_json(ctx, fname_jsn.c_str(), params);
}
// output to LRC file
if (params.output_lrc) {
const auto fname_lrc = fname_out + ".lrc";
output_lrc(ctx, fname_lrc.c_str());
}
}
}

View File

@ -43,7 +43,6 @@ struct whisper_params {
bool speed_up = false;
bool translate = false;
bool no_fallback = false;
bool print_special = false;
bool no_context = true;
bool no_timestamps = false;
@ -74,7 +73,6 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
@ -96,23 +94,22 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms);
fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms);
fprintf(stderr, " --keep N [%-7d] audio to keep from previous step in ms\n", params.keep_ms);
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms);
fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms);
fprintf(stderr, " --keep N [%-7d] audio to keep from previous step in ms\n", params.keep_ms);
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}
@ -151,7 +148,7 @@ int main(int argc, char ** argv) {
// whisper init
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1){
if (whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
@ -300,8 +297,7 @@ int main(int argc, char ** argv) {
wparams.speed_up = params.speed_up;
// disable temperature fallback
//wparams.temperature_inc = -1.0f;
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
wparams.temperature_inc = -1.0f;
wparams.prompt_tokens = params.no_context ? nullptr : prompt_tokens.data();
wparams.prompt_n_tokens = params.no_context ? 0 : prompt_tokens.size();

View File

@ -1 +1,2 @@
eleven-labs.py
audio.mp3

View File

@ -1,23 +0,0 @@
import sys
import importlib.util
api_key = "" #Write your https://beta.elevenlabs.io api key here
if not api_key:
print("To use elevenlabs you have to register to https://beta.elevenlabs.io and add your elevenlabs api key to examples/talk-llama/eleven-labs.py")
sys.exit()
if importlib.util.find_spec("elevenlabs") is None:
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
sys.exit()
from elevenlabs import ElevenLabs
eleven = ElevenLabs(api_key)
# Get a Voice object, by name or UUID
voice = eleven.voices["Arnold"] #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
# Generate the TTS
audio = voice.generate(str(sys.argv[2:]))
# Save the TTS to a file
audio.save("audio")

File diff suppressed because it is too large Load Diff

View File

@ -55,7 +55,6 @@ extern "C" {
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
@ -67,9 +66,6 @@ extern "C" {
LLAMA_API struct llama_context_params llama_context_default_params();
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
@ -87,23 +83,6 @@ extern "C" {
const char * fname_out,
int itype);
// Returns the KV cache that will contain the context for the
// ongoing prediction with the model.
LLAMA_API const uint8_t * llama_get_kv_cache(struct llama_context * ctx);
// Returns the size of the KV cache
LLAMA_API size_t llama_get_kv_cache_size(struct llama_context * ctx);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
// Sets the KV cache containing the current context for the model
LLAMA_API void llama_set_kv_cache(
struct llama_context * ctx,
const uint8_t * kv_cache,
size_t n_size,
int n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
@ -170,4 +149,4 @@ extern "C" {
}
#endif
#endif // LLAMA_H
#endif

View File

@ -1,12 +0,0 @@
// Internal header to be included by llama.cpp and tests/benchmarks only.
#ifndef LLAMA_INTERNAL_H
#define LLAMA_INTERNAL_H
#include <vector>
#include <string>
struct ggml_tensor;
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif // LLAMA_INTERNAL_H

View File

@ -1,383 +0,0 @@
// Internal header to be included only by llama.cpp.
// Contains wrappers around OS interfaces.
#ifndef LLAMA_UTIL_H
#define LLAMA_UTIL_H
#include <cstdio>
#include <cstdint>
#include <cerrno>
#include <cstring>
#include <cstdarg>
#include <cstdlib>
#include <climits>
#include <string>
#include <vector>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
#endif
#define LLAMA_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
#ifdef __GNUC__
__attribute__((format(printf, 1, 2)))
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
LLAMA_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
};
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
throw format("failed to open %s: %s", fname, std::strerror(errno));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
LLAMA_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, size, 1, fp);
if (ferror(fp)) {
throw format("read error: %s", strerror(errno));
}
if (ret != 1) {
throw std::string("unexpectedly reached end of file");
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
void write_raw(const void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, size, 1, fp);
if (ret != 1) {
throw format("write error: %s", strerror(errno));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
struct llama_mmap {
void * addr;
size_t size;
llama_mmap(const llama_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
#ifdef __linux__
flags |= MAP_POPULATE;
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
close(fd);
if (addr == MAP_FAILED) {
throw format("mmap failed: %s", strerror(errno));
}
// Advise the kernel to preload the mapped memory
if (madvise(addr, file->size, MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
~llama_mmap() {
munmap(addr, size);
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file) {
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
CloseHandle(hFile);
if (hMapping == NULL) {
throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str());
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str());
}
// Advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file *) {
throw std::string("mmap not supported");
}
#endif
};
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
llama_mlock() {}
llama_mlock(const llama_mlock &) = delete;
~llama_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * addr) {
LLAMA_ASSERT(this->addr == NULL && this->size == 0);
this->addr = addr;
}
void grow_to(size_t target_size) {
LLAMA_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) {
if (!mlock(addr, size)) {
return true;
} else {
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n" MLOCK_SUGGESTION,
size, this->size, std::strerror(errno));
return false;
}
}
#undef MLOCK_SUGGESTION
void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * addr, size_t size) {
for (int tries = 1; ; tries++) {
if (VirtualLock(addr, size)) {
return true;
}
if (tries == 2) {
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
size, this->size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = size + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += size;
max_ws_size += size;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
void raw_unlock(void * addr, size_t size) {
if (!VirtualUnlock(addr, size)) {
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
void raw_lock(const void * addr, size_t size) {
fprintf(stderr, "warning: mlock not supported on this system\n");
}
void raw_unlock(const void * addr, size_t size) {}
#endif
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct llama_buffer {
uint8_t * addr = NULL;
size_t size = 0;
void resize(size_t size) {
delete[] addr;
addr = new uint8_t[size];
this->size = size;
}
~llama_buffer() {
delete[] addr;
}
};
#endif

View File

@ -10,10 +10,17 @@
#espeak -v en-us+m$1 -s 225 -p 50 -a 200 -g 5 -k 5 "$2"
# for Mac
say "$2"
if [ "$1" = "0" ]; then
say "$2"
elif [ "$1" = "1" ]; then
say -v "Samantha (Enhanced)" "$2"
elif [ "$1" = "2" ]; then
say -v "Daniel (Enhanced)" "$2"
elif [ "$1" = "3" ]; then
say -v "Veena (Enhanced)" "$2"
fi
# Eleven Labs
# To use it, install the elevenlabs module from pip (pip install elevenlabs), register to https://beta.elevenlabs.io to get an api key and paste it in /examples/talk-llama/eleven-labs.py
#
#wd=$(dirname $0)
#script=$wd/eleven-labs.py

View File

@ -6,6 +6,7 @@
#include "whisper.h"
#include "llama.h"
#include <map>
#include <cassert>
#include <cstdio>
#include <fstream>
@ -28,14 +29,15 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t voice_id = 0;
int32_t voice_ms = 10000;
int32_t capture_id = -1;
int32_t max_tokens = 32;
int32_t max_tokens = 64;
int32_t audio_ctx = 0;
int32_t n_parts_llama = -1;
float vad_thold = 0.6f;
float vad_thold = 0.4f;
float freq_thold = 100.0f;
bool speed_up = false;
@ -45,11 +47,12 @@ struct whisper_params {
bool no_timestamps = true;
bool verbose_prompt = false;
std::string person = "Georgi";
std::string name_ni = "Georgi"; // natural intelligence
std::string name_ai = "LLaMA"; // artificial intelligence
std::string language = "en";
std::string model_wsp = "models/ggml-base.en.bin";
std::string model_llama = "models/ggml-llama-7B.bin";
std::string speak = "./examples/talk-llama/speak.sh";
std::string speak = "./examples/talk/speak.sh";
std::string prompt = "";
std::string fname_out;
};
@ -64,24 +67,26 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "--n-parts-llama") { params.n_parts_llama = std::stoi(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-vid" || arg == "--voice-id") { params.voice_id = std::stoi(argv[++i]); }
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "--n-parts-llama") { params.n_parts_llama = std::stoi(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "--verbose-prompt") { params.verbose_prompt = true; }
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; }
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
else if (arg == "-nni" || arg == "--name-ni") { params.name_ni = argv[++i]; }
else if (arg == "-nai" || arg == "--name-ai") { params.name_ai = argv[++i]; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; }
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
else if (arg == "--prompt-file") {
std::ifstream file(argv[++i]);
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
@ -107,6 +112,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -vid N, --voice-id N [%-7d] voice ID\n", params.voice_id);
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
@ -117,7 +123,8 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
fprintf(stderr, " -nni NAME,--name-ni NAME [%-7s] natural intelligence name\n", params.name_ni.c_str());
fprintf(stderr, " -nai NAME,--name-ai NAME [%-7s] artificial intelligence name\n", params.name_ai.c_str());
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
fprintf(stderr, " -ml FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str());
@ -157,7 +164,7 @@ std::string transcribe(
wparams.single_segment = true;
wparams.max_tokens = params.max_tokens;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.n_threads = 2;
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
@ -165,6 +172,10 @@ std::string transcribe(
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
static int iter = params.voice_id;
std::this_thread::sleep_for(std::chrono::milliseconds(100*iter));
iter = (iter + 1) % 4;
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
return "";
}
@ -197,25 +208,87 @@ std::string transcribe(
return result;
}
const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)";
const std::vector<std::string> k_participants = {
"LLaMA",
"GGaMA",
"SSaMA",
"RRaMA",
};
const std::string k_prompt_llama = R"(Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}.
{1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}s requests immediately and with details and precision.
There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other.
// homophones
const std::map<std::string, std::vector<std::string>> k_homophones = {
{ "LLaMA", { "llama", "Llama", "LLAMA", }, },
{ "GGaMA", { "gama", "Gama", "GAMA", "gamma", "Gamma", "GAMMA", }, },
{ "SSaMA", { "sama", "Sama", "SAMA", "samma", "Samma", "SAMMA", }, },
{ "RRaMA", { "rama", "Rama", "RAMA", "ramma", "Ramma", "RAMMA", }, },
};
const std::string k_prompt_whisper = R"(A conversation between {1}, {10}, {11}, {12} and {13}.)";
const std::map<std::string, std::string> k_prompt = {
{
k_participants.at(0),
R"(Text transcript of a never ending dialog, between {1}, {10}, {11}, {12} and {13}.
There are no annotations like (30 seconds passed...) or (to himself), just what the participants say aloud to each other.
The transcript only includes text, it does not include markup like HTML and Markdown.
{1} responds with short and concise answers.
{10}, {11}, {12} and {13} respond with short and concise answers.
{10} is smart, objective, honest and kind. Never fails to give a meaningful and insightful answer and opinion.
{1} is leading the conversation and asking the questions.
{0}{4} Hello, {1}!
{1}{4} Hello {0}! How may I help you today?
{0}{4} What time is it?
{1}{4} It is {2} o'clock.
{0}{4} What year is it?
{1}{4} We are in {3}.
{0}{4} What is a cat?
{1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
{0}{4} Name a color.
{1}{4} Blue
{0}{4})";
{1}{4} Hello {10}! What is your opinion on the current state of the world?
{10}{4} Great question {1}! I think we live in a very interesting time.
There are many things to be concerned about, but also many things to be optimistic about.
{1}{4} What advice would you give to a young person who is just starting out in life?
{10}{4} I would tell them to be patient and to not be afraid to fail.
It is important to learn from your mistakes and to keep trying.
{1}{4})"
},
{
k_participants.at(1),
R"(Text transcript of a never ending dialog, between {1}, {10}, {11}, {12} and {13}.
There are no annotations like (30 seconds passed...) or (to himself), just what the participants say aloud to each other.
The transcript only includes text, it does not include markup like HTML and Markdown.
{10}, {11}, {12} and {13} respond with short and concise answers.
{11} has critical thinking skills, is very knowledgeable and is a good listener. He is very humble and never arrogant.
{1} is leading the conversation and asking the questions.
{1}{4} Hello {11}! What is your opinion on the current state of the world?
{11}{4} The world is about to experience a major change. We are on the verge of a new era.
{1}{4} What advice would you give to a young person who is just starting out in life?
{11}{4} My advice would be to be open minded and to be willing to learn from others.
{1}{4})"
},
{
k_participants.at(2),
R"(Text transcript of a never ending dialog, between {1}, {10}, {11}, {12} and {13}.
There are no annotations like (30 seconds passed...) or (to himself), just what the participants say aloud to each other.
The transcript only includes text, it does not include markup like HTML and Markdown.
{10}, {11}, {12} and {13} respond with short and concise answers.
{12} has strong leadership skills, strategic thinking, and innovative ideas. Has the ability to mentor and support young people.
{1} is leading the conversation and asking the questions.
{1}{4} Hello {12}! What is your opinion on the current state of the world?
{12}{4} Our future is bright. We are living in a time of great opportunity.
{1}{4} What advice would you give to a young person who is just starting out in life?
{12}{4} I would tell them to be brave and to be willing to take risks.
{1}{4})"
},
{
k_participants.at(3),
R"(Text transcript of a never ending dialog, between {1}, {10}, {11}, {12} and {13}.
There are no annotations like (30 seconds passed...) or (to himself), just what the participants say aloud to each other.
The transcript only includes text, it does not include markup like HTML and Markdown.
{10}, {11}, {12} and {13} respond with short and concise answers.
{13} is rude, arrogant, and has a bad attitude. He is very opinionated and never listens to others.
{1} is leading the conversation and asking the questions.
{1}{4} Hello {13}! What is your opinion on the current state of the world?
{13}{4} The world is a terrible place. It is full of evil and corruption.
{1}{4} What advice would you give to a young person who is just starting out in life?
{13}{4} I would tell them to be selfish and to never trust anyone.
{1}{4})"
},
};
int main(int argc, char ** argv) {
whisper_params params;
@ -239,7 +312,7 @@ int main(int argc, char ** argv) {
auto lparams = llama_context_default_params();
// tune these to your liking
lparams.n_ctx = 2048;
lparams.n_ctx = 512;
lparams.seed = 1;
lparams.f16_kv = true;
lparams.n_parts = params.n_parts_llama;
@ -286,21 +359,48 @@ int main(int argc, char ** argv) {
float prob0 = 0.0f;
const std::string chat_symb = ":";
const std::string bot_name = "LLaMA";
const std::string name_ni = params.name_ni;
const std::string name_ai = params.name_ai;
// the participant that was referenced last
std::string name_ref = name_ni;
std::vector<float> pcmf32_cur;
std::vector<float> pcmf32_prompt;
const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", bot_name);
std::string prompt_whisper = k_prompt_whisper;
prompt_whisper = ::replace(prompt_whisper, "{1}", name_ni);
prompt_whisper = ::replace(prompt_whisper, "{10}", k_participants.at(0));
prompt_whisper = ::replace(prompt_whisper, "{11}", k_participants.at(1));
prompt_whisper = ::replace(prompt_whisper, "{12}", k_participants.at(2));
prompt_whisper = ::replace(prompt_whisper, "{13}", k_participants.at(3));
// construct the initial prompt for LLaMA inference
std::string prompt_llama = params.prompt.empty() ? k_prompt_llama : params.prompt;
std::string prompt_llama = params.prompt.empty() ? k_prompt.find(name_ai)->second : params.prompt;
// need to have leading ' '
prompt_llama.insert(0, 1, ' ');
prompt_llama = ::replace(prompt_llama, "{0}", params.person);
prompt_llama = ::replace(prompt_llama, "{1}", bot_name);
prompt_llama = ::replace(prompt_llama, "{1}", name_ni);
prompt_llama = ::replace(prompt_llama, "{10}", k_participants.at(0));
prompt_llama = ::replace(prompt_llama, "{11}", k_participants.at(1));
prompt_llama = ::replace(prompt_llama, "{12}", k_participants.at(2));
prompt_llama = ::replace(prompt_llama, "{13}", k_participants.at(3));
{
// get date string
std::string date_str;
{
time_t t = time(0);
struct tm * now = localtime(&t);
char buf[128];
strftime(buf, sizeof(buf), "%d/%m/%Y", now);
date_str = buf;
}
prompt_llama = ::replace(prompt_llama, "{1}", date_str);
}
{
// get time string
@ -343,21 +443,27 @@ int main(int argc, char ** argv) {
}
if (params.verbose_prompt) {
fprintf(stdout, "\n");
fprintf(stdout, "%s", prompt_whisper.c_str());
fprintf(stdout, "\n");
fprintf(stdout, "\n");
fprintf(stdout, "%s", prompt_llama.c_str());
fprintf(stdout, "\n");
fprintf(stdout, "\n");
fflush(stdout);
}
printf("%s : done! start speaking in the microphone\n", __func__);
printf("\n");
printf("%s%s", params.person.c_str(), chat_symb.c_str());
printf("%s%s", name_ni.c_str(), chat_symb.c_str());
fflush(stdout);
// clear audio buffer
audio.clear();
// text inference variables
const int voice_id = 2;
const int voice_id = params.voice_id;
const int n_keep = embd_inp.size();
const int n_ctx = llama_n_ctx(ctx_llama);
@ -368,9 +474,15 @@ int main(int argc, char ** argv) {
// reverse prompts for detecting when it's time to stop speaking
std::vector<std::string> antiprompts = {
params.person + chat_symb,
name_ni + chat_symb,
};
for (const auto & p : k_participants) {
antiprompts.push_back(p + chat_symb);
}
std::string text_heard_all;
// main loop
while (is_running) {
// handle Ctrl + C
@ -386,7 +498,7 @@ int main(int argc, char ** argv) {
int64_t t_ms = 0;
{
audio.get(2000, pcmf32_cur);
audio.get(15000, pcmf32_cur);
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
//fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
@ -432,104 +544,145 @@ int main(int argc, char ** argv) {
force_speak = false;
text_heard.insert(0, 1, ' ');
text_heard += "\n" + bot_name + chat_symb;
fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m");
fflush(stdout);
if (text_heard[0] != ' ') {
text_heard.insert(0, 1, ' ');
}
embd = ::llama_tokenize(ctx_llama, text_heard, false);
// text inference
bool done = false;
std::string text_to_speak;
while (true) {
// predict
if (embd.size() > 0) {
if (n_past + (int) embd.size() > n_ctx) {
n_past = n_keep;
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end());
//printf("\n---\n");
//printf("resetting: '");
//for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_str(ctx_llama, embd[i]));
//}
//printf("'\n");
//printf("\n---\n");
}
if (llama_eval(ctx_llama, embd.data(), embd.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
//printf("n_iter = %d, n_past = %d, n_ctx = %d, n_keep = %d, n_prev = %d, embd.size() = %d\n", n_iter, n_past, n_ctx, n_keep, n_prev, (int) embd.size());
embd_inp.insert(embd_inp.end(), embd.begin(), embd.end());
n_past += embd.size();
embd.clear();
if (done) break;
{
// out of user input, sample next token
const float top_k = 5;
const float top_p = 0.80f;
const float temp = 0.30f;
const float repeat_penalty = 1.1764f;
const int repeat_last_n = 256;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
logits[llama_token_eos()] = 0;
id = llama_sample_top_p_top_k(ctx_llama,
embd_inp.data() + std::max(0, n_past - repeat_last_n),
repeat_last_n, top_k, top_p, temp, repeat_penalty);
}
if (id != llama_token_eos()) {
// add it to the context
embd.push_back(id);
text_to_speak += llama_token_to_str(ctx_llama, id);
printf("%s", llama_token_to_str(ctx_llama, id));
}
}
{
std::string last_output;
for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) {
last_output += llama_token_to_str(ctx_llama, embd_inp[i]);
}
last_output += llama_token_to_str(ctx_llama, embd[0]);
for (std::string & antiprompt : antiprompts) {
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
done = true;
text_to_speak = ::replace(text_to_speak, antiprompt, "");
fflush(stdout);
break;
}
}
}
is_running = sdl_poll_events();
if (!is_running) {
break;
// replace homophones
for (const auto & homophone : k_homophones) {
for (const auto & word : homophone.second) {
text_heard = ::replace(text_heard, word, homophone.first);
}
}
text_to_speak = ::replace(text_to_speak, "\"", "");
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
// check which participant was mentioned
const auto name_ref_old = name_ref;
for (const auto & participant : k_participants) {
if (participant == name_ref) {
continue;
}
if (text_heard.find(participant) != std::string::npos) {
name_ref = participant;
break;
}
}
if (name_ref == name_ref_old && name_ref != name_ai) {
name_ref = name_ni;
}
text_heard += "\n" + name_ref + chat_symb;
fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m");
fflush(stdout);
text_heard_all += text_heard;
// keep only last 100 characters
if (text_heard_all.size() > 100) {
text_heard_all = text_heard_all.substr(text_heard_all.size() - 100);
}
if (name_ref != name_ai) {
} else {
// text inference
bool done = false;
std::string text_to_speak;
embd = ::llama_tokenize(ctx_llama, text_heard_all, false);
text_heard_all.clear();
while (true) {
// predict
if (embd.size() > 0) {
if (n_past + (int) embd.size() > n_ctx) {
n_past = n_keep;
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end());
//printf("\n---\n");
//printf("resetting: '");
//for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_str(ctx_llama, embd[i]));
//}
//printf("'\n");
//printf("\n---\n");
}
if (llama_eval(ctx_llama, embd.data(), embd.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
//printf("n_iter = %d, n_past = %d, n_ctx = %d, n_keep = %d, n_prev = %d, embd.size() = %d\n", n_iter, n_past, n_ctx, n_keep, n_prev, (int) embd.size());
embd_inp.insert(embd_inp.end(), embd.begin(), embd.end());
n_past += embd.size();
embd.clear();
if (done) break;
{
// out of user input, sample next token
const float top_k = 5;
const float top_p = 0.80f;
const float temp = 0.20f;
const float repeat_penalty = 1.0764f;
const int repeat_last_n = 256;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
logits[llama_token_eos()] = 0;
id = llama_sample_top_p_top_k(ctx_llama,
embd_inp.data() + std::max(0, n_past - repeat_last_n),
repeat_last_n, top_k, top_p, temp, repeat_penalty);
}
if (id != llama_token_eos()) {
// add it to the context
embd.push_back(id);
text_to_speak += llama_token_to_str(ctx_llama, id);
printf("%s", llama_token_to_str(ctx_llama, id));
}
// new line
if (id == 13) {
}
}
{
std::string last_output;
for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) {
last_output += llama_token_to_str(ctx_llama, embd_inp[i]);
}
last_output += llama_token_to_str(ctx_llama, embd[0]);
for (const std::string & antiprompt : antiprompts) {
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
done = true;
text_to_speak = ::replace(text_to_speak, antiprompt, "");
fflush(stdout);
break;
}
}
}
is_running = sdl_poll_events();
if (!is_running) {
break;
}
}
text_to_speak = ::replace(text_to_speak, "\"", "");
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
}
audio.clear();

View File

@ -325,9 +325,12 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
// create the ggml context
{
struct ggml_init_params params;
params.mem_size = ctx_size;
params.mem_buffer = NULL;
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
@ -528,9 +531,11 @@ bool gpt2_eval(
}
}
struct ggml_init_params params;
params.mem_size = buf_size;
params.mem_buffer = buf;
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
@ -841,7 +846,6 @@ struct gpt2_context * gpt2_init(const char * path_model) {
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "gpt-2.bin");
delete ctx;
return nullptr;
}

View File

@ -1 +1 @@
audio.mp3
eleven-labs.py

View File

@ -1,23 +0,0 @@
import sys
import importlib.util
api_key = "" #Write your https://beta.elevenlabs.io api key here
if not api_key:
print("To use elevenlabs you have to register to https://beta.elevenlabs.io and add your elevenlabs api key to examples/talk/eleven-labs.py")
sys.exit()
if importlib.util.find_spec("elevenlabs") is None:
print("elevenlabs library is not installed, you can install it to your enviroment using 'pip install elevenlabs'")
sys.exit()
from elevenlabs import ElevenLabs
eleven = ElevenLabs(api_key)
# Get a Voice object, by name or UUID
voice = eleven.voices["Arnold"] #Possible Voices: Adam Antoni Arnold Bella Domi Elli Josh
# Generate the TTS
audio = voice.generate(str(sys.argv[2:]))
# Save the TTS to a file
audio.save("audio")

View File

@ -325,9 +325,11 @@ bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab &
// create the ggml context
{
struct ggml_init_params params;
params.mem_size = ctx_size;
params.mem_buffer = nullptr;
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
@ -528,9 +530,11 @@ bool gpt2_eval(
}
}
struct ggml_init_params params;
params.mem_size = buf_size;
params.mem_buffer = buf;
struct ggml_init_params params = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);

View File

@ -13,7 +13,6 @@
say "$2"
# Eleven Labs
# To use it, install the elevenlabs module from pip (pip install elevenlabs), register to https://beta.elevenlabs.io to get an api key and paste it in /examples/talk/eleven-labs.py
#
#wd=$(dirname $0)
#script=$wd/eleven-labs.py

View File

@ -64,10 +64,6 @@ for model in "${models[@]}"; do
config="$config BLAS"
fi
if [[ $system_info == *"COREML = 1"* ]]; then
config="$config COREML"
fi
commit=$(git rev-parse --short HEAD)
printf "| <todo> | <todo> | $config | $model | $n_threads | $load_time | $encode_time | $commit |\n"

1958
ggml.c

File diff suppressed because it is too large Load Diff

150
ggml.h
View File

@ -177,12 +177,11 @@ extern "C" {
#include <stddef.h>
#include <stdbool.h>
#define GGML_MAX_DIMS 4
#define GGML_MAX_NODES 4096
#define GGML_MAX_PARAMS 16
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_OPT 4
#define GGML_DEFAULT_N_THREADS 4
#define GGML_MAX_DIMS 4
#define GGML_MAX_NODES 4096
#define GGML_MAX_PARAMS 16
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_OPT 4
#ifdef __ARM_NEON
// we use the built-in 16-bit float type
@ -199,14 +198,13 @@ struct ggml_object;
struct ggml_context;
enum ggml_type {
// explicitly numbered values are used in llama.cpp files
GGML_TYPE_F32 = 0,
GGML_TYPE_F16 = 1,
GGML_TYPE_Q4_0 = 2,
GGML_TYPE_Q4_1 = 3,
GGML_TYPE_Q4_0,
GGML_TYPE_Q4_1,
GGML_TYPE_I8,
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_F16,
GGML_TYPE_F32,
GGML_TYPE_COUNT,
};
@ -238,7 +236,6 @@ enum ggml_op {
GGML_OP_SCALE,
GGML_OP_CPY,
GGML_OP_CONT,
GGML_OP_RESHAPE,
GGML_OP_VIEW,
GGML_OP_PERMUTE,
@ -253,35 +250,19 @@ enum ggml_op {
GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
GGML_OP_COUNT,
};
// ggml object
struct ggml_object {
size_t offs;
size_t size;
struct ggml_object * next;
char padding[8];
};
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
// n-dimensional tensor
struct ggml_tensor {
enum ggml_type type;
int n_dims;
int64_t ne[GGML_MAX_DIMS]; // number of elements
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
// nb[0] = sizeof(type)
// nb[1] = nb[0] * ne[0] + padding
// nb[i] = nb[i-1] * ne[i-1]
int ne[GGML_MAX_DIMS]; // number of elements
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
// nb[0] = sizeof(type)
// nb[1] = nb[0] * ne[0] + padding
// nb[i] = nb[i-1] * ne[i-1]
// compute data
enum ggml_op op;
@ -347,8 +328,8 @@ int64_t ggml_cycles_per_ms(void);
void ggml_print_object (const struct ggml_object * obj);
void ggml_print_objects(const struct ggml_context * ctx);
int64_t ggml_nelements(const struct ggml_tensor * tensor);
size_t ggml_nbytes (const struct ggml_tensor * tensor);
int ggml_nelements(const struct ggml_tensor * tensor);
size_t ggml_nbytes (const struct ggml_tensor * tensor);
int ggml_blck_size (enum ggml_type type);
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
@ -363,37 +344,44 @@ size_t ggml_used_mem(const struct ggml_context * ctx);
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
bool ggml_mlock_supported(void);
bool ggml_mlock(
struct ggml_context * ctx,
const void *opt_extra_addr,
size_t opt_extra_len,
char **err_p);
struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t *ne);
const int *ne);
struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0);
int ne0);
struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1);
int ne0,
int ne1);
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2);
int ne0,
int ne1,
int ne2);
struct ggml_tensor * ggml_new_tensor_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
int ne0,
int ne1,
int ne2,
int ne3);
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
@ -531,11 +519,6 @@ struct ggml_tensor * ggml_cpy(
struct ggml_tensor * a,
struct ggml_tensor * b);
// make contiguous
struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_tensor * ggml_reshape(
@ -548,43 +531,33 @@ struct ggml_tensor * ggml_reshape(
struct ggml_tensor * ggml_reshape_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1);
int ne0,
int ne1);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_tensor * ggml_reshape_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);
int ne0,
int ne1,
int ne2);
// offset in bytes
struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int ne0,
size_t offset);
struct ggml_tensor * ggml_view_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int ne0,
int ne1,
size_t nb1, // row stride in bytes
size_t offset);
struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t offset);
struct ggml_tensor * ggml_permute(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -655,21 +628,6 @@ struct ggml_tensor * ggml_flash_ff(
struct ggml_tensor * c0,
struct ggml_tensor * c1);
// Mapping operations
typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun);
struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun);
//
// automatic differentiation
//
@ -815,30 +773,6 @@ int ggml_cpu_has_blas(void);
int ggml_cpu_has_sse3(void);
int ggml_cpu_has_vsx(void);
//
// Internal types and functions exposed for tests and benchmarks
//
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_RESTRICT
#else
#define GGML_RESTRICT restrict
#endif
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
typedef void (*quantize_row_q_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
typedef void (*vec_dot_q_t)(const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
typedef struct {
dequantize_row_q_t dequantize_row_q;
quantize_row_q_t quantize_row_q;
quantize_row_q_t quantize_row_q_reference;
vec_dot_q_t vec_dot_q;
} quantize_fns_t;
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
#ifdef __cplusplus
}
#endif

View File

@ -39,7 +39,6 @@ import json
import code
import torch
import numpy as np
import base64
#from transformers import GPTJForCausalLM
#from transformers import GPT2TokenizerFast
@ -225,14 +224,18 @@ with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as
#code.interact(local=locals())
multilingual = hparams["n_vocab"] == 51865
tokenizer = os.path.join(dir_whisper, "whisper/assets", multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
dir_tokenizer = os.path.join(dir_whisper, "whisper/assets", multilingual and "multilingual" or "gpt2")
#tokenizer = build_tokenizer(dir_whisper, multilingual and "multilingual" or "gpt2")
#print(tokenizer)
#print(tokenizer.name_or_path)
#print(len(tokenizer.additional_special_tokens))
# output in the same directory as the model
fname_out = dir_out + "/ggml-model.bin"
with open(tokenizer, "rb") as f:
contents = f.read()
tokens = {base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)}
with open(dir_tokenizer + "/vocab.json", "r", encoding="utf8") as f:
tokens = json.load(f)
# use 16-bit or 32-bit floats
use_f16 = True
@ -268,8 +271,9 @@ byte_decoder = {v:k for k, v in byte_encoder.items()}
fout.write(struct.pack("i", len(tokens)))
for key in tokens:
fout.write(struct.pack("i", len(key)))
fout.write(key)
text = bytearray([byte_decoder[c] for c in key])
fout.write(struct.pack("i", len(text)))
fout.write(text)
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()

View File

@ -1,334 +0,0 @@
import argparse
import torch
import torch.nn.functional as F
import coremltools as ct
from torch import Tensor
from torch import nn
from typing import Dict
from typing import Optional
from ane_transformers.reference.layer_norm import LayerNormANE as LayerNormANEBase
from coremltools.models.neural_network.quantization_utils import quantize_weights
from whisper.model import Whisper, AudioEncoder, TextDecoder, ResidualAttentionBlock, MultiHeadAttention, ModelDimensions
from whisper import load_model
# Use for changing dim of input in encoder and decoder embeddings
def linear_to_conv2d_map(state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
"""
Unsqueeze twice to map nn.Linear weights to nn.Conv2d weights
"""
for k in state_dict:
is_attention = all(substr in k for substr in ['attn', '.weight'])
is_mlp = any([k.endswith(s) for s in ['mlp.0.weight', 'mlp.2.weight']])
if (is_attention or is_mlp) and len(state_dict[k].shape) == 2:
state_dict[k] = state_dict[k][:, :, None, None]
def correct_for_bias_scale_order_inversion(state_dict, prefix, local_metadata,
strict, missing_keys,
unexpected_keys, error_msgs):
state_dict[prefix + 'bias'] = state_dict[prefix + 'bias'] / state_dict[prefix + 'weight']
return state_dict
class LayerNormANE(LayerNormANEBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._register_load_state_dict_pre_hook(
correct_for_bias_scale_order_inversion)
class MultiHeadAttentionANE(MultiHeadAttention):
def __init__(self, n_state: int, n_head: int):
super().__init__(n_state, n_head)
setattr(self, 'query', nn.Conv2d(n_state, n_state, kernel_size=1))
setattr(self, 'key', nn.Conv2d(n_state, n_state, kernel_size=1, bias=False))
setattr(self, 'value', nn.Conv2d(n_state, n_state, kernel_size=1))
setattr(self, 'out', nn.Conv2d(n_state, n_state, kernel_size=1))
def forward(self,
x: Tensor,
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
kv_cache: Optional[dict] = None):
q = self.query(x)
if kv_cache is None or xa is None or self.key not in kv_cache:
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
# otherwise, perform key/value projections for self- or cross-attention as usual.
k = self.key(x if xa is None else xa)
v = self.value(x if xa is None else xa)
else:
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
k = kv_cache[self.key]
v = kv_cache[self.value]
wv, qk = self.qkv_attention_ane(q, k, v, mask)
return self.out(wv), qk
def qkv_attention_ane(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
_, dim, _, seqlen = q.size()
dim_per_head = dim // self.n_head
scale = float(dim_per_head)**-0.5
q = q * scale
mh_q = q.split(dim_per_head, dim=1)
mh_k = k.transpose(1,3).split(dim_per_head, dim=3)
mh_v = v.split(dim_per_head, dim=1)
mh_qk = [
torch.einsum('bchq,bkhc->bkhq', [qi, ki])
for qi, ki in zip(mh_q, mh_k)
] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads
if mask is not None:
for head_idx in range(self.n_head):
mh_qk[head_idx] = mh_qk[head_idx] + mask[:, :seqlen, :, :seqlen]
attn_weights = [aw.softmax(dim=1) for aw in mh_qk] # (batch_size, max_seq_length, 1, max_seq_length) * n_heads
attn = [torch.einsum('bkhq,bchk->bchq', wi, vi) for wi, vi in zip(attn_weights, mh_v)] # (batch_size, dim_per_head, 1, max_seq_length) * n_heads
attn = torch.cat(attn, dim=1) # (batch_size, dim, 1, max_seq_length)
return attn, torch.cat(mh_qk, dim=1).float().detach()
class ResidualAttentionBlockANE(ResidualAttentionBlock):
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
super().__init__(n_state, n_head, cross_attention)
setattr(self, 'attn', MultiHeadAttentionANE(n_state, n_head))
setattr(self, 'attn_ln', LayerNormANE(n_state))
setattr(self, 'cross_attn', MultiHeadAttentionANE(n_state, n_head) if cross_attention else None)
setattr(self, 'cross_attn_ln', LayerNormANE(n_state) if cross_attention else None)
n_mlp = n_state * 4
setattr(self, 'mlp', nn.Sequential(
nn.Conv2d(n_state, n_mlp, kernel_size=1),
nn.GELU(),
nn.Conv2d(n_mlp, n_state, kernel_size=1)
))
setattr(self, 'mlp_ln', LayerNormANE(n_state))
class AudioEncoderANE(AudioEncoder):
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
super().__init__(n_mels, n_ctx, n_state, n_head, n_layer)
setattr(self, 'blocks', nn.ModuleList(
[ResidualAttentionBlockANE(n_state, n_head) for _ in range(n_layer)]
))
setattr(self, 'ln_post', LayerNormANE(n_state))
def forward(self, x: Tensor):
"""
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
the mel spectrogram of the audio
"""
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
assert x.shape[1:] == self.positional_embedding.shape[::-1], "incorrect audio shape"
# Add positional embedding and add dummy dim for ANE
x = (x + self.positional_embedding.transpose(0,1)).to(x.dtype).unsqueeze(2)
for block in self.blocks:
x = block(x)
x = self.ln_post(x)
# """
# TODO:
# I think we need to transpose the result here to make it fit whisper.cpp memory order.
# However, even doing this, the results are still wrong. Kind of less wrong compared to
# not transposing, but still wrong.
# Also, I don't know why the original OpenAI implementation does not need to transpose
# transpose to (batch_size, n_ctx, n_state)
# x : torch.Tensor, shape = (batch_size, n_state, 1, n_ctx)
# """
# x = x.transpose(1,3)
return x
class TextDecoderANE(TextDecoder):
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
super().__init__(n_vocab, n_ctx, n_state, n_head, n_layer)
setattr(self, 'blocks', nn.ModuleList(
[ResidualAttentionBlockANE(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
))
setattr(self, 'ln', LayerNormANE(n_state))
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None):
"""
x : torch.LongTensor, shape = (batch_size, <= n_ctx)
the text tokens
xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
the encoded audio features to be attended on
"""
offset = next(iter(kv_cache.values())).shape[3] if kv_cache else 0
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
x = x.to(xa.dtype)
# Reformat for ANE
mask = self.mask[None, None, :, :].permute(0,3,1,2)
x = x.transpose(1,2).unsqueeze(2)
for block in self.blocks:
x = block(x, xa, mask=mask, kv_cache=kv_cache)
x = self.ln(x)
# Reformat back from ANE
x = x.permute(0,2,3,1).squeeze(0)
# ANE can only load tensors with dim size of at most 16,384 - whisper uses 51,864 (en) or 51,865 (multi-lang) tokens so we need to compute in chunks
if self.token_embedding.weight.shape[0] == 51865:
# split in 11 chunks - 4715 each
splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//11, dim=0)
logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1)
else:
# split in 12 chunks - 4322 each
assert(self.token_embedding.weight.shape[0] == 51864)
splits = self.token_embedding.weight.split(self.token_embedding.weight.shape[0]//12, dim=0)
logits = torch.cat([torch.einsum('bid,jd->bij', x, split) for split in splits]).view(*x.shape[:2], -1)
return logits
class WhisperANE(Whisper):
def __init__(self, dims: ModelDimensions):
super().__init__(dims)
setattr(self, 'encoder', AudioEncoderANE(
self.dims.n_mels,
self.dims.n_audio_ctx,
self.dims.n_audio_state,
self.dims.n_audio_head,
self.dims.n_audio_layer,
))
setattr(self, 'decoder', TextDecoderANE(
self.dims.n_vocab,
self.dims.n_text_ctx,
self.dims.n_text_state,
self.dims.n_text_head,
self.dims.n_text_layer,
))
self._register_load_state_dict_pre_hook(linear_to_conv2d_map)
def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]:
return self.decoder(tokens, self.encoder(mel))
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
cache = {**cache} if cache is not None else {}
hooks = []
def save_to_cache(module, _, output):
if module not in cache or output.shape[3] > self.decoder.positional_embedding.shape[0]:
cache[module] = output # save as-is, for the first token or cross attention
else:
cache[module] = torch.cat([cache[module], output], dim=3).detach()
return cache[module]
def install_hooks(layer: nn.Module):
if isinstance(layer, MultiHeadAttentionANE):
hooks.append(layer.key.register_forward_hook(save_to_cache))
hooks.append(layer.value.register_forward_hook(save_to_cache))
self.decoder.apply(install_hooks)
return cache, hooks
def convert_encoder(hparams, model, quantize=False):
model.eval()
input_shape = (1, 80, 3000)
input_data = torch.randn(input_shape)
traced_model = torch.jit.trace(model, input_data)
model = ct.convert(
traced_model,
convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why
inputs=[ct.TensorType(name="logmel_data", shape=input_shape)],
outputs=[ct.TensorType(name="output")],
compute_units=ct.ComputeUnit.ALL
)
if quantize:
model = quantize_weights(model, nbits=16)
return model
def convert_decoder(hparams, model, quantize=False):
model.eval()
tokens_shape = (1, 1)
audio_shape = (1, hparams.n_audio_state, 1, 1500)
audio_data = torch.randn(audio_shape)
token_data = torch.randint(50257, tokens_shape).long()
traced_model = torch.jit.trace(model, (token_data, audio_data))
model = ct.convert(
traced_model,
convert_to=None if quantize else "mlprogram", # convert will fail if weights are quantized, not sure why
inputs=[
ct.TensorType(name="token_data", shape=tokens_shape, dtype=int),
ct.TensorType(name="audio_data", shape=audio_shape)
]
)
if quantize:
model = quantize_weights(model, nbits=16)
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, help="model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large)", required=True)
parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False)
parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False)
parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False)
args = parser.parse_args()
if args.model not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large"]:
raise ValueError("Invalid model name")
whisper = load_model(args.model).cpu()
hparams = whisper.dims
print(hparams)
if args.optimize_ane:
whisperANE = WhisperANE(hparams).eval()
whisperANE.load_state_dict(whisper.state_dict())
encoder = whisperANE.encoder
decoder = whisperANE.decoder
else:
encoder = whisper.encoder
decoder = whisper.decoder
# Convert encoder
encoder = convert_encoder(hparams, encoder, quantize=args.quantize)
encoder.save(f"models/coreml-encoder-{args.model}.mlpackage")
if args.encoder_only is False:
# Convert decoder
decoder = convert_decoder(hparams, decoder, quantize=args.quantize)
decoder.save(f"models/coreml-decoder-{args.model}.mlpackage")
print("done converting")

View File

@ -1,82 +0,0 @@
#!/bin/bash
# This script downloads Whisper model files that have already been converted to Core ML format.
# This way you don't have to convert them yourself.
src="https://huggingface.co/datasets/ggerganov/whisper.cpp-coreml"
pfx="resolve/main/ggml"
# get the path of this script
function get_script_path() {
if [ -x "$(command -v realpath)" ]; then
echo "$(dirname $(realpath $0))"
else
local ret="$(cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P)"
echo "$ret"
fi
}
models_path="$(get_script_path)"
# Whisper models
models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large-v1" "large" )
# list available models
function list_models {
printf "\n"
printf " Available models:"
for model in "${models[@]}"; do
printf " $model"
done
printf "\n\n"
}
if [ "$#" -ne 1 ]; then
printf "Usage: $0 <model>\n"
list_models
exit 1
fi
model=$1
if [[ ! " ${models[@]} " =~ " ${model} " ]]; then
printf "Invalid model: $model\n"
list_models
exit 1
fi
# download Core ML model
printf "Downloading Core ML model $model from '$src' ...\n"
cd $models_path
if [ -f "ggml-$model.mlmodel" ]; then
printf "Model $model already exists. Skipping download.\n"
exit 0
fi
if [ -x "$(command -v wget)" ]; then
wget --quiet --show-progress -O ggml-$model.mlmodel $src/$pfx-$model.mlmodel
elif [ -x "$(command -v curl)" ]; then
curl -L --output ggml-$model.mlmodel $src/$pfx-$model.mlmodel
else
printf "Either wget or curl is required to download models.\n"
exit 1
fi
if [ $? -ne 0 ]; then
printf "Failed to download Core ML model $model \n"
printf "Please try again later or download the original Whisper model files and convert them yourself.\n"
exit 1
fi
printf "Done! Model '$model' saved in 'models/ggml-$model.mlmodel'\n"
printf "Run the following command to compile it:\n\n"
printf " $ xcrun coremlc compile ./models/ggml-$model.mlmodel ./models\n\n"
printf "You can now use it like this:\n\n"
printf " $ ./main -m models/ggml-$model.bin -f samples/jfk.wav\n"
printf "\n"

View File

@ -1,29 +0,0 @@
#!/bin/bash
#
# This generates:
# - coreml/whisper-encoder-impl.h and coreml/whisper-encoder-impl.m
# - coreml/whisper-decoder-impl.h and coreml/whisper-decoder-impl.m
#
wd=$(dirname "$0")
cd "$wd/../"
python3 models/convert-whisper-to-coreml.py --model tiny.en
mv -v models/coreml-encoder-tiny.en.mlpackage models/whisper-encoder-impl.mlpackage
xcrun coremlc generate models/whisper-encoder-impl.mlpackage coreml/
mv coreml/whisper_encoder_impl.h coreml/whisper-encoder-impl.h
mv coreml/whisper_encoder_impl.m coreml/whisper-encoder-impl.m
sed -i '' 's/whisper_encoder_impl\.h/whisper-encoder-impl.h/g' coreml/whisper-encoder-impl.m
sed -i '' 's/whisper_encoder_impl\.m/whisper-encoder-impl.m/g' coreml/whisper-encoder-impl.m
sed -i '' 's/whisper_encoder_impl\.h/whisper-encoder-impl.h/g' coreml/whisper-encoder-impl.h
mv -v models/coreml-decoder-tiny.en.mlpackage models/whisper-decoder-impl.mlpackage
xcrun coremlc generate models/whisper-decoder-impl.mlpackage coreml/
mv coreml/whisper_decoder_impl.h coreml/whisper-decoder-impl.h
mv coreml/whisper_decoder_impl.m coreml/whisper-decoder-impl.m
sed -i '' 's/whisper_decoder_impl\.h/whisper-decoder-impl.h/g' coreml/whisper-decoder-impl.m
sed -i '' 's/whisper_decoder_impl\.m/whisper-decoder-impl.m/g' coreml/whisper-decoder-impl.m
sed -i '' 's/whisper_decoder_impl\.h/whisper-decoder-impl.h/g' coreml/whisper-decoder-impl.h
rm -rfv models/whisper-encoder-impl.mlpackage models/whisper-decoder-impl.mlpackage

View File

@ -1,25 +0,0 @@
#!/bin/bash
# Usage: ./generate-coreml-model.sh <model-name>
if [ $# -eq 0 ]
then
echo "No model name supplied"
echo "Usage: ./generate-coreml-model.sh <model-name>"
exit 1
fi
mname="$1"
wd=$(dirname "$0")
cd "$wd/../"
python3 models/convert-whisper-to-coreml.py --model $mname --encoder-only True
xcrun coremlc compile models/coreml-encoder-${mname}.mlpackage models/
rm -rf models/ggml-${mname}-encoder.mlmodelc
mv -v models/coreml-encoder-${mname}.mlmodelc models/ggml-${mname}-encoder.mlmodelc
# TODO: decoder (sometime in the future maybe)
#xcrun coremlc compile models/whisper-decoder-${mname}.mlpackage models/
#rm -rf models/ggml-${mname}-decoder.mlmodelc
#mv -v models/coreml_decoder_${mname}.mlmodelc models/ggml-${mname}-decoder.mlmodelc

6
talk-ggama.sh Executable file
View File

@ -0,0 +1,6 @@
./talk-llama \
-mw ./models/ggml-small.en.bin \
-ml ../llama.cpp/models/13B/ggml-model-q4_0.bin \
--name-ni "Georgi" \
--name-ai "GGaMA" \
-t 8 -vid 1 --speak ./examples/talk-llama/speak.sh

6
talk-llama.sh Executable file
View File

@ -0,0 +1,6 @@
./talk-llama \
-mw ./models/ggml-small.en.bin \
-ml ../llama.cpp/models/13B/ggml-model-q4_0.bin \
--name-ni "Georgi" \
--name-ai "LLaMA" \
-t 8 -vid 0 --speak ./examples/talk-llama/speak.sh

6
talk-rrama.sh Executable file
View File

@ -0,0 +1,6 @@
./talk-llama \
-mw ./models/ggml-small.en.bin \
-ml ../llama.cpp/models/13B/ggml-model-q4_0.bin \
--name-ni "Georgi" \
--name-ai "RRaMA" \
-t 8 -vid 3 --speak ./examples/talk-llama/speak.sh

6
talk-ssama.sh Executable file
View File

@ -0,0 +1,6 @@
./talk-llama \
-mw ./models/ggml-small.en.bin \
-ml ../llama.cpp/models/13B/ggml-model-q4_0.bin \
--name-ni "Georgi" \
--name-ai "SSaMA" \
-t 8 -vid 2 --speak ./examples/talk-llama/speak.sh

View File

@ -1,8 +1,5 @@
#define WHISPER_BUILD
#include "whisper.h"
#if WHISPER_USE_COREML
#include "coreml/whisper-encoder.h"
#endif
#include "ggml.h"
@ -297,7 +294,6 @@ static const std::map<e_model, size_t> MEM_REQ_DECODE = {
struct whisper_mel {
int n_len;
int n_len_org;
int n_mel;
std::vector<float> data;
@ -590,11 +586,6 @@ struct whisper_state {
int lang_id = 0; // english by default
std::string path_model; // populated by whisper_init_from_file()
#ifdef WHISPER_USE_COREML
whisper_coreml_context * ctx_coreml;
#endif
// [EXPERIMENTAL] token-level timestamps data
int64_t t_beg = 0;
int64_t t_last = 0;
@ -1294,7 +1285,7 @@ static bool whisper_model_load(struct whisper_model_loader * loader, whisper_con
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) {
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n",
__func__, name.data(), (int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], ne[0], ne[1], ne[2]);
__func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]);
return false;
}
@ -1385,7 +1376,6 @@ static bool whisper_encode_internal(
}
}
#ifndef WHISPER_USE_COREML
struct ggml_tensor * cur;
// convolution + gelu
@ -1519,7 +1509,8 @@ static bool whisper_encode_internal(
Vcur,
n_state/n_head, n_head, n_ctx),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, wctx.wtype, n_ctx, n_state/n_head, n_head));
ggml_new_tensor_3d(ctx0, wctx.wtype, n_ctx, n_state/n_head, n_head)
);
struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, false);
#else
@ -1693,13 +1684,6 @@ static bool whisper_encode_internal(
//ggml_graph_print(&gf);
}
#else
wstate.use_buf(ctx0, -1);
struct ggml_tensor * cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_state, n_ctx);
whisper_coreml_encode(wstate.ctx_coreml, (float *) mel->data, (float *) cur->data);
#endif
// cur
//{
@ -1750,12 +1734,10 @@ static bool whisper_encode_internal(
wstate.use_buf(ctx0, -1);
Vcross = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcross, n_state, n_ctx));
struct ggml_tensor * k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx));
struct ggml_tensor * v = ggml_view_2d(ctx0, wstate.kv_cross.v, n_ctx, n_state,
( n_ctx)*ggml_element_size(wstate.kv_cross.v),
(il*n_ctx)*ggml_element_size(wstate.kv_cross.v)*n_state);
//struct ggml_tensor * k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*hparams.n_audio_ctx + iter*n_ctx));
//struct ggml_tensor * v = ggml_view_1d(ctx0, wstate.kv_cross.v, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.v)*n_state)*(il*hparams.n_audio_ctx + iter*n_ctx));
struct ggml_tensor* k = ggml_view_1d(ctx0, wstate.kv_cross.k, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.k)*n_state)*(il*n_ctx));
struct ggml_tensor* v = ggml_view_1d(ctx0, wstate.kv_cross.v, n_state*n_ctx, (ggml_element_size(wstate.kv_cross.v)*n_state)*(il*n_ctx));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v));
@ -1890,24 +1872,20 @@ static bool whisper_decode_internal(
Kcur = ggml_scale(ctx0, Kcur, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25)));
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
layer.attn_v_w,
cur);
Vcur = ggml_add(ctx0,
ggml_repeat(ctx0,
layer.attn_v_b,
Vcur),
Vcur);
// store key and value to memory
{
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0,
layer.attn_v_w,
cur);
Vcur = ggml_add(ctx0,
ggml_repeat(ctx0,
layer.attn_v_b,
Vcur),
Vcur);
Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_state, N));
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_state, (ggml_element_size(kv_self.k)*n_state)*(il*n_ctx + n_past));
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_state,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_state + n_past*ggml_element_size(kv_self.v));
struct ggml_tensor * v = ggml_view_1d(ctx0, kv_self.v, N*n_state, (ggml_element_size(kv_self.v)*n_state)*(il*n_ctx + n_past));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
@ -1946,14 +1924,16 @@ static bool whisper_decode_internal(
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_past + N, n_state/n_head, n_head,
n_ctx*ggml_element_size(kv_self.v),
n_ctx*ggml_element_size(kv_self.v)*n_state/n_head,
il*n_ctx*ggml_element_size(kv_self.v)*n_state);
struct ggml_tensor * V_trans =
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, kv_self.v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(kv_self.v)*n_state),
n_state/n_head, n_head, n_past + N),
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_state/n_head, n_head));
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
@ -2016,22 +1996,15 @@ static bool whisper_decode_internal(
ggml_view_1d(ctx0, wstate.kv_cross.k, M*n_state, il*M*ggml_element_size(wstate.kv_cross.k)*n_state),
n_state/n_head, n_head, M);
//struct ggml_tensor * Vcross =
// ggml_reshape_3d(ctx0,
// ggml_view_1d(ctx0, wstate.kv_cross.v, M*n_state, il*M*ggml_element_size(wstate.kv_cross.v)*n_state),
// n_state/n_head, n_head, M);
struct ggml_tensor * Vcross =
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, wstate.kv_cross.v, M*n_state, il*M*ggml_element_size(wstate.kv_cross.v)*n_state),
n_state/n_head, n_head, M);
//struct ggml_tensor * V_trans =
// ggml_cpy(ctx0,
// ggml_permute(ctx0, Vcross, 1, 2, 0, 3),
// ggml_new_tensor_3d(ctx0, Vcross->type, M, n_state/n_head, n_head));
struct ggml_tensor * V =
ggml_view_3d(ctx0, wstate.kv_cross.v,
M, n_state/n_head, n_head,
M*ggml_element_size(wstate.kv_cross.v),
M*ggml_element_size(wstate.kv_cross.v)*n_state/n_head,
il*M*ggml_element_size(wstate.kv_cross.v)*n_state);
struct ggml_tensor * V_trans =
ggml_cpy(ctx0,
ggml_permute(ctx0, Vcross, 1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, Vcross->type, M, n_state/n_head, n_head));
// ------
@ -2058,7 +2031,7 @@ static bool whisper_decode_internal(
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ);
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
@ -2301,72 +2274,6 @@ static void fft(const std::vector<float> & in, std::vector<float> & out) {
}
}
static void log_mel_spectrogram_worker_thread(int ith, const std::vector<float> &hann, const float *samples,
int n_samples, int fft_size, int fft_step, int n_threads,
const whisper_filters &filters, bool speed_up, whisper_mel &mel) {
std::vector<float> fft_in(fft_size, 0.0);
std::vector<float> fft_out(2 * fft_size);
int n_fft = 1 + (speed_up ? fft_size / 4 : fft_size / 2);
for (int i = ith; i < mel.n_len; i += n_threads) {
const int offset = i * fft_step;
// apply Hanning window
for (int j = 0; j < fft_size; j++) {
if (offset + j < n_samples) {
fft_in[j] = hann[j] * samples[offset + j];
} else {
fft_in[j] = 0.0;
}
}
// FFT -> mag^2
fft(fft_in, fft_out);
for (int j = 0; j < fft_size; j++) {
fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
}
for (int j = 1; j < fft_size / 2; j++) {
fft_out[j] += fft_out[fft_size - j];
}
if (speed_up) {
// scale down in the frequency domain results in a speed up in the time domain
for (int j = 0; j < n_fft; j++) {
fft_out[j] = 0.5 * (fft_out[2 * j] + fft_out[2 * j + 1]);
}
}
// mel spectrogram
for (int j = 0; j < mel.n_mel; j++) {
double sum = 0.0;
// unroll loop (suggested by GH user @lunixbochs)
int k = 0;
for (k = 0; k < n_fft - 3; k += 4) {
sum +=
fft_out[k + 0] * filters.data[j*n_fft + k + 0] +
fft_out[k + 1] * filters.data[j*n_fft + k + 1] +
fft_out[k + 2] * filters.data[j*n_fft + k + 2] +
fft_out[k + 3] * filters.data[j*n_fft + k + 3];
}
// handle n_fft remainder
for (; k < n_fft; k++) {
sum += fft_out[k] * filters.data[j * n_fft + k];
}
if (sum < 1e-10) {
sum = 1e-10;
}
sum = log10(sum);
mel.data[j * mel.n_len + i] = sum;
}
}
}
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
static bool log_mel_spectrogram(
whisper_state & wstate,
@ -2389,48 +2296,85 @@ static bool log_mel_spectrogram(
hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size)));
}
mel.n_mel = n_mel;
mel.n_len = n_samples/fft_step;
mel.n_len_org = mel.n_len;
std::vector<float> samples_padded;
// pad audio with at least one extra chunk of zeros
{
const int pad = (100*WHISPER_CHUNK_SIZE)/2;
if (mel.n_len % pad != 0) {
mel.n_len = (mel.n_len/pad + 1)*pad;
}
mel.n_len += pad;
samples_padded.resize(mel.n_len*fft_step);
memcpy(samples_padded.data(), samples, n_samples*sizeof(float));
memset(samples_padded.data() + n_samples, 0, (mel.n_len*fft_step - n_samples)*sizeof(float));
samples = samples_padded.data();
}
mel.n_mel = n_mel;
mel.n_len = (n_samples)/fft_step;
mel.data.resize(mel.n_mel*mel.n_len);
const int n_fft = 1 + (speed_up ? fft_size/4 : fft_size/2);
//printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len);
//printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate);
{
std::vector<std::thread> workers(n_threads - 1);
for (int iw = 0; iw < n_threads - 1; ++iw) {
workers[iw] = std::thread(
log_mel_spectrogram_worker_thread, iw + 1, std::cref(hann), samples,
n_samples, fft_size, fft_step, n_threads,
std::cref(filters), speed_up, std::ref(mel));
}
std::vector<std::thread> workers(n_threads);
for (int iw = 0; iw < n_threads; ++iw) {
workers[iw] = std::thread([&](int ith) {
std::vector<float> fft_in;
fft_in.resize(fft_size);
for (int i = 0; i < fft_size; i++) {
fft_in[i] = 0.0;
}
// main thread
log_mel_spectrogram_worker_thread(0, hann, samples, n_samples, fft_size, fft_step, n_threads, filters, speed_up, mel);
std::vector<float> fft_out;
fft_out.resize(2*fft_size);
for (int iw = 0; iw < n_threads - 1; ++iw) {
workers[iw].join();
}
for (int i = ith; i < mel.n_len; i += n_threads) {
const int offset = i*fft_step;
// apply Hanning window
for (int j = 0; j < fft_size; j++) {
if (offset + j < n_samples) {
fft_in[j] = hann[j]*samples[offset + j];
} else {
fft_in[j] = 0.0;
}
}
// FFT -> mag^2
fft(fft_in, fft_out);
for (int j = 0; j < fft_size; j++) {
fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]);
}
for (int j = 1; j < fft_size/2; j++) {
//if (i == 0) {
// printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]);
//}
fft_out[j] += fft_out[fft_size - j];
}
if (i == 0) {
//for (int j = 0; j < fft_size; j++) {
// printf("%d: %e\n", j, fft_out[j]);
//}
}
if (speed_up) {
// scale down in the frequency domain results in a speed up in the time domain
for (int j = 0; j < n_fft; j++) {
fft_out[j] = 0.5*(fft_out[2*j] + fft_out[2*j + 1]);
}
}
// mel spectrogram
for (int j = 0; j < mel.n_mel; j++) {
double sum = 0.0;
for (int k = 0; k < n_fft; k++) {
sum += fft_out[k]*filters.data[j*n_fft + k];
}
if (sum < 1e-10) {
sum = 1e-10;
}
sum = log10(sum);
mel.data[j*mel.n_len + i] = sum;
}
}
}, iw);
}
for (int iw = 0; iw < n_threads; ++iw) {
workers[iw].join();
}
// clamping and normalization
@ -2454,8 +2398,6 @@ static bool log_mel_spectrogram(
wstate.t_mel_us += ggml_time_us() - t_start_us;
//printf("mel.n_len() = %d, divided by 1500: %f, n_samples / fft_step: %d\n", mel.n_len, mel.n_len / 1500.0, n_samples / fft_step);
return true;
}
@ -2497,20 +2439,25 @@ static std::vector<whisper_vocab::id> tokenize(const whisper_vocab & vocab, cons
int n = word.size();
while (i < n) {
int j = n;
bool found = false;
while (j > i) {
auto sub = word.substr(i, j-i);
auto it = vocab.token_to_id.find(sub);
auto it = vocab.token_to_id.find(word.substr(i, j-i));
if (it != vocab.token_to_id.end()) {
tokens.push_back(it->second);
i = j;
found = true;
break;
}
--j;
}
if (!found) {
fprintf(stderr, "unknown token \n");
if (i == n) {
break;
}
if (j == i) {
auto sub = word.substr(i, 1);
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
tokens.push_back(vocab.token_to_id.at(sub));
} else {
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
}
++i;
}
}
@ -2523,20 +2470,6 @@ static std::vector<whisper_vocab::id> tokenize(const whisper_vocab & vocab, cons
// interface implementation
//
#ifdef WHISPER_USE_COREML
// replace .bin with -encoder.mlmodelc
static std::string whisper_get_coreml_path_encoder(std::string path_bin) {
auto pos = path_bin.rfind('.');
if (pos != std::string::npos) {
path_bin = path_bin.substr(0, pos);
}
path_bin += "-encoder.mlmodelc";
return path_bin;
}
#endif
struct whisper_state * whisper_init_state(whisper_context * ctx) {
whisper_state * state = new whisper_state;
@ -2544,7 +2477,6 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
if (!kv_cache_init(ctx->model.hparams, scale * MEM_REQ_KV_SELF.at(ctx->model.type), state->decoders[0].kv_self, ctx->wtype, ctx->model.hparams.n_text_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
delete state;
return nullptr;
}
@ -2555,7 +2487,6 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
if (!kv_cache_init(ctx->model.hparams, scale * MEM_REQ_KV_CROSS.at(ctx->model.type), state->kv_cross, ctx->wtype, ctx->model.hparams.n_audio_ctx)) {
fprintf(stderr, "%s: kv_cache_init() failed for cross-attention cache\n", __func__);
delete state;
return nullptr;
}
@ -2564,21 +2495,6 @@ struct whisper_state * whisper_init_state(whisper_context * ctx) {
fprintf(stderr, "%s: kv cross size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
#ifdef WHISPER_USE_COREML
const auto path_coreml = whisper_get_coreml_path_encoder(ctx->path_model);
fprintf(stderr, "%s: loading Core ML model from '%s'\n", __func__, path_coreml.c_str());
fprintf(stderr, "%s: first run on a device may take a while ...\n", __func__);
state->ctx_coreml = whisper_coreml_init(path_coreml.c_str());
if (!state->ctx_coreml) {
fprintf(stderr, "%s: failed to load Core ML model from '%s'\n", __func__, path_coreml.c_str());
return nullptr;
}
fprintf(stderr, "%s: Core ML model loaded\n", __func__);
#endif
state->logits.reserve(ctx->vocab.n_vocab * ctx->model.hparams.n_text_ctx);
state->logits_id.reserve(ctx->model.hparams.n_vocab);
@ -2613,7 +2529,6 @@ struct whisper_context * whisper_init_from_file_no_state(const char * path_model
}
loader.context = &fin;
loader.read = [](void * ctx, void * output, size_t read_size) {
std::ifstream * fin = (std::ifstream*)ctx;
fin->read((char *)output, read_size);
@ -2746,11 +2661,6 @@ void whisper_free_state(struct whisper_state * state)
kv_cache_free(state->decoders[i].kv_self);
}
#ifdef WHISPER_USE_COREML
whisper_coreml_free(state->ctx_coreml);
state->ctx_coreml = nullptr;
#endif
delete state;
}
}
@ -2809,9 +2719,8 @@ int whisper_set_mel_with_state(
return -1;
}
state->mel.n_len = n_len;
state->mel.n_len_org = n_len;
state->mel.n_mel = n_mel;
state->mel.n_len = n_len;
state->mel.n_mel = n_mel;
state->mel.data.resize(n_len*n_mel);
memcpy(state->mel.data.data(), data, n_len*n_mel*sizeof(float));
@ -2937,8 +2846,8 @@ int whisper_lang_auto_detect_with_state(
return -1;
}
if (seek >= state->mel.n_len_org) {
fprintf(stderr, "%s: offset %dms is past the end of the audio (%dms)\n", __func__, offset_ms, state->mel.n_len_org*10);
if (seek >= state->mel.n_len) {
fprintf(stderr, "%s: offset %dms is past the end of the audio (%dms)\n", __func__, offset_ms, state->mel.n_len*10);
return -2;
}
@ -3073,11 +2982,11 @@ const char *whisper_model_type_readable(struct whisper_context * ctx) {
}
int whisper_n_len_from_state(struct whisper_state * state) {
return state->mel.n_len_org;
return state->mel.n_len;
}
int whisper_n_len(struct whisper_context * ctx) {
return ctx->state->mel.n_len_org;
return ctx->state->mel.n_len;
}
int whisper_n_vocab(struct whisper_context * ctx) {
@ -3173,14 +3082,6 @@ void whisper_reset_timings(struct whisper_context * ctx) {
}
}
static int whisper_has_coreml(void) {
#ifdef WHISPER_USE_COREML
return 1;
#else
return 0;
#endif
}
const char * whisper_print_system_info(void) {
static std::string s;
@ -3197,7 +3098,6 @@ const char * whisper_print_system_info(void) {
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
s += "COREML = " + std::to_string(whisper_has_coreml()) + " | ";
return s.c_str();
}
@ -3244,7 +3144,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
/*.max_initial_ts =*/ 1.0f,
/*.length_penalty =*/ -1.0f,
/*.temperature_inc =*/ 0.4f,
/*.temperature_inc =*/ 0.0f, // TODO: temporary disabled until improve performance
/*.entropy_thold =*/ 2.4f,
/*.logprob_thold =*/ -1.0f,
/*.no_speech_thold =*/ 0.6f,
@ -3276,13 +3176,13 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
case WHISPER_SAMPLING_GREEDY:
{
result.greedy = {
/*.best_of =*/ 2, // TODO: increase to 5 when we speed-up batch decoding
/*.best_of =*/ 1,
};
} break;
case WHISPER_SAMPLING_BEAM_SEARCH:
{
result.beam_search = {
/*.beam_size =*/ 2, // TODO: increase to 5 when we speed-up batch decoding
/*.beam_size =*/ 5,
/*.patience =*/ -1.0f,
};
@ -3907,26 +3807,22 @@ int whisper_full_with_state(
prompt_past.clear();
}
// prepare prompt
{
// initial prompt
if (!params.prompt_tokens && params.initial_prompt) {
std::vector<whisper_token> prompt_tokens;
prompt_tokens.resize(1024);
prompt_tokens.resize(whisper_tokenize(ctx, params.initial_prompt, prompt_tokens.data(), prompt_tokens.size()));
params.prompt_tokens = prompt_tokens.data();
params.prompt_n_tokens = prompt_tokens.size();
}
// initial prompt
if (!params.prompt_tokens && params.initial_prompt) {
prompt_tokens.resize(1024);
prompt_tokens.resize(whisper_tokenize(ctx, params.initial_prompt, prompt_tokens.data(), prompt_tokens.size()));
params.prompt_tokens = prompt_tokens.data();
params.prompt_n_tokens = prompt_tokens.size();
}
// prepend the prompt tokens to the prompt_past
if (params.prompt_tokens && params.prompt_n_tokens > 0) {
// parse tokens from the pointer
for (int i = 0; i < params.prompt_n_tokens; i++) {
prompt_past.push_back(params.prompt_tokens[i]);
}
std::rotate(prompt_past.begin(), prompt_past.end() - params.prompt_n_tokens, prompt_past.end());
// prepend the prompt tokens to the prompt_past
if (params.prompt_tokens && params.prompt_n_tokens > 0) {
// parse tokens from the pointer
for (int i = 0; i < params.prompt_n_tokens; i++) {
prompt_past.push_back(params.prompt_tokens[i]);
}
std::rotate(prompt_past.begin(), prompt_past.end() - params.prompt_n_tokens, prompt_past.end());
}
// overwrite audio_ctx, max allowed is hparams.n_audio_ctx
@ -4378,11 +4274,7 @@ int whisper_full_with_state(
}
// was the decoding successful for the current temperature?
// do fallback only if:
// - we are not at the last temperature
// - we are not at the end of the audio (3 sec)
if (it != (int) temperatures.size() - 1 &&
seek_end - seek > 10*WHISPER_CHUNK_SIZE) {
{
bool success = true;
const auto & decoder = state->decoders[best_decoder_id];

View File

@ -226,7 +226,7 @@ extern "C" {
// Make sure to call whisper_pcm_to_mel() or whisper_set_mel() first
// Returns the top language id or negative on failure
// If not null, fills the lang_probs array with the probabilities of all languages
// The array must be whisper_lang_max_id() + 1 in size
// The array must be whispe_lang_max_id() + 1 in size
// ref: https://github.com/openai/whisper/blob/main/whisper/decoding.py#L18-L69
WHISPER_API int whisper_lang_auto_detect(
struct whisper_context * ctx,
@ -297,7 +297,7 @@ extern "C" {
// Available sampling strategies
enum whisper_sampling_strategy {
WHISPER_SAMPLING_GREEDY, // similar to OpenAI's GreedyDecoder
WHISPER_SAMPLING_GREEDY, // similar to OpenAI's GreefyDecoder
WHISPER_SAMPLING_BEAM_SEARCH, // similar to OpenAI's BeamSearchDecoder
};