Compare commits

..

314 Commits

Author SHA1 Message Date
00ddb10fe2 select utf8 codepage on windows 2025-02-19 17:00:39 +08:00
b3a6018bbf fix building with MSVC + SDL2 2025-02-19 14:43:42 +08:00
d682e15090 Fixes for Windows (#2790)
Fixes for Windows:

* MSVC default to utf-8 without BOM.
* Console output code page changed to utf-8.

---------

Co-authored-by: Judd <foldl@boxvest.com>
2025-02-06 15:37:21 +08:00
46d07b9c85 cmake : fix compile assumptions for power9/etc (#2777)
* Add small comment re: VSX to readme

Co-authored-by: midnight <midnight@example.com>
2025-02-05 14:41:10 +02:00
33ea03f131 authors : update 2025-02-04 13:03:40 +02:00
dbcc669e1a sync : ggml 2025-02-04 13:03:09 +02:00
16245b35e4 cmake: Add ability to pass in GGML_BUILD_NUMBER (ggml/1096)
This makes git as a dependency optional, and is useful in the case where
ggml is built not from git, but from a tarball, or a distribution source
package.

This conditional also affects GGML_BUILD_COMMIT. Nothing seems to be
using it, though, so there doesn't seem much value factor it out, or
even require it.
2025-02-04 13:03:03 +02:00
898c0cb9d1 readme : add maintenance roadmap 2025-02-04 10:50:10 +02:00
eb9e5032c4 ci : add stalebot 2025-02-04 09:30:20 +02:00
cadfc50eab node : add max_len params in node addon (#2760) 2025-02-03 22:49:06 +02:00
3f91832352 talk-llama : sync llama.cpp 2025-02-03 22:42:26 +02:00
cff8868b5f coreml : always convert to "neuralnetwork" (#2770) 2025-02-03 22:36:32 +02:00
90e3c5fc40 ci : more git 2025-02-03 22:00:57 +02:00
e0f4cef867 ci : install git 2025-02-03 22:00:57 +02:00
234460987e ci : use ubuntu-22.04 instead of ubuntu-latest 2025-02-03 22:00:57 +02:00
b8ab126343 cmake : sync cmake scripts 2025-02-03 22:00:57 +02:00
edc5d9267c sync : ggml 2025-02-03 22:00:57 +02:00
344b98a44f scripts : fix sync paths 2025-02-03 22:00:57 +02:00
dbeb7916b8 CUDA: fix Volta FlashAttention logic (llama/11615) 2025-02-03 22:00:57 +02:00
fad2806352 HIP: fix flash_attn_stream_k_fixup warning (llama/11604) 2025-02-03 22:00:57 +02:00
9906792ec3 CUDA/HIP: add support for selectable warp size to mmv (llama/11519)
CUDA/HIP: add support for selectable warp size to mmv
2025-02-03 22:00:57 +02:00
c49ee07ff4 HIP: add GGML_CUDA_CC_IS_* for amd familys as increasing cc archtectures for amd gpus are not supersets of eatch other (llama/11601)
This fixes a bug where RDNA1 gpus other than gfx1010 where not handled correctly
2025-02-03 22:00:57 +02:00
f8a831779e CUDA: use mma PTX instructions for FlashAttention (llama/11583)
* CUDA: use mma PTX instructions for FlashAttention

* __shfl_sync workaround for movmatrix

* add __shfl_sync to HIP

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-03 22:00:57 +02:00
85451e3612 ci: use sccache on windows instead of ccache (llama/11545)
* Use sccache on ci for windows

* Detect sccache in cmake
2025-02-03 22:00:57 +02:00
43c744ce8b HIP: require at least HIP 5.5 2025-02-03 22:00:57 +02:00
fc2e44490d HIP: Prepare reduction operators for wave 64 2025-02-03 22:00:57 +02:00
f41fdad200 CUDA/HIP: add warp_size to cuda_device_info 2025-02-03 22:00:57 +02:00
80fa576254 vulkan: implement initial support for IQ2 and IQ3 quantizations (llama/11360)
* vulkan: initial support for IQ3_S

* vulkan: initial support for IQ3_XXS

* vulkan: initial support for IQ2_XXS

* vulkan: initial support for IQ2_XS

* vulkan: optimize Q3_K by removing branches

* vulkan: implement dequantize variants for coopmat2

* vulkan: initial support for IQ2_S

* vulkan: vertically realign code

* port failing dequant callbacks from mul_mm

* Fix array length mismatches

* vulkan: avoid using workgroup size before it is referenced

* tests: increase timeout for Vulkan llvmpipe backend

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-02-03 22:00:57 +02:00
75e7d0585e vulkan: Catch pipeline creation failure and print an error message (llama/11436)
* vulkan: Catch pipeline creation failure and print an error message

Also, fix some warnings from my on-demand compile change.

* vulkan: fix pipeline creation logging
2025-02-03 22:00:57 +02:00
682a6f5f87 HIP: Supress transformation warning in softmax.cu
loops with bounds not known at compile time can not be unrolled.
when ncols_template == 0, the bounds of the loop are not constexpr, thus llvm cant unroll the loops here.
2025-02-03 22:00:57 +02:00
115716d109 HIP: Only call rocblas_initialize on rocblas versions with the multiple instantation bug (llama/11080)
This disables the workaround on rocblas fixed versions (>=4.0.0) to eliminate the runtime cost and unnecessary VRAM allocation of loading all tensile objects.
2025-02-03 22:00:57 +02:00
b2cfef655b cmake : don't fail on GGML_CPU=OFF (llama/11457) 2025-02-03 22:00:57 +02:00
22e3df0afa SYCL : SOFTMAX F16 mask support and other fixes (llama/11261)
Implemented ggml_sycl_op_soft_max() F16 src1(mask) support for which a pragma deprecation warning was added during #5021.
To do this, had to decouple it from ggml_sycl_op_flatten which always considered src1 to be of fp32 type(many OP functions are dependent on it).

* SYCL: SOFTMAX F16 mask support and other fixes

* test-backend-ops: Add F16 mask test cases
2025-02-03 22:00:57 +02:00
028511d349 AMD: parse the architecture as supplied by gcnArchName (llama/11244)
The value provided by minor doesn't include stepping for AMD, parse the value returned by gcnArchName instead to retrieve an accurate ID.
2025-02-03 22:00:57 +02:00
70c4038842 metal: Handle null returned from MTLCreateSystemDefaultDevice() (llama/11441)
This fixes segmentation fault error when running tests when no metal
devices are available (for example, when not linked with Core Graphics
framework or otherwise).
2025-02-03 22:00:57 +02:00
8639c003a9 metal : use residency sets (llama/11427)
* metal : use residency sets

ggml-ci

* metal : restore commandBufferWithUnretainedReferences calls [no ci]

* metal : release descriptors

ggml-ci

* metal : check env GGML_METAL_NO_RESIDENCY

ggml-ci

* metal : fix build + clean-up

ggml-ci
2025-02-03 22:00:57 +02:00
d5d831da65 cmake: add ggml find package (llama/11369)
* Add initial ggml cmake package

* Add build numbers to ggml find-package

* Expand variables with GGML_ prefix

* Guard against adding to cache variable twice

* Add git to msys2 workflow

* Handle ggml-cpu-* variants

* Link ggml/ggml-base libraries to their targets

* Replace main-cmake-pkg with simple-cmake-pkg

* Interface features require c_std_90

* Fix typo

* Removed unnecessary bracket from status message

* Update examples/simple-cmake-pkg/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/simple-cmake-pkg/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-03 22:00:57 +02:00
7230a6e1c8 vulkan: compile shaders on-demand (llama/11406)
Reduce first-run startup time and memory consumption.

Should fix #11339.
2025-02-03 22:00:57 +02:00
a160fa0f3a Hip: disable VMM on hip as it seams that it dosent work in some configurations (llama/11420) 2025-02-03 22:00:57 +02:00
0282ad8fd1 hip : Add hipGraph and VMM support to ROCM (llama/11362)
* Add hipGraph support

* Enable VMM on rocm
2025-02-03 22:00:57 +02:00
9e467815d4 CUDA: fix FP16 cuBLAS GEMM (llama/11396) 2025-02-03 22:00:57 +02:00
727891d9bf rocBLAS: Avoid fp32->fp16->fp32 conversion on cdna (llama/11356) 2025-02-03 22:00:57 +02:00
c262dc80e2 CPU/CUDA: fix (GQA) mul mat back, add CUDA support (llama/11380) 2025-02-03 22:00:57 +02:00
30767b4c4e cmake : avoid -march=native when reproducible build is wanted (llama/11366)
See https://reproducible-builds.org/ for why this is good
and https://reproducible-builds.org/specs/source-date-epoch/
for the definition of this variable.

Without this patch, compiling on different machines produced different binaries, which made verification of results difficult.

Fixes: #11317

This patch was done while working on reproducible builds for openSUSE.
2025-02-03 22:00:57 +02:00
16eeb31933 Vulkan-run-test: fix mmq_wg_denoms (llama/11343)
There should be a copy-and-paste error here.

*mmq_wg_denoms should be used together with *warptile_mmq, instead of
wg_denoms.
2025-02-03 22:00:57 +02:00
ba523d5e22 vulkan: sort shaders for more deterministic binary (llama/11315)
Fixes #11306.
2025-02-03 22:00:57 +02:00
3736706139 vulkan: fix diag_mask_inf (llama/11323)
With robustbufferaccess disabled, this shader was showing OOB stores. There
is a bounds check in the code, but the workgrouop dimensions were reversed vs
CUDA and it was running the wrong number of threads. So fix the workgroup
dimensions and disable robustness for this pipeline.
2025-02-03 22:00:57 +02:00
58640aa456 rpc : better caching of the base buffer pointer (llama/11331)
There is no need to use map, just store the base pointer in the buffer
context.
2025-02-03 22:00:57 +02:00
5183a05e56 metal : fix out-of-bounds write (llama/11314)
ggml-ci
2025-02-03 22:00:57 +02:00
0dcada42d4 vulkan: fix coopmat2 validation failures (llama/11284)
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.

coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.
2025-02-03 22:00:57 +02:00
d507b4cebe SYCL: Introducing memory host pool (llama/11251)
* Implement host pool for matrix_info

Creating a new memory pool on the host to store memory location for
matrix_info needed to launch gemm_batch from oneMKL/oneMath.
Removing complex support in gemm_batch since it is not used in llama.cpp

* Remove unnecessary headers and cast

* Reorder member variable to avoid warning on initialization

* Formatting

* Remove unused variable

* Address PR review feedback - remove warning

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2025-02-03 22:00:57 +02:00
90171055f3 cmake : add sanitizer flags for llama.cpp (llama/11279)
* cmake : add sanitizer flags for llama.cpp

ggml-ci

* tests : fix compile warnings

ggml-ci

* cmake : move sanitizer flags to llama_add_compile_flags

ggml-ci

* cmake : move llama.cpp compile flags to top level lists

ggml-ci

* cmake : apply only sanitizer flags at top level

ggml-ci

* tests : fix gguf context use in same_tensor_data

* gguf-test: tensor data comparison

* dummy : trigger ggml-ci

* unicode : silence gcc warnings

ggml-ci

* ci : use sanitizer builds only in Debug mode

ggml-ci

* cmake : add status messages [no ci]

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-02-03 22:00:57 +02:00
668306ff2b vulkan: fix coopmat2 flash attention for non-contiguous inputs (llama/11281)
Add code similar to mul_mm_cm2 to force alignment of strides, to avoid
a performance regression.

Add noncontiguous FA tests in test-backend-ops.

Fixes #11268.
2025-02-03 22:00:57 +02:00
fdc21fc87b rpc : early register backend devices (llama/11262)
Early register RPC devices and do not propagate RPC specifics in the
llama model structures.

ref: #10609
2025-02-03 22:00:57 +02:00
7183a1eb72 vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl (llama/11166)
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl

Shaders are based on cpy.cu.

* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32

* ggml: copy q->f32 assumes some contiguity in the destination
2025-02-03 22:00:57 +02:00
09f3c66648 vulkan: optimize coopmat2 q4_k/q5_k dequant functions. (llama/11206)
Do masking on whole dwords, fetch all scales at once.
2025-02-03 22:00:57 +02:00
62e2414620 vulkan: optimize coopmat2 q2_k dequant function (llama/11130) 2025-02-03 22:00:57 +02:00
de49024e49 CUDA: backwards pass for misc. ops, add tests (llama/11257)
* CUDA: backwards pass for misc. ops, add tests

* remove restrict from pointers
2025-02-03 22:00:57 +02:00
db6383094c ggml: aarch64: implement SVE kernels for q4_K_q8_K vector dot (llama/11227)
* Add SVE support for q4_K_q8_K

* Update ggml/src/ggml-cpu/ggml-cpu-quants.c

change to use K_SCALE_SIZE

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-03 22:00:57 +02:00
Eve
164f13c6a9 vulkan: scale caching for k quants + misc fixes (llama/11081)
* q6_k scale caching

* 16 bit unpack

* q4_k test (slow)

* revert it

* q3_k

* q2_k

* little stuff

* try precalculating products of a and q2_k scales

* Revert "try precalculating products of a and q2_k scales"

This reverts commit 65110b81f23f66331a50c6e889a7c1ab9470a86b.

* unpack should be u16, add vim swap to gitignore (about time)

* better q4_k scales

* q5_k

* better q6_k with separate paths for all threads and partial threads in use, plus some more optimizations

* q2_k better dequant

* q3_k optimizations

* q3_k use hmask simd from cpu avx version

* make the caches happy

* q3_k separate out calculation

* q2_k separate out

* little stuff

* use calc_superblock everywhere

* q2_k optimize scale calculation

* more barriers
2025-02-03 22:00:57 +02:00
02aa86230a fix: ggml: fix vulkan-shaders-gen build (llama/10448)
* fix: ggml: fix vulkan-shaders-gen build

The vulkan-shaders-gen target was not being built correctly
in case of cross-compilation.
Other outputs need to be built for the cross compile target,
but vulkan-shaders-gen needs to be built for the host.

* refactor: ggml: Improve vulkan-shaders-gen toolchain setup

- Add GGML_SHADERS_GEN_TOOLCHAIN CMake option.
- Auto-detect host toolchain if not set.

* refactor: ggml: Improve vulkan-shaders-gen toolchain setup

Use configure_file to generate host_toolchain.cmake from template

* fix: ggml: Fix compile error

Fix compile error not finding vulkan-shaders-gen

* fix: vulkan-shaders-gen build and path handling

Fix build issues with vulkan-shaders-gen:
- Add target dependency for correct build order
- Use CMAKE_HOST_SYSTEM_NAME for executable suffix
- Fix MSVC output directory in host toolchain
- Normalize path handling for cross-compilation

* fix: improve host compiler detection in vulkan shader build

Improve host compiler detection for vulkan shader generation:
- Add NO_CMAKE_FIND_ROOT_PATH to all compiler searches
- Consolidate compiler detection logic
- Fix Windows-specific MSVC detection
- Ensure correct compiler search in cross-compilation

* refactor: Simplify CMake function for detecting host compiler

Simplified the CMake function to improve the process of detecting the host compiler.

* fix: Remove unnecessary Vulkan library linkage in CMakeLists.txt

Since `vulkan-shader-gen.cpp` only requires the `glslc` executable
and not the Vulkan headers or libraries, CMakeLists.txt needs to
be corrected.
(See: ecc93d0558fc3ecb8a5af69d2ece02fae4710ade)

* refactor: Rename host_toolchain.cmake.in

- Rename host_toolchain.cmake.in to cmake/host-toolchain.cmake.in

* refactor: GGML_VULKAN_SHADERS_GEN_TOOLCHAIN

Rename the macro GGML_SHADERS_GEN_TOOLCHAIN to GGML_VULKAN_SHADERS_GEN_TOOLCHAIN
2025-02-03 22:00:57 +02:00
54a2ee648f RoPE: fix back, CUDA support for back + noncont. (llama/11240)
* RoPE: fix back, CUDA support for back + noncont.

* fix comments reg. non-cont. RoPE support [no-ci]
2025-02-03 22:00:57 +02:00
9700cfb0a3 SYCL: Add gated linear attention kernel (llama/11175)
* SYCL: Add Gated Linear attention kernel

* glahpp: add a space at the end of file

* gla: Put the barrier inside the main logic loop
2025-02-03 22:00:57 +02:00
8e0143e205 ggml : add option to not print stack on abort (ggml/1081)
* Add option to not print stack on abort

Add option/envvar to disable stack printing on abort.
Also link some unittests with Threads to fix link errors on
ubuntu/g++11.

* Update ggml/src/ggml.c

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-03 22:00:57 +02:00
f12559d590 ggml-cpu : fix ggml_graph_compute_thread did not terminate on abort. (ggml/1065)
some threads kept looping and failed to terminate properly after an abort during CPU execution.

Co-authored-by: issi <issi@gmail.com>
2025-02-03 22:00:57 +02:00
589b40810a ci : dummy commit to trigger CI 2025-02-03 16:32:48 +02:00
7ffcd05267 ruby : Make context accept initial parameters, API to retrieve a segment and more (#2749)
* Fix type signature for Whisper.log_set

* Use cache file for model when offline

* Extract ruby_whisper_transcribe() into a file

* Extract Whisper::Error

* Use FileList for ext/*.{c,cpp,h}

* Extract Whisper::Segment

* Extract Whisper::Model

* Extract Whisper::Params

* Extract Whisper::Context

* Extract log_callback function

* Write base code in C rather than C++

* Use chdir instead of Dir.chdir in Rakefile

* Define alloc func for Whisper::Model

* Define Whisper::Params' calback and user data reader

* Add test for Whisper::Params.new with keyword arguments

* Make Whisper::Params.new accept keyword arguments

* Update type signatures

* Update README

* Update CLEAN targets

* Fix document comment for Whisper::Params#new_segment_callback=

* Use macro to define params

* Fix dependency of build task

* Set Whisper.finalize_log_callback visibility to private

* Make Whisper::Context#full and full_parallel return self

* Add test for Whisper::Context#full_get_segment

* Add Whisper::Context#full_get_segment

* Update signatures

* Update README

* Fix signature

* Resplace #initialize with .new in signature file [skip ci]

* Fix potential overflow
2025-01-21 09:39:54 +02:00
7a423f1c00 whisper.objc : fix build and CI 2025-01-18 12:06:06 +02:00
99b011a9f5 talk-llama : sync llama.cpp 2025-01-14 10:38:01 +02:00
19d95f9f9a sync : ggml 2025-01-14 10:38:01 +02:00
d5ef1737d8 GGUF: C++ refactor, backend support, misc fixes (skip) (llama/11030)
ggml-ci
2025-01-14 10:38:01 +02:00
1deb41f0e7 ggml : add opencl backend (skip) (llama/10693)
---------

Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
Co-authored-by: Alexander Angus <quic_aangus@quicinc.com>
Co-authored-by: Hongqiang Wang <quic_wangh@quicinc.com>
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2025-01-14 10:38:01 +02:00
2425caf4fd cuda : CUDA Graph Compute Function Refactor (precursor for performance improvements) (llama/11042)
* Refactor: Moves cuda graph executable update step to separate function.

* Refactor: Moves cuda graph update check to separate function.

* Refactor: Moves cuda graph maintenance (update or adjusting copy parameters) to separate function for improved readability.

* Fix: Adds missing reference to maintain_cuda_graph() definition.

* Refactor: Improves structure and abstractions by moving CUDA graph evaluation and capture to its own function.

* Refactor: Moves node graph checks and copy ops into individual function for improved readability.

* Refactor: Removes code permanently excluded from compilation to increase readability.

* Style: Adds missing newline

* Style: Consolidates several neighboring '#ifdef USE_CUDA_GRAPH' into a single one

* Refactor: Makes 'cuda_graph_update_required' a local variable

* remove double lines between functions

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-01-14 10:38:01 +02:00
a4b00bcaaf ggml : do not define GGML_USE_CUDA when building with GGML_BACKEND_DL (llama/11211)
Build fails when using HIP and GGML_BACKEND_DL:
```
/usr/bin/ld: ../ggml/src/libggml.so: undefined reference to `ggml_backend_cuda_reg'
collect2: error: ld returned 1 exit status
```
This patch fixes this.
2025-01-14 10:38:01 +02:00
cdb8aa2f2e Vulkan: Fix float16 use on devices without float16 support + fix subgroup_size_control validation error (llama/11161)
* Vulkan: Remove float16 use in shaders

* Fix validation error about subgroup_size_control extension
2025-01-14 10:38:01 +02:00
06209f6683 llama: add support for QRWKV6 model architecture (llama/11001)
llama: add support for QRWKV6 model architecture (llama/11001)

* WIP: Add support for RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Some graph simplification

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add support for RWKV6Qwen2 with cpu and cuda GLA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV6[QWEN2]: Concat lerp weights together to reduce cpu overhead

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix some typos

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix wkv test & add gla test

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix cuda warning

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update README.md

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update ggml/src/ggml-cuda/gla.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix fused lerp weights loading with RWKV6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* better sanity check skipping for QRWKV6 in llama-quant

thanks @compilade

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: compilade <git@compilade.net>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
2025-01-14 10:38:01 +02:00
c3235bd81e SYCL: Refactor ggml_sycl_compute_forward (llama/11121)
* SYCL: refactor ggml_sycl_compute_forward

* SYCL: add back GGML_USED(dst) to ggml_sycl_cpy

* SYCL: add function name to noop debug

* SYCL: Some device info print refactoring and add details of XMX availability
2025-01-14 10:38:01 +02:00
262d0abc87 fix: add missing msg in static_assert (llama/11143)
Signed-off-by: hydai <z54981220@gmail.com>
2025-01-14 10:38:01 +02:00
124eec1664 llamafile : ppc64le MMA INT8 implementation (llama/10912)
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le using MMA
builtins for quantised int8 datatype.

This change results in 10% - 70% improvement
in total speed(ie all tokens/total time), across
various batch sizes.

The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-01-14 10:38:01 +02:00
b08c3a88c8 Disable GL_KHR_cooperative_matrix Vulkan extension if not available. (llama/11117)
* Disable GL_KHR_cooperative_matrix Vulkan extension if not available.

* Perform Vulkan extensions checks in a more sensible order

* Remove unnecessary #ifdef directive
2025-01-14 10:38:01 +02:00
0afce25a69 fix: Vulkan shader gen binary path when Cross-compiling (llama/11096)
* fix: Vulkan shader gen binary path when cross compiling
2025-01-14 10:38:01 +02:00
acdbe58631 GGUF: C++ refactor, backend support, misc fixes (llama/11030)
* GGUF: C++ refactor, backend support, misc fixes

remove ggml_tensor.backend

update CODEOWNERS [no ci]

remove gguf_get_data from API

revise GGUF API data types
2025-01-14 10:38:01 +02:00
09fabffdf5 ggml-backend : only offload from host buffers (fix) (llama/11124) 2025-01-14 10:38:01 +02:00
3988d6396b ggml-backend : only offload from host buffers (llama/11120) 2025-01-14 10:38:01 +02:00
c8c63eeec0 rpc : code cleanup (llama/11107)
Remove duplicated macros, use GGML_LOG_ERROR for errors
2025-01-14 10:38:01 +02:00
abf7f24410 SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6 (llama/11087)
* SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6

* Revert "SYCL: Use get_multi_ptr instead of deprecated get_pointer in wkv6"

This reverts commit f62dc45f318e48d375e7734b34cbddee81deed52.

* Reland: Use get_multi_ptr instead of deprecated get_pointer in wkv6
2025-01-14 10:38:01 +02:00
341f5c28e6 CUDA: add BF16 support (llama/11093)
* CUDA: add BF16 support
2025-01-14 10:38:01 +02:00
5377099524 Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver (llama/11074)
* Vulkan: Add device-specific blacklist for coopmat for the AMD proprietary driver

* Add (TM) to AMD name check
2025-01-14 10:38:01 +02:00
dcbb375779 Support for models with non-512-aligned tensors over RPC. (llama/11047)
* Added init tensor calling code

* Added get_alloc_size forwarding

* Cleaned up and improved type/error handling.

* fix: remove trailing whitespaces.

* Cleanup and use GGML error logging functions.

* Handle potentially dangerous edge cases.

* Apply suggestions from code review

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-14 10:38:01 +02:00
4334c71aed fix: Vulkan shader gen binary path (llama/11037) 2025-01-14 10:38:01 +02:00
e875a82473 ggml : allow loading backend with env variable (ggml/1059)
ref: #1058
2025-01-14 10:38:01 +02:00
507e230f1e scripts : sync opencl, gguf 2025-01-14 09:42:16 +02:00
eb68324c86 whisper : fix gpu device selection (#2728) 2025-01-13 13:11:37 +02:00
e940fbf283 server : fix build (#2718) 2025-01-13 08:57:33 +02:00
35d0e02c72 talk-llama : sync llama.cpp (#2709) 2025-01-13 08:55:48 +02:00
45d3faf961 server : generate unique tmp filenames (#2718)
#Summary

This Merge Request adds a mechanism to generate unique filenames for FFmpeg conversions in whisper_server.cpp. Previously, a single fixed filename was used (e.g., whisper-server-tmp.wav), which could result in unexpected file overwrites under certain circumstances. By generating a unique filename per request, any risk of overwriting temporary files is eliminated.

#Background / Motivation
	•	Problem: Relying on a static filename for temporary audio files may lead to overwrites if multiple operations occur simultaneously or if the same file name is reused.
	•	Goal: Dynamically generate unique filenames, ensuring each request or operation uses an isolated temporary file.
2025-01-13 08:55:21 +02:00
2ab2eb5110 whisper : add whisper_full_get_segment_no_speech_prob_from_state (#2716) 2025-01-09 16:21:07 +02:00
b82d305282 readme : add docker instructions (#2711)
I found the docker instructions to be useful in the README.md and the differences in docker variants such as ffmpeg and cuda support. However, this section was removed in v1.7.4 and I would vote to bring it back.

This is a pull request to add that section back.
2025-01-07 13:20:51 +02:00
885e31368d docs: Fix main -> whisper-cli in download scripts (#2707) 2025-01-06 15:17:57 +02:00
8a9ad7844d release : v1.7.4 2025-01-06 15:13:48 +02:00
eb874b3a3c ci : cont 2025-01-06 10:46:10 +02:00
eb78e3a3f1 ci : fix ubuntu runner names 2025-01-06 09:29:10 +02:00
ece3ff88f6 cli : fix segfault on missing argument (#2700) 2025-01-04 10:47:41 +02:00
9366544991 ci : fix arm builds 2025-01-04 10:45:01 +02:00
95583942ed sync : ggml
ggml-ci
2025-01-04 10:45:01 +02:00
2e93cb6a2f ggml : do not install metal source when embed library (ggml/1054) 2025-01-04 10:45:01 +02:00
de5cd60d1c metal : avoid uint (llama/11019) 2025-01-04 10:45:01 +02:00
3fcba3e58b ggml : fixes for AVXVNNI instruction set with MSVC and Clang (llama/11027)
* Fixes for clang AVX VNNI

* enable AVX VNNI and alder lake build for MSVC

* Apply suggestions from code review

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-01-04 10:45:01 +02:00
cea5f1c52f vulkan: optimize mul_mat for small values of N (llama/10991)
Make the mul_mat_vec shaders support N>1 (as a spec constant, NUM_COLS) where
the batch_strides are overloaded to hold the row strides. Put the loads from the
B matrix in the innermost loop because it should cache better.

Share some code for reducing the result values to memory in mul_mat_vec_base.
2025-01-04 10:45:01 +02:00
2112462db4 vulkan: im2col and matmul optimizations for stable diffusion (llama/10942)
* tests: Add im2col perf tests

* vulkan: optimize im2col, more elements per thread

* vulkan: increase small tile size for NV_coopmat2

* vulkan: change im2col to 512 elements per workgroup
2025-01-04 10:45:01 +02:00
fc84ecd445 vulkan: Use push constant offset to handle misaligned descriptors (llama/10987) 2025-01-04 10:45:01 +02:00
Eve
8de1e99907 vulkan: multi-row k quants (llama/10846)
* multi row k quant shaders!

* better row selection

* more row choices

* readjust row selection

* rm_kq=2 by default
2025-01-04 10:45:01 +02:00
499af9294a examples, ggml : fix GCC compiler warnings (llama/10983)
Warning types fixed (observed under MSYS2 GCC 14.2.0):
* format '%ld' expects argument of type 'long int', but argument has type 'size_t'
* llama.cpp/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp:81:46: warning: missing initializer for member '_STARTUPINFOA::lpDesktop' [-Wmissing-field-initializers]  (emitted for all struct field except first)
2025-01-04 10:45:01 +02:00
bcf937c216 ggml : more perfo with llamafile tinyblas on x86_64 (llama/10714)
* more perfo with llamafile tinyblas on x86_64.

- add bf16 suport
- change dispache strategie (thanks:
https://github.com/ikawrakow/ik_llama.cpp/pull/71 )
- reduce memory bandwidth

simple tinyblas dispache and more cache freindly

* tinyblas dynamic dispaching

* sgemm: add M blocs.

* - git 2.47 use short id of len 9.
- show-progress is not part of GNU Wget2

* remove not stable test
2025-01-04 10:45:01 +02:00
b8d90953d7 ggml : use wstring for backend search paths (llama/10960)
ggml-ci
2025-01-04 10:45:01 +02:00
60a422147b ggml : fix arm enabled features check (llama/10961) 2025-01-04 10:45:01 +02:00
3387415bad ggml : fix const usage in SSE path (llama/10962) 2025-01-04 10:45:01 +02:00
536ca3ec89 ggml : fix run-time on FreeBSD in get_executable_path() (llama/10948) 2025-01-04 10:45:01 +02:00
a4bb983190 vulkan: build fixes for 32b (llama/10927)
* vulkan: build fixes for 32b

Should fix #10923

* vulkan: initialize some buffer/offset variables
2025-01-04 10:45:01 +02:00
39c205f555 vulkan: optimize coopmat2 dequant functions (llama/10855)
Change the code to do 16b loads when possible and extract the appropriate
component late, so the code is effectively decoding a pair of elements and
then selecting one. This can allow more commoning to happen in the compiler
when neighboring elements are loaded.
2025-01-04 10:45:01 +02:00
6d502f33dc ggml-cpu: replace NEON asm with intrinsics in ggml_gemv_q4_0_4x8_q8_0() (llama/10874)
* ggml-cpu: replace NEON asm with intrinsics in ggml_gemv_q4_0_4x8_q8_0()

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* ggml-cpu: format code

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-01-04 10:45:01 +02:00
5ea27d089d SYCL: Migrate away from deprecated ggml_tensor->backend (llama/10840)
* Migrate to tensor->buffer for checking backend buffer type: 1

* SYCL: common.cpp try to migrate away from tensor->backend

* SYCL: fix assertions and add proper comments

* SYCL: remove extra space

* SYCL: Add back static to ggml_backend_buffer_is_sycl_split function

* SYCL: Add pragma directive to suppress warning spam

* SYCL: Integrate debug logs with GGML_LOG and other fixes

* Revert "SYCL: Integrate debug logs with GGML_LOG and other fixes"

This reverts commit 2607b7de0f0d2f4f1f690226f86fa861aa39cb97.
Let's keep the current SYCL specific logging mechanism for now

* SYCL: Use GGML_SYCL_DEBUG after reverting

* SYCL: reg_get_proc_address func, update to the current func signature

* SYCL: Refactor SYCL buffer checks in ggml_sycl_cpy_tensor_2d
2025-01-04 10:45:01 +02:00
1462d92588 ggml : add test for SVE and disable when it fails (llama/10906) 2025-01-04 10:45:01 +02:00
7ba1a41f47 ggml: fix arm build with gcc (llama/10895)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-01-04 10:45:01 +02:00
5ea088636f ggml : fix arm build (llama/10890)
* ggml: GGML_NATIVE uses -mcpu=native on ARM

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* ggml: Show detected features with GGML_NATIVE

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* remove msvc support, add GGML_CPU_ARM_ARCH option

* disable llamafile in android example

* march -> mcpu, skip adding feature macros

ggml-ci

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Co-authored-by: Adrien Gallouët <angt@huggingface.co>
2025-01-04 10:45:01 +02:00
f32ddb3b1c tts : add OuteTTS support (llama/10784)
* server : add "tokens" output

ggml-ci

* server : output embeddings for all tokens when pooling = none

ggml-ci

* server : be explicit about the pooling type in the tests

ggml-ci

* server : do not normalize embeddings when there is no pooling

ggml-ci

* llama : add OuteTTS support (wip)

* wip

* extract features

* first conv

* group norm

* resnet conv

* resnet

* attn

* pos net

* layer norm

* convnext

* head

* hann window

* fix n_embd + remove llama.cpp hacks

* compute hann window

* fft

* spectrum processing

* clean-up

* tts : receive input text and generate codes

* clip : fix new conv name

* tts : minor fix

* tts : add header + minor fixes

ggml-ci

* tts : add matchematical constant

ggml-ci

* tts : fix sampling + cut initial noise

* tts : fixes

* tts : update default samplers

ggml-ci

* tts : text pre-processing

* tts : outetts-voc -> wavtokenizer-dec

* tts : remove hardcoded constants

ggml-ci

* tts : fix tensor shapes

* llama : refactor wavtokenizer tensors

ggml-ci

* cont

ggml-ci

* cont [no ci]

* llama : update WavTokenizer to non-causal attn

* llama : handle no-vocab detokenization

* tts : add Python example for OuteTTS (wip)

* tts : extend python example to generate spectrogram

ggml-ci

* server : fix rebase artifacts

* tts : enable "return_tokens" in Python example

ggml-ci

* tts : minor fixes

* common : support HF download for vocoder
2025-01-04 10:45:01 +02:00
79b75ece03 tests: add tests for GGUF (llama/10830) 2025-01-04 10:45:01 +02:00
6348d73e55 ggml : improve inputs log sched_print_assignments (ggml/1053)
This commit attempts to improve the log message for the inputs of the
splits in the sched_print_assignments function.

The motivation for this change is that currently even if there are no
inputs a colon is displayed at the end of the line, which can make it a
little confusing when reading the output as it could be interpreted as
the line below are inputs when they are in fact nodes. With this change
the colon will only be printed if there actually are inputs.
2025-01-04 10:45:01 +02:00
fb36a1538a readme : fix real-time audio input example build instructions (#2692) 2025-01-02 12:05:38 +02:00
c81b8b910b objc : rename ggml-cpu-aarch64.c to .cpp (#2687) 2025-01-02 12:05:09 +02:00
85b60f31d0 docs : replace Core ML with OpenVINO (#2686) 2025-01-02 12:03:02 +02:00
227b5ffa36 make : fix "main" -> "whisper-cli" 2024-12-31 11:46:17 +02:00
36a64a253f ci : re-enable Windows cublas build (#2676)
* Enable Windows cublas build

* Re-add v12 cuda
2024-12-31 11:11:42 +02:00
c84b83c370 ruby : Fix of C++ header guard name, model URI support, type signature and more (#2683)
* Add test to make Whisper::Context.new accept URI string

* Add test to make Whisper::Context.new accept URI

* Make Whisper::Context.new accept URI string and URI

* Update README

Revert "Fix argument of rb_undefine_finalizer"

* Fix typos

* Add type signature file

* Assign literarl to const variable

* Load Whisper::Model::URI from Init_whisper

* Simplify .gitignore

* Don't load whisper.so from whisper/model/uri.rb

* Use each_with_object instead of each

* Add Development section to README

* Rename header guard to conform to C++ naming convention
2024-12-30 14:26:35 +02:00
5136fd92c2 examples : handle "main.exe" deprecation 2024-12-30 13:00:18 +02:00
7d55637f0b cli : add --suppress_nst support (#2664) 2024-12-24 09:30:07 +02:00
0994506054 cli : add no_speech_thold (#2663) 2024-12-24 09:29:19 +02:00
53c9a3a984 cmake : remove hardcoded install rpath 2024-12-23 21:22:10 +02:00
ed09075ca0 server : fix help print 2024-12-22 15:32:05 +02:00
f07a81aa9f ruby : bug fix on callbacks and no_speech_prob (#2656)
* Don't generate documentation on test

* Move .startup to TestBase class

* Extract new_segment_callback as a function

* Extract progress_callback as a function

* Extract abort_callback as a function

* Extract register_callbacks as a function

* Call callbacks in Whiser::Context#full and #full_parallel

* Fix README

* Care about the cases content-size is nil and TTY is not available

* Add tests for no_speech_prob

* Add Whisper::Context#full_get_segment_no_speech_prob and Whisper::Segment#no_speech_prob
2024-12-21 21:52:06 +02:00
4183517076 server : add no-speech threshold parameter and functionality (#2654) 2024-12-21 17:00:08 +02:00
f4668169a0 whisper : rename suppress_non_speech_tokens to suppress_nst (#2653) 2024-12-21 12:54:35 +02:00
944ce49439 server : add option to suppress non-speech tokens (#2649)
* The parameter will suppress non-speech tokens like [LAUGH], [SIGH], etc. from the output when enabled.

* add to whisper_params_parse

* add missing param
2024-12-21 12:05:05 +02:00
2e59dced12 whisper : rename binaries + fix install (#2648)
* whisper : rename binaries + fix install

* cont : try to fix ci

* cont : fix emscripten builds
2024-12-21 09:43:49 +02:00
e4e05981d6 ruby : update gem version to v1.3.1 2024-12-20 11:53:27 +02:00
3de9deead5 release : v1.7.3 2024-12-18 18:12:40 +02:00
47f989f9b3 ci : msys enable SDL2 build (#2635) 2024-12-18 12:52:41 +02:00
acc4e13dee ruby : sync ggml (#2643) 2024-12-18 12:52:16 +02:00
ba6c2a8fd9 android : try to fix build 2024-12-18 12:52:16 +02:00
6576af00d7 files : remove old sources 2024-12-18 12:52:16 +02:00
8ac5db0169 sync : ggml 2024-12-18 12:52:16 +02:00
61edb117a0 talk-llama : sync llama.cpp 2024-12-18 12:52:16 +02:00
eb97b257eb sync : ggml 2024-12-18 12:52:16 +02:00
479499dc0e ggml : update ggml_backend_cpu_device_supports_op (llama/10867)
* ggml : fix cpy op for IQ-quants to use reference impl

ggml-ci

* ggml : disable tests involving i-matrix quantization

* ggml : update ggml_backend_cpu_device_supports_op

ggml-ci
2024-12-18 12:52:16 +02:00
Eve
d420a759c5 vulkan: bugfixes for small subgroup size systems + llvmpipe test (llama/10809)
* ensure mul mat shaders work on systems with subgroup size less than 32

more fixes

add test

* only s_warptile_mmq needs to be run with 32 threads or more
2024-12-18 12:52:16 +02:00
a1ab9b5e91 rwkv6: add wkv6 support for Vulkan backend (llama/10829)
* rwkv_wkv6 vulkan shader

* RWKV_WKV6 Vulkan op tests passed

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* add [[unroll]] and remove unnecessary conditions

* add uma support

* fix erros in EditorConfig Checker

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Molly Sophia <mollysophia379@gmail.com>
2024-12-18 12:52:16 +02:00
e22d38e4f2 llama : add Qwen2VL support + multimodal RoPE (llama/10361)
* Barebone Qwen2VL LLM convertor

* Add Qwen2VL cli entrypoint

* [WIP] add qwen2vl arch

* Verify m-rope output

* Add vl-rope/2d-rope support for qwen2vl ViT

* update qwen2vl cli tool

* update 5D tensor op workaround

* [WIP] qwen2vl vision model

* make batch and clip utils compatible with qwen2vl

* [WIP] create inference workflow, gguf convert script but fix

* correcting vision-rope behavior, add the missing last layer back to ViT

* add arg parser to qwen2vl_surgery

* replace variable size array with vector

* cuda-gdb cmake preset

* add fp32 mrope, vision rope kernel

* add fp16 support for qwen2vl and m-rope

* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`

* fix rope op mode switching, out dated func args

* update `llama_hparams`

* update to keep up stream changes

* resolve linter, test errors

* add makefile entry, update speical image padding token

* add mrope unit test, fix few compiler warnings

* rename `mrope` related function, params

* minor updates on debug util, bug fixs

* add `m-rope` testcase to `test-backend-ops`

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix traililng whitespce

* store `llama_hparams.rope_sections` with fixed size array

* update position id tensor size check in GGML_OP_ROPE

* minor updates

* update `ggml_backend_*_supports_op` of unsupported backends

* remote old `rope_section` compare operator

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-18 12:52:16 +02:00
856fbaa92f Introducing experimental OpenCL backend with support for Qualcomm Adreno GPUs (llama/10693)
* [cl][adreno] Add Adreno GPU support

Add new OpenCL backend to support Adreno GPUs

---------

Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
Co-authored-by: Alexander Angus <quic_aangus@quicinc.com>
Co-authored-by: Hongqiang Wang <quic_wangh@quicinc.com>
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>

* [cl][ci] Add workflow for CL

* [cl][adreno] Fix memory leak for non SMALL_ALLOC path

* opencl: integrate backend dyn.load interface and fix compiler and format warnings

* opencl: remove small-alloc support and fix build errors for non-opencl platforms

* opencl: fixed merge conflict (MUSA added twice in cmake)

* opencl-ci: use RUNNER_TEMP instead of github.workspace

* opencl: fix embed tool invocation with python3

* opencl: CI workflow fixes

* opencl: Clean up small-alloc in CMake files

* opencl: cleanup ggml-opencl2 header file

* opencl: use ulong for offsets and strides in ADD kernel

* opencl: use cl_ulong for all offsets

* opencl: use cl_ulong for sizes and strides

* opencl: use `GGML_LOG_xxx` instead of `fprintf(stderr, ...)`

* opencl: rename backend `opencl2` -> `opencl`

* opencl: rename kernel files `ggml-opencl2` -> `ggml-opencl`

* opencl: make OpenCL required, remove redundant lib and inc directories

* `ggml-base`, `..` and `.` are added by `ggml_add_backend_library`

* opencl: rename backend - funcs, structs, etc `opencl2` -> `opencl`

* opencl: remove copyright marker since main license already covers

* opencl: replace some more OPENCL2 leftovers

* opencl: remove limits on `tensor_extra`

* opencl: use pools for `tensor_extra`

* opencl: fix compiler warnings with GCC and Clang

Still getting the warning about clCreateCmdQueue being obsolete.
Will fix that separately.

* opencl: fail gracefully if opencl devices are not available

Also for unsupported GPUs.

* opencl: fix MSVC builds (string length error)

* opencl: check for various requirements, allow deprecated API

* opencl: update log message for unsupported GPUs

---------

Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
Co-authored-by: Alexander Angus <quic_aangus@quicinc.com>
Co-authored-by: Hongqiang Wang <quic_wangh@quicinc.com>
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2024-12-18 12:52:16 +02:00
2c05efa4b1 Fix crash caused by ggml_backend_load_all when launching on Android Activity (llama/10812)
* Fix crash caused by ggml_backend_load_all when launching on AndroidActivity.

Details:
Calling ggml_backend_load_all during initialization in the AndroidActivity project leads to a crash with the error:
terminating with uncaught exception of type std::__ndk1::__fs::filesystem::filesystem_error: filesystem error: in directory_iterator::directory_iterator(...): Permission denied [./].
This issue occurs because AndroidActivity restricts file access due to sandboxing.

Reproduction:
In the example folder, the LlamaAndroid project can reproduce the crash by calling ggml_backend_load_all first in Java_android_llama_cpp_LLamaAndroid_backend_1init.

* Update ggml/src/ggml-backend-reg.cpp

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-18 12:52:16 +02:00
Eve
c21fb10b28 vulkan: small mul_mat_vec optimizations (llama/10665)
* double the number of rows per workgroup

* Update ggml-vulkan.cpp

* Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats

* only increase the number of rows for amd and subgroup size 64

* fix missing NUM_ROWS for mul_mat_vec_iq4_nl_f16_f32, untested

* use subgroup min and max to check for gcn (requires https://github.com/ggerganov/llama.cpp/pull/10721)

* manual merge ggml-vulkan.cpp

* set min and max subgroup size in any case

* Also double the number of rows for Intel GPUs
2024-12-18 12:52:16 +02:00
26c9fd0cdc SYCL: Reduce most of the compiler warnings (llama/10748)
* Try to reduce some unused and typecast warnings

* Reduce compiler warnings step 2

* add a newline at the end of the file

* Initialize nreduce as size_t

* [SYCL] Remove pragma directives from mmq.cpp

* SYCL: mmq add condition to prevent blocks_per_tile_x_row variable from becoming 0

* SYCL softmax: Initialize nreduce as size_t

* ggml-sycl.cpp: fix some trailing whitespaces

* SYCL: remove the unused variables instead of commenting it out

* SYCL poo2d kernel: set NAN for invalid pooling op

* SYCL gemm.hpp: remove pragma directives

* SYCL gemm.hpp: use const cast to properly support dnnl::memory

* SYCL: wkv6 remove a comment

* SYCL: clean comments step 2

* SYCL: clean comments and variables step 3

* SYCL: Use GGML_UNUSED for unused variables

* SYCL: remove extra empty lines and a comment

* Remove TODO

* cleanup spaces

* add a stdout for unsupported op

* use sycl printf over fprintf

* remove prints for CI

* SYCL ggml-sycl: pool2D use sycl::nan and remove if-else block

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-12-18 12:52:16 +02:00
e6eed605cf ggml : Fix compilation issues on ARM platform when building without fp16 (llama/10811) 2024-12-18 12:52:16 +02:00
abe3102cb7 CUDA: faster non-contiguous concat (llama/10760)
* faster uncontiguous concat

* Use a lambda to avoid code duplication

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update ggml/src/ggml-cuda/concat.cu

* add constexpr  and static assert

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-18 12:52:16 +02:00
1193e494a9 remove CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS (llama/10797)
other windows build fixes
2024-12-18 12:52:16 +02:00
e5e951672e Vulkan: Use improved q4_k and q5_k dequant code in dequant shaders (llama/10798) 2024-12-18 12:52:16 +02:00
0e24559ad9 Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats (llama/10721)
* Vulkan: Add VK_EXT_subgroup_size_control support to ensure full subgroups for coopmats

* Fix subgroup size control extension support check

Add accf32 and accf16 checks for coopmats

* Also disable coopmats on amdvlk
2024-12-18 12:52:16 +02:00
527ac800cf ggml: load all backends from a user-provided search path (llama/10699)
* feat: load all backends from a user-provided search path

* fix: Windows search path

* refactor: rename `ggml_backend_load_all_in_search_path` to `ggml_backend_load_all_from_path`

* refactor: rename `search_path` to `dir_path`

* fix: change `NULL` to `nullptr`

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* fix: change `NULL` to `nullptr`

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-18 12:52:16 +02:00
479bd77169 vulkan: request round-to-even for fp16 in im2col/rope_head (llama/10767)
Vulkan doesn't mandate a specific rounding mode, but the shader_float_controls
feature allows rounding mode to be requested if the implementation supports it.
2024-12-18 12:52:16 +02:00
Eve
d8bf63a41b vulkan: dynamic subgroup size for the remaining k quants (llama/10745)
* q5_k

q4_k

q3_k

q2_k

q6_k multi row example

* revert as multi row isnt faster for k quants
2024-12-18 12:52:16 +02:00
b82c8d76dc CUDA: rename macros to avoid conflicts with WinAPI (llama/10736)
* Renames NVIDIA GPU-architecture flags to avoid name clashes with WinAPI. (e.g. CC_PASCAL, GPU architecture or WinAPI pascal compiler flag?)

* Reverts erroneous rename in SYCL-code.

* Renames GGML_CUDA_MIN_CC_DP4A to GGML_CUDA_CC_DP4A.

* Renames the rest of the compute capability macros for consistency.
2024-12-18 12:52:16 +02:00
86346f811e vulkan: disable spirv-opt for coopmat shaders (llama/10763)
There are some bugs in the 1.3.296 SDK, so disable this. It isn't strictly
necessary anyway.

Add missing dependency on vulkan-shaders-gen, so shaders get recompiled when it
changes.

Fix coopmat support reporting when glslc doesn't support NV_coopmat2.
2024-12-18 12:52:16 +02:00
c635f40a34 ggml : remove return from ggml_gallocr_allocate_node (ggml/1048)
This commit removes the return statement from ggml_gallocr_allocate_node
function.

The motivation behind this change is to make the code more readable and
consistent.
2024-12-18 12:52:16 +02:00
e0be0de1ee ggml : add check for grad_accs (ggml/1046)
* ggml : add check for grad_accs

This commit adds a check for grad_accs in ggml_graph_get_grad and
ggml_graph_get_grad_acc functions. This is necessary to avoid segfaults
when grad_accs is not initialized.

The motivation for this change is that I find it nice to be able to
print out a computation graph using ggml_graph_print but this function
segfaults when grad_accs is not initialized:
```console
(gdb) p g1
$2 = (ggml_cgraph *) 0x7ffff66004b0
(gdb) p *g1
$3 = {size = 2048, n_nodes = 1, n_leafs = 2, nodes = 0x7ffff6600500,
grads = 0x0, grad_accs = 0x0, leafs = 0x7ffff6604500,
visited_hash_set = {size = 4099, used = 0x7ffff6610518,
keys = 0x7ffff6608500}, order = GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT}
(gdb) p ggml_graph_print(g1)
=== GRAPH ===
n_nodes = 1

Program received signal SIGSEGV, Segmentation fault.
0x0000555555579775 in ggml_graph_get_grad
(cgraph=0x7ffff66004b0,node=0x7ffff6600340)
    at /ggml/ggml/src/ggml.c:5990
5990  return igrad != GGML_HASHSET_FULL &&
          ggml_bitset_get(cgraph->visited_hash_set.used, igrad) ?
          cgraph->grads[igrad] : NULL;
```

* squash! ggml : add check for grad_accs

Fix the check in ggml_graph_get_grad. The check was incorrectly using
cgraph->grad_accs instead of cgraph->grads.
2024-12-18 12:52:16 +02:00
60dc6d003f common : remove old types
ggml-ci
2024-12-18 12:52:16 +02:00
eb27e0d834 CUDA: fix shared memory access condition for mmv (llama/10740) 2024-12-18 12:52:16 +02:00
a682fdce0c vulkan: fix compile warnings (llama/10731) 2024-12-18 12:52:16 +02:00
9ffbd3d969 Vulkan: fix NaN in tanh.comp with AMD proprietary driver on Windows (llama/10723)
* Vulkan: fix NaN in tanh.comp

* Faster NaN-free tanh
2024-12-18 12:52:16 +02:00
6585a890b4 vulkan: compile a test shader in cmake to check for coopmat2 support (llama/10713) 2024-12-18 12:52:16 +02:00
d0a050b51f ggml : disable iq4_nl interleave size 8 (llama/10709)
ggml-ci
2024-12-18 12:52:16 +02:00
e990d1b791 ggml : refactor online repacking (llama/10446)
* rename ggml-cpu-aarch64.c to .cpp

* reformat extra cpu backend.

- clean Q4_0_N_M and IQ4_0_N_M
  - remove from "file" tensor type
  - allow only with dynamic repack

- extract cpu extra bufts and convert to C++
  - hbm
  - "aarch64"

- more generic use of extra buffer
  - generalise extra_supports_op
  - new API for "cpu-accel":
     - amx
     - aarch64

* clang-format

* Clean Q4_0_N_M ref

Enable restrict on C++

* add op GGML_OP_MUL_MAT_ID for Q4_0_N_M with runtime repack

* added/corrected control on tensor size for Q4 repacking.

* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add debug logs on repacks.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-18 12:52:16 +02:00
4a6d52efe6 Vulkan: VK_KHR_cooperative_matrix support to speed up prompt processing (llama/10597)
* Vulkan: Implement VK_KHR_cooperative_matrix support in the matrix matrix multiplication shader

* Improve performance with better q4_k and q5_k dequant and store unrolling

* Add Vulkan MUL_MAT and MUL_MAT_ID accumulator precision selection

* Rework mulmat shader selection and compilation logic, avoid compiling shaders that won't get used by device

* Vulkan: Implement accumulator switch for specific mul mat mat shaders

* Vulkan: Unroll more loops for more mul mat mat performance

* Vulkan: Add VK_AMD_shader_core_properties2 support to read Compute Unit count for split_k logic

* Disable coopmat support on AMD proprietary driver

* Remove redundant checks

* Add environment variable GGML_VK_DISABLE_COOPMAT to disable VK_KHR_cooperative_matrix support

* Fix rebase typo

* Fix coopmat2 MUL_MAT_ID pipeline selection
2024-12-18 12:52:16 +02:00
8b841d430a metal : Extend how Llama.cpp locates metal resources (llama/10676)
* metal : Extend how Llama.cpp locates metal resources (llama/10675)

  * It searches the resource file in the directory where the current
    binary is located as well.
  * Resolves symbolic links.

Rationale:

When we plug this dependency into a Bazel build and run it in the
context of Bazel (e.g. testing):

  * the execution directory is often very different from where the files
    are located and no direct control over this (Bazel sandboxing),
  * the Bazel sandbox often use symbolic links to make files available.

With this patch, we can have the resource file added to the target,
can build and run tests in the context of Bazel.

* Update ggml/src/ggml-metal/ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-metal/ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-18 12:52:16 +02:00
b74b68212a vulkan: Add VK_NV_cooperative_matrix2 support for mul_mat and flash attention (llama/10206) 2024-12-18 12:52:16 +02:00
3a27b2b91b ruby : Add no_speech_thold (#2641)
* Remove Whisper::Model.[]

* Fix Whisper::Model::URI#request

* Make Whisper::Context#initialize accept pre-converted model name

* Use downloading pre-converted model feature for testing

* Update README

* Remove unnecessary task

* Move whisper/model.rb -> whisper/model/uri.rb

* Update document comment of Whisper::Context#initialize

* Don't show download progress when not tty

* Pass String to raise

* Use cache model file if download fails

* Add test for auto download

* Specify required Ruby version

* Fix a typo

* Remove unnecessary flags

* Initialize Whisper::Params#diarize explicitely

* Remove redundant code from README for simplicity

* Add Whisper::Params#no_speech_thold attribute

* Add test for Whisper::Params#no_speech_thold
2024-12-18 11:00:50 +02:00
d34445e960 stream : improve consistency in README (#2642) 2024-12-18 08:43:48 +02:00
f897eb7670 whisper : support no_speech_thold (#2625)
* Implement no_speech_thold

no_speech_thold functionality is on par with OpenAI's whisper

* Addressed review comments
2024-12-17 19:15:47 +02:00
2f2841bfce whisper : add single-timestamp logic (#2629)
* Fix hallucinations during silence

When the predicted tokens end with a single timestamp the the entire 30 segment should be considered as done, to avoid hallucinations for the remaining part of segment.
This behaviour is on par with openai's whisper. Refer to logic related to `single_timestamp_ending` in https://github.com/openai/whisper/blob/main/whisper/transcribe.py

* Accept review comments related to formatting.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-17 19:07:08 +02:00
09a1b61218 readme : fix typo (#2637) 2024-12-17 19:05:35 +02:00
94e7da1ff2 cmake : fix "amd64" processor string (#2638) 2024-12-17 18:34:32 +02:00
c4aed6831e vulkan : fix soft_max.comp division by zero (#2633)
This change prevents a division by zero error when p.KY is 0.
2024-12-16 12:34:38 +02:00
199579652e common : add cstdio header 2024-12-16 08:57:04 +02:00
d17e7139d8 stream : update build instructions 2024-12-15 21:55:36 +02:00
6a52eaea74 android : fix build and ci (#2624)
* Adding missing CMakeLists.txt include for ggm-cpu needed by whisper.android

* attempt to re-enable CI for JNI android

---------

Co-authored-by: Your Name <you@example.com>
2024-12-14 17:25:53 +02:00
6aa1d7b892 models : fix typo in download-ggml-model.sh (#2623)
Introduced in #2589
2024-12-12 18:02:00 +02:00
262e865a70 ruby : Sync whisper.cpp and model download feature (#2617)
* Use C++17

* Add test for Pathname of model

* Make Whisper::Context#initialize accept Pathname

* Add shorthand for pre-converted models

* Update documents

* Add headings to API section in README [skip ci]

* Remove unused function

* Don't care about no longer included file

* Cosmetic fix

* Use conditional get when get model files
2024-12-09 13:17:50 +02:00
ed733e85a1 scripts : update to new build system 2024-12-09 11:30:16 +02:00
5980b1ae77 devops : add cmake 2024-12-08 23:09:26 +02:00
0415a66044 devops : update make commands 2024-12-08 23:07:29 +02:00
7d134e3737 ggml : remove old files (skip) (#0) 2024-12-08 23:04:26 +02:00
9df53b357e ggml : sync remnants (skip) (#0) 2024-12-08 22:48:25 +02:00
b2115b4d9b scripts : remove amx from sync 2024-12-08 22:48:14 +02:00
0164427dd5 ci : disable freeBSD builds [no ci] 2024-12-08 20:14:35 +02:00
627b11c78a readme : update build instructions 2024-12-08 20:14:35 +02:00
472464453d ci : disable CUDA and Android builds 2024-12-08 20:14:35 +02:00
11dddfbc9e ci : disable Obj-C build + fixes 2024-12-08 20:14:35 +02:00
384e214cc7 make : shim cmake 2024-12-08 20:14:35 +02:00
f2c680f893 talk-llama : sync llama.cpp 2024-12-08 20:14:35 +02:00
fbe66da0e5 sync : ggml 2024-12-08 20:14:35 +02:00
a815940e0e ggml : add predefined list of CPU backend variants to build (llama/10626)
* ggml : add predefined list of CPU backend variants to build

* update CPU dockerfiles
2024-12-08 20:14:35 +02:00
904e307bce ggml-cpu : fix HWCAP2_I8MM value (llama/10646) 2024-12-08 20:14:35 +02:00
491ec076b4 vulkan: Implement "fast divide" (mul+shift) for unary ops like copy (llama/10642) 2024-12-08 20:14:35 +02:00
966433fdf2 SYCL : Move to compile time oneMKL interface backend selection for NVIDIA backend (llama/10584)
* [SYCL] Move to Compile Time backend selection on oneMKL Interface for NVIDIA backend

Move to compile time selection to backend to avoid latency at run time.
Add it to all mkl gemm calls and only for NVIDIA backend.

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>

* Formatting

* Address PR comments to increase readibility

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2024-12-08 20:14:35 +02:00
6f1ba9d82d Avoid using __fp16 on ARM with old nvcc (llama/10616) 2024-12-08 20:14:35 +02:00
015ecd0001 vulkan: optimize and reenable split_k (llama/10637)
Use vector loads when possible in mul_mat_split_k_reduce. Use split_k
when there aren't enough workgroups to fill the shaders.
2024-12-08 20:14:35 +02:00
PAB
b7c64a4352 ggml: add GGML_SET Metal kernel + i32 CPU kernel (ggml/1037)
* implemented cpu kernel

* add i32 test cases in test-backend-ops

* typedef `ggml_metal_kargs_set`

* implemented `kernel_set`

* memcpy
2024-12-08 20:14:35 +02:00
PAB
7895d39508 ggml : add GGML_PAD_REFLECT_1D operation (ggml/1034)
* ggml_pad_reflect_1d defined in header

* implemented on CPU

* called the forward pass

* impl Metal kernel

* added Metal kernel

* added OP_PAD_REFLECT_1D in test-backend-ops.cpp

* add test-pad-reflect-1d test case

* test case support multiple backend
2024-12-08 20:14:35 +02:00
22616f00f9 files : remove make artifacts 2024-12-08 20:14:35 +02:00
02c6fcbc2c common : fix compile warning
ggml-ci
2024-12-08 20:14:35 +02:00
3daeacad24 ggml : move AMX to the CPU backend (llama/10570)
ggml : automatic selection of best CPU backend (llama/10606)
2024-12-08 20:14:35 +02:00
4d73962da4 metal : small-batch mat-mul kernels (llama/10581)
* metal : small-batch mat-mul kernels

ggml-ci

* metal : add rest of types

ggml-ci

* metal : final adjustments

ggml-ci

* metal : add comments

ggml-ci
2024-12-08 20:14:35 +02:00
068812650e SYCL: Fix and switch to GGML_LOG system instead of fprintf (llama/10579)
* Switched to GGML_LOG

* Fix missing semicolon
2024-12-08 20:14:35 +02:00
4b7e059e15 ggml-cpu: replace AArch64 NEON assembly with intrinsics in ggml_gemv_q4_0_4x4_q8_0() (llama/10567)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2024-12-08 20:14:35 +02:00
Eve
30e35d7271 vulkan: Dynamic subgroup size support for Q6_K mat_vec (llama/10536)
* subgroup 64 version with subgroup add. 15% faster

scalable version

tested for subgroup sizes 16-128

* check for subgroup multiple of 16 and greater than 16

* subgroup sizes are always a power of 2 (https://github.com/KhronosGroup/GLSL/issues/45)

* force 16 sequential threads per block

* make 16 subgroup size a constant
2024-12-08 20:14:35 +02:00
3623bd58f2 ggml : fix I8MM Q4_1 scaling factor conversion (llama/10562)
ggml-ci
2024-12-08 20:14:35 +02:00
cb847c20a7 ggml-cpu: fix typo in gemv/gemm iq4_nl_4_4 (llama/10580) 2024-12-08 20:14:35 +02:00
964b154a2a sycl : offload of get_rows set to 0 (llama/10432) 2024-12-08 20:14:35 +02:00
d7c2a04bce sycl : Reroute permuted mul_mats through oneMKL (llama/10408)
This PR fixes the failing MUL_MAT tests for the sycl backend.
2024-12-08 20:14:35 +02:00
2bb4ca9cba CANN: RoPE operator optimization (llama/10563)
* [cann] RoPE operator optimization

* [CANN]Code Formatting

---------

Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-12-08 20:14:35 +02:00
a753a82462 vulkan: get the first command buffer submitted sooner (llama/10499)
This is an incremental improvement over #9118 to get work to the GPU a bit
sooner. The first part is to start with a smaller number of nodes before
the first submit, and ramp it up to the current 100 nodes/submit. The
second part is to reduce the dryrun overhead for all the nodes that just
need to request descriptor space.

With these changes I get around 1-2% speedup on RTX 4070 combined with my
old Haswell-era CPU.
2024-12-08 20:14:35 +02:00
276b08d8f0 ggml : remove redundant copyright notice + update authors 2024-12-08 20:14:35 +02:00
4ca1e72fe0 ggml : fix row condition for i8mm kernels (llama/10561)
ggml-ci
2024-12-08 20:14:35 +02:00
16a66f103f cmake : fix ARM feature detection (llama/10543)
ggml-ci
2024-12-08 20:14:35 +02:00
330273901f ggml-cpu: support IQ4_NL_4_4 by runtime repack (llama/10541)
* ggml-cpu: support IQ4_NL_4_4 by runtime repack

* ggml-cpu: add __ARM_FEATURE_DOTPROD guard
2024-12-08 20:14:35 +02:00
42099a9342 kompute : improve backend to pass test_backend_ops (llama/10542)
* kompute: op_unary: reject unsupported parameters

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: softmax: implement ALiBi support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: rope: implement neox and phi3 support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_q4_k permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_[q4_0|q4_1|q8_0] permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_f16 permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

* kompute: op_mul_mat_q6_k permutted support

Signed-off-by: Sergio Lopez <slp@redhat.com>

---------

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-12-08 20:14:35 +02:00
90dd5fca9c CANN: Fix SOC_TYPE compile bug (llama/10519)
* CANN: Fix the bug build fail on Ascend310P under two cases:
1) Manual specify SOC_TYPE
2) Under some unusual compile environment

* Update the cann backend News content: Support F16 and F32 data type model for Ascend 310P NPU.

* fix CANN  compile fail bug: the assert in ascend kernel function doesn't supportted on some CANN version
2024-12-08 20:14:35 +02:00
2490f2a7f8 CANN: ROPE operator optimization (llama/10540)
* [cann] ROPE operator optimization

Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-12-08 20:14:35 +02:00
230e985633 Add some minimal optimizations for CDNA (llama/10498)
* Add some minimal optimizations for CDNA

* ggml_cuda: set launch bounds also for GCN as it helps there too
2024-12-08 20:14:35 +02:00
ae24083f23 metal : fix group_norm support condition (llama/0) 2024-12-08 20:14:35 +02:00
6463e36369 vulkan: define all quant data structures in types.comp (llama/10440) 2024-12-08 20:14:35 +02:00
b3301f7d82 vulkan: Handle GPUs with less shared memory (llama/10468)
There have been reports of failure to compile on systems with <= 32KB
of shared memory (e.g. #10037). This change makes the large tile size
fall back to a smaller size if necessary, and makes mul_mat_id fall
back to CPU if there's only 16KB of shared memory.
2024-12-08 20:14:35 +02:00
ab5d4d93ec vulkan: further optimize q5_k mul_mat_vec (llama/10479) 2024-12-08 20:14:35 +02:00
2d6e9dd723 vulkan: skip integer div/mod in get_offsets for batch_idx==0 (llama/10506) 2024-12-08 20:14:35 +02:00
2f16e51553 vulkan: optimize Q2_K and Q3_K mul_mat_vec (llama/10459) 2024-12-08 20:14:35 +02:00
0f0994902f mtgpu: Add MUSA_DOCKER_ARCH in Dockerfiles && update cmake and make (llama/10516)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2024-12-08 20:14:35 +02:00
5e1fcc1780 vulkan: fix group_norm (llama/10496)
Fix bad calculation of the end of the range. Add a backend test that
covers the bad case (taken from stable diffusion).

Fixes https://github.com/leejet/stable-diffusion.cpp/issues/439.
2024-12-08 20:14:35 +02:00
48f421de23 cmake : enable warnings in llama (llama/10474)
* cmake : enable warnings in llama

ggml-ci

* cmake : add llama_get_flags and respect LLAMA_FATAL_WARNINGS

* cmake : get_flags -> ggml_get_flags

* speculative-simple : fix warnings

* cmake : reuse ggml_get_flags

ggml-ci

* speculative-simple : fix compile warning

ggml-ci
2024-12-08 20:14:35 +02:00
e7afb2b991 ggml-cpu: cmake add arm64 cpu feature check for macos (llama/10487)
* ggml-cpu: cmake add arm64 cpu feature check for macos

* use vmmlaq_s32 for compile option i8mm check
2024-12-08 20:14:35 +02:00
9a5ef7b169 CANN: Improve the Inferencing Performance for Ascend NPU Device (llama/10454)
* improve inferencing performance for ascend npu.

Co-authored-by: Frank Mai <thxCode@thxcode0824@gmail.com>

* some modification after review

* some modifications after review

* restore some modifications

* restore some modifications

---------

Co-authored-by: shanshan shen <shanshanshen333@gmail.com>
Co-authored-by: Frank Mai <thxCode@thxcode0824@gmail.com>
2024-12-08 20:14:35 +02:00
453cc0fcf1 CANN: RoPE and CANCAT operator optimization (llama/10488)
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2024-12-08 20:14:35 +02:00
78dfec6bc5 vulkan: Fix a vulkan-shaders-gen arugment parsing error (llama/10484)
The vulkan-shaders-gen was not parsing the --no-clean argument correctly.
Because the previous code was parsing the arguments which have a value only
and the --no-clean argument does not have a value, it was not being parsed
correctly. This commit can now correctly parse arguments that don't have values.
2024-12-08 20:14:35 +02:00
f6d518fc4c metal : enable mat-vec kernels for bs <= 4 (llama/10491) 2024-12-08 20:14:35 +02:00
ac33379a35 llama : accept a list of devices to use to offload a model (llama/10497)
* llama : accept a list of devices to use to offload a model

* accept `--dev none` to completely disable offloading

* fix dev list with dl backends

* rename env parameter to LLAMA_ARG_DEVICE for consistency
2024-12-08 20:14:35 +02:00
77e3e4a090 ggml : add support for dynamic loading of backends (llama/10469)
* ggml : add support for dynamic loading of backends

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-08 20:14:35 +02:00
b840bb09be metal : minor code formatting 2024-12-08 20:14:35 +02:00
8b1c1c30a7 ggml : do not use ARM features not included in the build (llama/10457) 2024-12-08 20:14:35 +02:00
4b81335f75 CANN: Support Ascend310P to accelerate F32 and F16 Model (llama/10216)
* CANN Support Ascend310P to accelerate F32 and F16 Model

* Add compile option soc type macro ASCEND_310P to ggml-cann lib

* Remove unused code

* Remove the ascend soc_type hard code compile option in CMakelist.txt
2024-12-08 20:14:35 +02:00
2a4b5c9d7e cuda : optimize argmax (llama/10441)
* cuda : optimize argmax

* remove unused parameter

ggml-ci

* fixup : use full warps

ggml-ci

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* fix ub

* ggml : check ne00 <= INT32_MAX in argmax and argsort

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-12-08 20:14:35 +02:00
04662748aa vulkan: predicate max operation in soft_max shaders/soft_max (llama/10437)
Fixes #10434
2024-12-08 20:14:35 +02:00
a117279e13 vulkan: copy iq4_nl LUT into shared memory (llama/10409) 2024-12-08 20:14:35 +02:00
bbb292ed38 vulkan: further optimize mul_mat_vec using larger loads (llama/10387)
* vulkan: Use pipeline_robustness to disable robustness in mul_mat_vec.

Add some early returns for nonexistent rows in mul_mat_vec shaders. These
can only be hit when dispatching a 2D grid of workgroups. Fix the logic
for the 2D grid of workgroups to round up.

Enable the pipeline robustness extension if it's available, and use it to
disable robustness for these pipelines. The instructions to do the bounds
checking contend for the same ALU resources as the bit twiddling dequant
instructions.

* vulkan: Add GLSL structure aliases for quant types to allow larger loads

In Vulkan it's not possible to cast pointer types, so instead you have to
declare an aliased binding for the memory with a different type. This
commit adds aliases for the quant formats using 16b ints, and in a few
places where the struct size is a multiple of 4 also using 32b ints.
Currently only q4_k's aliases are used, but others will be used in
subsequent commits.

* vulkan: use larger loads in q5_k and q6_k shaders.

Similar to the optimization I did in q4_k recently, this vectorizes some loads
and reduces the number of bit twiddling instructions.

* vulkan: use larger K step per iteration in mul_mat_vec.

Add vec4 dequantization functions, and use them to do K=8 per iteration in
mul_mat_vec. This uses 16b loads for the quant values and 128b loads for B
which helps reduce the load on the memory system.

The K_PER_ITER==2 logic is still there, just for F16/F32, and really only
because they support unaligned sizes.

Tweak the num_iters/unrolling logic to be simpler and catch a couple missed
unrolling opportunities.
2024-12-08 20:14:35 +02:00
95e8901e71 add cmake rvv support (llama/10411) 2024-12-08 20:14:35 +02:00
4af9626702 CUDA: remove unnecessary warp reduce in FA (ggml/1032)
* kqmax_new_j in every thread within warp is same after operate at line 199,this reduce can be omit

* same problem in vec32

---------

Co-authored-by: ZhaoXiaoYu <zhao.xiaoyu@zte.com.cn>
2024-12-08 20:14:35 +02:00
PAB
c52d1035de feat: add GGML_UNARY_OP_ARGMAX Metal kernel (ggml/1019)
* implemented argmax kernel

* tpig -> tgpig

* change to strides

* contiguous assertions

* kernel working and tested

* argmax simd parallel implementation

* added 2 new tests for argmax in test-backend-ops

* cosmit

* added 3 tests cases for perf eval

* add test_argmax in make_test_cases_perf

* Update test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-08 20:14:35 +02:00
PAB
5773a14980 metal : add GGML_OP_CONV_TRANSPOSE_1D kernels (ggml/1026)
* wip

* wip implementation f32

* kernel conv transpose 1d f32 working

* initial commit
2024-12-08 20:14:35 +02:00
6939147c47 Do not include arm_neon.h when compiling CUDA code (ggml/1028) 2024-12-08 20:14:35 +02:00
98f9916c9f ggml-opt: fix data corruption (ggml/1022) 2024-12-08 20:14:35 +02:00
021eef1000 ruby : Add low-level methods to transcribe (#2585)
* Add tests for Whisper::Context#full

* Add Whisper::Context#full

* Add tests for Whisper::Error

* Add document of Whisper::Context#full [skip ci]

* Add additional signature for Whisper::Context#full

* Add description to Whisper::Context#full

* Add test for Whisper::Context#full_parallel

* Add Whisper::Context#full_parallel

* Hide Whisper's instance methods from Ruby code

* Add class to test MemoryView

* Build test class before running test

* Add test for MemoryView

* Make Whisper::Context#full and #full_parallel accept MemoryView

* Use Ruby 3.1 on CI

* Add comment on samples data type

* Update README

* Update README

* Remove unused code
2024-11-28 10:33:07 +02:00
a9d06ce151 models : add q8_0 models to download-ggml-model.sh (#2589) 2024-11-28 10:31:54 +02:00
8c6a9b8bb6 ruby : Follow source tree change (#2580)
* Follow whisper.cpp source tree change

* Update whispercpp.gemspec

* Follow whisper.cpp log level change

* Fix paths in GitHub workflow for Ruby bindings

* Use GitHub workflow setting for dependency definition

* Use ternary operator
2024-11-21 17:04:29 +02:00
37c88027e1 whisper : use backend registry (#0) 2024-11-20 21:00:08 +02:00
9db070a3c5 ggml/sched : do not skip views in pre-assignments 2024-11-20 21:00:08 +02:00
7fd8d9c220 whisper : adapt to new ggml (wip) 2024-11-20 21:00:08 +02:00
06e059b8f8 talk-llama : sync llama.cpp 2024-11-20 21:00:08 +02:00
c9f49d5f9d sync : ggml 2024-11-20 21:00:08 +02:00
f4c1d7df39 ggml : sync resolve (skip) (#0) 2024-11-20 21:00:08 +02:00
339b8e559c Add required ggml-base and backend libs to cmake pkg (llama/10407) 2024-11-20 21:00:08 +02:00
5f6d6919b4 cuda : fix CUDA_FLAGS not being applied (llama/10403) 2024-11-20 21:00:08 +02:00
8ee767732f sycl : Add option to set the SYCL architecture for all targets (llama/10266)
* Add option to set the SYCL architecture for all targets
* Convert GGML_SYCL_HIP_TARGET to the more generic GGML_SYCL_ARCH option
* Document that setting GGML_SYCL_ARCH can improve the performance
2024-11-20 21:00:08 +02:00
45f1f9144f vulkan: Optimize soft_max (llama/10301)
* vulkan: Optimize soft_max

Large soft_max could already saturate memory, but small/medium sizes were
pretty slow. The bulk of the gains for them comes from using a smaller
workgroup size, and making the workgroup size match the subgroup size also
makes the barriers much cheaper.

Cache some values in locals to avoid refetching/recomputing. And stamp
out a few "template instantiations" so smaller cases will fully unroll.

Add a missing early return for OOB rows. This happens when there are more
than 512 rows and the dispatch is 512 x H.

* vulkan: Further soft_max optimizations

Restore the workgroup size of 512 case, use it for >1024.

Use unrollable loops for more iteration counts.
2024-11-20 21:00:08 +02:00
53589c8f12 sycl: Revert MUL_MAT_OP support changes (llama/10385) 2024-11-20 21:00:08 +02:00
7ac2f17fac cuda : only use native when supported by cmake (llama/10389) 2024-11-20 21:00:08 +02:00
48862c7b27 vulkan: remove use of null initializer (llama/10372)
Seems like this isn't working for vulkan-over-metal when the array is sized
by a spec constant. Maybe a spirv-cross limitation?
2024-11-20 21:00:08 +02:00
44f7d9f4e3 metal : fox offset integer overflows in im2col (ggml/1015)
-- While running StableDiffusion.cpp locally with Metal some offsets overflow and results in incorrect calculations
2024-11-20 21:00:08 +02:00
fd12302587 Vulkan: Fix device info output format specifiers (llama/10366)
* Vulkan: Fix device info output format specifiers

* Vulkan: Use zu printf specifier for size_t instead of ld
2024-11-20 21:00:08 +02:00
PAB
f80bef4630 metal : add GGML_UNARY_OP_ELU kernel (ggml/1018) 2024-11-20 21:00:08 +02:00
161b443514 CUDA: fix MMV kernel being used for FP16 src1 (llama/10357) 2024-11-20 21:00:08 +02:00
ef7fbe1c66 CMake: fix typo in comment [no ci] (llama/10360) 2024-11-20 21:00:08 +02:00
0879d3599e llama : only use default buffer types for the KV cache (llama/10358) 2024-11-20 21:00:08 +02:00
2a444dc5bd metal : refactor kernel args into structs (llama/10238)
* metal : add kernel arg structs (wip)

* metal : fattn args

ggml-ci

* metal : cont + avoid potential int overflow [no ci]

* metal : mul mat struct (wip)

* cont : mul mat vec

* cont : pass by reference

* cont : args is first argument

* cont : use char ptr

* cont : shmem style

* cont : thread counters style

* cont : mul mm id

ggml-ci

* cont : int safety + register optimizations

ggml-ci

* metal : GGML_OP_CONCAT

ggml-ci

* metal : GGML_OP_ADD, GGML_OP_SUB, GGML_OP_MUL, GGML_OP_DIV

* metal : GGML_OP_REPEAT

* metal : GGML_OP_CPY

* metal : GGML_OP_RMS_NORM

* metal : GGML_OP_NORM

* metal : add TODOs for rest of ops

* ggml : add ggml-metal-impl.h

ggml-ci
2024-11-20 21:00:08 +02:00
45cf1634dc ggml : fix undefined reference to 'getcpu' (llama/10354)
https://github.com/ggerganov/llama.cpp/issues/10352
2024-11-20 21:00:08 +02:00
dcb2922d1d CUDA: remove DMMV, consolidate F16 mult mat vec (llama/10318) 2024-11-20 21:00:08 +02:00
3c5c751174 CMake: default to -arch=native for CUDA build (llama/10320) 2024-11-20 21:00:08 +02:00
24ad19d0e9 ggml : fix possible buffer use after free in sched reserve (llama/9930) 2024-11-20 21:00:08 +02:00
bd574b05af ggml : inttypes.h -> cinttypes (llama/0)
ggml-ci
2024-11-20 21:00:08 +02:00
7e0eafcb1e ggml : adapt AMX to tensor->grad removal (llama/0)
ggml-ci
2024-11-20 21:00:08 +02:00
75670ae673 ggml : fix compile warnings (llama/0)
ggml-ci
2024-11-20 21:00:08 +02:00
d4fcdf602b llamafile : fix include path (llama/0)
ggml-ci
2024-11-20 21:00:08 +02:00
1bebb1a116 vulkan: Optimize some mat-vec mul quant shaders (llama/10296)
Compute two result elements per workgroup (for Q{4,5}_{0,1}). This reuses
the B loads across the rows and also reuses some addressing calculations.
This required manually partially unrolling the loop, since the compiler
is less willing to unroll outer loops.

Add bounds-checking on the last iteration of the loop. I think this was at
least partly broken before.

Optimize the Q4_K shader to vectorize most loads and reduce the number of
bit twiddling instructions.
2024-11-20 21:00:08 +02:00
ee437cde59 ggml : optimize Q4_0 into Q4_0_X_Y repack (llama/10324) 2024-11-20 21:00:08 +02:00
c1506d38cf Make updates to fix issues with clang-cl builds while using AVX512 flags (llama/10314) 2024-11-20 21:00:08 +02:00
c9541741e6 ggml: new optimization interface (ggml/988)
* ggml: new optimization interface

remove test2.c, test3.c

store adamw params in tensor

move grads from tensor to graph

* avoid segfault upon API misuse

* add ggml-opt.h to public headers

* remove dependence of ggml-opt.cpp on ggml-cpu.h
2024-11-20 21:00:08 +02:00
6a55015dc4 ggml : remove duplicated sources from the last sync (ggml/1017)
* ggml : remove duplicated sources from the last sync

ggml-ci

* cont : remove FindSIMD.cmake [no ci]
2024-11-20 21:00:08 +02:00
7e86030d4d ggml : fix some build issues 2024-11-20 21:00:08 +02:00
401fbea326 sync : leftovers (ggml/0)
ggml-ci
2024-11-20 21:00:08 +02:00
44d1cbdfe9 cmake : restore CMakeLists.txt (llama/10256)
ggml-ci
2024-11-20 21:00:08 +02:00
Eve
3216efef2e AVX BF16 and single scale quant optimizations (llama/10212)
* use 128 bit loads (i've tried 256->128 to death and its slower)

* double accumulator

* avx bf16 vec dot

* +3% q4_0 inference

* +7% tg +5% pp compared to master

* slower f16c version, kep for reference

* 256b version, also slow. i tried :)

* revert f16

* faster with madd

* split to functions

* Q8_0 and IQ4_NL, 5-7% faster

* fix potential overflow (performance reduced)

* 16 bit add for q4_0 only

* merge
2024-11-20 21:00:08 +02:00
2c0484ebf7 sycl: Use syclcompat::dp4a (llama/10267)
* sycl: Use syclcompat::dp4a

* Using the syclcompat version allow the compiler to optimize the
  operation with native function

* Update news section

* Update CI Windows oneAPI version to 2025.0

* Reword doc

* Call syclcompat::dp4a inside dpct::dp4a

This reverts commit 90cb61d692d61360b46954a1c7f780bd2e569b73.
2024-11-20 21:00:08 +02:00
3298916e5e backend cpu: add online flow for aarch64 Q4_0 GEMV/GEMM kernels (llama/9921)
* backend-cpu: add online flow for aarch64 Q4_0 GEMV/GEMM kernels

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-11-20 21:00:08 +02:00
746bf2596f ggml : build backends as libraries (llama/10256)
* ggml : build backends as libraries

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: R0CKSTAR <xiaodong.ye@mthreads.com>
2024-11-20 21:00:08 +02:00
5f7e094ccb scripts : update sync 2024-11-20 21:00:08 +02:00
6266a9f9e5 release : v1.7.2 2024-11-19 18:54:22 +02:00
d24f981fb2 sycl: fix example build (#2570) 2024-11-18 14:57:23 +02:00
01d3bd7d5c ci : use local ggml in Android build (#2567) 2024-11-16 20:45:41 +02:00
bb12cd9b77 ggml : tmp workaround for whisper.cpp (skip) (#2565) 2024-11-16 20:21:24 +02:00
486 changed files with 76001 additions and 50503 deletions

View File

@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
ARG CUDA_DOCKER_ARCH=all ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y build-essential git cmake libsdl2-dev apt-get install -y build-essential git cmake libsdl2-dev wget git
WORKDIR /app WORKDIR /app
@ -23,6 +23,6 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS # Enable cuBLAS
ENV GGML_CUDA=1 ENV GGML_CUDA=1
RUN make RUN make base.en
ENTRYPOINT ["/app/main"] ENTRYPOINT ["/app/main"]

View File

@ -17,7 +17,7 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
ENV GGML_CUDA=1 ENV GGML_CUDA=1
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y build-essential libsdl2-dev \ apt-get install -y build-essential libsdl2-dev wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/* && rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
# Ref: https://stackoverflow.com/a/53464012 # Ref: https://stackoverflow.com/a/53464012
@ -25,7 +25,7 @@ ENV CUDA_MAIN_VERSION=12.3
ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
COPY .. . COPY .. .
RUN make RUN make base.en
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
ENV CUDA_MAIN_VERSION=12.3 ENV CUDA_MAIN_VERSION=12.3
@ -33,7 +33,7 @@ ENV LD_LIBRARY_PATH /usr/local/cuda-${CUDA_MAIN_VERSION}/compat:$LD_LIBRARY_PATH
WORKDIR /app WORKDIR /app
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y curl ffmpeg \ apt-get install -y curl ffmpeg wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/* && rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app COPY --from=build /app /app

View File

@ -2,17 +2,17 @@ FROM ubuntu:22.04 AS build
WORKDIR /app WORKDIR /app
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y build-essential \ apt-get install -y build-essential wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/* && rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY .. . COPY .. .
RUN make RUN make base.en
FROM ubuntu:22.04 AS runtime FROM ubuntu:22.04 AS runtime
WORKDIR /app WORKDIR /app
RUN apt-get update && \ RUN apt-get update && \
apt-get install -y curl ffmpeg libsdl2-dev \ apt-get install -y curl ffmpeg libsdl2-dev wget cmake git \
&& rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/* && rm -rf /var/lib/apt/lists/* /var/cache/apt/archives/*
COPY --from=build /app /app COPY --from=build /app /app

View File

@ -10,8 +10,8 @@ on:
- whisper.h - whisper.h
jobs: jobs:
ubuntu-latest: ubuntu-22:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
steps: steps:
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:

View File

@ -3,73 +3,53 @@ on:
push: push:
paths: paths:
- bindings/ruby/** - bindings/ruby/**
- src/whisper.cpp - src/**/*.c
- include/whisper.h - src/**/*.cpp
- ggml/src/ggml.c - src/**/*.h
- ggml/src/ggml-impl.h - src/**/*.m
- ggml/src/ggml-aarch64.h - src/**/*.metal
- ggml/src/ggml-aarch64.c - include/**/*.c
- ggml/src/ggml-alloc.c - include/**/*.cpp
- ggml/src/ggml-backend-impl.h - include/**/*.h
- ggml/src/ggml-backend.cpp - include/**/*.m
- ggml/src/ggml-common.h - include/**/*.metal
- ggml/src/ggml-quants.h - ggml/**/*.c
- ggml/src/ggml-quants.c - ggml/**/*.cpp
- ggml/src/ggml-cpu-impl.h - ggml/**/*.h
- ggml/src/ggml-metal.m - ggml/**/*.m
- ggml/src/ggml-metal.metal - ggml/**/*.metal
- ggml/src/ggml-blas.cpp
- ggml/include/ggml.h
- ggml/include/ggml-alloc.h
- ggml/include/ggml-backend.h
- ggml/include/ggml-cuda.h
- ggml/include/ggml-kompute.h
- ggml/include/ggml-metal.h
- ggml/include/ggml-sycl.h
- ggml/include/ggml-vulkan.h
- ggml/include/ggml-blas.h
- scripts/get-flags.mk - scripts/get-flags.mk
- examples/dr_wav.h - examples/dr_wav.h
pull_request: pull_request:
paths: paths:
- bindings/ruby/** - bindings/ruby/**
- src/whisper.cpp - src/**/*.c
- include/whisper.h - src/**/*.cpp
- ggml/src/ggml.c - src/**/*.h
- ggml/src/ggml-impl.h - src/**/*.m
- ggml/src/ggml-aarch64.h - src/**/*.metal
- ggml/src/ggml-aarch64.c - include/**/*.c
- ggml/src/ggml-alloc.c - include/**/*.cpp
- ggml/src/ggml-backend-impl.h - include/**/*.h
- ggml/src/ggml-backend.cpp - include/**/*.m
- ggml/src/ggml-common.h - include/**/*.metal
- ggml/src/ggml-quants.h - ggml/**/*.c
- ggml/src/ggml-quants.c - ggml/**/*.cpp
- ggml/src/ggml-cpu-impl.h - ggml/**/*.h
- ggml/src/ggml-metal.m - ggml/**/*.m
- ggml/src/ggml-metal.metal - ggml/**/*.metal
- ggml/src/ggml-blas.cpp
- ggml/include/ggml.h
- ggml/include/ggml-alloc.h
- ggml/include/ggml-backend.h
- ggml/include/ggml-cuda.h
- ggml/include/ggml-kompute.h
- ggml/include/ggml-metal.h
- ggml/include/ggml-sycl.h
- ggml/include/ggml-vulkan.h
- ggml/include/ggml-blas.h
- scripts/get-flags.mk - scripts/get-flags.mk
- examples/dr_wav.h - examples/dr_wav.h
jobs: jobs:
ubuntu-latest: ubuntu-22:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
defaults: defaults:
run: run:
working-directory: bindings/ruby working-directory: bindings/ruby
steps: steps:
- uses: ruby/setup-ruby@v1 - uses: ruby/setup-ruby@v1
with: with:
ruby-version: '3.0' ruby-version: '3.1'
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- run: rake test - run: rake test

View File

@ -1,18 +1,28 @@
name: CI name: CI
on: [push, pull_request]
on:
push:
branches:
- master
pull_request:
types: [opened, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
env: env:
ubuntu_image: "ubuntu:22.04" ubuntu_image: "ubuntu:22.04"
VCPKG_BINARY_SOURCES: "clear;x-gha,readwrite" VCPKG_BINARY_SOURCES: "clear;x-gha,readwrite"
jobs: jobs:
ubuntu-latest: ubuntu-22:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le] arch: [linux/amd64, linux/ppc64le]
steps: steps:
- name: Clone - name: Clone
@ -28,9 +38,61 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c ' -w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e set -e
apt update apt update
apt install -y build-essential libsdl2-dev apt install -y build-essential libsdl2-dev cmake git
make cmake -B build
make stream' cmake --build build --config Release -j $(nproc)'
ubuntu-22-arm64:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
arch: [linux/arm64]
steps:
- name: Clone
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential libsdl2-dev cmake git
cmake -B build -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8-a
cmake --build build --config Release -j $(nproc)'
ubuntu-22-arm-v7:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
arch: [linux/arm/v7]
steps:
- name: Clone
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential libsdl2-dev cmake git
cmake -B build -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv7-a+fp
cmake --build build --config Release -j $(nproc)'
macOS-latest: macOS-latest:
runs-on: macOS-latest runs-on: macOS-latest
@ -42,39 +104,39 @@ jobs:
- name: Dependencies - name: Dependencies
run: | run: |
brew update brew update
brew install sdl2 brew install sdl2 cmake
- name: Build - name: Build
run: | run: |
make cmake -B build
make stream cmake --build build --config Release
freeBSD-latest: # freeBSD-latest:
runs-on: macos-12 # runs-on: macos-12
#
# steps:
# - name: Clone
# uses: actions/checkout@v4
#
# - name: Build
# uses: cross-platform-actions/action@v0.24.0
# with:
# operating_system: freebsd
# version: '13.3'
# run: |
# sudo pkg update
# sudo pkg install -y gmake sdl2 cmake
# cmake -B build
# cmake --build build --config Release
steps: ubuntu-22-gcc:
- name: Clone runs-on: ubuntu-22.04
uses: actions/checkout@v4
- name: Build
uses: cross-platform-actions/action@v0.24.0
with:
operating_system: freebsd
version: '13.3'
run: |
sudo pkg update
sudo pkg install -y gmake sdl2
gmake
gmake stream
ubuntu-latest-gcc:
runs-on: ubuntu-latest
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
build: [Debug, Release] build: [Debug, Release]
arch: [linux/amd64, linux/arm64, linux/arm/v7, linux/ppc64le] arch: [linux/amd64, linux/ppc64le]
steps: steps:
- name: Clone - name: Clone
@ -90,13 +152,69 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c ' -w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e set -e
apt update apt update
apt install -y build-essential cmake libsdl2-dev apt install -y build-essential cmake libsdl2-dev git
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make make
ctest -L gh --output-on-failure' ctest -L gh --output-on-failure'
ubuntu-latest-clang: ubuntu-22-gcc-arm64:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
build: [Debug, Release]
arch: [linux/arm64]
steps:
- name: Clone
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev git
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8-a
make
ctest -L gh --output-on-failure'
ubuntu-22-gcc-arm-v7:
runs-on: ubuntu-22.04
strategy:
fail-fast: false
matrix:
build: [Debug, Release]
arch: [linux/arm/v7]
steps:
- name: Clone
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Build ${{ matrix.arch }}
run: |
docker run --platform ${{ matrix.arch }} --rm \
-v ${{ github.workspace }}:/workspace \
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e
apt update
apt install -y build-essential cmake libsdl2-dev git
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv7-a+fp
make
ctest -L gh --output-on-failure'
ubuntu-22-clang:
runs-on: ubuntu-22.04
strategy: strategy:
fail-fast: false fail-fast: false
@ -121,13 +239,13 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c ' -w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e set -e
apt update apt update
apt install -y clang build-essential cmake libsdl2-dev apt install -y clang build-essential cmake libsdl2-dev git
cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang cmake . -DWHISPER_SDL2=ON -DCMAKE_BUILD_TYPE=${{ matrix.build }} -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang
make make
ctest -L gh --output-on-failure' ctest -L gh --output-on-failure'
ubuntu-latest-gcc-sanitized: ubuntu-22-gcc-sanitized:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
strategy: strategy:
fail-fast: false fail-fast: false
@ -149,7 +267,7 @@ jobs:
-w /workspace ${{ env.ubuntu_image }} /bin/sh -c ' -w /workspace ${{ env.ubuntu_image }} /bin/sh -c '
set -e set -e
apt update apt update
apt install -y build-essential cmake apt install -y build-essential cmake git
cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON cmake . -DCMAKE_BUILD_TYPE=Debug -DWHISPER_SANITIZE_${{ matrix.sanitizer }}=ON
make make
ctest -L gh --output-on-failure' ctest -L gh --output-on-failure'
@ -184,12 +302,12 @@ jobs:
shell: bash shell: bash
run: | run: |
sudo apt update sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp sudo apt install intel-oneapi-compiler-dpcpp-cpp git
- name: install oneAPI MKL library - name: install oneAPI MKL library
shell: bash shell: bash
run: | run: |
sudo apt install intel-oneapi-mkl-devel sudo apt install intel-oneapi-mkl-devel git
- name: Clone - name: Clone
id: checkout id: checkout
@ -234,7 +352,7 @@ jobs:
shell: bash shell: bash
run: | run: |
sudo apt update sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp sudo apt install intel-oneapi-compiler-dpcpp-cpp git
- name: install oneAPI MKL library - name: install oneAPI MKL library
shell: bash shell: bash
@ -275,30 +393,16 @@ jobs:
msystem: ${{matrix.sys}} msystem: ${{matrix.sys}}
install: >- install: >-
base-devel base-devel
git
mingw-w64-${{matrix.env}}-toolchain mingw-w64-${{matrix.env}}-toolchain
mingw-w64-${{matrix.env}}-cmake mingw-w64-${{matrix.env}}-cmake
mingw-w64-${{matrix.env}}-SDL2 mingw-w64-${{matrix.env}}-SDL2
mingw-w64-${{matrix.env}}-openblas mingw-w64-${{matrix.env}}-openblas
- name: Build using make
shell: msys2 {0}
run: |
make -j $(nproc)
- name: Clean after building using make
shell: msys2 {0}
run: |
make clean
- name: Build using make w/ OpenBLAS
shell: msys2 {0}
run: |
make GGML_OPENBLAS=1 -j $(nproc)
- name: Build using CMake - name: Build using CMake
shell: msys2 {0} shell: msys2 {0}
run: | run: |
cmake -B build cmake -B build -DWHISPER_SDL2=ON
cmake --build build --config ${{ matrix.build }} -j $(nproc) cmake --build build --config ${{ matrix.build }} -j $(nproc)
- name: Clean after building using CMake - name: Clean after building using CMake
@ -447,7 +551,6 @@ jobs:
windows-cublas: windows-cublas:
runs-on: windows-2019 runs-on: windows-2019
strategy: strategy:
matrix: matrix:
build: [Release] build: [Release]
@ -457,12 +560,10 @@ jobs:
cuda-toolkit: [12.2.0, 11.8.0] cuda-toolkit: [12.2.0, 11.8.0]
include: include:
- arch: x64 - arch: x64
s2arc: x64 sdl2: ON
- sdl2: ON sdl2_ver: 2.28.5
s2ver: 2.28.5
steps: steps:
- name: Clone - name: Clone repository
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Add msbuild to PATH - name: Add msbuild to PATH
@ -474,45 +575,50 @@ jobs:
with: with:
cuda: '${{ matrix.cuda-toolkit }}' cuda: '${{ matrix.cuda-toolkit }}'
- name: Install 7-Zip
run: choco install 7zip -y
- name: Fetch SDL2 and set SDL2_DIR - name: Fetch SDL2 and set SDL2_DIR
if: matrix.sdl2 == 'ON' if: matrix.sdl2 == 'ON'
run: | run: |
C:/msys64/usr/bin/wget.exe -qO sdl2.zip https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.s2ver }}/SDL2-devel-${{ matrix.s2ver }}-VC.zip Invoke-WebRequest -Uri https://github.com/libsdl-org/SDL/releases/download/release-${{ matrix.sdl2_ver }}/SDL2-devel-${{ matrix.sdl2_ver }}-VC.zip -OutFile sdl2.zip
7z x sdl2.zip 7z x sdl2.zip
echo "SDL2_DIR=$env:GITHUB_WORKSPACE/SDL2-${{ matrix.s2ver }}/cmake" >> $env:GITHUB_ENV echo "SDL2_DIR=${{ github.workspace }}\SDL2-${{ matrix.sdl2_ver }}\cmake" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "${{ github.workspace }}\SDL2-${{ matrix.sdl2_ver }}\cmake" > SDL2_PATH.txt
- name: Configure - name: Configure CMake
run: > shell: cmd
cmake -S . -B ./build -A ${{ matrix.arch }} run: |
-DCMAKE_BUILD_TYPE=${{ matrix.build }} cmake -S . -B ./build -A ${{ matrix.arch }} ^
-DGGML_CUDA=${{ matrix.cublas }} -DCMAKE_BUILD_TYPE=${{ matrix.build }} ^
-DWHISPER_SDL2=${{ matrix.sdl2 }} -DGGML_CUDA=${{ matrix.cublas }} ^
-DCMAKE_CUDA_ARCHITECTURES=all ^
-DWHISPER_SDL2=${{ matrix.sdl2 }} ^
-DSDL2_DIR="%SDL2_DIR%"
- name: Build ${{ matrix.cuda-toolkit }} - name: Build Project
shell: cmd
run: | run: |
cd ./build cd ./build
cmake --build . --config ${{ matrix.build }} cmake --build . --config ${{ matrix.build }}
- name: Copy CUDA DLLs - name: Copy CUDA DLLs
run: > run: |
Copy-Item -PassThru Get-ChildItem "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/" -Filter "*.dll" |
-Path "${{ steps.cuda-toolkit.outputs.CUDA_PATH }}/bin/*.dll" Copy-Item -Destination "build/bin/${{ matrix.build }}"
-Include cudart64_*,cublas64_*,cublasLt64_*
-Destination build/bin/${{ matrix.build }}
- name: Copy SDL2.dll - name: Copy SDL2.dll
if: matrix.sdl2 == 'ON' if: matrix.sdl2 == 'ON'
run: copy "$env:SDL2_DIR/../lib/${{ matrix.s2arc }}/SDL2.dll" build/bin/${{ matrix.build }} run: copy "$env:SDL2_DIR/../lib/${{ matrix.arch }}/SDL2.dll" build/bin/${{ matrix.build }}
- name: Upload binaries - name: Upload binaries
if: matrix.sdl2 == 'ON'
uses: actions/upload-artifact@v4 uses: actions/upload-artifact@v4
with: with:
name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }} name: whisper-cublas-${{ matrix.cuda-toolkit }}-bin-${{ matrix.arch }}
path: build/bin/${{ matrix.build }} path: build/bin/${{ matrix.build }}
emscripten: emscripten:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
strategy: strategy:
matrix: matrix:
@ -533,7 +639,7 @@ jobs:
emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }} emcmake cmake . -DCMAKE_BUILD_TYPE=${{ matrix.build }}
make make
ios: ios-xcode-build:
runs-on: macos-latest runs-on: macos-latest
strategy: strategy:
@ -541,7 +647,7 @@ jobs:
build: [Release] build: [Release]
steps: steps:
- name: Clone - name: Checkout code
uses: actions/checkout@v4 uses: actions/checkout@v4
- name: Configure - name: Configure
@ -549,14 +655,37 @@ jobs:
cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin cp models/for-tests-ggml-base.en.bin models/ggml-base.en.bin
mkdir models/ggml-base.en-encoder.mlmodelc mkdir models/ggml-base.en-encoder.mlmodelc
- name: Build
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
cmake -G Xcode .. \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DWHISPER_BUILD_EXAMPLES=OFF \
-DWHISPER_BUILD_TESTS=OFF \
-DWHISPER_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
sudo cmake --install . --config Release
- name: xcodebuild for swift package
id: xcodebuild
run: |
xcodebuild -scheme whisper-Package -destination 'generic/platform=iOS'
- name: Build objc example - name: Build objc example
run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphonesimulator build run: xcodebuild -project examples/whisper.objc/whisper.objc.xcodeproj -scheme whisper.objc -configuration ${{ matrix.build }} -sdk iphoneos CODE_SIGN_IDENTITY="" CODE_SIGNING_REQUIRED=NO build
- name: Build swiftui example - name: Build swiftui example
run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphonesimulator build run: xcodebuild -project examples/whisper.swiftui/whisper.swiftui.xcodeproj -scheme WhisperCppDemo -configuration ${{ matrix.build }} -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
android: android:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
steps: steps:
- name: Clone - name: Clone
@ -564,12 +693,6 @@ jobs:
with: with:
path: whisper path: whisper
- name: Clone
uses: actions/checkout@v4
with:
repository: ggerganov/ggml
path: ggml
- name: Install Java - name: Install Java
uses: actions/setup-java@v4 uses: actions/setup-java@v4
with: with:
@ -588,11 +711,11 @@ jobs:
run: | run: |
export PATH_TO_GGML=$PWD/ggml export PATH_TO_GGML=$PWD/ggml
cd whisper/examples/whisper.android cd whisper/examples/whisper.android
./gradlew assembleRelease --no-daemon -PGGML_HOME=$PATH_TO_GGML ./gradlew assembleRelease --no-daemon
# TODO: disable because of following fail: https://github.com/ggerganov/whisper.cpp/actions/runs/11019444420/job/30627193602 # TODO: disable because of following fail: https://github.com/ggerganov/whisper.cpp/actions/runs/11019444420/job/30627193602
# android_java: # android_java:
# runs-on: ubuntu-latest # runs-on: ubuntu-22.04
# #
# steps: # steps:
# - name: Clone # - name: Clone
@ -661,7 +784,7 @@ jobs:
# PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }} # PGP_PASSPHRASE: ${{ secrets.GPG_PASSPHRASE }}
quantize: quantize:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
steps: steps:
- name: Clone - name: Clone
@ -670,5 +793,6 @@ jobs:
- name: Test quantize - name: Test quantize
run: | run: |
./models/download-ggml-model.sh tiny.en ./models/download-ggml-model.sh tiny.en
make quantize cmake -B build
./quantize models/ggml-tiny.en.bin models/ggml-tiny.en-q4_0.bin q4_0 cmake --build build --config Release
./build/bin/quantize models/ggml-tiny.en.bin models/ggml-tiny.en-q4_0.bin q4_0

View File

@ -11,13 +11,13 @@ jobs:
name: Push Docker image to Docker Hub name: Push Docker image to Docker Hub
if: github.event.pull_request.draft == false if: github.event.pull_request.draft == false
runs-on: ubuntu-latest runs-on: ubuntu-22.04
env: env:
COMMIT_SHA: ${{ github.sha }} COMMIT_SHA: ${{ github.sha }}
strategy: strategy:
matrix: matrix:
config: config:
- { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64,linux/arm64" } - { tag: "main", dockerfile: ".devops/main.Dockerfile", platform: "linux/amd64" }
#TODO: the cuda image keeps failing - disable for now #TODO: the cuda image keeps failing - disable for now
# https://github.com/ggerganov/whisper.cpp/actions/runs/11019444428/job/30602020339 # https://github.com/ggerganov/whisper.cpp/actions/runs/11019444428/job/30602020339
#- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" } #- { tag: "main-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platform: "linux/amd64" }

View File

@ -10,8 +10,8 @@ on:
- whisper.h - whisper.h
jobs: jobs:
addon_node-ubuntu-latest: addon_node-ubuntu-22:
runs-on: ubuntu-latest runs-on: ubuntu-22.04
strategy: strategy:
matrix: matrix:
node-version: [ 16.x, 18.x ] node-version: [ 16.x, 18.x ]
@ -22,7 +22,7 @@ jobs:
- name: Dependencies - name: Dependencies
run: | run: |
sudo apt-get update sudo apt-get update
sudo apt-get install build-essential sudo apt-get install build-essential git
sudo apt-get install cmake sudo apt-get install cmake
sudo apt-get install libsdl2-dev sudo apt-get install libsdl2-dev

4
.gitignore vendored
View File

@ -1,5 +1,6 @@
*.o *.o
*.a *.a
*.d
.cache/ .cache/
.coreml/ .coreml/
.test/ .test/
@ -19,6 +20,9 @@ build-*/
.swiftpm .swiftpm
*.metallib *.metallib
ggml-metal-embed.metal
ggml-metal-embed.metal.tmp
/main /main
/stream /stream
/command /command

211
AUTHORS
View File

@ -1,34 +1,51 @@
# date: Tue Apr 9 20:27:03 EEST 2024 # date: Tue Feb 4 13:03:35 EET 2025
# this file is auto-generated by scripts/gen-authors.sh # this file is auto-generated by scripts/gen-authors.sh
0/0 <zero@imaskeleton.me> 0/0 <zero@imaskeleton.me>
0cc4m <picard12@live.de> 0cc4m <picard12@live.de>
0xsourcecode <134374803+0xsourcecode@users.noreply.github.com> 0xsourcecode <134374803+0xsourcecode@users.noreply.github.com>
65a <10104049+65a@users.noreply.github.com>
AIWintermuteAI <32562299+AIWintermuteAI@users.noreply.github.com>
AT <manyoso@users.noreply.github.com> AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi> Aarni Koskela <akx@iki.fi>
Aaron Pham <29749331+aarnphm@users.noreply.github.com> Aaron Pham <29749331+aarnphm@users.noreply.github.com>
Aaron Taylor <aaron@exphat.com> Aaron Taylor <aaron@exphat.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com> Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Abitofevrything <54505189+abitofevrything@users.noreply.github.com> Abitofevrything <54505189+abitofevrything@users.noreply.github.com>
Adam Jones <domdomegg+git@gmail.com>
Adrien Gallouët <adrien@gallouet.fr>
Adrien Gallouët <angt@huggingface.co>
AfryMask <AfryMask@163.com> AfryMask <AfryMask@163.com>
Ahmad Bilal <ahmad.bilal@empglabs.com> Ahmad Bilal <ahmad.bilal@empglabs.com>
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com> AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
AidanBeltonS <aidan.belton@codeplay.com>
Akarshan Biswas <akarshan.biswas@gmail.com>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Akash Mahajan <akash7190@gmail.com> Akash Mahajan <akash7190@gmail.com>
Akash Mahajan <akashmjn@stanford.edu> Akash Mahajan <akashmjn@stanford.edu>
Al Hoang <3811822-hoanga@users.noreply.gitlab.com> Al Hoang <3811822-hoanga@users.noreply.gitlab.com>
Alan <unknown> Alan <unknown>
Albert Jin <albert.jin@gmail.com>
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
Aleksander Andrzejewski <18704749+aleksanderandrzejewski@users.noreply.github.com> Aleksander Andrzejewski <18704749+aleksanderandrzejewski@users.noreply.github.com>
Alex Azarov <alex@azarov.by> Alex Azarov <alex@azarov.by>
Alex Bacart <13940752+alex-bacart@users.noreply.github.com> Alex Bacart <13940752+alex-bacart@users.noreply.github.com>
Alex Evgrashin <aevgrashin@yandex.ru> Alex Evgrashin <aevgrashin@yandex.ru>
Alex O'Connell <35843486+acon96@users.noreply.github.com>
Alexandr Graschenkov <alexandr.graschenkov91@gmail.com> Alexandr Graschenkov <alexandr.graschenkov91@gmail.com>
Alexandru Mariuti <alex@mariuti.com> Alexandru Mariuti <alex@mariuti.com>
Alexey Kharlamov <alexey@kharlamov.biz> Alexey Kharlamov <alexey@kharlamov.biz>
Alfredo Montesinos <alfredo.montesinos@g.austincc.edu> Alfredo Montesinos <alfredo.montesinos@g.austincc.edu>
Ali Alameh <ali.alameh@isae.edu.lb> Ali Alameh <ali.alameh@isae.edu.lb>
Alter <0x7c48@gmail.com>
Ananta Bastola <anantarajbastola@gmail.com> Ananta Bastola <anantarajbastola@gmail.com>
Andreas Kieslinger <47689530+aendk@users.noreply.github.com>
Andreas Lubbe <git@lubbe.org>
Andreu Huguet <andreuhuguet@gmail.com> Andreu Huguet <andreuhuguet@gmail.com>
Andrew Huynh <a5thuynh@gmail.com> Andrew Huynh <a5thuynh@gmail.com>
Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
Andrew S <andrews54757@gmail.com> Andrew S <andrews54757@gmail.com>
Andy Maloney <asmaloney@gmail.com> Andy Maloney <asmaloney@gmail.com>
Anton Kostin <masguit42@users.noreply.github.com> Anton Kostin <masguit42@users.noreply.github.com>
@ -40,8 +57,11 @@ AustinMroz <austinmroz@utexas.edu>
Avik Sengupta <avik@sengupta.net> Avik Sengupta <avik@sengupta.net>
Bader-eddine Ouaich <49657842+baderouaich@users.noreply.github.com> Bader-eddine Ouaich <49657842+baderouaich@users.noreply.github.com>
Baffin Lee <baffinlee@gmail.com> Baffin Lee <baffinlee@gmail.com>
Ben Ashbaugh <ben.ashbaugh@intel.com>
Ben Nortier <bjnortier@gmail.com> Ben Nortier <bjnortier@gmail.com>
Benjamin Heiniger <benjamin.heiniger@bluewin.ch> Benjamin Heiniger <benjamin.heiniger@bluewin.ch>
Bernhard M. Wiedemann <githubbmwprimary@lsmod.de>
Binozo <70137898+Binozo@users.noreply.github.com>
Bo-Yi Wu <appleboy.tw@gmail.com> Bo-Yi Wu <appleboy.tw@gmail.com>
Boris Bliznioukov <blib@mail.com> Boris Bliznioukov <blib@mail.com>
Borislav Stanimirov <b.stanimirov@abv.bg> Borislav Stanimirov <b.stanimirov@abv.bg>
@ -49,47 +69,86 @@ Brad Murray <59848399+bradmurray-dt@users.noreply.github.com>
Brian Murray <brian@bmurray.ca> Brian Murray <brian@bmurray.ca>
CRD716 <crd716@gmail.com> CRD716 <crd716@gmail.com>
Canis Lupus <Canis-UK@users.noreply.github.com> Canis Lupus <Canis-UK@users.noreply.github.com>
Carlos Zoido <mrgalleta@gmail.com>
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com> Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
CarterLi999 <664681047@qq.com>
ChangSeok Oh <shivamidow@users.noreply.github.com> ChangSeok Oh <shivamidow@users.noreply.github.com>
Changyeon Kim <cyzero.kim@samsung.com>
Chaoqun <27287694+OpenWaygate@users.noreply.github.com> Chaoqun <27287694+OpenWaygate@users.noreply.github.com>
Charles Xu <63788048+chaxu01@users.noreply.github.com>
Charles Xu <charles.xu@arm.com>
Chen Xi <xi2.chen@intel.com>
Chen Xi <xixichen08@foxmail.com>
Chenguang Li <87689256+noemotiovon@users.noreply.github.com>
Chia-Hsiang Cheng <88014292+garychia@users.noreply.github.com> Chia-Hsiang Cheng <88014292+garychia@users.noreply.github.com>
Chidi Williams <williamschidi1@gmail.com> Chidi Williams <williamschidi1@gmail.com>
Chris Elrod <elrodc@gmail.com>
Christian <12550267+iceychris@users.noreply.github.com> Christian <12550267+iceychris@users.noreply.github.com>
Christian Kastner <ckk@kvr.at>
Clifford Heath <clifford.heath@gmail.com> Clifford Heath <clifford.heath@gmail.com>
Clint Herron <hanclinto@gmail.com>
Colin <github@whoisc.cc> Colin <github@whoisc.cc>
Conrad Kramer <conrad@conradkramer.com>
Corey Earwood <iamcgn+github@gmail.com>
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
DAN™ <dranger003@gmail.com>
DGdev91 <DGdev91@users.noreply.github.com> DGdev91 <DGdev91@users.noreply.github.com>
Damian Czaja <trojan295@protonmail.com> Damian Czaja <trojan295@protonmail.com>
Dan Johansson <164997844+eddnjjn@users.noreply.github.com>
Dan Johansson <dan.johansson@arm.com>
Daniel Bevenius <daniel.bevenius@gmail.com> Daniel Bevenius <daniel.bevenius@gmail.com>
Daniel Valdivia <18384552+dvaldivia@users.noreply.github.com>
Daniel Ziegenberg <daniel@ziegenberg.at>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
Dave <dave-fl@users.noreply.github.com>
Dave Airlie <airlied@gmail.com>
Dave Airlie <airlied@redhat.com>
Daven Sanassy <daven@vochlea.co.uk>
David <dnhkng@gmail.com> David <dnhkng@gmail.com>
David Thorpe <djt@mutablelogic.com> David Thorpe <djt@mutablelogic.com>
DavidKorczynski <david@adalogics.com>
Davidson Francis <davidsondfgl@gmail.com> Davidson Francis <davidsondfgl@gmail.com>
Dener Stassun <denerstassun@gmail.com> Dener Stassun <denerstassun@gmail.com>
Dibakar Gope <dibakar.gope@arm.com>
Didzis Gosko <didzis@users.noreply.github.com> Didzis Gosko <didzis@users.noreply.github.com>
Diego Devesa <slarengh@gmail.com>
Digipom <admin@digipom.com> Digipom <admin@digipom.com>
Dimo <dimo@ieee.org> Dimo <dimo@ieee.org>
Djip007 <3705339+Djip007@users.noreply.github.com>
Djip007 <djip.perois@free.fr>
Dody Suria Wijaya <dodysw@gmail.com> Dody Suria Wijaya <dodysw@gmail.com>
Dou Xinpeng <15529241576@163.com>
Dou Xinpeng <81913537+Dou-Git@users.noreply.github.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com> Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Duncan McConnell <ddmcconnell4@gmail.com> Duncan McConnell <ddmcconnell4@gmail.com>
Egor Egorov <me@egorfine.com> Egor Egorov <me@egorfine.com>
Elkana Bardugo <ttv200@gmail.com> Elkana Bardugo <ttv200@gmail.com>
Emmanuel Schmidbauer <eschmidbauer@gmail.com> Emmanuel Schmidbauer <eschmidbauer@gmail.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com> Engininja2 <139037756+Engininja2@users.noreply.github.com>
Eric Curtin <ericcurtin17@gmail.com>
Eric Swanson <eswanson@alloscomp.com> Eric Swanson <eswanson@alloscomp.com>
Eric Tendian <erictendian@gmail.com> Eric Tendian <erictendian@gmail.com>
Eric Zhang <34133756+EZForever@users.noreply.github.com>
Erik Scholz <Green-Sky@users.noreply.github.com> Erik Scholz <Green-Sky@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com> Evan Jones <evan.q.jones@gmail.com>
Evan Martin <evan.martin@gmail.com> Evan Martin <evan.martin@gmail.com>
Eve <139727413+netrunnereve@users.noreply.github.com> Eve <139727413+netrunnereve@users.noreply.github.com>
Evgeny Kuznetsov <evgeny@kuznetsov.md> Evgeny Kuznetsov <evgeny@kuznetsov.md>
F1L1P <78918286+F1L1Pv2@users.noreply.github.com> F1L1P <78918286+F1L1Pv2@users.noreply.github.com>
Faisal Zaghloul <quic_fzaghlou@quicinc.com>
Fangjun Kuang <csukuangfj@gmail.com> Fangjun Kuang <csukuangfj@gmail.com>
Felix <stenbackfelix@gmail.com> Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com> Finn Voorhees <finnvoorhees@gmail.com>
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
FlippFuzz <41221030+FlippFuzz@users.noreply.github.com> FlippFuzz <41221030+FlippFuzz@users.noreply.github.com>
Frankie Robertson <frankier@users.noreply.github.com>
Gang Chen <goncha@gmail.com> Gang Chen <goncha@gmail.com>
Gavin Cai <gavin1818@hotmail.com> Gavin Cai <gavin1818@hotmail.com>
George Hindle <george@georgehindle.com> George Hindle <george@georgehindle.com>
Georgi Gerganov <ggerganov@gmail.com> Georgi Gerganov <ggerganov@gmail.com>
Gilad S <7817232+giladgd@users.noreply.github.com>
Gilad S <giladgd@users.noreply.github.com>
Gilad S. <7817232+giladgd@users.noreply.github.com>
GitAritron <103900385+GitAritron@users.noreply.github.com> GitAritron <103900385+GitAritron@users.noreply.github.com>
GiviMAD <GiviMAD@users.noreply.github.com> GiviMAD <GiviMAD@users.noreply.github.com>
Gleicon Moraes <gleicon@gmail.com> Gleicon Moraes <gleicon@gmail.com>
@ -98,41 +157,66 @@ Guillaume Wenzek <gwenzek@users.noreply.github.com>
HY. Kelvin Lee <34256578+hykelvinlee42@users.noreply.github.com> HY. Kelvin Lee <34256578+hykelvinlee42@users.noreply.github.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com> Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hang <bebound@gmail.com> Hang <bebound@gmail.com>
Haus1 <haus.xda@gmail.com>
Herman Semenov <GermanAizek@yandex.ru> Herman Semenov <GermanAizek@yandex.ru>
HimariO <dsfhe49854@gmail.com>
Hong Bo PENG <penghb@cn.ibm.com>
Hrishikesh Barman <geekodour@users.noreply.github.com> Hrishikesh Barman <geekodour@users.noreply.github.com>
Hugo <hugo@whynothugo.nl>
Ian Bicking <ian@ianbicking.org> Ian Bicking <ian@ianbicking.org>
Ian Bull <irbull@eclipsesource.com> Ian Bull <irbull@eclipsesource.com>
Ihar Hrachyshka <ihrachys@redhat.com>
Ikko Ashimine <eltociear@gmail.com> Ikko Ashimine <eltociear@gmail.com>
Ikko Eltociear Ashimine <eltociear@gmail.com>
InconsolableCellist <23345188+InconsolableCellist@users.noreply.github.com> InconsolableCellist <23345188+InconsolableCellist@users.noreply.github.com>
Ismatulla Mansurov <47342870+sapoepsilon@users.noreply.github.com> Ismatulla Mansurov <47342870+sapoepsilon@users.noreply.github.com>
Ivan <nekotekina@gmail.com>
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
Ivan Gorin <ivangorin21@gmail.com> Ivan Gorin <ivangorin21@gmail.com>
Ivo von Putzer Reibegg <ivo.putzer@gmail.com>
JJ <103335846+computerscienceiscool@users.noreply.github.com> JJ <103335846+computerscienceiscool@users.noreply.github.com>
Jack Mousseau <jmousseau@users.noreply.github.com> Jack Mousseau <jmousseau@users.noreply.github.com>
JacobLinCool <jacoblincool@gmail.com> JacobLinCool <jacoblincool@gmail.com>
Jakub Ráček <blizzcz@gmail.com> Jakub Ráček <blizzcz@gmail.com>
Jared Van Bortel <jared@nomic.ai> Jared Van Bortel <jared@nomic.ai>
Jay Binks <jaybinks@gmail.com> Jay Binks <jaybinks@gmail.com>
Jayant <jayantyadav202@gmail.com>
Jeff Bolz <jbolz@nvidia.com>
Jeroen Mostert <jeroen.mostert@cm.com>
Jhen-Jie Hong <developer@jhen.me> Jhen-Jie Hong <developer@jhen.me>
Jhen-Jie Hong <iainst0409@gmail.com> Jhen-Jie Hong <iainst0409@gmail.com>
JidongZhang-THU <1119708529@qq.com> JidongZhang-THU <1119708529@qq.com>
Jo Liss <joliss42@gmail.com> Jo Liss <joliss42@gmail.com>
Joe Todd <joe.todd@codeplay.com>
Johan <jr.raffin@gmail.com> Johan <jr.raffin@gmail.com>
Johannes Gäßler <johannesg@5d6.de> Johannes Gäßler <johannesg@5d6.de>
John Balis <phobossystems@gmail.com> John Balis <phobossystems@gmail.com>
JohnnyB <jboero@users.noreply.github.com>
Jonathan Soo <jcsoo@agora.com> Jonathan Soo <jcsoo@agora.com>
Jonno <1160532+razodactyl@users.noreply.github.com> Jonno <1160532+razodactyl@users.noreply.github.com>
Joonas Pihlajamaa <joonas.pihlajamaa@iki.fi> Joonas Pihlajamaa <joonas.pihlajamaa@iki.fi>
Jose <34888496+Jerry-Master@users.noreply.github.com> Jose <34888496+Jerry-Master@users.noreply.github.com>
Josh Bleecher Snyder <josharian@gmail.com> Josh Bleecher Snyder <josharian@gmail.com>
Josscii <jossciiweiyi@gmail.com>
Judd <foldl@users.noreply.github.com> Judd <foldl@users.noreply.github.com>
Jumper775 <78500318+jumpers775@users.noreply.github.com> Jumper775 <78500318+jumpers775@users.noreply.github.com>
Jun Hee Yoo <contact.jhyoo@gmail.com>
Junil Kim <logyourself@gmail.com>
Justina Cho <justcho5@gmail.com>
Justine Tunney <jtunney@gmail.com> Justine Tunney <jtunney@gmail.com>
Justine Tunney <jtunney@mozilla.com>
KITAITI Makoto <KitaitiMakoto@gmail.com>
KP Kaiser <kirk@zothcorp.com> KP Kaiser <kirk@zothcorp.com>
Kamilake <exjang0@gmail.com> Kamilake <exjang0@gmail.com>
Karol Kontny <82021046+kkontny@users.noreply.github.com>
Karthick <j.karthic2004@gmail.com>
Kartik Saranathan <278928+Kartiku@users.noreply.github.com> Kartik Saranathan <278928+Kartiku@users.noreply.github.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com> Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com> Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Kendrick Taylor <kendrick@circuitsix.com>
Kevin Brothaler <admin@digipom.com> Kevin Brothaler <admin@digipom.com>
Kevin Gibbons <bakkot@gmail.com>
Konosuke Sakai <konosuke@konosuke.work>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com> Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kreijstal <rainb@tfwno.gf> Kreijstal <rainb@tfwno.gf>
Kylin <56434533+KyL0N@users.noreply.github.com> Kylin <56434533+KyL0N@users.noreply.github.com>
@ -147,56 +231,110 @@ Luis Herrera <herrera-luis@users.noreply.github.com>
Lukas Rist <glaslos@gmail.com> Lukas Rist <glaslos@gmail.com>
M. A. Ali <73258591+MightyStud@users.noreply.github.com> M. A. Ali <73258591+MightyStud@users.noreply.github.com>
M. Eren Akbiyik <erenakbiyik@gmail.com> M. Eren Akbiyik <erenakbiyik@gmail.com>
Ma Mingfei <mingfei.ma@intel.com>
Maciek <maciek.mab122@gmail.com> Maciek <maciek.mab122@gmail.com>
Mahesh Madhav <67384846+heshpdx@users.noreply.github.com>
Marcin Mielniczuk <marmistrz.dev@zoho.eu> Marcin Mielniczuk <marmistrz.dev@zoho.eu>
Mark Karpelès <MagicalTux@users.noreply.github.com>
Mark Zhuang <zhuangqiubin@gmail.com>
Markus Tavenrath <mtavenrath@users.noreply.github.com>
Martin Delille <martin@delille.org>
Martin Warnaar <martinwarnaar@gmail.com> Martin Warnaar <martinwarnaar@gmail.com>
Masaya, Kato <62578291+msy-kato@users.noreply.github.com>
Matheus de Sousa <23645013+keyehzy@users.noreply.github.com> Matheus de Sousa <23645013+keyehzy@users.noreply.github.com>
Mathieu Baudier <mbaudier@argeo.org>
Mathijs de Bruin <mathijs@mathijsfietst.nl> Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matija Pevec <mightymatth@users.noreply.github.com> Matija Pevec <mightymatth@users.noreply.github.com>
Matt Stephenson <mstephenson6@users.noreply.github.com>
Max Krasnyansky <max.krasnyansky@gmail.com>
Max Krasnyansky <quic_maxk@quicinc.com>
Maximiliano Levi <8160966+maxilevi@users.noreply.github.com> Maximiliano Levi <8160966+maxilevi@users.noreply.github.com>
Meng, Hengyu <hengyu.meng@intel.com> Meng, Hengyu <hengyu.meng@intel.com>
Mengqing Cao <cmq0113@163.com>
Michael Podvitskiy <podvitskiymichael@gmail.com> Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Rienstra <mrienstra@gmail.com> Michael Rienstra <mrienstra@gmail.com>
Mikhail Grigorev <sleuthhound@gmail.com> Mikhail Grigorev <sleuthhound@gmail.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com> Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohit Agarwal <mohit@sdf.org> Mohit Agarwal <mohit@sdf.org>
Molly Sophia <mollysophia379@gmail.com>
Murilo Santana <mvrilo@gmail.com> Murilo Santana <mvrilo@gmail.com>
NETZkultur GmbH <mulholland@netzkultur.de>
Natsu <chino@hotococoa.moe>
Neil Chudleigh <nchudleigh@users.noreply.github.com> Neil Chudleigh <nchudleigh@users.noreply.github.com>
Neo Zhang <14088817+arthw@users.noreply.github.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com> Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com> Neuman Vong <neuman.vong@gmail.com>
Nicholai Tukanov <nicholaitukanov@gmail.com>
Nicholas Albion <nalbion@yahoo.com> Nicholas Albion <nalbion@yahoo.com>
Nico Bosshard <nico@bosshome.ch>
Nicolò Scipione <nicolo.scipione@codeplay.com>
Niels Mayer <Niels.Mayer@gmail.com> Niels Mayer <Niels.Mayer@gmail.com>
Nikita Sarychev <42014488+sARY77@users.noreply.github.com>
Nikolaj Olsson <nikse.dk@gmail.com>
Okabintaro <103938900+Okabintaro@users.noreply.github.com> Okabintaro <103938900+Okabintaro@users.noreply.github.com>
Oleg Sidorov <me@whitebox.io> Oleg Sidorov <me@whitebox.io>
Oleg Sidorov <oleg@sidorov.nl> Oleg Sidorov <oleg@sidorov.nl>
Olivier Chafik <ochafik@users.noreply.github.com>
Ondrej Kokes <ondrej.kokes@gmail.com> Ondrej Kokes <ondrej.kokes@gmail.com>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com> Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
PAB <pierreantoine.bannier@gmail.com>
Paul Tsochantaris <ptsochantaris@icloud.com> Paul Tsochantaris <ptsochantaris@icloud.com>
Pedro Probst <pprobst@insiberia.net>
Peng <hzp1024@qq.com>
Peter <peter277@users.noreply.github.com>
Philipp Zabel <philipp.zabel@gmail.com> Philipp Zabel <philipp.zabel@gmail.com>
Philippe Normand <phil@base-art.net> Philippe Normand <phil@base-art.net>
Philippe Normand <philn@igalia.com>
Plamen Minev <pacominev@gmail.com>
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
Przemysław Pawełczyk <przemoc@gmail.com> Przemysław Pawełczyk <przemoc@gmail.com>
Qianhe Chen <54462604+chenqianhe@users.noreply.github.com> Qianhe Chen <54462604+chenqianhe@users.noreply.github.com>
R0CKSTAR <xiaodong.ye@mthreads.com>
R0CKSTAR <yeahdongcn@gmail.com>
Radoslav Gerganov <rgerganov@gmail.com>
Radosław Gryta <radek.gryta@gmail.com> Radosław Gryta <radek.gryta@gmail.com>
Rahul Vadhyar <107788610+RahulVadhyar@users.noreply.github.com>
Raiya Araki <83504221+rai62@users.noreply.github.com>
Reinforce-II <fate@eastal.com> Reinforce-II <fate@eastal.com>
Reinis Muiznieks <muiznieks.reinis@gmail.com> Reinis Muiznieks <muiznieks.reinis@gmail.com>
RelatedTitle <r3latedtitle@gmail.com> RelatedTitle <r3latedtitle@gmail.com>
Rémy Oudompheng <oudomphe@phare.normalesup.org>
RhinoDevel <RhinoDevel@users.noreply.github.com> RhinoDevel <RhinoDevel@users.noreply.github.com>
Rich Jones <miserlou@gmail.com> Rich Jones <miserlou@gmail.com>
Robert Ormandi <52251610+ormandi@users.noreply.github.com>
Robin <robin.xw@hotmail.com> Robin <robin.xw@hotmail.com>
Roddur Dasgupta <roddurd@gmail.com> Roddur Dasgupta <roddurd@gmail.com>
Roland Rabien <figbug@gmail.com> Roland Rabien <figbug@gmail.com>
Romain Biessy <romain.biessy@codeplay.com>
Ronsor <ronsor@ronsor.pw>
Rotem Dan <rotemdan@gmail.com> Rotem Dan <rotemdan@gmail.com>
Ryan Hitchman <hitchmanr@gmail.com> Ryan Hitchman <hitchmanr@gmail.com>
Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com> Ryan Metcalfe <107415876+RyanMetcalfeInt8@users.noreply.github.com>
RyanChang <ftes90015@gmail.com> RyanChang <ftes90015@gmail.com>
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
SXX <sxx1136965276@gmail.com>
Sacha Arbonel <sacha.arbonel@hotmail.fr>
Salman Faroz <stsfaroz@gmail.com>
Salvatore Mesoraca <s.mesoraca16@gmail.com>
Sam <49637763+Onlyartist9@users.noreply.github.com> Sam <49637763+Onlyartist9@users.noreply.github.com>
Sam Pullara <spullara@gmail.com> Sam Pullara <spullara@gmail.com>
Samuel Durante <44513615+samueldurantes@users.noreply.github.com>
Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com> Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Sandro Hanea <40202887+sandrohanea@users.noreply.github.com>
Sergio López <slp@redhat.com>
Sergio López <slp@sinrega.org> Sergio López <slp@sinrega.org>
Shanshan Shen <467638484@qq.com>
Shijie <821898965@qq.com>
Shupei Fan <dymarkfan@outlook.com>
Siddharth Ramakrishnan <srr2141@columbia.edu> Siddharth Ramakrishnan <srr2141@columbia.edu>
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Simon Moisselin <simon.moisstoll@gmail.com> Simon Moisselin <simon.moisstoll@gmail.com>
Sindre Sorhus <sindresorhus@gmail.com> Sindre Sorhus <sindresorhus@gmail.com>
Slava Primenko <primenko.s@gmail.com> Slava Primenko <primenko.s@gmail.com>
Srihari-mcw <96763064+Srihari-mcw@users.noreply.github.com>
Stavros Panakakis <53979866+Stavrospanakakis@users.noreply.github.com>
Stefan Sydow <s.sydow@heinlein-video.de>
Stefan Sydow <stefan@sydow.email>
Syahmi Azhar <prsyahmi@gmail.com> Syahmi Azhar <prsyahmi@gmail.com>
Syed Jafri <syedjafri97@gmail.com> Syed Jafri <syedjafri97@gmail.com>
Sơn Phan Trung <phantrungson17@gmail.com> Sơn Phan Trung <phantrungson17@gmail.com>
@ -205,37 +343,63 @@ Takeshi Inoue <inoue.takeshi@gmail.com>
Tamotsu Takahashi <ttakah+github@gmail.com> Tamotsu Takahashi <ttakah+github@gmail.com>
Taras Glek <taras@thegp.com> Taras Glek <taras@thegp.com>
Tauseef Mohiuddin <35351464+tauseefmohammed2@users.noreply.github.com> Tauseef Mohiuddin <35351464+tauseefmohammed2@users.noreply.github.com>
Thamster <Thamster@users.noreply.github.com>
Thijs Raymakers <thijs@raymakers.nl> Thijs Raymakers <thijs@raymakers.nl>
Thomas Fitzsimmons <fitzsim@fitzsim.org> Thomas Fitzsimmons <fitzsim@fitzsim.org>
Tiago Fassoni <tiagofassoni@users.noreply.github.com> Tiago Fassoni <tiagofassoni@users.noreply.github.com>
Tienshiao Ma <tienshiao@tienshiao.org> Tienshiao Ma <tienshiao@tienshiao.org>
Tim Miller <drasticactions@users.noreply.github.com>
Timothy Cronin <40186632+4imothy@users.noreply.github.com> Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Tobrun <tobrun.van.nuland@gmail.com> Tobrun <tobrun.van.nuland@gmail.com>
Todd <taf2@users.noreply.github.com> Todd <taf2@users.noreply.github.com>
Toliver <teejae@gmail.com>
Tong Li <31761981+litongjava@users.noreply.github.com> Tong Li <31761981+litongjava@users.noreply.github.com>
Tony Wasserka <4840017+neobrain@users.noreply.github.com>
Topping1 <78745143+Topping1@users.noreply.github.com> Topping1 <78745143+Topping1@users.noreply.github.com>
Travis Cline <travis.cline@gmail.com> Travis Cline <travis.cline@gmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com> UEXTM.com <84163508+uextm@users.noreply.github.com>
UsernamesLame <156965854+UsernamesLame@users.noreply.github.com>
Vadim Peretokin <vperetokin@hey.com> Vadim Peretokin <vperetokin@hey.com>
Valentin Gosu <1454649+valenting@users.noreply.github.com> Valentin Gosu <1454649+valenting@users.noreply.github.com>
Vin Misra <vinith@alum.mit.edu>
Vulcan <93451215+trholding@users.noreply.github.com> Vulcan <93451215+trholding@users.noreply.github.com>
WhiteOlivierus <36532695+WhiteOlivierus@users.noreply.github.com> WhiteOlivierus <36532695+WhiteOlivierus@users.noreply.github.com>
William Tambellini <william.tambellini@gmail.com>
William Tambellini <wtambellini@sdl.com>
Wilson Silva <wilson.dsigns@gmail.com>
Xiang (Kevin) Li <kevinli020508@gmail.com> Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com> Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com> XiaotaoChen <chenxiaotao1234@gmail.com>
Xingchen Song(宋星辰) <xingchensong1996@163.com>
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
Xuan Son Nguyen <thichthat@gmail.com>
Yajing Tang <phillis@google.com> Yajing Tang <phillis@google.com>
Yang Shen <aplshenyang@gmail.com> Yang Shen <aplshenyang@gmail.com>
Yunès <jean.baptiste.yunes@free.fr> Yunès <jean.baptiste.yunes@free.fr>
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Yusuf Redžić <48274562+redzic@users.noreply.github.com>
ZaBlazzingZephyrus <119159668+blazingzephyr@users.noreply.github.com> ZaBlazzingZephyrus <119159668+blazingzephyr@users.noreply.github.com>
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
Zhiyuan Li <lizhiyuan@uniartisan.com>
Zhiyuan Li <uniartisan2017@gmail.com>
Zigfrid Zvezdin <ziggerZZ@gmail.com> Zigfrid Zvezdin <ziggerZZ@gmail.com>
Zollner <24618122+Zolliner@users.noreply.github.com> Zollner <24618122+Zolliner@users.noreply.github.com>
a3sh <38979186+A3shTnT@users.noreply.github.com>
ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com>
agray3 <agray3@users.noreply.github.com>
ai-at-home <149282006+ai-at-home@users.noreply.github.com> ai-at-home <149282006+ai-at-home@users.noreply.github.com>
aldorof <aldorof@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com> alonfaraj <alonfaraj@gmail.com>
amd-dwang <dong.wang@amd.com>
amritahs-ibm <amritahs@linux.vnet.ibm.com>
andypayne <apayne@gmail.com> andypayne <apayne@gmail.com>
ardfork <134447697+ardfork@users.noreply.github.com> ardfork <134447697+ardfork@users.noreply.github.com>
arizhih <40765267+arizhih@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com> automaticcat <daogiatuank54@gmail.com>
bandoti <141645996+bandoti@users.noreply.github.com>
be-next <jerome.ramette@gmail.com> be-next <jerome.ramette@gmail.com>
bert hubert <bert@hubertnet.nl> bert hubert <bert@hubertnet.nl>
billyct <billy_allen@126.com>
bmwl <brian.marshall@tolko.com> bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com> bobqianic <129547291+bobqianic@users.noreply.github.com>
bocytko <bocytko+github@gmail.com> bocytko <bocytko+github@gmail.com>
@ -248,7 +412,9 @@ byte-6174 <88070277+byte-6174@users.noreply.github.com>
cdosoftei <ciprian.dosoftei@gmail.com> cdosoftei <ciprian.dosoftei@gmail.com>
clach04 <Chris.Clark@actian.com> clach04 <Chris.Clark@actian.com>
compilade <113953597+compilade@users.noreply.github.com> compilade <113953597+compilade@users.noreply.github.com>
compilade <git@compilade.net>
conradg <conradjgodfrey@gmail.com> conradg <conradjgodfrey@gmail.com>
crummyh <elijah@crums.us>
ddpasa <112642920+ddpasa@users.noreply.github.com> ddpasa <112642920+ddpasa@users.noreply.github.com>
denersc <denerstassun@gmail.com> denersc <denerstassun@gmail.com>
dscripka <dscripka@users.noreply.github.com> dscripka <dscripka@users.noreply.github.com>
@ -256,28 +422,55 @@ duthils <duthils@duthils.net>
ecneladis <ecneladis@users.noreply.github.com> ecneladis <ecneladis@users.noreply.github.com>
faker <nspyia2002@gmail.com> faker <nspyia2002@gmail.com>
fitzsim <fitzsim@fitzsim.org> fitzsim <fitzsim@fitzsim.org>
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com> fraxy-v <65565042+fraxy-v@users.noreply.github.com>
genevera (she/her) <genevera@users.noreply.github.com> genevera (she/her) <genevera@users.noreply.github.com>
geniusnut <geniusnut@gmail.com> geniusnut <geniusnut@gmail.com>
gilbertgong <gilbert.gong@gmail.com>
gn64 <yukikaze.jp@gmail.com>
goldwaving <77494627+goldwaving@users.noreply.github.com>
greeshmay <greeshmay@gmail.com> greeshmay <greeshmay@gmail.com>
haopeng <657407891@qq.com>
hipudding <huafengchun@gmail.com>
hsinhoyeh <yhh92u@gmail.com>
hydai <z54981220@gmail.com> hydai <z54981220@gmail.com>
iamthad <thadeus.j.fleming@gmail.com> iamthad <thadeus.j.fleming@gmail.com>
issixx <46835150+issixx@users.noreply.github.com>
james wolf <contractorwolf@hotmail.com> james wolf <contractorwolf@hotmail.com>
jdomke <28772296+jdomke@users.noreply.github.com>
jettoblack <jettoblack@gmail.com>
jiez <373447296@qq.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com> joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
jorismertz <35079666+jorismertz@users.noreply.github.com> jorismertz <35079666+jorismertz@users.noreply.github.com>
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
junkfood <69683722+JunkFood02@users.noreply.github.com> junkfood <69683722+JunkFood02@users.noreply.github.com>
jwijffels <jwijffels@bnosac.be> jwijffels <jwijffels@bnosac.be>
k.h.lai <adrian.k.h.lai@outlook.com>
kamranjon <kamranjon@gmail.com> kamranjon <kamranjon@gmail.com>
katsu560 <katsu560oo-@docomo.ne.jp> katsu560 <katsu560oo-@docomo.ne.jp>
kennethge <57784063+kenneth-ge@users.noreply.github.com> kennethge <57784063+kenneth-ge@users.noreply.github.com>
keyehzy <msamuel@aluno.puc-rio.br> keyehzy <msamuel@aluno.puc-rio.br>
kunnis <kunnis@users.noreply.github.com>
l3utterfly <gc.pthzfoldr@gmail.com>
leejet <leejet714@gmail.com> leejet <leejet714@gmail.com>
leo-pony <nengjunma@outlook.com>
lhez <quic_lih@quicinc.com>
litong <31761981+litongjava@users.noreply.github.com> litong <31761981+litongjava@users.noreply.github.com>
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
lnyan <lkwq007@gmail.com> lnyan <lkwq007@gmail.com>
luoyu-intel <yu.luo@intel.com>
m.bell <m.bell@techsmith.com> m.bell <m.bell@techsmith.com>
mahorozte <41834471+mahorozte@users.noreply.github.com>
mashizora <30516315+mashizora@users.noreply.github.com>
matt23654 <matthew.webber@protonmail.com>
matteo <matteogeniaccio@yahoo.it>
mgrachten <maarten@grachten.eu>
mkiol <mkiol@users.noreply.github.com> mkiol <mkiol@users.noreply.github.com>
mky_coder <47767389+mkycoder@users.noreply.github.com>
novag <7754358+novag@users.noreply.github.com> novag <7754358+novag@users.noreply.github.com>
pajowu <pajowu@pajowu.de> pajowu <pajowu@pajowu.de>
pengxin99 <pengxin.yuan@intel.com>
petterreinholdtsen <pere-github@hungry.com>
polarmoon <90010972+polarmoon@users.noreply.github.com> polarmoon <90010972+polarmoon@users.noreply.github.com>
rlapray <lapray.romain@gmail.com> rlapray <lapray.romain@gmail.com>
sandrohanea <40202887+sandrohanea@users.noreply.github.com> sandrohanea <40202887+sandrohanea@users.noreply.github.com>
@ -287,15 +480,31 @@ shikokuchuo <53399081+shikokuchuo@users.noreply.github.com>
slaren <slarengh@gmail.com> slaren <slarengh@gmail.com>
slashlib <slashlib@users.noreply.github.com> slashlib <slashlib@users.noreply.github.com>
snadampal <87143774+snadampal@users.noreply.github.com> snadampal <87143774+snadampal@users.noreply.github.com>
someone13574 <81528246+someone13574@users.noreply.github.com>
st-gr <38470677+st-gr@users.noreply.github.com> st-gr <38470677+st-gr@users.noreply.github.com>
stduhpf <stephduh@live.fr>
stormofice <58337328+stormofice@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com> texmex76 <40733439+texmex76@users.noreply.github.com>
thefinaldegree <thefinaldegree@gmail.com> thefinaldegree <thefinaldegree@gmail.com>
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
toboil-features <160222185+toboil-features@users.noreply.github.com>
trixirt <trix@redhat.com> trixirt <trix@redhat.com>
ulatekh <ulatekh@yahoo.com> ulatekh <ulatekh@yahoo.com>
undef <undefdev@gmail.com> undef <undefdev@gmail.com>
uvos <devnull@uvos.xyz>
uvos <philipp@uvos.xyz>
valVk <valVk@users.noreply.github.com>
venkr <venkateshrameshkumar+1@gmail.com> venkr <venkateshrameshkumar+1@gmail.com>
vicalloy <zbirder@gmail.com> vicalloy <zbirder@gmail.com>
wangshuai09 <391746016@qq.com>
woachk <24752637+woachk@users.noreply.github.com>
xctan <axunlei@gmail.com>
xdrudis <xavierdrudis@yahoo.es> xdrudis <xavierdrudis@yahoo.es>
yuri@FreeBSD <yuri@FreeBSD>
zhangjixiong <code.zjx@gmail.com>
zhentaoyu <zhentao.yu@intel.com>
zhouwg <6889919+zhouwg@users.noreply.github.com> zhouwg <6889919+zhouwg@users.noreply.github.com>
zhouwg <zhouwg2000@gmail.com>
谢乃闻 <sienaiwun@users.noreply.github.com>
布客飞龙 <562826179@qq.com> 布客飞龙 <562826179@qq.com>
Артём Земляк <azemlyak@smart-consulting.ru> Артём Земляк <azemlyak@smart-consulting.ru>

View File

@ -1,6 +1,6 @@
cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories. cmake_minimum_required(VERSION 3.5) # for add_link_options and implicit target directories.
project("whisper.cpp" C CXX) project("whisper.cpp" C CXX)
project("whisper.cpp" VERSION 1.7.1) project("whisper.cpp" VERSION 1.7.4)
include(CheckIncludeFileCXX) include(CheckIncludeFileCXX)
set(SOVERSION 1) set(SOVERSION 1)

1138
Makefile

File diff suppressed because it is too large Load Diff

View File

@ -14,49 +14,6 @@ let package = Package(
.library(name: "whisper", targets: ["whisper"]), .library(name: "whisper", targets: ["whisper"]),
], ],
targets: [ targets: [
.target( .systemLibrary(name: "whisper", pkgConfig: "whisper"),
name: "whisper",
path: ".",
exclude: [
"build",
"bindings",
"cmake",
"examples",
"scripts",
"models",
"samples",
"tests",
"CMakeLists.txt",
"Makefile",
"ggml/src/ggml-metal-embed.metal"
],
sources: [
"ggml/src/ggml.c",
"src/whisper.cpp",
"ggml/src/ggml-aarch64.c",
"ggml/src/ggml-alloc.c",
"ggml/src/ggml-backend.cpp",
"ggml/src/ggml-cpu.c",
"ggml/src/ggml-quants.c",
"ggml/src/ggml-metal.m"
],
resources: [.process("ggml/src/ggml-metal.metal")],
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_ACCELERATE"),
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
],
linkerSettings: [
.linkedFramework("Accelerate")
] ]
) )
],
cxxLanguageStandard: .cxx11
)

330
README.md
View File

@ -7,14 +7,17 @@
[![Conan Center](https://shields.io/conan/v/whisper-cpp)](https://conan.io/center/whisper-cpp) [![Conan Center](https://shields.io/conan/v/whisper-cpp)](https://conan.io/center/whisper-cpp)
[![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/) [![npm](https://img.shields.io/npm/v/whisper.cpp.svg)](https://www.npmjs.com/package/whisper.cpp/)
Stable: [v1.7.1](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.1) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126) > [!NOTE]
> New maintenance roadmap: https://github.com/ggerganov/whisper.cpp/discussions/2788
Stable: [v1.7.4](https://github.com/ggerganov/whisper.cpp/releases/tag/v1.7.4) / [Roadmap | F.A.Q.](https://github.com/ggerganov/whisper.cpp/discussions/126)
High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model: High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisper) automatic speech recognition (ASR) model:
- Plain C/C++ implementation without dependencies - Plain C/C++ implementation without dependencies
- Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](#core-ml-support) - Apple Silicon first-class citizen - optimized via ARM NEON, Accelerate framework, Metal and [Core ML](#core-ml-support)
- AVX intrinsics support for x86 architectures - AVX intrinsics support for x86 architectures
- VSX intrinsics support for POWER architectures - [VSX intrinsics support for POWER architectures](#power-vsx-intrinsics)
- Mixed F16 / F32 precision - Mixed F16 / F32 precision
- [Integer quantization support](#quantization) - [Integer quantization support](#quantization)
- Zero memory allocations at runtime - Zero memory allocations at runtime
@ -53,18 +56,6 @@ On Apple Silicon, the inference runs fully on the GPU via Metal:
https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225 https://github.com/ggerganov/whisper.cpp/assets/1991296/c82e8f86-60dc-49f2-b048-d2fdbd6b5225
Or you can even run it straight in the browser: [talk.wasm](examples/talk.wasm)
## Implementation details
- The core tensor operations are implemented in C ([ggml.h](ggml/include/ggml.h) / [ggml.c](ggml/src/ggml.c))
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](include/whisper.h) / [whisper.cpp](src/whisper.cpp))
- Sample usage is demonstrated in [main.cpp](examples/main)
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
- Various other examples are available in the [examples](examples) folder
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD intrinsics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
## Quick start ## Quick start
First clone the repository: First clone the repository:
@ -85,134 +76,26 @@ Then, download one of the Whisper [models](models/README.md) converted in [`ggml
sh ./models/download-ggml-model.sh base.en sh ./models/download-ggml-model.sh base.en
``` ```
Now build the [main](examples/main) example and transcribe an audio file like this: Now build the [whisper-cli](examples/cli) example and transcribe an audio file like this:
```bash ```bash
# build the main example # build the project
make -j cmake -B build
cmake --build build --config Release
# transcribe an audio file # transcribe an audio file
./main -f samples/jfk.wav ./build/bin/whisper-cli -f samples/jfk.wav
``` ```
--- ---
For a quick demo, simply run `make base.en`: For a quick demo, simply run `make base.en`.
```text
$ make -j base.en
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp -o whisper.o
c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o ggml.o -o main -framework Accelerate
./main -h
usage: ./main [options] file0.wav file1.wav ...
options:
-h, --help [default] show this help message and exit
-t N, --threads N [4 ] number of threads to use during computation
-p N, --processors N [1 ] number of processors to use during computation
-ot N, --offset-t N [0 ] time offset in milliseconds
-on N, --offset-n N [0 ] segment index offset
-d N, --duration N [0 ] duration of audio to process in milliseconds
-mc N, --max-context N [-1 ] maximum number of text context tokens to store
-ml N, --max-len N [0 ] maximum segment length in characters
-sow, --split-on-word [false ] split on word rather than on token
-bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [5 ] beam size for beam search
-wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
-tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization
-tdrz, --tinydiarize [false ] enable tinydiarize (requires a tdrz model)
-nf, --no-fallback [false ] do not use temperature fallback while decoding
-otxt, --output-txt [false ] output result in a text file
-ovtt, --output-vtt [false ] output result in a vtt file
-osrt, --output-srt [false ] output result in a srt file
-olrc, --output-lrc [false ] output result in a lrc file
-owts, --output-words [false ] output script for generating karaoke video
-fp, --font-path [/System/Library/Fonts/Supplemental/Courier New Bold.ttf] path to a monospace font for karaoke video
-ocsv, --output-csv [false ] output result in a CSV file
-oj, --output-json [false ] output result in a JSON file
-ojf, --output-json-full [false ] include more information in the JSON file
-of FNAME, --output-file FNAME [ ] output file path (without file extension)
-ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress
-nt, --no-timestamps [false ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
-dl, --detect-language [false ] exit after automatically detecting language
--prompt PROMPT [ ] initial prompt
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
-ls, --log-score [false ] log best decoder scores of tokens
-ng, --no-gpu [false ] disable GPU
sh ./models/download-ggml-model.sh base.en
Downloading ggml model base.en ...
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
You can now use it like this:
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
===============================================
Running base.en on all samples in ./samples ...
===============================================
----------------------------------------------
[+] Running base.en on samples/jfk.wav ... (run 'ffplay samples/jfk.wav' to listen)
----------------------------------------------
whisper_init_from_file: loading model from 'models/ggml-base.en.bin'
whisper_model_load: loading model
whisper_model_load: n_vocab = 51864
whisper_model_load: n_audio_ctx = 1500
whisper_model_load: n_audio_state = 512
whisper_model_load: n_audio_head = 8
whisper_model_load: n_audio_layer = 6
whisper_model_load: n_text_ctx = 448
whisper_model_load: n_text_state = 512
whisper_model_load: n_text_head = 8
whisper_model_load: n_text_layer = 6
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 2
whisper_model_load: mem required = 215.00 MB (+ 6.00 MB per decoder)
whisper_model_load: kv self size = 5.25 MB
whisper_model_load: kv cross size = 17.58 MB
whisper_model_load: adding 1607 extra tokens
whisper_model_load: model ctx = 140.60 MB
whisper_model_load: model size = 140.54 MB
system_info: n_threads = 4 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
whisper_print_timings: fallbacks = 0 p / 0 h
whisper_print_timings: load time = 113.81 ms
whisper_print_timings: mel time = 15.40 ms
whisper_print_timings: sample time = 11.58 ms / 27 runs ( 0.43 ms per run)
whisper_print_timings: encode time = 266.60 ms / 1 runs ( 266.60 ms per run)
whisper_print_timings: decode time = 66.11 ms / 27 runs ( 2.45 ms per run)
whisper_print_timings: total time = 476.31 ms
```
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`. The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
For detailed usage instructions, run: `./main -h` For detailed usage instructions, run: `./build/bin/whisper-cli -h`
Note that the [main](examples/main) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool. Note that the [whisper-cli](examples/cli) example currently runs only with 16-bit WAV files, so make sure to convert your input before running the tool.
For example, you can use `ffmpeg` like this: For example, you can use `ffmpeg` like this:
```bash ```bash
@ -256,6 +139,20 @@ make -j large-v3-turbo
| medium | 1.5 GiB | ~2.1 GB | | medium | 1.5 GiB | ~2.1 GB |
| large | 2.9 GiB | ~3.9 GB | | large | 2.9 GiB | ~3.9 GB |
## POWER VSX Intrinsics
`whisper.cpp` supports POWER architectures and includes code which
significantly speeds operation on Linux running on POWER9/10, making it
capable of faster-than-realtime transcription on underclocked Raptor
Talos II. Ensure you have a BLAS package installed, and replace the
standard cmake setup with:
```bash
# build with GGML_BLAS defined
cmake -B build -DGGML_BLAS=1
cmake --build build --config Release
./build/bin/whisper-cli [ .. etc .. ]
## Quantization ## Quantization
`whisper.cpp` supports integer quantization of the Whisper `ggml` models. `whisper.cpp` supports integer quantization of the Whisper `ggml` models.
@ -265,11 +162,12 @@ Here are the steps for creating and using a quantized model:
```bash ```bash
# quantize a model with Q5_0 method # quantize a model with Q5_0 method
make -j quantize cmake -B build
./quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0 cmake --build build --config Release
./build/bin/quantize models/ggml-base.en.bin models/ggml-base.en-q5_0.bin q5_0
# run the examples as usual, specifying the quantized model file # run the examples as usual, specifying the quantized model file
./main -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav ./build/bin/whisper-cli -m models/ggml-base.en-q5_0.bin ./samples/gb0.wav
``` ```
## Core ML support ## Core ML support
@ -303,10 +201,6 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
- Build `whisper.cpp` with Core ML support: - Build `whisper.cpp` with Core ML support:
```bash ```bash
# using Makefile
make clean
WHISPER_COREML=1 make -j
# using CMake # using CMake
cmake -B build -DWHISPER_COREML=1 cmake -B build -DWHISPER_COREML=1
cmake --build build -j --config Release cmake --build build -j --config Release
@ -315,7 +209,7 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
- Run the examples as usual. For example: - Run the examples as usual. For example:
```text ```text
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav $ ./build/bin/whisper-cli -m models/ggml-base.en.bin -f samples/jfk.wav
... ...
@ -399,7 +293,7 @@ This can result in significant speedup in encoder performance. Here are the inst
- Run the examples as usual. For example: - Run the examples as usual. For example:
```text ```text
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav $ ./build/bin/whisper-cli -m models/ggml-base.en.bin -f samples/jfk.wav
... ...
@ -416,7 +310,7 @@ This can result in significant speedup in encoder performance. Here are the inst
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
cached for the next run. cached for the next run.
For more information about the Core ML implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037). For more information about the OpenVINO implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
## NVIDIA GPU support ## NVIDIA GPU support
@ -426,8 +320,8 @@ First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-do
Now build `whisper.cpp` with CUDA support: Now build `whisper.cpp` with CUDA support:
``` ```
make clean cmake -B build -DGGML_CUDA=1
GGML_CUDA=1 make -j cmake --build build -j --config Release
``` ```
## Vulkan GPU support ## Vulkan GPU support
@ -436,8 +330,8 @@ First, make sure your graphics card driver provides support for Vulkan API.
Now build `whisper.cpp` with Vulkan support: Now build `whisper.cpp` with Vulkan support:
``` ```
make clean cmake -B build -DGGML_VULKAN=1
make GGML_VULKAN=1 -j cmake --build build -j --config Release
``` ```
## BLAS CPU support via OpenBLAS ## BLAS CPU support via OpenBLAS
@ -448,23 +342,8 @@ First, make sure you have installed `openblas`: https://www.openblas.net/
Now build `whisper.cpp` with OpenBLAS support: Now build `whisper.cpp` with OpenBLAS support:
``` ```
make clean cmake -B build -DGGML_BLAS=1
GGML_OPENBLAS=1 make -j cmake --build build -j --config Release
```
## BLAS CPU support via Intel MKL
Encoder processing can be accelerated on the CPU via the BLAS compatible interface of Intel's Math Kernel Library.
First, make sure you have installed Intel's MKL runtime and development packages: https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
Now build `whisper.cpp` with Intel MKL BLAS support:
```
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DWHISPER_MKL=ON ..
WHISPER_MKL=1 make -j
``` ```
## Ascend NPU support ## Ascend NPU support
@ -483,16 +362,14 @@ Then, make sure you have installed [`CANN toolkit`](https://www.hiascend.com/en/
Now build `whisper.cpp` with CANN support: Now build `whisper.cpp` with CANN support:
``` ```
mkdir build cmake -B build -DGGML_CANN=1
cd build cmake --build build -j --config Release
cmake .. -D GGML_CANN=on
make -j
``` ```
Run the inference examples as usual, for example: Run the inference examples as usual, for example:
``` ```
./build/bin/main -f samples/jfk.wav -m models/ggml-base.en.bin -t 8 ./build/bin/whisper-cli -f samples/jfk.wav -m models/ggml-base.en.bin -t 8
``` ```
*Notes:* *Notes:*
@ -546,89 +423,6 @@ For detailed instructions on how to use Conan, please refer to the [Conan docume
- Inference only - Inference only
## Another example
Here is another example of transcribing a [3:24 min speech](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg)
in about half a minute on a MacBook M1 Pro, using `medium.en` model:
<details>
<summary>Expand to see the result</summary>
```text
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
whisper_init_from_file: loading model from 'models/ggml-medium.en.bin'
whisper_model_load: loading model
whisper_model_load: n_vocab = 51864
whisper_model_load: n_audio_ctx = 1500
whisper_model_load: n_audio_state = 1024
whisper_model_load: n_audio_head = 16
whisper_model_load: n_audio_layer = 24
whisper_model_load: n_text_ctx = 448
whisper_model_load: n_text_state = 1024
whisper_model_load: n_text_head = 16
whisper_model_load: n_text_layer = 24
whisper_model_load: n_mels = 80
whisper_model_load: f16 = 1
whisper_model_load: type = 4
whisper_model_load: mem required = 1720.00 MB (+ 43.00 MB per decoder)
whisper_model_load: kv self size = 42.00 MB
whisper_model_load: kv cross size = 140.62 MB
whisper_model_load: adding 1607 extra tokens
whisper_model_load: model ctx = 1462.35 MB
whisper_model_load: model size = 1462.12 MB
system_info: n_threads = 8 / 10 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
main: processing 'samples/gb1.wav' (3179750 samples, 198.7 sec), 8 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
[00:00:00.000 --> 00:00:08.000] My fellow Americans, this day has brought terrible news and great sadness to our country.
[00:00:08.000 --> 00:00:17.000] At nine o'clock this morning, Mission Control in Houston lost contact with our Space Shuttle Columbia.
[00:00:17.000 --> 00:00:23.000] A short time later, debris was seen falling from the skies above Texas.
[00:00:23.000 --> 00:00:29.000] The Columbia's lost. There are no survivors.
[00:00:29.000 --> 00:00:32.000] On board was a crew of seven.
[00:00:32.000 --> 00:00:39.000] Colonel Rick Husband, Lieutenant Colonel Michael Anderson, Commander Laurel Clark,
[00:00:39.000 --> 00:00:48.000] Captain David Brown, Commander William McCool, Dr. Kultna Shavla, and Ilan Ramon,
[00:00:48.000 --> 00:00:52.000] a colonel in the Israeli Air Force.
[00:00:52.000 --> 00:00:58.000] These men and women assumed great risk in the service to all humanity.
[00:00:58.000 --> 00:01:03.000] In an age when space flight has come to seem almost routine,
[00:01:03.000 --> 00:01:07.000] it is easy to overlook the dangers of travel by rocket
[00:01:07.000 --> 00:01:12.000] and the difficulties of navigating the fierce outer atmosphere of the Earth.
[00:01:12.000 --> 00:01:18.000] These astronauts knew the dangers, and they faced them willingly,
[00:01:18.000 --> 00:01:23.000] knowing they had a high and noble purpose in life.
[00:01:23.000 --> 00:01:31.000] Because of their courage and daring and idealism, we will miss them all the more.
[00:01:31.000 --> 00:01:36.000] All Americans today are thinking as well of the families of these men and women
[00:01:36.000 --> 00:01:40.000] who have been given this sudden shock and grief.
[00:01:40.000 --> 00:01:45.000] You're not alone. Our entire nation grieves with you,
[00:01:45.000 --> 00:01:52.000] and those you love will always have the respect and gratitude of this country.
[00:01:52.000 --> 00:01:56.000] The cause in which they died will continue.
[00:01:56.000 --> 00:02:04.000] Mankind is led into the darkness beyond our world by the inspiration of discovery
[00:02:04.000 --> 00:02:11.000] and the longing to understand. Our journey into space will go on.
[00:02:11.000 --> 00:02:16.000] In the skies today, we saw destruction and tragedy.
[00:02:16.000 --> 00:02:22.000] Yet farther than we can see, there is comfort and hope.
[00:02:22.000 --> 00:02:29.000] In the words of the prophet Isaiah, "Lift your eyes and look to the heavens
[00:02:29.000 --> 00:02:35.000] who created all these. He who brings out the starry hosts one by one
[00:02:35.000 --> 00:02:39.000] and calls them each by name."
[00:02:39.000 --> 00:02:46.000] Because of His great power and mighty strength, not one of them is missing.
[00:02:46.000 --> 00:02:55.000] The same Creator who names the stars also knows the names of the seven souls we mourn today.
[00:02:55.000 --> 00:03:01.000] The crew of the shuttle Columbia did not return safely to earth,
[00:03:01.000 --> 00:03:05.000] yet we can pray that all are safely home.
[00:03:05.000 --> 00:03:13.000] May God bless the grieving families, and may God continue to bless America.
[00:03:13.000 --> 00:03:19.000] [Silence]
whisper_print_timings: fallbacks = 1 p / 0 h
whisper_print_timings: load time = 569.03 ms
whisper_print_timings: mel time = 146.85 ms
whisper_print_timings: sample time = 238.66 ms / 553 runs ( 0.43 ms per run)
whisper_print_timings: encode time = 18665.10 ms / 9 runs ( 2073.90 ms per run)
whisper_print_timings: decode time = 13090.93 ms / 549 runs ( 23.85 ms per run)
whisper_print_timings: total time = 32733.52 ms
```
</details>
## Real-time audio input example ## Real-time audio input example
This is a naive example of performing real-time inference on audio from your microphone. This is a naive example of performing real-time inference on audio from your microphone.
@ -636,8 +430,9 @@ The [stream](examples/stream) tool samples the audio every half a second and run
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10). More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
```bash ```bash
make stream -j cmake -B build -DWHISPER_SDL2=ON
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000 cmake --build build --config Release
./build/bin/whisper-stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
``` ```
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4 https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
@ -648,7 +443,7 @@ Adding the `--print-colors` argument will print the transcribed text using an ex
to highlight words with high or low confidence: to highlight words with high or low confidence:
```bash ```bash
./main -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors ./build/bin/whisper-cli -m models/ggml-base.en.bin -f samples/gb0.wav --print-colors
``` ```
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png"> <img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
@ -658,7 +453,7 @@ to highlight words with high or low confidence:
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`: For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
```text ```text
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16 $ ./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
whisper_model_load: loading model from './models/ggml-base.en.bin' whisper_model_load: loading model from './models/ggml-base.en.bin'
... ...
@ -682,7 +477,7 @@ main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 pr
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`: The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
```text ```text
$ ./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1 $ ./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
whisper_model_load: loading model from './models/ggml-base.en.bin' whisper_model_load: loading model from './models/ggml-base.en.bin'
... ...
@ -729,7 +524,7 @@ Sample usage:
./models/download-ggml-model.sh small.en-tdrz ./models/download-ggml-model.sh small.en-tdrz
# run as usual, adding the "-tdrz" command-line argument # run as usual, adding the "-tdrz" command-line argument
./main -f ./samples/a13.wav -m ./models/ggml-small.en-tdrz.bin -tdrz ./build/bin/whisper-cli -f ./samples/a13.wav -m ./models/ggml-small.en-tdrz.bin -tdrz
... ...
main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, tdrz = 1, timestamps = 1 ... main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, tdrz = 1, timestamps = 1 ...
... ...
@ -746,14 +541,14 @@ main: processing './samples/a13.wav' (480000 samples, 30.0 sec), 4 threads, 1 pr
## Karaoke-style movie generation (experimental) ## Karaoke-style movie generation (experimental)
The [main](examples/main) example provides support for output of karaoke-style movies, where the The [whisper-cli](examples/cli) example provides support for output of karaoke-style movies, where the
currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script. currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script.
This requires to have `ffmpeg` installed. This requires to have `ffmpeg` installed.
Here are a few _"typical"_ examples: Here are a few _"typical"_ examples:
```bash ```bash
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts ./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
source ./samples/jfk.wav.wts source ./samples/jfk.wav.wts
ffplay ./samples/jfk.wav.mp4 ffplay ./samples/jfk.wav.mp4
``` ```
@ -763,7 +558,7 @@ https://user-images.githubusercontent.com/1991296/199337465-dbee4b5e-9aeb-48a3-b
--- ---
```bash ```bash
./main -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts ./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
source ./samples/mm0.wav.wts source ./samples/mm0.wav.wts
ffplay ./samples/mm0.wav.mp4 ffplay ./samples/mm0.wav.mp4
``` ```
@ -773,7 +568,7 @@ https://user-images.githubusercontent.com/1991296/199337504-cc8fd233-0cb7-4920-9
--- ---
```bash ```bash
./main -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts ./build/bin/whisper-cli -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
source ./samples/gb0.wav.wts source ./samples/gb0.wav.wts
ffplay ./samples/gb0.wav.mp4 ffplay ./samples/gb0.wav.mp4
``` ```
@ -798,7 +593,7 @@ https://user-images.githubusercontent.com/1991296/223206245-2d36d903-cf8e-4f09-8
## Benchmarks ## Benchmarks
In order to have an objective comparison of the performance of the inference across different system configurations, In order to have an objective comparison of the performance of the inference across different system configurations,
use the [bench](examples/bench) tool. The tool simply runs the Encoder part of the model and prints how much time it use the [whisper-bench](examples/bench) tool. The tool simply runs the Encoder part of the model and prints how much time it
took to execute it. The results are summarized in the following Github issue: took to execute it. The results are summarized in the following Github issue:
[Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89) [Benchmark results](https://github.com/ggerganov/whisper.cpp/issues/89)
@ -861,13 +656,12 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
| Example | Web | Description | | Example | Web | Description |
| --------------------------------------------------- | ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- | | --------------------------------------------------- | ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- |
| [main](examples/main) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper | | [whisper-cli](examples/cli) | [whisper.wasm](examples/whisper.wasm) | Tool for translating and transcribing audio using Whisper |
| [bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine | | [whisper-bench](examples/bench) | [bench.wasm](examples/bench.wasm) | Benchmark the performance of Whisper on your machine |
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture | | [whisper-stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic | | [whisper-command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
| [wchess](examples/wchess) | [wchess.wasm](examples/wchess) | Voice-controlled chess | | [whisper-server](examples/server) | | HTTP transcription server with OAI-like API |
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot | | [whisper-talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
| [talk-llama](examples/talk-llama) | | Talk with a LLaMA bot |
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp | | [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
| [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp | | [whisper.swiftui](examples/whisper.swiftui) | | SwiftUI iOS / macOS application using whisper.cpp |
| [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp | | [whisper.android](examples/whisper.android) | | Android mobile application using whisper.cpp |
@ -875,7 +669,7 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture | | [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
| [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) | | [livestream.sh](examples/livestream.sh) | | [Livestream audio transcription](https://github.com/ggerganov/whisper.cpp/issues/185) |
| [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) | | [yt-wsp.sh](examples/yt-wsp.sh) | | Download + transcribe and/or translate any VOD [(original)](https://gist.github.com/DaniruKun/96f763ec1a037cc92fe1a059b643b818) |
| [server](examples/server) | | HTTP transcription server with OAI-like API | | [wchess](examples/wchess) | [wchess.wasm](examples/wchess) | Voice-controlled chess |
## [Discussions](https://github.com/ggerganov/whisper.cpp/discussions) ## [Discussions](https://github.com/ggerganov/whisper.cpp/discussions)

View File

@ -0,0 +1,5 @@
module whisper [system] {
header "whisper.h"
link "whisper"
export *
}

View File

@ -0,0 +1,4 @@
#pragma once
#include <whisper.h>

View File

@ -67,5 +67,5 @@ copy /y ..\..\build\bin\Release\whisper.dll build\generated\resources\main\win32
## License ## License
The license for the Go bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details. The license for the Java bindings is the same as the license for the rest of the whisper.cpp project, which is the MIT License. See the `LICENSE` file for more details.

View File

@ -181,11 +181,11 @@ public class WhisperFullParams extends Structure {
} }
/** Flag to suppress non-speech tokens. */ /** Flag to suppress non-speech tokens. */
public CBool suppress_non_speech_tokens; public CBool suppress_nst;
/** Flag to suppress non-speech tokens. */ /** Flag to suppress non-speech tokens. */
public void suppressNonSpeechTokens(boolean enable) { public void suppressNonSpeechTokens(boolean enable) {
suppress_non_speech_tokens = enable ? CBool.TRUE : CBool.FALSE; suppress_nst = enable ? CBool.TRUE : CBool.FALSE;
} }
/** Initial decoding temperature. */ /** Initial decoding temperature. */
@ -315,7 +315,7 @@ public class WhisperFullParams extends Structure {
"print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps", "print_special", "print_progress", "print_realtime", "print_timestamps", "token_timestamps",
"thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "audio_ctx", "thold_pt", "thold_ptsum", "max_len", "split_on_word", "max_tokens", "audio_ctx",
"tdrz_enable", "suppress_regex", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language", "tdrz_enable", "suppress_regex", "initial_prompt", "prompt_tokens", "prompt_n_tokens", "language", "detect_language",
"suppress_blank", "suppress_non_speech_tokens", "temperature", "max_initial_ts", "length_penalty", "suppress_blank", "suppress_nst", "temperature", "max_initial_ts", "length_penalty",
"temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search", "temperature_inc", "entropy_thold", "logprob_thold", "no_speech_thold", "greedy", "beam_search",
"new_segment_callback", "new_segment_callback_user_data", "new_segment_callback", "new_segment_callback_user_data",
"progress_callback", "progress_callback_user_data", "progress_callback", "progress_callback_user_data",

View File

@ -1,6 +1,6 @@
{ {
"name": "whisper.cpp", "name": "whisper.cpp",
"version": "1.7.1", "version": "1.7.4",
"description": "Whisper speech recognition", "description": "Whisper speech recognition",
"main": "whisper.js", "main": "whisper.js",
"scripts": { "scripts": {

View File

@ -22,16 +22,17 @@ Usage
```ruby ```ruby
require "whisper" require "whisper"
whisper = Whisper::Context.new("path/to/model.bin") whisper = Whisper::Context.new("base")
params = Whisper::Params.new params = Whisper::Params.new(
params.language = "en" language: "en",
params.offset = 10_000 offset: 10_000,
params.duration = 60_000 duration: 60_000,
params.max_text_tokens = 300 max_text_tokens: 300,
params.translate = true translate: true,
params.print_timestamps = false print_timestamps: false,
params.initial_prompt = "Initial prompt here." initial_prompt: "Initial prompt here."
)
whisper.transcribe("path/to/audio.wav", params) do |whole_text| whisper.transcribe("path/to/audio.wav", params) do |whole_text|
puts whole_text puts whole_text
@ -41,21 +42,67 @@ end
### Preparing model ### ### Preparing model ###
Use script to download model file(s): Some models are prepared up-front:
```bash ```ruby
git clone https://github.com/ggerganov/whisper.cpp.git base_en = Whisper::Model.pre_converted_models["base.en"]
cd whisper.cpp whisper = Whisper::Context.new(base_en)
sh ./models/download-ggml-model.sh base.en
``` ```
There are some types of models. See [models][] page for details. At first time you use a model, it is downloaded automatically. After that, downloaded cached file is used. To clear cache, call `#clear_cache`:
```ruby
Whisper::Model.pre_converted_models["base"].clear_cache
```
You also can use shorthand for pre-converted models:
```ruby
whisper = Whisper::Context.new("base.en")
```
You can see the list of prepared model names by `Whisper::Model.pre_converted_models.keys`:
```ruby
puts Whisper::Model.pre_converted_models.keys
# tiny
# tiny.en
# tiny-q5_1
# tiny.en-q5_1
# tiny-q8_0
# base
# base.en
# base-q5_1
# base.en-q5_1
# base-q8_0
# :
# :
```
You can also use local model files you prepared:
```ruby
whisper = Whisper::Context.new("path/to/your/model.bin")
```
Or, you can download model files:
```ruby
whisper = Whisper::Context.new("https://example.net/uri/of/your/model.bin")
# Or
whisper = Whisper::Context.new(URI("https://example.net/uri/of/your/model.bin"))
```
See [models][] page for details.
### Preparing audio file ### ### Preparing audio file ###
Currently, whisper.cpp accepts only 16-bit WAV files. Currently, whisper.cpp accepts only 16-bit WAV files.
### API ### API
---
### Segments ###
Once `Whisper::Context#transcribe` called, you can retrieve segments by `#each_segment`: Once `Whisper::Context#transcribe` called, you can retrieve segments by `#each_segment`:
@ -67,9 +114,9 @@ def format_time(time_ms)
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part] "%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end end
whisper.transcribe("path/to/audio.wav", params) whisper
.transcribe("path/to/audio.wav", params)
whisper.each_segment.with_index do |segment, index| .each_segment.with_index do |segment, index|
line = "[%{nth}: %{st} --> %{ed}] %{text}" % { line = "[%{nth}: %{st} --> %{ed}] %{text}" % {
nth: index + 1, nth: index + 1,
st: format_time(segment.start_time), st: format_time(segment.start_time),
@ -85,13 +132,6 @@ end
You can also add hook to params called on new segment: You can also add hook to params called on new segment:
```ruby ```ruby
def format_time(time_ms)
sec, decimal_part = time_ms.divmod(1000)
min, sec = sec.divmod(60)
hour, min = min.divmod(60)
"%02d:%02d:%02d.%03d" % [hour, min, sec, decimal_part]
end
# Add hook before calling #transcribe # Add hook before calling #transcribe
params.on_new_segment do |segment| params.on_new_segment do |segment|
line = "[%{st} --> %{ed}] %{text}" % { line = "[%{st} --> %{ed}] %{text}" % {
@ -107,10 +147,12 @@ whisper.transcribe("path/to/audio.wav", params)
``` ```
### Models ###
You can see model information: You can see model information:
```ruby ```ruby
whisper = Whisper::Context.new("path/to/model.bin") whisper = Whisper::Context.new("base")
model = whisper.model model = whisper.model
model.n_vocab # => 51864 model.n_vocab # => 51864
@ -128,6 +170,8 @@ model.type # => "base"
``` ```
### Logging ###
You can set log callback: You can set log callback:
```ruby ```ruby
@ -157,9 +201,41 @@ Using this feature, you are also able to suppress log:
Whisper.log_set ->(level, buffer, user_data) { Whisper.log_set ->(level, buffer, user_data) {
# do nothing # do nothing
}, nil }, nil
Whisper::Context.new(MODEL) Whisper::Context.new("base")
``` ```
### Low-level API to transcribe ###
You can also call `Whisper::Context#full` and `#full_parallel` with a Ruby array as samples. Although `#transcribe` with audio file path is recommended because it extracts PCM samples in C++ and is fast, `#full` and `#full_parallel` give you flexibility.
```ruby
require "whisper"
require "wavefile"
reader = WaveFile::Reader.new("path/to/audio.wav", WaveFile::Format.new(:mono, :float, 16000))
samples = reader.enum_for(:each_buffer).map(&:samples).flatten
whisper = Whisper::Context.new("base")
whisper
.full(Whisper::Params.new, samples)
.each_segment do |segment|
puts segment.text
end
```
The second argument `samples` may be an array, an object with `length` and `each` method, or a MemoryView. If you can prepare audio data as C array and export it as a MemoryView, whispercpp accepts and works with it with zero copy.
Development
-----------
% git clone https://github.com/ggerganov/whisper.cpp.git
% cd whisper.cpp/bindings/ruby
% rake test
First call of `rake test` builds an extension and downloads a model for testing. After that, you add tests in `tests` directory and modify `ext/ruby_whisper.cpp`.
If something seems wrong on build, running `rake clean` solves some cases.
License License
------- -------

View File

@ -1,68 +1,66 @@
require 'rake/clean' require 'rake/clean'
require "bundler/gem_tasks" require "bundler/gem_tasks"
require "pathname"
require "yaml"
require "rake/testtask" require "rake/testtask"
require_relative "extsources"
extsources = YAML.load_file("extsources.yaml")
SOURCES = FileList[] SOURCES = FileList[]
extsources.each do |src|
EXTSOURCES.each do |src|
basename = src.pathmap("%f") basename = src.pathmap("%f")
dest = basename == "LICENSE" ? basename : basename.pathmap("ext/%f") dest = basename == "LICENSE" ? basename : src.pathmap("%{../..,ext}p")
dir = dest.pathmap("%d")
file src file src
file dest => src do |t| directory dir
file dest => [src, dir] do |t|
cp t.source, t.name cp t.source, t.name
end end
SOURCES.include dest SOURCES.include dest
end end
CLEAN.include SOURCES
CLEAN.include FileList[
"ext/*.o",
"ext/*.metal",
"ext/whisper.{so,bundle,dll}",
"ext/depend"
]
task build: FileList[ CLEAN.include SOURCES
"ext/Makefile", CLEAN.include FileList["ext/**/*.o", "ext/**/*.metal", "ext/**/*.tmp", "ext/whisper.{so,bundle,dll}"]
"ext/ruby_whisper.h",
"ext/ruby_whisper.cpp", SRC = FileList["ext/*.{c,cpp,h}"]
"whispercpp.gemspec",
] task build: SOURCES
directory "pkg" directory "pkg"
CLOBBER.include "pkg" CLOBBER.include "pkg"
TEST_MODEL = "../../models/ggml-base.en.bin"
LIB_NAME = "whisper".ext(RbConfig::CONFIG["DLEXT"]) LIB_NAME = "whisper".ext(RbConfig::CONFIG["DLEXT"])
SO_FILE = File.join("ext", LIB_NAME) SO_FILE = File.join("ext", LIB_NAME)
LIB_FILE = File.join("lib", LIB_NAME) LIB_FILE = File.join("lib", LIB_NAME)
file "ext/Makefile" => ["ext/extconf.rb", "ext/ruby_whisper.h", "ext/ruby_whisper.cpp"] + SOURCES do |t| file "ext/Makefile" => SRC + ["ext/extconf.rb"] + SOURCES do |t|
Dir.chdir "ext" do chdir "ext" do
ruby "extconf.rb" ruby "extconf.rb"
end end
end end
file SO_FILE => "ext/Makefile" do |t| file SO_FILE => "ext/Makefile" do |t|
Dir.chdir "ext" do chdir "ext" do
sh "make" sh "make"
end end
end end
CLEAN.include LIB_FILE CLEAN.include SO_FILE
directory "lib" directory "lib"
file LIB_FILE => [SO_FILE, "lib"] do |t| file LIB_FILE => [SO_FILE, "lib"] do |t|
copy t.source, t.name copy t.source, t.name
end end
CLEAN.include LIB_FILE
Rake::TestTask.new do |t| Rake::TestTask.new do |t|
t.test_files = FileList["tests/test_*.rb"] t.test_files = FileList["tests/test_*.rb"]
end end
task test: [TEST_MODEL, LIB_FILE]
file TEST_MODEL do TEST_MEMORY_VIEW = "tests/jfk_reader/jfk_reader.#{RbConfig::CONFIG['DLEXT']}"
Dir.chdir "../.." do file TEST_MEMORY_VIEW => "tests/jfk_reader/jfk_reader.c" do |t|
sh "./models/download-ggml-model.sh base.en" chdir "tests/jfk_reader" do
ruby "extconf.rb"
sh "make"
end end
end end
CLEAN.include "tests/jfk_reader/jfk_reader.{o,#{RbConfig::CONFIG['DLEXT']}}"
task test: [LIB_FILE, TEST_MEMORY_VIEW]

View File

@ -1,35 +1,11 @@
Makefile Makefile
ggml.c
ggml.h
ggml-alloc.c
ggml-alloc.h
ggml-aarch64.c
ggml-aarch64.h
ggml-backend.cpp
ggml-backend-impl.h
ggml-backend.c
ggml-backend.h
ggml-common.h
ggml-cpu-impl.h
ggml-metal.m
ggml-metal.metal
ggml-metal-embed.metal
ggml-blas.cpp
ggml-cuda.h
ggml-impl.h
ggml-kompute.h
ggml-metal.h
ggml-opencl.h
ggml-quants.c
ggml-quants.h
ggml-sycl.h
ggml-vulkan.h
ggml-blas.h
get-flags.mk
whisper.cpp
whisper.h
dr_wav.h
depend
whisper.bundle
whisper.so whisper.so
whisper.bundle
whisper.dll whisper.dll
scripts/get-flags.mk
*.o
/*/**/*.c
/*/**/*.cpp
/*/**/*.h
/*/**/*.m
/*/**/*.metal

9
bindings/ruby/ext/cpu.mk Normal file
View File

@ -0,0 +1,9 @@
ggml/src/ggml-cpu/ggml-cpu-cpp.o: \
ggml/src/ggml-cpu/ggml-cpu.cpp \
ggml/include/ggml-backend.h \
ggml/include/ggml.h \
ggml/include/ggml-alloc.h \
ggml/src/ggml-backend-impl.h \
ggml/include/ggml-cpu.h \
ggml/src/ggml-impl.h
$(CXX) $(CXXFLAGS) -c $< -o $@

View File

@ -1,7 +1,7 @@
require 'mkmf' require 'mkmf'
# need to use c++ compiler flags # need to use c++ compiler flags
$CXXFLAGS << ' -std=c++11' $CXXFLAGS << ' -std=c++17'
$LDFLAGS << ' -lstdc++' $LDFLAGS << ' -lstdc++'
@ -35,10 +35,10 @@ if $GGML_METAL
$GGML_METAL_EMBED_LIBRARY = true $GGML_METAL_EMBED_LIBRARY = true
end end
$MK_CPPFLAGS = '' $MK_CPPFLAGS = '-Iggml/include -Iggml/src -Iggml/src/ggml-cpu -Iinclude -Isrc -Iexamples'
$MK_CFLAGS = '-std=c11 -fPIC' $MK_CFLAGS = '-std=c11 -fPIC'
$MK_CXXFLAGS = '-std=c++11 -fPIC' $MK_CXXFLAGS = '-std=c++17 -fPIC'
$MK_NVCCFLAGS = '-std=c++11' $MK_NVCCFLAGS = '-std=c++17'
$MK_LDFLAGS = '' $MK_LDFLAGS = ''
$OBJ_GGML = [] $OBJ_GGML = []
@ -111,11 +111,6 @@ unless ENV['RISCV']
$MK_CFLAGS << ' -march=native -mtune=native' $MK_CFLAGS << ' -march=native -mtune=native'
$HOST_CXXFLAGS << ' -march=native -mtune=native' $HOST_CXXFLAGS << ' -march=native -mtune=native'
end end
if $UNAME_M.match? /aarch64.*/
$MK_CFLAGS << ' -mcpu=native'
$MK_CXXFLAGS << ' -mcpu=native'
end
else else
$MK_CFLAGS << ' -march=rv64gcv -mabi=lp64d' $MK_CFLAGS << ' -march=rv64gcv -mabi=lp64d'
$MK_CXXFLAGS << ' -march=rv64gcv -mabi=lp64d' $MK_CXXFLAGS << ' -march=rv64gcv -mabi=lp64d'
@ -123,11 +118,11 @@ end
unless ENV['GGML_NO_ACCELERATE'] unless ENV['GGML_NO_ACCELERATE']
if $UNAME_S == 'Darwin' if $UNAME_S == 'Darwin'
$MK_CPPFLAGS << ' -DGGML_USE_ACCELERATE -DGGML_USE_BLAS' $MK_CPPFLAGS << ' -DGGML_USE_ACCELERATE -DGGML_USE_BLAS -DGGML_BLAS_USE_ACCELERATE'
$MK_CPPFLAGS << ' -DACCELERATE_NEW_LAPACK' $MK_CPPFLAGS << ' -DACCELERATE_NEW_LAPACK'
$MK_CPPFLAGS << ' -DACCELERATE_LAPACK_ILP64' $MK_CPPFLAGS << ' -DACCELERATE_LAPACK_ILP64'
$MK_LDFLAGS << ' -framework Accelerate' $MK_LDFLAGS << ' -framework Accelerate'
$OBJ_GGML << 'ggml-blas.o' $OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
end end
end end
@ -135,20 +130,20 @@ if ENV['GGML_OPENBLAS']
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas`.chomp}" $MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas`.chomp}"
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas)`.chomp}" $MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas)`.chomp}"
$MK_LDFLAGS << " #{`pkg-config --libs openblas`}" $MK_LDFLAGS << " #{`pkg-config --libs openblas`}"
$OBJ_GGML << 'ggml-blas.o' $OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
end end
if ENV['GGML_OPENBLAS64'] if ENV['GGML_OPENBLAS64']
$MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas64`.chomp}" $MK_CPPFLAGS << " -DGGML_USE_BLAS #{`pkg-config --cflags-only-I openblas64`.chomp}"
$MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas64)`.chomp}" $MK_CFLAGS << " #{`pkg-config --cflags-only-other openblas64)`.chomp}"
$MK_LDFLAGS << " #{`pkg-config --libs openblas64`}" $MK_LDFLAGS << " #{`pkg-config --libs openblas64`}"
$OBJ_GGML << 'ggml-blas.o' $OBJ_GGML << 'ggml/src/ggml-blas/ggml-blas.o'
end end
if $GGML_METAL if $GGML_METAL
$MK_CPPFLAGS << ' -DGGML_USE_METAL' $MK_CPPFLAGS << ' -DGGML_USE_METAL'
$MK_LDFLAGS << ' -framework Foundation -framework Metal -framework MetalKit' $MK_LDFLAGS << ' -framework Foundation -framework Metal -framework MetalKit'
$OBJ_GGML << 'ggml-metal.o' $OBJ_GGML << 'ggml/src/ggml-metal/ggml-metal.o'
if ENV['GGML_METAL_NDEBUG'] if ENV['GGML_METAL_NDEBUG']
$MK_CPPFLAGS << ' -DGGML_METAL_NDEBUG' $MK_CPPFLAGS << ' -DGGML_METAL_NDEBUG'
@ -156,23 +151,37 @@ if $GGML_METAL
if $GGML_METAL_EMBED_LIBRARY if $GGML_METAL_EMBED_LIBRARY
$MK_CPPFLAGS << ' -DGGML_METAL_EMBED_LIBRARY' $MK_CPPFLAGS << ' -DGGML_METAL_EMBED_LIBRARY'
$OBJ_GGML << 'ggml-metal-embed.o' $OBJ_GGML << 'ggml/src/ggml-metal/ggml-metal-embed.o'
end end
end end
$OBJ_GGML << $OBJ_GGML <<
'ggml.o' << 'ggml/src/ggml.o' <<
'ggml-cpu.o' << 'ggml/src/ggml-alloc.o' <<
'ggml-alloc.o' << 'ggml/src/ggml-backend.o' <<
'ggml-backend.o' << 'ggml/src/ggml-backend-reg.o' <<
'ggml-quants.o' << 'ggml/src/ggml-opt.o' <<
'ggml-aarch64.o' 'ggml/src/ggml-quants.o' <<
'ggml/src/ggml-threading.o' <<
'ggml/src/ggml-cpu/ggml-cpu.o' <<
'ggml/src/ggml-cpu/ggml-cpu-cpp.o' <<
'ggml/src/ggml-cpu/ggml-cpu-aarch64.o' <<
'ggml/src/ggml-cpu/ggml-cpu-hbm.o' <<
'ggml/src/ggml-cpu/ggml-cpu-quants.o' <<
'ggml/src/ggml-cpu/ggml-cpu-traits.o'
$OBJ_WHISPER << $OBJ_WHISPER <<
'whisper.o' 'src/whisper.o'
$objs = $OBJ_GGML + $OBJ_WHISPER + $OBJ_COMMON + $OBJ_SDL $objs = $OBJ_GGML + $OBJ_WHISPER + $OBJ_COMMON + $OBJ_SDL
$objs << "ruby_whisper.o" $objs <<
"ruby_whisper.o" <<
"ruby_whisper_context.o" <<
"ruby_whisper_transcribe.o" <<
"ruby_whisper_params.o" <<
"ruby_whisper_error.o" <<
"ruby_whisper_segment.o" <<
"ruby_whisper_model.o"
$CPPFLAGS = "#{$MK_CPPFLAGS} #{$CPPFLAGS}" $CPPFLAGS = "#{$MK_CPPFLAGS} #{$CPPFLAGS}"
$CFLAGS = "#{$CPPFLAGS} #{$MK_CFLAGS} #{$GF_CFLAGS} #{$CFLAGS}" $CFLAGS = "#{$CPPFLAGS} #{$MK_CFLAGS} #{$GF_CFLAGS} #{$CFLAGS}"
@ -184,9 +193,12 @@ $LDFLAGS = "#{$MK_LDFLAGS} #{$LDFLAGS}"
create_makefile('whisper') create_makefile('whisper')
File.open 'Makefile', 'a' do |file| File.open 'Makefile', 'a' do |file|
file.puts 'include get-flags.mk' file.puts 'include scripts/get-flags.mk'
file.puts 'include cpu.mk'
if $GGML_METAL if $GGML_METAL
file.puts 'include metal.mk'
if $GGML_METAL_EMBED_LIBRARY if $GGML_METAL_EMBED_LIBRARY
file.puts 'include metal-embed.mk' file.puts 'include metal-embed.mk'
end end

View File

@ -1,14 +1,17 @@
ggml-metal-embed.o: \ ggml/src/ggml-metal/ggml-metal-embed.o: \
ggml-metal.metal \ ggml/src/ggml-metal/ggml-metal.metal \
ggml-common.h ggml/src/ggml-metal/ggml-metal-impl.h \
ggml/src/ggml-common.h
@echo "Embedding Metal library" @echo "Embedding Metal library"
@sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal @sed -e '/__embed_ggml-common.h__/r ggml/src/ggml-common.h' -e '/__embed_ggml-common.h__/d' < ggml/src/ggml-metal/ggml-metal.metal > ggml/src/ggml-metal/ggml-metal-embed.metal.tmp
$(eval TEMP_ASSEMBLY=$(shell mktemp)) @sed -e '/#include "ggml-metal-impl.h"/r ggml/src/ggml-metal/ggml-metal-impl.h' -e '/#include "ggml-metal-impl.h"/d' < ggml/src/ggml-metal/ggml-metal-embed.metal.tmp > ggml/src/ggml-metal/ggml-metal-embed.metal
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY) $(eval TEMP_ASSEMBLY=$(shell mktemp -d))
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY) @echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY) @echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".incbin \"ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY) @echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY) @echo ".incbin \"ggml/src/ggml-metal/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY) @echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@$(AS) $(TEMP_ASSEMBLY) -o $@ @echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@rm -f ${TEMP_ASSEMBLY} $(CC) $(CFLAGS) -c $(TEMP_ASSEMBLY)/ggml-metal-embed.s -o $@
@rm -f ${TEMP_ASSEMBLY}/ggml-metal-embed.s
@rmdir ${TEMP_ASSEMBLY}

View File

@ -0,0 +1,6 @@
ggml/src/ggml-metal/ggml-metal.o: \
ggml/src/ggml-metal/ggml-metal.m \
ggml/src/ggml-metal/ggml-metal-impl.h \
ggml/include/ggml-metal.h \
ggml/include/ggml.h
$(CC) $(CFLAGS) -c $< -o $@

View File

@ -0,0 +1,164 @@
#include <ruby.h>
#include <ruby/memory_view.h>
#include "ruby_whisper.h"
VALUE mWhisper;
VALUE cContext;
VALUE cParams;
VALUE eError;
VALUE cSegment;
VALUE cModel;
ID id_to_s;
ID id_call;
ID id___method__;
ID id_to_enum;
ID id_length;
ID id_next;
ID id_new;
ID id_to_path;
ID id_URI;
ID id_pre_converted_models;
static bool is_log_callback_finalized = false;
// High level API
extern VALUE ruby_whisper_segment_allocate(VALUE klass);
extern void init_ruby_whisper_context(VALUE *mWhisper);
extern void init_ruby_whisper_params(VALUE *mWhisper);
extern void init_ruby_whisper_error(VALUE *mWhisper);
extern void init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cSegment);
extern void init_ruby_whisper_model(VALUE *mWhisper);
extern void register_callbacks(ruby_whisper_params *rwp, VALUE *context);
/*
* call-seq:
* lang_max_id -> Integer
*/
static VALUE ruby_whisper_s_lang_max_id(VALUE self) {
return INT2NUM(whisper_lang_max_id());
}
/*
* call-seq:
* lang_id(lang_name) -> Integer
*/
static VALUE ruby_whisper_s_lang_id(VALUE self, VALUE lang) {
const char * lang_str = StringValueCStr(lang);
const int id = whisper_lang_id(lang_str);
if (-1 == id) {
rb_raise(rb_eArgError, "language not found: %s", lang_str);
}
return INT2NUM(id);
}
/*
* call-seq:
* lang_str(lang_id) -> String
*/
static VALUE ruby_whisper_s_lang_str(VALUE self, VALUE id) {
const int lang_id = NUM2INT(id);
const char * str = whisper_lang_str(lang_id);
if (NULL == str) {
rb_raise(rb_eIndexError, "id %d outside of language id", lang_id);
}
return rb_str_new2(str);
}
/*
* call-seq:
* lang_str(lang_id) -> String
*/
static VALUE ruby_whisper_s_lang_str_full(VALUE self, VALUE id) {
const int lang_id = NUM2INT(id);
const char * str_full = whisper_lang_str_full(lang_id);
if (NULL == str_full) {
rb_raise(rb_eIndexError, "id %d outside of language id", lang_id);
}
return rb_str_new2(str_full);
}
static VALUE ruby_whisper_s_finalize_log_callback(VALUE self, VALUE id) {
is_log_callback_finalized = true;
return Qnil;
}
static void
ruby_whisper_log_callback(enum ggml_log_level level, const char * buffer, void * user_data) {
if (is_log_callback_finalized) {
return;
}
VALUE log_callback = rb_iv_get(mWhisper, "log_callback");
VALUE udata = rb_iv_get(mWhisper, "user_data");
rb_funcall(log_callback, id_call, 3, INT2NUM(level), rb_str_new2(buffer), udata);
}
/*
* call-seq:
* log_set ->(level, buffer, user_data) { ... }, user_data -> nil
*/
static VALUE ruby_whisper_s_log_set(VALUE self, VALUE log_callback, VALUE user_data) {
VALUE old_callback = rb_iv_get(self, "log_callback");
if (!NIL_P(old_callback)) {
rb_undefine_finalizer(old_callback);
}
rb_iv_set(self, "log_callback", log_callback);
rb_iv_set(self, "user_data", user_data);
VALUE finalize_log_callback = rb_funcall(mWhisper, rb_intern("method"), 1, rb_str_new2("finalize_log_callback"));
rb_define_finalizer(log_callback, finalize_log_callback);
whisper_log_set(ruby_whisper_log_callback, NULL);
return Qnil;
}
static void rb_whisper_model_mark(ruby_whisper_model *rwm) {
rb_gc_mark(rwm->context);
}
static VALUE ruby_whisper_model_allocate(VALUE klass) {
ruby_whisper_model *rwm;
rwm = ALLOC(ruby_whisper_model);
return Data_Wrap_Struct(klass, rb_whisper_model_mark, RUBY_DEFAULT_FREE, rwm);
}
void Init_whisper() {
id_to_s = rb_intern("to_s");
id_call = rb_intern("call");
id___method__ = rb_intern("__method__");
id_to_enum = rb_intern("to_enum");
id_length = rb_intern("length");
id_next = rb_intern("next");
id_new = rb_intern("new");
id_to_path = rb_intern("to_path");
id_URI = rb_intern("URI");
id_pre_converted_models = rb_intern("pre_converted_models");
mWhisper = rb_define_module("Whisper");
rb_define_const(mWhisper, "LOG_LEVEL_NONE", INT2NUM(GGML_LOG_LEVEL_NONE));
rb_define_const(mWhisper, "LOG_LEVEL_INFO", INT2NUM(GGML_LOG_LEVEL_INFO));
rb_define_const(mWhisper, "LOG_LEVEL_WARN", INT2NUM(GGML_LOG_LEVEL_WARN));
rb_define_const(mWhisper, "LOG_LEVEL_ERROR", INT2NUM(GGML_LOG_LEVEL_ERROR));
rb_define_const(mWhisper, "LOG_LEVEL_DEBUG", INT2NUM(GGML_LOG_LEVEL_DEBUG));
rb_define_const(mWhisper, "LOG_LEVEL_CONT", INT2NUM(GGML_LOG_LEVEL_CONT));
rb_define_singleton_method(mWhisper, "lang_max_id", ruby_whisper_s_lang_max_id, 0);
rb_define_singleton_method(mWhisper, "lang_id", ruby_whisper_s_lang_id, 1);
rb_define_singleton_method(mWhisper, "lang_str", ruby_whisper_s_lang_str, 1);
rb_define_singleton_method(mWhisper, "lang_str_full", ruby_whisper_s_lang_str_full, 1);
rb_define_singleton_method(mWhisper, "log_set", ruby_whisper_s_log_set, 2);
rb_define_private_method(rb_singleton_class(mWhisper), "finalize_log_callback", ruby_whisper_s_finalize_log_callback, 1);
init_ruby_whisper_context(&mWhisper);
init_ruby_whisper_params(&mWhisper);
init_ruby_whisper_error(&mWhisper);
init_ruby_whisper_segment(&mWhisper, &cContext);
init_ruby_whisper_model(&mWhisper);
rb_require("whisper/model/uri");
}

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
#ifndef __RUBY_WHISPER_H #ifndef RUBY_WHISPER_H
#define __RUBY_WHISPER_H #define RUBY_WHISPER_H
#include "whisper.h" #include "whisper.h"
@ -22,4 +22,13 @@ typedef struct {
ruby_whisper_callback_container *abort_callback_container; ruby_whisper_callback_container *abort_callback_container;
} ruby_whisper_params; } ruby_whisper_params;
typedef struct {
VALUE context;
int index;
} ruby_whisper_segment;
typedef struct {
VALUE context;
} ruby_whisper_model;
#endif #endif

View File

@ -0,0 +1,613 @@
#include <ruby.h>
#include <ruby/memory_view.h>
#include "ruby_whisper.h"
extern ID id_to_s;
extern ID id___method__;
extern ID id_to_enum;
extern ID id_length;
extern ID id_next;
extern ID id_new;
extern ID id_to_path;
extern ID id_URI;
extern ID id_pre_converted_models;
extern VALUE cContext;
extern VALUE eError;
extern VALUE cModel;
extern VALUE ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self);
extern VALUE rb_whisper_model_initialize(VALUE context);
extern VALUE rb_whisper_segment_initialize(VALUE context, int index);
extern void register_callbacks(ruby_whisper_params *rwp, VALUE *context);
static void
ruby_whisper_free(ruby_whisper *rw)
{
if (rw->context) {
whisper_free(rw->context);
rw->context = NULL;
}
}
void
rb_whisper_mark(ruby_whisper *rw)
{
// call rb_gc_mark on any ruby references in rw
}
void
rb_whisper_free(ruby_whisper *rw)
{
ruby_whisper_free(rw);
free(rw);
}
static VALUE
ruby_whisper_allocate(VALUE klass)
{
ruby_whisper *rw;
rw = ALLOC(ruby_whisper);
rw->context = NULL;
return Data_Wrap_Struct(klass, rb_whisper_mark, rb_whisper_free, rw);
}
/*
* call-seq:
* new("base.en") -> Whisper::Context
* new("path/to/model.bin") -> Whisper::Context
* new(Whisper::Model::URI.new("https://example.net/uri/of/model.bin")) -> Whisper::Context
*/
static VALUE
ruby_whisper_initialize(int argc, VALUE *argv, VALUE self)
{
ruby_whisper *rw;
VALUE whisper_model_file_path;
// TODO: we can support init from buffer here too maybe another ruby object to expose
rb_scan_args(argc, argv, "01", &whisper_model_file_path);
Data_Get_Struct(self, ruby_whisper, rw);
VALUE pre_converted_models = rb_funcall(cModel, id_pre_converted_models, 0);
VALUE pre_converted_model = rb_hash_aref(pre_converted_models, whisper_model_file_path);
if (!NIL_P(pre_converted_model)) {
whisper_model_file_path = pre_converted_model;
}
if (TYPE(whisper_model_file_path) == T_STRING) {
const char * whisper_model_file_path_str = StringValueCStr(whisper_model_file_path);
if (strncmp("http://", whisper_model_file_path_str, 7) == 0 || strncmp("https://", whisper_model_file_path_str, 8) == 0) {
VALUE uri_class = rb_const_get(cModel, id_URI);
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
}
}
if (rb_obj_is_kind_of(whisper_model_file_path, rb_path2class("URI::HTTP"))) {
VALUE uri_class = rb_const_get(cModel, id_URI);
whisper_model_file_path = rb_class_new_instance(1, &whisper_model_file_path, uri_class);
}
if (rb_respond_to(whisper_model_file_path, id_to_path)) {
whisper_model_file_path = rb_funcall(whisper_model_file_path, id_to_path, 0);
}
if (!rb_respond_to(whisper_model_file_path, id_to_s)) {
rb_raise(rb_eRuntimeError, "Expected file path to model to initialize Whisper::Context");
}
rw->context = whisper_init_from_file_with_params(StringValueCStr(whisper_model_file_path), whisper_context_default_params());
if (rw->context == NULL) {
rb_raise(rb_eRuntimeError, "error: failed to initialize whisper context");
}
return self;
}
/*
* call-seq:
* model_n_vocab -> Integer
*/
VALUE ruby_whisper_model_n_vocab(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_vocab(rw->context));
}
/*
* call-seq:
* model_n_audio_ctx -> Integer
*/
VALUE ruby_whisper_model_n_audio_ctx(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
}
/*
* call-seq:
* model_n_audio_state -> Integer
*/
VALUE ruby_whisper_model_n_audio_state(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_state(rw->context));
}
/*
* call-seq:
* model_n_audio_head -> Integer
*/
VALUE ruby_whisper_model_n_audio_head(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_head(rw->context));
}
/*
* call-seq:
* model_n_audio_layer -> Integer
*/
VALUE ruby_whisper_model_n_audio_layer(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_layer(rw->context));
}
/*
* call-seq:
* model_n_text_ctx -> Integer
*/
VALUE ruby_whisper_model_n_text_ctx(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_ctx(rw->context));
}
/*
* call-seq:
* model_n_text_state -> Integer
*/
VALUE ruby_whisper_model_n_text_state(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_state(rw->context));
}
/*
* call-seq:
* model_n_text_head -> Integer
*/
VALUE ruby_whisper_model_n_text_head(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_head(rw->context));
}
/*
* call-seq:
* model_n_text_layer -> Integer
*/
VALUE ruby_whisper_model_n_text_layer(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_layer(rw->context));
}
/*
* call-seq:
* model_n_mels -> Integer
*/
VALUE ruby_whisper_model_n_mels(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_n_mels(rw->context));
}
/*
* call-seq:
* model_ftype -> Integer
*/
VALUE ruby_whisper_model_ftype(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_model_ftype(rw->context));
}
/*
* call-seq:
* model_type -> String
*/
VALUE ruby_whisper_model_type(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return rb_str_new2(whisper_model_type_readable(rw->context));
}
/*
* Run the entire model: PCM -> log mel spectrogram -> encoder -> decoder -> text
* Not thread safe for same context
* Uses the specified decoding strategy to obtain the text.
*
* call-seq:
* full(params, samples, n_samples) -> nil
* full(params, samples) -> nil
*
* The second argument +samples+ must be an array of samples, respond to :length, or be a MemoryView of an array of float. It must be 32 bit float PCM audio data.
*/
VALUE ruby_whisper_full(int argc, VALUE *argv, VALUE self)
{
if (argc < 2 || argc > 3) {
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
}
ruby_whisper *rw;
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper, rw);
VALUE params = argv[0];
Data_Get_Struct(params, ruby_whisper_params, rwp);
VALUE samples = argv[1];
int n_samples;
rb_memory_view_t view;
const bool memory_view_available_p = rb_memory_view_available_p(samples);
if (argc == 3) {
n_samples = NUM2INT(argv[2]);
if (TYPE(samples) == T_ARRAY) {
if (RARRAY_LEN(samples) < n_samples) {
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
}
}
// Should check when samples.respond_to?(:length)?
} else {
if (TYPE(samples) == T_ARRAY) {
n_samples = RARRAY_LEN(samples);
} else if (memory_view_available_p) {
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
view.obj = Qnil;
rb_raise(rb_eArgError, "unable to get a memory view");
}
n_samples = view.byte_size / view.item_size;
} else if (rb_respond_to(samples, id_length)) {
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
} else {
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
}
}
float * c_samples = (float *)malloc(n_samples * sizeof(float));
if (memory_view_available_p) {
c_samples = (float *)view.data;
} else {
if (TYPE(samples) == T_ARRAY) {
for (int i = 0; i < n_samples; i++) {
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
}
} else {
// TODO: use rb_block_call
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
for (int i = 0; i < n_samples; i++) {
// TODO: check if iter is exhausted and raise ArgumentError appropriately
VALUE sample = rb_funcall(iter, id_next, 0);
c_samples[i] = RFLOAT_VALUE(sample);
}
}
}
register_callbacks(rwp, &self);
const int result = whisper_full(rw->context, rwp->params, c_samples, n_samples);
if (0 == result) {
return self;
} else {
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
}
}
/*
* Split the input audio in chunks and process each chunk separately using whisper_full_with_state()
* Result is stored in the default state of the context
* Not thread safe if executed in parallel on the same context.
* It seems this approach can offer some speedup in some cases.
* However, the transcription accuracy can be worse at the beginning and end of each chunk.
*
* call-seq:
* full_parallel(params, samples) -> nil
* full_parallel(params, samples, n_samples) -> nil
* full_parallel(params, samples, n_samples, n_processors) -> nil
* full_parallel(params, samples, nil, n_processors) -> nil
*/
static VALUE
ruby_whisper_full_parallel(int argc, VALUE *argv,VALUE self)
{
if (argc < 2 || argc > 4) {
rb_raise(rb_eArgError, "wrong number of arguments (given %d, expected 2..3)", argc);
}
ruby_whisper *rw;
ruby_whisper_params *rwp;
Data_Get_Struct(self, ruby_whisper, rw);
VALUE params = argv[0];
Data_Get_Struct(params, ruby_whisper_params, rwp);
VALUE samples = argv[1];
int n_samples;
int n_processors;
rb_memory_view_t view;
const bool memory_view_available_p = rb_memory_view_available_p(samples);
switch (argc) {
case 2:
n_processors = 1;
break;
case 3:
n_processors = 1;
break;
case 4:
n_processors = NUM2INT(argv[3]);
break;
}
if (argc >= 3 && !NIL_P(argv[2])) {
n_samples = NUM2INT(argv[2]);
if (TYPE(samples) == T_ARRAY) {
if (RARRAY_LEN(samples) < n_samples) {
rb_raise(rb_eArgError, "samples length %ld is less than n_samples %d", RARRAY_LEN(samples), n_samples);
}
}
// Should check when samples.respond_to?(:length)?
} else if (memory_view_available_p) {
if (!rb_memory_view_get(samples, &view, RUBY_MEMORY_VIEW_SIMPLE)) {
view.obj = Qnil;
rb_raise(rb_eArgError, "unable to get a memory view");
}
n_samples = view.byte_size / view.item_size;
} else {
if (TYPE(samples) == T_ARRAY) {
n_samples = RARRAY_LEN(samples);
} else if (rb_respond_to(samples, id_length)) {
n_samples = NUM2INT(rb_funcall(samples, id_length, 0));
} else {
rb_raise(rb_eArgError, "samples must respond to :length or be a MemoryView of an array of flaot when n_samples is not given");
}
}
float * c_samples = (float *)malloc(n_samples * sizeof(float));
if (memory_view_available_p) {
c_samples = (float *)view.data;
} else {
if (TYPE(samples) == T_ARRAY) {
for (int i = 0; i < n_samples; i++) {
c_samples[i] = RFLOAT_VALUE(rb_ary_entry(samples, i));
}
} else {
// FIXME: use rb_block_call
VALUE iter = rb_funcall(samples, id_to_enum, 1, rb_str_new2("each"));
for (int i = 0; i < n_samples; i++) {
// TODO: check if iter is exhausted and raise ArgumentError
VALUE sample = rb_funcall(iter, id_next, 0);
c_samples[i] = RFLOAT_VALUE(sample);
}
}
}
register_callbacks(rwp, &self);
const int result = whisper_full_parallel(rw->context, rwp->params, c_samples, n_samples, n_processors);
if (0 == result) {
return self;
} else {
rb_exc_raise(rb_funcall(eError, id_new, 1, result));
}
}
/*
* Number of segments.
*
* call-seq:
* full_n_segments -> Integer
*/
static VALUE
ruby_whisper_full_n_segments(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_full_n_segments(rw->context));
}
/*
* Language ID, which can be converted to string by Whisper.lang_str and Whisper.lang_str_full.
*
* call-seq:
* full_lang_id -> Integer
*/
static VALUE
ruby_whisper_full_lang_id(VALUE self)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
return INT2NUM(whisper_full_lang_id(rw->context));
}
static int ruby_whisper_full_check_segment_index(const ruby_whisper * rw, const VALUE i_segment)
{
const int c_i_segment = NUM2INT(i_segment);
if (c_i_segment < 0 || c_i_segment >= whisper_full_n_segments(rw->context)) {
rb_raise(rb_eIndexError, "segment index %d out of range", c_i_segment);
}
return c_i_segment;
}
/*
* Start time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
*
* full_get_segment_t0(3) # => 1668 (16680 ms)
*
* call-seq:
* full_get_segment_t0(segment_index) -> Integer
*/
static VALUE
ruby_whisper_full_get_segment_t0(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const int64_t t0 = whisper_full_get_segment_t0(rw->context, c_i_segment);
return INT2NUM(t0);
}
/*
* End time of a segment indexed by +segment_index+ in centiseconds (10 times milliseconds).
*
* full_get_segment_t1(3) # => 1668 (16680 ms)
*
* call-seq:
* full_get_segment_t1(segment_index) -> Integer
*/
static VALUE
ruby_whisper_full_get_segment_t1(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const int64_t t1 = whisper_full_get_segment_t1(rw->context, c_i_segment);
return INT2NUM(t1);
}
/*
* Whether the next segment indexed by +segment_index+ is predicated as a speaker turn.
*
* full_get_segment_speacker_turn_next(3) # => true
*
* call-seq:
* full_get_segment_speacker_turn_next(segment_index) -> bool
*/
static VALUE
ruby_whisper_full_get_segment_speaker_turn_next(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const bool speaker_turn_next = whisper_full_get_segment_speaker_turn_next(rw->context, c_i_segment);
return speaker_turn_next ? Qtrue : Qfalse;
}
/*
* Text of a segment indexed by +segment_index+.
*
* full_get_segment_text(3) # => "ask not what your country can do for you, ..."
*
* call-seq:
* full_get_segment_text(segment_index) -> String
*/
static VALUE
ruby_whisper_full_get_segment_text(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const char * text = whisper_full_get_segment_text(rw->context, c_i_segment);
return rb_str_new2(text);
}
/*
* call-seq:
* full_get_segment_no_speech_prob(segment_index) -> Float
*/
static VALUE
ruby_whisper_full_get_segment_no_speech_prob(VALUE self, VALUE i_segment)
{
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int c_i_segment = ruby_whisper_full_check_segment_index(rw, i_segment);
const float no_speech_prob = whisper_full_get_segment_no_speech_prob(rw->context, c_i_segment);
return DBL2NUM(no_speech_prob);
}
// High level API
static VALUE
ruby_whisper_full_get_segment(VALUE self, VALUE i_segment)
{
return rb_whisper_segment_initialize(self, NUM2INT(i_segment));
}
/*
* Yields each Whisper::Segment:
*
* whisper.transcribe("path/to/audio.wav", params)
* whisper.each_segment do |segment|
* puts segment.text
* end
*
* Returns an Enumerator if no block given:
*
* whisper.transcribe("path/to/audio.wav", params)
* enum = whisper.each_segment
* enum.to_a # => [#<Whisper::Segment>, ...]
*
* call-seq:
* each_segment {|segment| ... }
* each_segment -> Enumerator
*/
static VALUE
ruby_whisper_each_segment(VALUE self)
{
if (!rb_block_given_p()) {
const VALUE method_name = rb_funcall(self, id___method__, 0);
return rb_funcall(self, id_to_enum, 1, method_name);
}
ruby_whisper *rw;
Data_Get_Struct(self, ruby_whisper, rw);
const int n_segments = whisper_full_n_segments(rw->context);
for (int i = 0; i < n_segments; ++i) {
rb_yield(rb_whisper_segment_initialize(self, i));
}
return self;
}
/*
* call-seq:
* model -> Whisper::Model
*/
static VALUE
ruby_whisper_get_model(VALUE self)
{
return rb_whisper_model_initialize(self);
}
void
init_ruby_whisper_context(VALUE *mWhisper)
{
cContext = rb_define_class_under(*mWhisper, "Context", rb_cObject);
rb_define_alloc_func(cContext, ruby_whisper_allocate);
rb_define_method(cContext, "initialize", ruby_whisper_initialize, -1);
rb_define_method(cContext, "transcribe", ruby_whisper_transcribe, -1);
rb_define_method(cContext, "model_n_vocab", ruby_whisper_model_n_vocab, 0);
rb_define_method(cContext, "model_n_audio_ctx", ruby_whisper_model_n_audio_ctx, 0);
rb_define_method(cContext, "model_n_audio_state", ruby_whisper_model_n_audio_state, 0);
rb_define_method(cContext, "model_n_audio_head", ruby_whisper_model_n_audio_head, 0);
rb_define_method(cContext, "model_n_audio_layer", ruby_whisper_model_n_audio_layer, 0);
rb_define_method(cContext, "model_n_text_ctx", ruby_whisper_model_n_text_ctx, 0);
rb_define_method(cContext, "model_n_text_state", ruby_whisper_model_n_text_state, 0);
rb_define_method(cContext, "model_n_text_head", ruby_whisper_model_n_text_head, 0);
rb_define_method(cContext, "model_n_text_layer", ruby_whisper_model_n_text_layer, 0);
rb_define_method(cContext, "model_n_mels", ruby_whisper_model_n_mels, 0);
rb_define_method(cContext, "model_ftype", ruby_whisper_model_ftype, 0);
rb_define_method(cContext, "model_type", ruby_whisper_model_type, 0);
rb_define_method(cContext, "full_n_segments", ruby_whisper_full_n_segments, 0);
rb_define_method(cContext, "full_lang_id", ruby_whisper_full_lang_id, 0);
rb_define_method(cContext, "full_get_segment_t0", ruby_whisper_full_get_segment_t0, 1);
rb_define_method(cContext, "full_get_segment_t1", ruby_whisper_full_get_segment_t1, 1);
rb_define_method(cContext, "full_get_segment_speaker_turn_next", ruby_whisper_full_get_segment_speaker_turn_next, 1);
rb_define_method(cContext, "full_get_segment_text", ruby_whisper_full_get_segment_text, 1);
rb_define_method(cContext, "full_get_segment_no_speech_prob", ruby_whisper_full_get_segment_no_speech_prob, 1);
rb_define_method(cContext, "full", ruby_whisper_full, -1);
rb_define_method(cContext, "full_parallel", ruby_whisper_full_parallel, -1);
// High leve
rb_define_method(cContext, "full_get_segment", ruby_whisper_full_get_segment, 1);
rb_define_method(cContext, "each_segment", ruby_whisper_each_segment, 0);
rb_define_method(cContext, "model", ruby_whisper_get_model, 0);
}

View File

@ -0,0 +1,52 @@
#include <ruby.h>
extern VALUE eError;
VALUE ruby_whisper_error_initialize(VALUE self, VALUE code)
{
const int c_code = NUM2INT(code);
const char *raw_message;
switch (c_code) {
case -2:
raw_message = "failed to compute log mel spectrogram";
break;
case -3:
raw_message = "failed to auto-detect language";
break;
case -4:
raw_message = "too many decoders requested";
break;
case -5:
raw_message = "audio_ctx is larger than the maximum allowed";
break;
case -6:
raw_message = "failed to encode";
break;
case -7:
raw_message = "whisper_kv_cache_init() failed for self-attention cache";
break;
case -8:
raw_message = "failed to decode";
break;
case -9:
raw_message = "failed to decode";
break;
default:
raw_message = "unknown error";
break;
}
const VALUE message = rb_str_new2(raw_message);
rb_call_super(1, &message);
rb_iv_set(self, "@code", code);
return self;
}
void
init_ruby_whisper_error(VALUE *mWhisper)
{
eError = rb_define_class_under(*mWhisper, "Error", rb_eStandardError);
rb_define_attr(eError, "code", true, false);
rb_define_method(eError, "initialize", ruby_whisper_error_initialize, 1);
}

View File

@ -0,0 +1,210 @@
#include <ruby.h>
#include "ruby_whisper.h"
extern VALUE cModel;
static void rb_whisper_model_mark(ruby_whisper_model *rwm) {
rb_gc_mark(rwm->context);
}
static VALUE ruby_whisper_model_allocate(VALUE klass) {
ruby_whisper_model *rwm;
rwm = ALLOC(ruby_whisper_model);
return Data_Wrap_Struct(klass, rb_whisper_model_mark, RUBY_DEFAULT_FREE, rwm);
}
VALUE rb_whisper_model_initialize(VALUE context) {
ruby_whisper_model *rwm;
const VALUE model = ruby_whisper_model_allocate(cModel);
Data_Get_Struct(model, ruby_whisper_model, rwm);
rwm->context = context;
return model;
};
/*
* call-seq:
* n_vocab -> Integer
*/
static VALUE
ruby_whisper_model_n_vocab(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_vocab(rw->context));
}
/*
* call-seq:
* n_audio_ctx -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_ctx(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_ctx(rw->context));
}
/*
* call-seq:
* n_audio_state -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_state(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_state(rw->context));
}
/*
* call-seq:
* n_audio_head -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_head(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_head(rw->context));
}
/*
* call-seq:
* n_audio_layer -> Integer
*/
static VALUE
ruby_whisper_model_n_audio_layer(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_audio_layer(rw->context));
}
/*
* call-seq:
* n_text_ctx -> Integer
*/
static VALUE
ruby_whisper_model_n_text_ctx(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_ctx(rw->context));
}
/*
* call-seq:
* n_text_state -> Integer
*/
static VALUE
ruby_whisper_model_n_text_state(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_state(rw->context));
}
/*
* call-seq:
* n_text_head -> Integer
*/
static VALUE
ruby_whisper_model_n_text_head(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_head(rw->context));
}
/*
* call-seq:
* n_text_layer -> Integer
*/
static VALUE
ruby_whisper_model_n_text_layer(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_text_layer(rw->context));
}
/*
* call-seq:
* n_mels -> Integer
*/
static VALUE
ruby_whisper_model_n_mels(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_n_mels(rw->context));
}
/*
* call-seq:
* ftype -> Integer
*/
static VALUE
ruby_whisper_model_ftype(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return INT2NUM(whisper_model_ftype(rw->context));
}
/*
* call-seq:
* type -> String
*/
static VALUE
ruby_whisper_model_type(VALUE self)
{
ruby_whisper_model *rwm;
Data_Get_Struct(self, ruby_whisper_model, rwm);
ruby_whisper *rw;
Data_Get_Struct(rwm->context, ruby_whisper, rw);
return rb_str_new2(whisper_model_type_readable(rw->context));
}
void
init_ruby_whisper_model(VALUE *mWhisper)
{
cModel = rb_define_class_under(*mWhisper, "Model", rb_cObject);
rb_define_alloc_func(cModel, ruby_whisper_model_allocate);
rb_define_method(cModel, "n_vocab", ruby_whisper_model_n_vocab, 0);
rb_define_method(cModel, "n_audio_ctx", ruby_whisper_model_n_audio_ctx, 0);
rb_define_method(cModel, "n_audio_state", ruby_whisper_model_n_audio_state, 0);
rb_define_method(cModel, "n_audio_head", ruby_whisper_model_n_audio_head, 0);
rb_define_method(cModel, "n_audio_layer", ruby_whisper_model_n_audio_layer, 0);
rb_define_method(cModel, "n_text_ctx", ruby_whisper_model_n_text_ctx, 0);
rb_define_method(cModel, "n_text_state", ruby_whisper_model_n_text_state, 0);
rb_define_method(cModel, "n_text_head", ruby_whisper_model_n_text_head, 0);
rb_define_method(cModel, "n_text_layer", ruby_whisper_model_n_text_layer, 0);
rb_define_method(cModel, "n_mels", ruby_whisper_model_n_mels, 0);
rb_define_method(cModel, "ftype", ruby_whisper_model_ftype, 0);
rb_define_method(cModel, "type", ruby_whisper_model_type, 0);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,123 @@
#include <ruby.h>
#include "ruby_whisper.h"
extern VALUE cSegment;
static void
rb_whisper_segment_mark(ruby_whisper_segment *rws)
{
rb_gc_mark(rws->context);
}
VALUE
ruby_whisper_segment_allocate(VALUE klass)
{
ruby_whisper_segment *rws;
rws = ALLOC(ruby_whisper_segment);
return Data_Wrap_Struct(klass, rb_whisper_segment_mark, RUBY_DEFAULT_FREE, rws);
}
VALUE
rb_whisper_segment_initialize(VALUE context, int index)
{
ruby_whisper_segment *rws;
const VALUE segment = ruby_whisper_segment_allocate(cSegment);
Data_Get_Struct(segment, ruby_whisper_segment, rws);
rws->context = context;
rws->index = index;
return segment;
};
/*
* Start time in milliseconds.
*
* call-seq:
* start_time -> Integer
*/
static VALUE
ruby_whisper_segment_get_start_time(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
const int64_t t0 = whisper_full_get_segment_t0(rw->context, rws->index);
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
return INT2NUM(t0 * 10);
}
/*
* End time in milliseconds.
*
* call-seq:
* end_time -> Integer
*/
static VALUE
ruby_whisper_segment_get_end_time(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
const int64_t t1 = whisper_full_get_segment_t1(rw->context, rws->index);
// able to multiply 10 without overflow because to_timestamp() in whisper.cpp does it
return INT2NUM(t1 * 10);
}
/*
* Whether the next segment is predicted as a speaker turn.
*
* call-seq:
* speaker_turn_next? -> bool
*/
static VALUE
ruby_whisper_segment_get_speaker_turn_next(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
return whisper_full_get_segment_speaker_turn_next(rw->context, rws->index) ? Qtrue : Qfalse;
}
/*
* call-seq:
* text -> String
*/
static VALUE
ruby_whisper_segment_get_text(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
const char * text = whisper_full_get_segment_text(rw->context, rws->index);
return rb_str_new2(text);
}
/*
* call-seq:
* no_speech_prob -> Float
*/
static VALUE
ruby_whisper_segment_get_no_speech_prob(VALUE self)
{
ruby_whisper_segment *rws;
Data_Get_Struct(self, ruby_whisper_segment, rws);
ruby_whisper *rw;
Data_Get_Struct(rws->context, ruby_whisper, rw);
return DBL2NUM(whisper_full_get_segment_no_speech_prob(rw->context, rws->index));
}
void
init_ruby_whisper_segment(VALUE *mWhisper, VALUE *cContext)
{
cSegment = rb_define_class_under(*mWhisper, "Segment", rb_cObject);
rb_define_alloc_func(cSegment, ruby_whisper_segment_allocate);
rb_define_method(cSegment, "start_time", ruby_whisper_segment_get_start_time, 0);
rb_define_method(cSegment, "end_time", ruby_whisper_segment_get_end_time, 0);
rb_define_method(cSegment, "speaker_next_turn?", ruby_whisper_segment_get_speaker_turn_next, 0);
rb_define_method(cSegment, "text", ruby_whisper_segment_get_text, 0);
rb_define_method(cSegment, "no_speech_prob", ruby_whisper_segment_get_no_speech_prob, 0);
}

View File

@ -0,0 +1,159 @@
#include <ruby.h>
#include "ruby_whisper.h"
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
#include <string>
#include <vector>
#ifdef __cplusplus
extern "C" {
#endif
extern ID id_to_s;
extern ID id_call;
extern void
register_callbacks(ruby_whisper_params * rwp, VALUE * self);
/*
* transcribe a single file
* can emit to a block results
*
* params = Whisper::Params.new
* params.duration = 60_000
* whisper.transcribe "path/to/audio.wav", params do |text|
* puts text
* end
*
* call-seq:
* transcribe(path_to_audio, params) {|text| ...}
**/
VALUE
ruby_whisper_transcribe(int argc, VALUE *argv, VALUE self) {
ruby_whisper *rw;
ruby_whisper_params *rwp;
VALUE wave_file_path, blk, params;
rb_scan_args(argc, argv, "02&", &wave_file_path, &params, &blk);
Data_Get_Struct(self, ruby_whisper, rw);
Data_Get_Struct(params, ruby_whisper_params, rwp);
if (!rb_respond_to(wave_file_path, id_to_s)) {
rb_raise(rb_eRuntimeError, "Expected file path to wave file");
}
std::string fname_inp = StringValueCStr(wave_file_path);
std::vector<float> pcmf32; // mono-channel F32 PCM
std::vector<std::vector<float>> pcmf32s; // stereo-channel F32 PCM
// WAV input - this is directly from main.cpp example
{
drwav wav;
std::vector<uint8_t> wav_data; // used for pipe input from stdin
if (fname_inp == "-") {
{
uint8_t buf[1024];
while (true) {
const size_t n = fread(buf, 1, sizeof(buf), stdin);
if (n == 0) {
break;
}
wav_data.insert(wav_data.end(), buf, buf + n);
}
}
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), nullptr) == false) {
fprintf(stderr, "error: failed to open WAV file from stdin\n");
return self;
}
fprintf(stderr, "%s: read %zu bytes from stdin\n", __func__, wav_data.size());
} else if (drwav_init_file(&wav, fname_inp.c_str(), nullptr) == false) {
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
return self;
}
if (wav.channels != 1 && wav.channels != 2) {
fprintf(stderr, "WAV file '%s' must be mono or stereo\n", fname_inp.c_str());
return self;
}
if (rwp->diarize && wav.channels != 2 && rwp->params.print_timestamps == false) {
fprintf(stderr, "WAV file '%s' must be stereo for diarization and timestamps have to be enabled\n", fname_inp.c_str());
return self;
}
if (wav.sampleRate != WHISPER_SAMPLE_RATE) {
fprintf(stderr, "WAV file '%s' must be %i kHz\n", fname_inp.c_str(), WHISPER_SAMPLE_RATE/1000);
return self;
}
if (wav.bitsPerSample != 16) {
fprintf(stderr, "WAV file '%s' must be 16-bit\n", fname_inp.c_str());
return self;
}
const uint64_t n = wav_data.empty() ? wav.totalPCMFrameCount : wav_data.size()/(wav.channels*wav.bitsPerSample/8);
std::vector<int16_t> pcm16;
pcm16.resize(n*wav.channels);
drwav_read_pcm_frames_s16(&wav, n, pcm16.data());
drwav_uninit(&wav);
// convert to mono, float
pcmf32.resize(n);
if (wav.channels == 1) {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float(pcm16[i])/32768.0f;
}
} else {
for (uint64_t i = 0; i < n; i++) {
pcmf32[i] = float((int32_t)pcm16[2*i] + pcm16[2*i + 1])/65536.0f;
}
}
if (rwp->diarize) {
// convert to stereo, float
pcmf32s.resize(2);
pcmf32s[0].resize(n);
pcmf32s[1].resize(n);
for (uint64_t i = 0; i < n; i++) {
pcmf32s[0][i] = float(pcm16[2*i])/32768.0f;
pcmf32s[1][i] = float(pcm16[2*i + 1])/32768.0f;
}
}
}
{
static bool is_aborted = false; // NOTE: this should be atomic to avoid data race
rwp->params.encoder_begin_callback = [](struct whisper_context * /*ctx*/, struct whisper_state * /*state*/, void * user_data) {
bool is_aborted = *(bool*)user_data;
return !is_aborted;
};
rwp->params.encoder_begin_callback_user_data = &is_aborted;
}
register_callbacks(rwp, &self);
if (whisper_full_parallel(rw->context, rwp->params, pcmf32.data(), pcmf32.size(), 1) != 0) {
fprintf(stderr, "failed to process audio\n");
return self;
}
const int n_segments = whisper_full_n_segments(rw->context);
VALUE output = rb_str_new2("");
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(rw->context, i);
output = rb_str_concat(output, rb_str_new2(text));
}
VALUE idCall = id_call;
if (blk != Qnil) {
rb_funcall(blk, idCall, 1, output);
}
return self;
}
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,6 @@
require "yaml"
sources = `git ls-files -z ../..`.split("\x0")
paths = YAML.load_file("../../.github/workflows/bindings-ruby.yml")[true]["push"]["paths"]
paths.delete "bindings/ruby/**"
EXTSOURCES = (Dir.glob(paths, base: "../..").collect {|path| "../../#{path}"} << "../../LICENSE") & sources

View File

@ -1,31 +0,0 @@
---
- ../../src/whisper.cpp
- ../../include/whisper.h
- ../../ggml/src/ggml.c
- ../../ggml/src/ggml-cpu.c
- ../../ggml/src/ggml-impl.h
- ../../ggml/src/ggml-aarch64.h
- ../../ggml/src/ggml-aarch64.c
- ../../ggml/src/ggml-alloc.c
- ../../ggml/src/ggml-backend-impl.h
- ../../ggml/src/ggml-backend.cpp
- ../../ggml/src/ggml-common.h
- ../../ggml/src/ggml-quants.h
- ../../ggml/src/ggml-quants.c
- ../../ggml/src/ggml-cpu-impl.h
- ../../ggml/src/ggml-metal.m
- ../../ggml/src/ggml-metal.metal
- ../../ggml/src/ggml-blas.cpp
- ../../ggml/include/ggml.h
- ../../ggml/include/ggml-alloc.h
- ../../ggml/include/ggml-backend.h
- ../../ggml/include/ggml-cpu.h
- ../../ggml/include/ggml-cuda.h
- ../../ggml/include/ggml-kompute.h
- ../../ggml/include/ggml-metal.h
- ../../ggml/include/ggml-sycl.h
- ../../ggml/include/ggml-vulkan.h
- ../../ggml/include/ggml-blas.h
- ../../scripts/get-flags.mk
- ../../examples/dr_wav.h
- ../../LICENSE

View File

@ -0,0 +1,170 @@
require "uri"
require "net/http"
require "time"
require "pathname"
require "io/console/size"
module Whisper
class Model
class URI
def initialize(uri)
@uri = URI(uri)
end
def to_path
cache
cache_path.to_path
end
def clear_cache
path = cache_path
path.delete if path.exist?
end
private
def cache_path
base_cache_dir/@uri.host/@uri.path[1..]
end
def base_cache_dir
base = case RUBY_PLATFORM
when /mswin|mingw/
ENV.key?("LOCALAPPDATA") ? Pathname(ENV["LOCALAPPDATA"]) : Pathname(Dir.home)/"AppData/Local"
when /darwin/
Pathname(Dir.home)/"Library/Caches"
else
ENV.key?("XDG_CACHE_HOME") ? ENV["XDG_CACHE_HOME"] : Pathname(Dir.home)/".cache"
end
base/"whisper.cpp"
end
def cache
path = cache_path
headers = {}
headers["if-modified-since"] = path.mtime.httpdate if path.exist?
request @uri, headers
path
end
def request(uri, headers)
Net::HTTP.start uri.host, uri.port, use_ssl: uri.scheme == "https" do |http|
request = Net::HTTP::Get.new(uri, headers)
http.request request do |response|
case response
when Net::HTTPNotModified
# noop
when Net::HTTPOK
download response
when Net::HTTPRedirection
request URI(response["location"]), headers
else
return if headers.key?("if-modified-since") # Use cache file
raise "#{response.code} #{response.message}\n#{response.body}"
end
end
end
rescue => err
if cache_path.exist?
warn err
# Use cache file
else
raise
end
end
def download(response)
path = cache_path
path.dirname.mkpath unless path.dirname.exist?
downloading_path = Pathname("#{path}.downloading")
size = response.content_length
downloading_path.open "wb" do |file|
downloaded = 0
response.read_body do |chunk|
file << chunk
downloaded += chunk.bytesize
show_progress downloaded, size
end
$stderr.puts
end
downloading_path.rename path
end
def show_progress(current, size)
progress_rate_available = size && $stderr.tty?
unless @prev
@prev = Time.now
$stderr.puts "Downloading #{@uri} to #{cache_path}"
end
now = Time.now
if progress_rate_available
return if now - @prev < 1 && current < size
progress_width = 20
progress = current.to_f / size
arrow_length = progress * progress_width
arrow = "=" * (arrow_length - 1) + ">" + " " * (progress_width - arrow_length)
line = "[#{arrow}] (#{format_bytesize(current)} / #{format_bytesize(size)})"
padding = ' ' * ($stderr.winsize[1] - line.size)
$stderr.print "\r#{line}#{padding}"
else
return if now - @prev < 1
$stderr.print "."
end
@prev = now
end
def format_bytesize(bytesize)
return "0.0 B" if bytesize.zero?
units = %w[B KiB MiB GiB TiB]
exp = (Math.log(bytesize) / Math.log(1024)).to_i
format("%.1f %s", bytesize.to_f / 1024 ** exp, units[exp])
end
end
@pre_converted_models = %w[
tiny
tiny.en
tiny-q5_1
tiny.en-q5_1
tiny-q8_0
base
base.en
base-q5_1
base.en-q5_1
base-q8_0
small
small.en
small.en-tdrz
small-q5_1
small.en-q5_1
small-q8_0
medium
medium.en
medium-q5_0
medium.en-q5_0
medium-q8_0
large-v1
large-v2
large-v2-q5_0
large-v2-q8_0
large-v3
large-v3-q5_0
large-v3-turbo
large-v3-turbo-q5_0
large-v3-turbo-q8_0
].each_with_object({}) {|name, models|
models[name] = URI.new("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-#{name}.bin")
}
class << self
attr_reader :pre_converted_models
end
end
end

View File

@ -0,0 +1,189 @@
module Whisper
interface _Samples
def length: () -> Integer
def each: { (Float) -> void } -> void
end
type log_callback = ^(Integer level, String message, Object user_data) -> void
type new_segment_callback = ^(Whisper::Context, void, Integer n_new, Object user_data) -> void
type progress_callback = ^(Whisper::Context, void, Integer progress, Object user_data) -> void
type abort_callback = ^(Whisper::Context, void, Object user_data) -> boolish
LOG_LEVEL_NONE: Integer
LOG_LEVEL_INFO: Integer
LOG_LEVEL_WARN: Integer
LOG_LEVEL_ERROR: Integer
LOG_LEVEL_DEBUG: Integer
LOG_LEVEL_CONT: Integer
def self.lang_max_id: () -> Integer
def self.lang_id: (string name) -> Integer
def self.lang_str: (Integer id) -> String
def self.lang_str_full: (Integer id) -> String
def self.log_set: (log_callback, Object? user_data) -> log_callback
class Context
def self.new: (string | _ToPath | ::URI::HTTP) -> instance
def transcribe: (string, Params) -> self
| (string, Params) { (String) -> void } -> self
def model_n_vocab: () -> Integer
def model_n_audio_ctx: () -> Integer
def model_n_audio_state: () -> Integer
def model_n_text_head: () -> Integer
def model_n_text_layer: () -> Integer
def model_n_mels: () -> Integer
def model_ftype: () -> Integer
def model_type: () -> String
def each_segment: { (Segment) -> void } -> void
| () -> Enumerator[Segment]
def model: () -> Model
def full_get_segment: (Integer nth) -> Segment
def full_n_segments: () -> Integer
def full_lang_id: () -> Integer
def full_get_segment_t0: (Integer) -> Integer
def full_get_segment_t1: (Integer) -> Integer
def full_get_segment_speaker_turn_next: (Integer) -> (true | false)
def full_get_segment_text: (Integer) -> String
def full_get_segment_no_speech_prob: (Integer) -> Float
def full: (Params, Array[Float] samples, ?Integer n_samples) -> self
| (Params, _Samples, ?Integer n_samples) -> self
def full_parallel: (Params, Array[Float], ?Integer n_samples) -> self
| (Params, _Samples, ?Integer n_samples) -> self
| (Params, _Samples, ?Integer? n_samples, Integer n_processors) -> self
end
class Params
def self.new: (
?language: string,
?translate: boolish,
?no_context: boolish,
?single_segment: boolish,
?print_special: boolish,
?print_progress: boolish,
?print_realtime: boolish,
?print_timestamps: boolish,
?suppress_blank: boolish,
?suppress_nst: boolish,
?token_timestamps: boolish,
?split_on_word: boolish,
?initial_prompt: string | nil,
?diarize: boolish,
?offset: Integer,
?duration: Integer,
?max_text_tokens: Integer,
?temperature: Float,
?max_initial_ts: Float,
?length_penalty: Float,
?temperature_inc: Float,
?entropy_thold: Float,
?logprob_thold: Float,
?no_speech_thold: Float,
?new_segment_callback: new_segment_callback,
?new_segment_callback_user_data: Object,
?progress_callback: progress_callback,
?progress_callback_user_data: Object,
?abort_callback: abort_callback,
?abort_callback_user_data: Object
) -> instance
def language=: (String) -> String # TODO: Enumerate lang names
def language: () -> String
def translate=: (boolish) -> boolish
def translate: () -> (true | false)
def no_context=: (boolish) -> boolish
def no_context: () -> (true | false)
def single_segment=: (boolish) -> boolish
def single_segment: () -> (true | false)
def print_special=: (boolish) -> boolish
def print_special: () -> (true | false)
def print_progress=: (boolish) -> boolish
def print_progress: () -> (true | false)
def print_realtime=: (boolish) -> boolish
def print_realtime: () -> (true | false)
def print_timestamps=: (boolish) -> boolish
def print_timestamps: () -> (true | false)
def suppress_blank=: (boolish) -> boolish
def suppress_blank: () -> (true | false)
def suppress_nst=: (boolish) -> boolish
def suppress_nst: () -> (true | false)
def token_timestamps=: (boolish) -> boolish
def token_timestamps: () -> (true | false)
def split_on_word=: (boolish) -> boolish
def split_on_word: () -> (true | false)
def initial_prompt=: (_ToS) -> _ToS
def initial_prompt: () -> (String | nil)
def diarize=: (boolish) -> boolish
def diarize: () -> (true | false)
def offset=: (Integer) -> Integer
def offset: () -> Integer
def duration=: (Integer) -> Integer
def duration: () -> Integer
def max_text_tokens=: (Integer) -> Integer
def max_text_tokens: () -> Integer
def temperature=: (Float) -> Float
def temperature: () -> Float
def max_initial_ts=: (Float) -> Float
def max_initial_ts: () -> Float
def length_penalty=: (Float) -> Float
def length_penalty: () -> Float
def temperature_inc=: (Float) -> Float
def temperature_inc: () -> Float
def entropy_thold=: (Float) -> Float
def entropy_thold: () -> Float
def logprob_thold=: (Float) -> Float
def logprob_thold: () -> Float
def no_speech_thold=: (Float) -> Float
def no_speech_thold: () -> Float
def new_segment_callback=: (new_segment_callback) -> new_segment_callback
def new_segment_callback: () -> (new_segment_callback | nil)
def new_segment_callback_user_data=: (Object) -> Object
def new_segment_callback_user_data: () -> Object
def progress_callback=: (progress_callback) -> progress_callback
def progress_callback: () -> (progress_callback | nil)
def progress_callback_user_data=: (Object) -> Object
def progress_callback_user_data: () -> Object
def abort_callback=: (abort_callback) -> abort_callback
def abort_callback: () -> (abort_callback | nil)
def abort_callback_user_data=: (Object) -> Object
def abort_callback_user_data: () -> Object
def on_new_segment: { (Segment) -> void } -> void
def on_progress: { (Integer progress) -> void } -> void
def abort_on: { (Object user_data) -> boolish } -> void
end
class Model
def self.pre_converted_models: () -> Hash[String, Model::URI]
def self.new: () -> instance
def n_vocab: () -> Integer
def n_audio_ctx: () -> Integer
def n_audio_state: () -> Integer
def n_audio_head: () -> Integer
def n_audio_layer: () -> Integer
def n_text_ctx: () -> Integer
def n_text_state: () -> Integer
def n_text_head: () -> Integer
def n_text_layer: () -> Integer
def n_mels: () -> Integer
def ftype: () -> Integer
def type: () -> String
class URI
def self.new: (string | ::URI::HTTP) -> self
def to_path: -> String
def clear_cache: -> void
end
end
class Segment
def start_time: () -> Integer
def end_time: () -> Integer
def speaker_next_turn?: () -> (true | false)
def text: () -> String
def no_speech_prob: () -> Float
end
class Error < StandardError
attr_reader code: Integer
def self.new: (Integer code) -> instance
end
end

View File

@ -1,7 +1,24 @@
require "test/unit" require "test/unit"
require "whisper" require "whisper"
require_relative "jfk_reader/jfk_reader"
class TestBase < Test::Unit::TestCase class TestBase < Test::Unit::TestCase
MODEL = File.join(__dir__, "..", "..", "..", "models", "ggml-base.en.bin")
AUDIO = File.join(__dir__, "..", "..", "..", "samples", "jfk.wav") AUDIO = File.join(__dir__, "..", "..", "..", "samples", "jfk.wav")
class << self
attr_reader :whisper
def startup
@whisper = Whisper::Context.new("base.en")
params = Whisper::Params.new
params.print_timestamps = false
@whisper.transcribe(TestBase::AUDIO, params)
end
end
private
def whisper
self.class.whisper
end
end end

View File

@ -0,0 +1,5 @@
Makefile
jfk_reader.o
jfk_reader.so
jfk_reader.bundle
jfk_reader.dll

View File

@ -0,0 +1,3 @@
require "mkmf"
create_makefile("jfk_reader")

View File

@ -0,0 +1,68 @@
#include <ruby.h>
#include <ruby/memory_view.h>
#include <ruby/encoding.h>
static VALUE
jfk_reader_initialize(VALUE self, VALUE audio_path)
{
rb_iv_set(self, "audio_path", audio_path);
return Qnil;
}
static bool
jfk_reader_get_memory_view(const VALUE obj, rb_memory_view_t *view, int flags)
{
VALUE audio_path = rb_iv_get(obj, "audio_path");
const char *audio_path_str = StringValueCStr(audio_path);
const int n_samples = 176000;
float *data = (float *)malloc(n_samples * sizeof(float));
short *samples = (short *)malloc(n_samples * sizeof(short));
FILE *file = fopen(audio_path_str, "rb");
fseek(file, 78, SEEK_SET);
fread(samples, sizeof(short), n_samples, file);
fclose(file);
for (int i = 0; i < n_samples; i++) {
data[i] = samples[i]/32768.0;
}
view->obj = obj;
view->data = (void *)data;
view->byte_size = sizeof(float) * n_samples;
view->readonly = true;
view->format = "f";
view->item_size = sizeof(float);
view->item_desc.components = NULL;
view->item_desc.length = 0;
view->ndim = 1;
view->shape = NULL;
view->sub_offsets = NULL;
view->private_data = NULL;
return true;
}
static bool
jfk_reader_release_memory_view(const VALUE obj, rb_memory_view_t *view)
{
return true;
}
static bool
jfk_reader_memory_view_available_p(const VALUE obj)
{
return true;
}
static const rb_memory_view_entry_t jfk_reader_view_entry = {
jfk_reader_get_memory_view,
jfk_reader_release_memory_view,
jfk_reader_memory_view_available_p
};
void Init_jfk_reader(void)
{
VALUE cJFKReader = rb_define_class("JFKReader", rb_cObject);
rb_memory_view_register(cJFKReader, &jfk_reader_view_entry);
rb_define_method(cJFKReader, "initialize", jfk_reader_initialize, 1);
}

View File

@ -1,14 +1,11 @@
require "test/unit" require_relative "helper"
require "whisper"
class TestCallback < Test::Unit::TestCase
TOPDIR = File.expand_path(File.join(File.dirname(__FILE__), '..'))
class TestCallback < TestBase
def setup def setup
GC.start GC.start
@params = Whisper::Params.new @params = Whisper::Params.new
@whisper = Whisper::Context.new(File.join(TOPDIR, '..', '..', 'models', 'ggml-base.en.bin')) @whisper = Whisper::Context.new("base.en")
@audio = File.join(TOPDIR, '..', '..', 'samples', 'jfk.wav') @audio = File.join(AUDIO)
end end
def test_new_segment_callback def test_new_segment_callback

View File

@ -0,0 +1,20 @@
require_relative "helper"
class TestError < TestBase
def test_error
error = Whisper::Error.new(-2)
assert_equal "failed to compute log mel spectrogram", error.message
assert_equal -2, error.code
end
def test_unknown_error
error = Whisper::Error.new(-20)
assert_equal "unknown error", error.message
end
def test_non_int_code
assert_raise TypeError do
error = Whisper::Error.new("non int")
end
end
end

View File

@ -1,13 +1,14 @@
require_relative "helper" require_relative "helper"
require "pathname"
class TestModel < TestBase class TestModel < TestBase
def test_model def test_model
whisper = Whisper::Context.new(MODEL) whisper = Whisper::Context.new("base.en")
assert_instance_of Whisper::Model, whisper.model assert_instance_of Whisper::Model, whisper.model
end end
def test_attributes def test_attributes
whisper = Whisper::Context.new(MODEL) whisper = Whisper::Context.new("base.en")
model = whisper.model model = whisper.model
assert_equal 51864, model.n_vocab assert_equal 51864, model.n_vocab
@ -25,7 +26,7 @@ class TestModel < TestBase
end end
def test_gc def test_gc
model = Whisper::Context.new(MODEL).model model = Whisper::Context.new("base.en").model
GC.start GC.start
assert_equal 51864, model.n_vocab assert_equal 51864, model.n_vocab
@ -41,4 +42,68 @@ class TestModel < TestBase
assert_equal 1, model.ftype assert_equal 1, model.ftype
assert_equal "base", model.type assert_equal "base", model.type
end end
def test_pathname
path = Pathname(Whisper::Model.pre_converted_models["base.en"].to_path)
whisper = Whisper::Context.new(path)
model = whisper.model
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
def test_auto_download
path = Whisper::Model.pre_converted_models["base.en"].to_path
assert_path_exist path
assert_equal 147964211, File.size(path)
end
def test_uri_string
path = "https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin"
whisper = Whisper::Context.new(path)
model = whisper.model
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
def test_uri
path = URI("https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin")
whisper = Whisper::Context.new(path)
model = whisper.model
assert_equal 51864, model.n_vocab
assert_equal 1500, model.n_audio_ctx
assert_equal 512, model.n_audio_state
assert_equal 8, model.n_audio_head
assert_equal 6, model.n_audio_layer
assert_equal 448, model.n_text_ctx
assert_equal 512, model.n_text_state
assert_equal 8, model.n_text_head
assert_equal 6, model.n_text_layer
assert_equal 80, model.n_mels
assert_equal 1, model.ftype
assert_equal "base", model.type
end
end end

View File

@ -23,7 +23,7 @@ class TestPackage < TestBase
version = match_data[2] version = match_data[2]
basename = "whisper.#{RbConfig::CONFIG["DLEXT"]}" basename = "whisper.#{RbConfig::CONFIG["DLEXT"]}"
Dir.mktmpdir do |dir| Dir.mktmpdir do |dir|
system "gem", "install", "--install-dir", dir.shellescape, "pkg/#{filename.shellescape}", exception: true system "gem", "install", "--install-dir", dir.shellescape, "--no-document", "pkg/#{filename.shellescape}", exception: true
assert_path_exist File.join(dir, "gems/whispercpp-#{version}/lib", basename) assert_path_exist File.join(dir, "gems/whispercpp-#{version}/lib", basename)
end end
end end

View File

@ -1,6 +1,39 @@
require_relative "helper" require_relative "helper"
class TestParams < TestBase class TestParams < TestBase
PARAM_NAMES = [
:language,
:translate,
:no_context,
:single_segment,
:print_special,
:print_progress,
:print_realtime,
:print_timestamps,
:suppress_blank,
:suppress_nst,
:token_timestamps,
:split_on_word,
:initial_prompt,
:diarize,
:offset,
:duration,
:max_text_tokens,
:temperature,
:max_initial_ts,
:length_penalty,
:temperature_inc,
:entropy_thold,
:logprob_thold,
:no_speech_thold,
:new_segment_callback,
:new_segment_callback_user_data,
:progress_callback,
:progress_callback_user_data,
:abort_callback,
:abort_callback_user_data,
]
def setup def setup
@params = Whisper::Params.new @params = Whisper::Params.new
end end
@ -89,11 +122,11 @@ class TestParams < TestBase
assert !@params.suppress_blank assert !@params.suppress_blank
end end
def test_suppress_non_speech_tokens def test_suppress_nst
@params.suppress_non_speech_tokens = true @params.suppress_nst = true
assert @params.suppress_non_speech_tokens assert @params.suppress_nst
@params.suppress_non_speech_tokens = false @params.suppress_nst = false
assert !@params.suppress_non_speech_tokens assert !@params.suppress_nst
end end
def test_token_timestamps def test_token_timestamps
@ -151,4 +184,63 @@ class TestParams < TestBase
@params.logprob_thold = -0.5 @params.logprob_thold = -0.5
assert_in_delta -0.5, @params.logprob_thold assert_in_delta -0.5, @params.logprob_thold
end end
def test_no_speech_thold
assert_in_delta 0.6, @params.no_speech_thold
@params.no_speech_thold = 0.2
assert_in_delta 0.2, @params.no_speech_thold
end
def test_new_with_kw_args
params = Whisper::Params.new(language: "es")
assert_equal "es", params.language
assert_equal 1.0, params.max_initial_ts
end
def test_new_with_kw_args_non_existent
assert_raise ArgumentError do
Whisper::Params.new(non_existent: "value")
end
end
def test_new_with_kw_args_wrong_type
assert_raise TypeError do
Whisper::Params.new(language: 3)
end
end
data(PARAM_NAMES.collect {|param| [param, param]}.to_h)
def test_new_with_kw_args_default_values(param)
default_value = @params.send(param)
value = case [param, default_value]
in [*, true | false]
!default_value
in [*, Integer | Float]
default_value + 1
in [:language, *]
"es"
in [:initial_prompt, *]
"Initial prompt"
in [/_callback\Z/, *]
proc {}
in [/_user_data\Z/, *]
Object.new
end
params = Whisper::Params.new(param => value)
if Float === value
assert_in_delta value, params.send(param)
else
assert_equal value, params.send(param)
end
PARAM_NAMES.reject {|name| name == param}.each do |name|
expected = @params.send(name)
actual = params.send(name)
if Float === expected
assert_in_delta expected, actual
else
assert_equal expected, actual
end
end
end
end end

View File

@ -1,17 +1,6 @@
require_relative "helper" require_relative "helper"
class TestSegment < TestBase class TestSegment < TestBase
class << self
attr_reader :whisper
def startup
@whisper = Whisper::Context.new(TestBase::MODEL)
params = Whisper::Params.new
params.print_timestamps = false
@whisper.transcribe(TestBase::AUDIO, params)
end
end
def test_iteration def test_iteration
whisper.each_segment do |segment| whisper.each_segment do |segment|
assert_instance_of Whisper::Segment, segment assert_instance_of Whisper::Segment, segment
@ -43,6 +32,14 @@ class TestSegment < TestBase
end end
end end
def test_no_speech_prob
no_speech_prob = nil
whisper.each_segment do |segment|
no_speech_prob = segment.no_speech_prob
end
assert no_speech_prob > 0.0
end
def test_on_new_segment def test_on_new_segment
params = Whisper::Params.new params = Whisper::Params.new
seg = nil seg = nil
@ -74,10 +71,4 @@ class TestSegment < TestBase
end end
whisper.transcribe(AUDIO, params) whisper.transcribe(AUDIO, params)
end end
private
def whisper
self.class.whisper
end
end end

View File

@ -1,5 +1,6 @@
require_relative "helper" require_relative "helper"
require "stringio" require "stringio"
require "etc"
# Exists to detect memory-related bug # Exists to detect memory-related bug
Whisper.log_set ->(level, buffer, user_data) {}, nil Whisper.log_set ->(level, buffer, user_data) {}, nil
@ -10,7 +11,7 @@ class TestWhisper < TestBase
end end
def test_whisper def test_whisper
@whisper = Whisper::Context.new(MODEL) @whisper = Whisper::Context.new("base.en")
params = Whisper::Params.new params = Whisper::Params.new
params.print_timestamps = false params.print_timestamps = false
@ -20,21 +21,6 @@ class TestWhisper < TestBase
end end
sub_test_case "After transcription" do sub_test_case "After transcription" do
class << self
attr_reader :whisper
def startup
@whisper = Whisper::Context.new(TestBase::MODEL)
params = Whisper::Params.new
params.print_timestamps = false
@whisper.transcribe(TestBase::AUDIO, params)
end
end
def whisper
self.class.whisper
end
def test_full_n_segments def test_full_n_segments
assert_equal 1, whisper.full_n_segments assert_equal 1, whisper.full_n_segments
end end
@ -43,6 +29,12 @@ class TestWhisper < TestBase
assert_equal 0, whisper.full_lang_id assert_equal 0, whisper.full_lang_id
end end
def test_full_get_segment
segment = whisper.full_get_segment(0)
assert_equal 0, segment.start_time
assert_match /ask not what your country can do for you, ask what you can do for your country/, segment.text
end
def test_full_get_segment_t0 def test_full_get_segment_t0
assert_equal 0, whisper.full_get_segment_t0(0) assert_equal 0, whisper.full_get_segment_t0(0)
assert_raise IndexError do assert_raise IndexError do
@ -69,6 +61,12 @@ class TestWhisper < TestBase
def test_full_get_segment_text def test_full_get_segment_text
assert_match /ask not what your country can do for you, ask what you can do for your country/, whisper.full_get_segment_text(0) assert_match /ask not what your country can do for you, ask what you can do for your country/, whisper.full_get_segment_text(0)
end end
def test_full_get_segment_no_speech_prob
prob = whisper.full_get_segment_no_speech_prob(0)
assert prob > 0.0
assert prob < 1.0
end
end end
def test_lang_max_id def test_lang_max_id
@ -103,11 +101,11 @@ class TestWhisper < TestBase
logs << [level, buffer, udata] logs << [level, buffer, udata]
} }
Whisper.log_set log_callback, user_data Whisper.log_set log_callback, user_data
Whisper::Context.new(MODEL) Whisper::Context.new("base.en")
assert logs.length > 30 assert logs.length > 30
logs.each do |log| logs.each do |log|
assert_equal Whisper::LOG_LEVEL_INFO, log[0] assert_include [Whisper::LOG_LEVEL_DEBUG, Whisper::LOG_LEVEL_INFO, Whisper::LOG_LEVEL_WARN], log[0]
assert_same user_data, log[2] assert_same user_data, log[2]
end end
end end
@ -119,9 +117,107 @@ class TestWhisper < TestBase
}, nil }, nil
dev = StringIO.new("") dev = StringIO.new("")
$stderr = dev $stderr = dev
Whisper::Context.new(MODEL) Whisper::Context.new("base.en")
assert_empty dev.string assert_empty dev.string
ensure ensure
$stderr = stderr $stderr = stderr
end end
sub_test_case "full" do
def setup
super
@whisper = Whisper::Context.new("base.en")
@samples = File.read(AUDIO, nil, 78).unpack("s<*").collect {|i| i.to_f / 2**15}
end
def test_full
@whisper.full(@params, @samples, @samples.length)
assert_equal 1, @whisper.full_n_segments
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
end
def test_full_without_length
@whisper.full(@params, @samples)
assert_equal 1, @whisper.full_n_segments
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
end
def test_full_enumerator
samples = @samples.each
@whisper.full(@params, samples, @samples.length)
assert_equal 1, @whisper.full_n_segments
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
end
def test_full_enumerator_without_length
samples = @samples.each
assert_raise ArgumentError do
@whisper.full(@params, samples)
end
end
def test_full_enumerator_with_too_large_length
samples = @samples.each.take(10).to_enum
assert_raise StopIteration do
@whisper.full(@params, samples, 11)
end
end
def test_full_with_memory_view
samples = JFKReader.new(AUDIO)
@whisper.full(@params, samples)
assert_equal 1, @whisper.full_n_segments
assert_match /ask not what your country can do for you, ask what you can do for your country/, @whisper.each_segment.first.text
end
def test_full_parallel
@whisper.full_parallel(@params, @samples, @samples.length, Etc.nprocessors)
assert_equal Etc.nprocessors, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
end
def test_full_parallel_with_memory_view
samples = JFKReader.new(AUDIO)
@whisper.full_parallel(@params, samples, nil, Etc.nprocessors)
assert_equal Etc.nprocessors, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
end
def test_full_parallel_without_length_and_n_processors
@whisper.full_parallel(@params, @samples)
assert_equal 1, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
end
def test_full_parallel_without_length
@whisper.full_parallel(@params, @samples, nil, Etc.nprocessors)
assert_equal Etc.nprocessors, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
end
def test_full_parallel_without_n_processors
@whisper.full_parallel(@params, @samples, @samples.length)
assert_equal 1, @whisper.full_n_segments
text = @whisper.each_segment.collect(&:text).join
assert_match /ask what you can do/i, text
assert_match /for your country/i, text
end
end
end end

View File

@ -1,33 +1,33 @@
require "yaml" require_relative "extsources"
Gem::Specification.new do |s| Gem::Specification.new do |s|
s.name = "whispercpp" s.name = "whispercpp"
s.authors = ["Georgi Gerganov", "Todd A. Fisher"] s.authors = ["Georgi Gerganov", "Todd A. Fisher"]
s.version = '1.3.0' s.version = '1.3.1'
s.date = '2024-05-14' s.date = '2024-12-19'
s.description = %q{High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model via Ruby} s.description = %q{High-performance inference of OpenAI's Whisper automatic speech recognition (ASR) model via Ruby}
s.email = 'todd.fisher@gmail.com' s.email = 'todd.fisher@gmail.com'
s.extra_rdoc_files = ['LICENSE', 'README.md'] s.extra_rdoc_files = ['LICENSE', 'README.md']
s.files = `git ls-files . -z`.split("\x0") + s.files = `git ls-files . -z`.split("\x0") +
YAML.load_file("extsources.yaml").collect {|file| EXTSOURCES.collect {|file|
basename = File.basename(file) basename = File.basename(file)
if s.extra_rdoc_files.include?(basename) if s.extra_rdoc_files.include?(basename)
basename basename
else else
File.join("ext", basename) file.sub("../..", "ext")
end end
} }
s.summary = %q{Ruby whisper.cpp bindings} s.summary = %q{Ruby whisper.cpp bindings}
s.test_files = ["tests/test_whisper.rb"] s.test_files = s.files.select {|file| file.start_with? "tests/"}
s.extensions << 'ext/extconf.rb' s.extensions << 'ext/extconf.rb'
s.required_ruby_version = '>= 3.1.0'
#### Documentation and testing. #### Documentation and testing.
s.homepage = 'https://github.com/ggerganov/whisper.cpp' s.homepage = 'https://github.com/ggerganov/whisper.cpp'
s.rdoc_options = ['--main', '../../README.md'] s.rdoc_options = ['--main', 'README.md']
s.platform = Gem::Platform::RUBY s.platform = Gem::Platform::RUBY

28
close-issue.yml Normal file
View File

@ -0,0 +1,28 @@
name: Close inactive issues
on:
schedule:
- cron: "42 0 * * *"
# Fine-grant permission
# https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
permissions:
issues: write
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
days-before-pr-stale: -1
days-before-pr-close: -1
operations-per-run: 10000
repo-token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -13,5 +13,4 @@ set_target_properties(${TARGET}
PROPERTIES PROPERTIES
EXPORT_COMPILE_COMMANDS ON EXPORT_COMPILE_COMMANDS ON
RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin" RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
INSTALL_RPATH "${CMAKE_INSTALL_PREFIX}/lib"
) )

View File

@ -42,6 +42,8 @@ endif()
if(MSVC) if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}") set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME}) set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
else() else()
execute_process( execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER} COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}

View File

@ -1,10 +1,10 @@
prefix=@CMAKE_INSTALL_PREFIX@ prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix} exec_prefix=${prefix}
libdir=@CMAKE_INSTALL_FULL_LIBDIR@ libdir=${exec_prefix}/lib
includedir=${prefix}/include includedir=${prefix}/include
Name: whisper Name: whisper
Description: Port of OpenAI's Whisper model in C/C++ Description: Port of OpenAI's Whisper model in C/C++
Version: @PROJECT_VERSION@ Version: @PROJECT_VERSION@
Libs: -L${libdir} -lwhisper Libs: -L${libdir} -lggml -lggml-base -lwhisper
Cflags: -I${includedir} Cflags: -I${includedir}

View File

@ -97,52 +97,29 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN) if (EMSCRIPTEN)
add_subdirectory(whisper.wasm) add_subdirectory(whisper.wasm)
set_target_properties(libmain PROPERTIES FOLDER "libs")
add_subdirectory(stream.wasm) add_subdirectory(stream.wasm)
set_target_properties(libstream PROPERTIES FOLDER "libs")
add_subdirectory(command.wasm) add_subdirectory(command.wasm)
set_target_properties(libcommand PROPERTIES FOLDER "libs")
#add_subdirectory(talk.wasm)
#set_target_properties(libtalk PROPERTIES FOLDER "libs")
add_subdirectory(bench.wasm) add_subdirectory(bench.wasm)
set_target_properties(libbench PROPERTIES FOLDER "libs")
elseif(CMAKE_JS_VERSION) elseif(CMAKE_JS_VERSION)
add_subdirectory(addon.node) add_subdirectory(addon.node)
set_target_properties(addon.node PROPERTIES FOLDER "examples")
else() else()
add_subdirectory(main) add_subdirectory(cli)
set_target_properties(main PROPERTIES FOLDER "examples") add_subdirectory(bench)
add_subdirectory(server)
add_subdirectory(quantize)
if (WHISPER_SDL2) if (WHISPER_SDL2)
add_subdirectory(stream) add_subdirectory(stream)
set_target_properties(stream PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)
add_subdirectory(server)
set_target_properties(server PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
add_subdirectory(command) add_subdirectory(command)
set_target_properties(command PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2)
add_subdirectory(bench)
set_target_properties(bench PROPERTIES FOLDER "examples")
add_subdirectory(quantize)
set_target_properties(quantize PROPERTIES FOLDER "examples")
if (WHISPER_SDL2)
# TODO: disabled until update
# https://github.com/ggerganov/whisper.cpp/issues/1818
#add_subdirectory(talk)
#set_target_properties(talk PROPERTIES FOLDER "examples")
add_subdirectory(talk-llama) add_subdirectory(talk-llama)
set_target_properties(talk-llama PROPERTIES FOLDER "examples")
add_subdirectory(lsp) add_subdirectory(lsp)
set_target_properties(lsp PROPERTIES FOLDER "examples")
if (GGML_SYCL) if (GGML_SYCL)
add_subdirectory(sycl) add_subdirectory(sycl)
set_target_properties(sycl PROPERTIES FOLDER "examples")
endif() endif()
endif (WHISPER_SDL2) endif (WHISPER_SDL2)
add_subdirectory(deprecation-warning)
endif() endif()
if (WHISPER_SDL2) if (WHISPER_SDL2)
add_subdirectory(wchess) add_subdirectory(wchess)
set_target_properties(wchess PROPERTIES FOLDER "examples")
endif (WHISPER_SDL2) endif (WHISPER_SDL2)

View File

@ -330,6 +330,7 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
bool no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>(); bool no_timestamps = whisper_params.Get("no_timestamps").As<Napi::Boolean>();
int32_t audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>(); int32_t audio_ctx = whisper_params.Get("audio_ctx").As<Napi::Number>();
bool comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>(); bool comma_in_time = whisper_params.Get("comma_in_time").As<Napi::Boolean>();
int32_t max_len = whisper_params.Get("max_len").As<Napi::Number>();
Napi::Value pcmf32Value = whisper_params.Get("pcmf32"); Napi::Value pcmf32Value = whisper_params.Get("pcmf32");
std::vector<float> pcmf32_vec; std::vector<float> pcmf32_vec;
@ -352,6 +353,7 @@ Napi::Value whisper(const Napi::CallbackInfo& info) {
params.audio_ctx = audio_ctx; params.audio_ctx = audio_ctx;
params.pcmf32 = pcmf32_vec; params.pcmf32 = pcmf32_vec;
params.comma_in_time = comma_in_time; params.comma_in_time = comma_in_time;
params.max_len = max_len;
Napi::Function callback = info[1].As<Napi::Function>(); Napi::Function callback = info[1].As<Napi::Function>();
Worker* worker = new Worker(callback, params); Worker* worker = new Worker(callback, params);

View File

@ -18,6 +18,7 @@ const whisperParams = {
translate: true, translate: true,
no_timestamps: false, no_timestamps: false,
audio_ctx: 0, audio_ctx: 0,
max_len: 0,
}; };
const arguments = process.argv.slice(2); const arguments = process.argv.slice(2);

View File

@ -1,6 +1,8 @@
set(TARGET bench) set(TARGET whisper-bench)
add_executable(${TARGET} bench.cpp) add_executable(${TARGET} bench.cpp)
include(DefaultTargetOptions) include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE whisper ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS ${TARGET} RUNTIME)

View File

@ -1,4 +1,4 @@
# bench # whisper.cpp/examples/bench
A very basic tool for benchmarking the inference performance on your device. The tool simply runs the Encoder part of A very basic tool for benchmarking the inference performance on your device. The tool simply runs the Encoder part of
the transformer on some random audio data and records the execution time. This way we can have an objective comparison the transformer on some random audio data and records the execution time. This way we can have an objective comparison
@ -7,11 +7,8 @@ of the performance of the model for various setups.
Benchmark results are tracked in the following Github issue: https://github.com/ggerganov/whisper.cpp/issues/89 Benchmark results are tracked in the following Github issue: https://github.com/ggerganov/whisper.cpp/issues/89
```bash ```bash
# build the bench tool # run the bench too on the small.en model using 4 threads
$ make bench $ ./build/bin/whisper-bench -m ./models/ggml-small.en.bin -t 4
# run it on the small.en model using 4 threads
$ ./bench -m ./models/ggml-small.en.bin -t 4
whisper_model_load: loading model from './models/ggml-small.en.bin' whisper_model_load: loading model from './models/ggml-small.en.bin'
whisper_model_load: n_vocab = 51864 whisper_model_load: n_vocab = 51864

View File

@ -1,6 +1,8 @@
set(TARGET main) set(TARGET whisper-cli)
add_executable(${TARGET} main.cpp) add_executable(${TARGET} cli.cpp)
include(DefaultTargetOptions) include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common whisper ${FFMPEG_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common whisper ${FFMPEG_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS ${TARGET} RUNTIME)

View File

@ -1,12 +1,12 @@
# main # whisper.cpp/examples/cli
This is the main example demonstrating most of the functionality of the Whisper model. This is the main example demonstrating most of the functionality of the Whisper model.
It can be used as a reference for using the `whisper.cpp` library in other projects. It can be used as a reference for using the `whisper.cpp` library in other projects.
``` ```
./main -h ./build/bin/whisper-cli -h
usage: ./main [options] file0.wav file1.wav ... usage: ./build-pkg/bin/whisper-cli [options] file0.wav file1.wav ...
options: options:
-h, --help [default] show this help message and exit -h, --help [default] show this help message and exit
@ -20,9 +20,12 @@ options:
-sow, --split-on-word [false ] split on word rather than on token -sow, --split-on-word [false ] split on word rather than on token
-bo N, --best-of N [5 ] number of best candidates to keep -bo N, --best-of N [5 ] number of best candidates to keep
-bs N, --beam-size N [5 ] beam size for beam search -bs N, --beam-size N [5 ] beam size for beam search
-ac N, --audio-ctx N [0 ] audio context size (0 - all)
-wt N, --word-thold N [0.01 ] word timestamp probability threshold -wt N, --word-thold N [0.01 ] word timestamp probability threshold
-et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail -et N, --entropy-thold N [2.40 ] entropy threshold for decoder fail
-lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail -lpt N, --logprob-thold N [-1.00 ] log probability threshold for decoder fail
-tp, --temperature N [0.00 ] The sampling temperature, between 0 and 1
-tpi, --temperature-inc N [0.20 ] The increment of temperature, between 0 and 1
-debug, --debug-mode [false ] enable debug mode (eg. dump log_mel) -debug, --debug-mode [false ] enable debug mode (eg. dump log_mel)
-tr, --translate [false ] translate from source language to english -tr, --translate [false ] translate from source language to english
-di, --diarize [false ] stereo audio diarization -di, --diarize [false ] stereo audio diarization
@ -38,16 +41,23 @@ options:
-oj, --output-json [false ] output result in a JSON file -oj, --output-json [false ] output result in a JSON file
-ojf, --output-json-full [false ] include more information in the JSON file -ojf, --output-json-full [false ] include more information in the JSON file
-of FNAME, --output-file FNAME [ ] output file path (without file extension) -of FNAME, --output-file FNAME [ ] output file path (without file extension)
-np, --no-prints [false ] do not print anything other than the results
-ps, --print-special [false ] print special tokens -ps, --print-special [false ] print special tokens
-pc, --print-colors [false ] print colors -pc, --print-colors [false ] print colors
-pp, --print-progress [false ] print progress -pp, --print-progress [false ] print progress
-nt, --no-timestamps [false ] do not print timestamps -nt, --no-timestamps [false ] do not print timestamps
-l LANG, --language LANG [en ] spoken language ('auto' for auto-detect) -l LANG, --language LANG [en ] spoken language ('auto' for auto-detect)
-dl, --detect-language [false ] exit after automatically detecting language -dl, --detect-language [false ] exit after automatically detecting language
--prompt PROMPT [ ] initial prompt --prompt PROMPT [ ] initial prompt (max n_text_ctx/2 tokens)
-m FNAME, --model FNAME [models/ggml-base.en.bin] model path -m FNAME, --model FNAME [models/ggml-base.en.bin] model path
-f FNAME, --file FNAME [ ] input WAV file path -f FNAME, --file FNAME [ ] input WAV file path
-oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference -oved D, --ov-e-device DNAME [CPU ] the OpenVINO device used for encode inference
-dtw MODEL --dtw MODEL [ ] compute token-level timestamps
-ls, --log-score [false ] log best decoder scores of tokens -ls, --log-score [false ] log best decoder scores of tokens
-ng, --no-gpu [false ] disable GPU -ng, --no-gpu [false ] disable GPU
-fa, --flash-attn [false ] flash attention
--suppress-regex REGEX [ ] regular expression matching tokens to suppress
--grammar GRAMMAR [ ] GBNF grammar to guide decoding
--grammar-rule RULE [ ] top-level GBNF grammar rule name
--grammar-penalty N [100.0 ] scales down logits of nongrammar tokens
``` ```

View File

@ -12,6 +12,11 @@
#include <vector> #include <vector>
#include <cstring> #include <cstring>
#if defined(_WIN32)
#define NOMINMAX
#include <windows.h>
#endif
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
#endif #endif
@ -43,6 +48,7 @@ struct whisper_params {
float word_thold = 0.01f; float word_thold = 0.01f;
float entropy_thold = 2.40f; float entropy_thold = 2.40f;
float logprob_thold = -1.00f; float logprob_thold = -1.00f;
float no_speech_thold = 0.6f;
float grammar_penalty = 100.0f; float grammar_penalty = 100.0f;
float temperature = 0.0f; float temperature = 0.0f;
float temperature_inc = 0.2f; float temperature_inc = 0.2f;
@ -70,6 +76,7 @@ struct whisper_params {
bool log_score = false; bool log_score = false;
bool use_gpu = true; bool use_gpu = true;
bool flash_attn = false; bool flash_attn = false;
bool suppress_nst = false;
std::string language = "en"; std::string language = "en";
std::string prompt; std::string prompt;
@ -104,6 +111,11 @@ static char * whisper_param_turn_lowercase(char * in){
return in; return in;
} }
static char * requires_value_error(const std::string & arg) {
fprintf(stderr, "error: argument %s requires value\n", arg.c_str());
exit(0);
}
static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { static bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) { for (int i = 1; i < argc; i++) {
std::string arg = argv[i]; std::string arg = argv[i];
@ -122,21 +134,23 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
whisper_print_usage(argc, argv, params); whisper_print_usage(argc, argv, params);
exit(0); exit(0);
} }
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } #define ARGV_NEXT (((i + 1) < argc) ? argv[++i] : requires_value_error(arg))
else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(argv[++i]); } else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(ARGV_NEXT); }
else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(argv[++i]); } else if (arg == "-p" || arg == "--processors") { params.n_processors = std::stoi(ARGV_NEXT); }
else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(argv[++i]); } else if (arg == "-ot" || arg == "--offset-t") { params.offset_t_ms = std::stoi(ARGV_NEXT); }
else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(argv[++i]); } else if (arg == "-on" || arg == "--offset-n") { params.offset_n = std::stoi(ARGV_NEXT); }
else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(argv[++i]); } else if (arg == "-d" || arg == "--duration") { params.duration_ms = std::stoi(ARGV_NEXT); }
else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(argv[++i]); } else if (arg == "-mc" || arg == "--max-context") { params.max_context = std::stoi(ARGV_NEXT); }
else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(argv[++i]); } else if (arg == "-ml" || arg == "--max-len") { params.max_len = std::stoi(ARGV_NEXT); }
else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(argv[++i]); } else if (arg == "-bo" || arg == "--best-of") { params.best_of = std::stoi(ARGV_NEXT); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); } else if (arg == "-bs" || arg == "--beam-size") { params.beam_size = std::stoi(ARGV_NEXT); }
else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(argv[++i]); } else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(ARGV_NEXT); }
else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(argv[++i]); } else if (arg == "-wt" || arg == "--word-thold") { params.word_thold = std::stof(ARGV_NEXT); }
else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(argv[++i]); } else if (arg == "-et" || arg == "--entropy-thold") { params.entropy_thold = std::stof(ARGV_NEXT); }
else if (arg == "-tp" || arg == "--temperature") { params.temperature = std::stof(argv[++i]); } else if (arg == "-lpt" || arg == "--logprob-thold") { params.logprob_thold = std::stof(ARGV_NEXT); }
else if (arg == "-tpi" || arg == "--temperature-inc") { params.temperature_inc = std::stof(argv[++i]); } else if (arg == "-nth" || arg == "--no-speech-thold") { params.no_speech_thold = std::stof(ARGV_NEXT); }
else if (arg == "-tp" || arg == "--temperature") { params.temperature = std::stof(ARGV_NEXT); }
else if (arg == "-tpi" || arg == "--temperature-inc") { params.temperature_inc = std::stof(ARGV_NEXT); }
else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; } else if (arg == "-debug"|| arg == "--debug-mode") { params.debug_mode = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; } else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-di" || arg == "--diarize") { params.diarize = true; } else if (arg == "-di" || arg == "--diarize") { params.diarize = true; }
@ -148,30 +162,31 @@ static bool whisper_params_parse(int argc, char ** argv, whisper_params & params
else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; } else if (arg == "-osrt" || arg == "--output-srt") { params.output_srt = true; }
else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; } else if (arg == "-owts" || arg == "--output-words") { params.output_wts = true; }
else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; } else if (arg == "-olrc" || arg == "--output-lrc") { params.output_lrc = true; }
else if (arg == "-fp" || arg == "--font-path") { params.font_path = argv[++i]; } else if (arg == "-fp" || arg == "--font-path") { params.font_path = ARGV_NEXT; }
else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; } else if (arg == "-ocsv" || arg == "--output-csv") { params.output_csv = true; }
else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; } else if (arg == "-oj" || arg == "--output-json") { params.output_jsn = true; }
else if (arg == "-ojf" || arg == "--output-json-full"){ params.output_jsn_full = params.output_jsn = true; } else if (arg == "-ojf" || arg == "--output-json-full"){ params.output_jsn_full = params.output_jsn = true; }
else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(argv[++i]); } else if (arg == "-of" || arg == "--output-file") { params.fname_out.emplace_back(ARGV_NEXT); }
else if (arg == "-np" || arg == "--no-prints") { params.no_prints = true; } else if (arg == "-np" || arg == "--no-prints") { params.no_prints = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; } else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; } else if (arg == "-pc" || arg == "--print-colors") { params.print_colors = true; }
else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; } else if (arg == "-pp" || arg == "--print-progress") { params.print_progress = true; }
else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; } else if (arg == "-nt" || arg == "--no-timestamps") { params.no_timestamps = true; }
else if (arg == "-l" || arg == "--language") { params.language = whisper_param_turn_lowercase(argv[++i]); } else if (arg == "-l" || arg == "--language") { params.language = whisper_param_turn_lowercase(ARGV_NEXT); }
else if (arg == "-dl" || arg == "--detect-language") { params.detect_language = true; } else if (arg == "-dl" || arg == "--detect-language") { params.detect_language = true; }
else if ( arg == "--prompt") { params.prompt = argv[++i]; } else if ( arg == "--prompt") { params.prompt = ARGV_NEXT; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; } else if (arg == "-m" || arg == "--model") { params.model = ARGV_NEXT; }
else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(argv[++i]); } else if (arg == "-f" || arg == "--file") { params.fname_inp.emplace_back(ARGV_NEXT); }
else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = argv[++i]; } else if (arg == "-oved" || arg == "--ov-e-device") { params.openvino_encode_device = ARGV_NEXT; }
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; } else if (arg == "-dtw" || arg == "--dtw") { params.dtw = ARGV_NEXT; }
else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; } else if (arg == "-ls" || arg == "--log-score") { params.log_score = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; } else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; } else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if ( arg == "--suppress-regex") { params.suppress_regex = argv[++i]; } else if (arg == "-sns" || arg == "--suppress-nst") { params.suppress_nst = true; }
else if ( arg == "--grammar") { params.grammar = argv[++i]; } else if ( arg == "--suppress-regex") { params.suppress_regex = ARGV_NEXT; }
else if ( arg == "--grammar-rule") { params.grammar_rule = argv[++i]; } else if ( arg == "--grammar") { params.grammar = ARGV_NEXT; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(argv[++i]); } else if ( arg == "--grammar-rule") { params.grammar_rule = ARGV_NEXT; }
else if ( arg == "--grammar-penalty") { params.grammar_penalty = std::stof(ARGV_NEXT); }
else { else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params); whisper_print_usage(argc, argv, params);
@ -202,6 +217,7 @@ static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params
fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold); fprintf(stderr, " -wt N, --word-thold N [%-7.2f] word timestamp probability threshold\n", params.word_thold);
fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold); fprintf(stderr, " -et N, --entropy-thold N [%-7.2f] entropy threshold for decoder fail\n", params.entropy_thold);
fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold); fprintf(stderr, " -lpt N, --logprob-thold N [%-7.2f] log probability threshold for decoder fail\n", params.logprob_thold);
fprintf(stderr, " -nth N, --no-speech-thold N [%-7.2f] no speech threshold\n", params.no_speech_thold);
fprintf(stderr, " -tp, --temperature N [%-7.2f] The sampling temperature, between 0 and 1\n", params.temperature); fprintf(stderr, " -tp, --temperature N [%-7.2f] The sampling temperature, between 0 and 1\n", params.temperature);
fprintf(stderr, " -tpi, --temperature-inc N [%-7.2f] The increment of temperature, between 0 and 1\n",params.temperature_inc); fprintf(stderr, " -tpi, --temperature-inc N [%-7.2f] The increment of temperature, between 0 and 1\n",params.temperature_inc);
fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false"); fprintf(stderr, " -debug, --debug-mode [%-7s] enable debug mode (eg. dump log_mel)\n", params.debug_mode ? "true" : "false");
@ -234,6 +250,7 @@ static void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params
fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false"); fprintf(stderr, " -ls, --log-score [%-7s] log best decoder scores of tokens\n", params.log_score?"true":"false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true"); fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false"); fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -sns, --suppress-nst [%-7s] suppress non-speech tokens\n", params.suppress_nst ? "true" : "false");
fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str()); fprintf(stderr, " --suppress-regex REGEX [%-7s] regular expression matching tokens to suppress\n", params.suppress_regex.c_str());
fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str()); fprintf(stderr, " --grammar GRAMMAR [%-7s] GBNF grammar to guide decoding\n", params.grammar.c_str());
fprintf(stderr, " --grammar-rule RULE [%-7s] top-level GBNF grammar rule name\n", params.grammar_rule.c_str()); fprintf(stderr, " --grammar-rule RULE [%-7s] top-level GBNF grammar rule name\n", params.grammar_rule.c_str());
@ -904,6 +921,13 @@ static bool output_lrc(struct whisper_context * ctx, const char * fname, const w
static void cb_log_disable(enum ggml_log_level , const char * , void * ) { } static void cb_log_disable(enum ggml_log_level , const char * , void * ) { }
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
#if defined(_WIN32)
// Set the console output code page to UTF-8, while command line arguments
// are still encoded in the system's code page. In this way, we can print
// non-ASCII characters to the console, and access files with non-ASCII paths.
SetConsoleOutputCP(CP_UTF8);
#endif
whisper_params params; whisper_params params;
// If the only argument starts with "@", read arguments line-by-line // If the only argument starts with "@", read arguments line-by-line
@ -1121,9 +1145,12 @@ int main(int argc, char ** argv) {
wparams.entropy_thold = params.entropy_thold; wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold; wparams.logprob_thold = params.logprob_thold;
wparams.no_speech_thold = params.no_speech_thold;
wparams.no_timestamps = params.no_timestamps; wparams.no_timestamps = params.no_timestamps;
wparams.suppress_nst = params.suppress_nst;
whisper_print_user_data user_data = { &params, &pcmf32s, 0 }; whisper_print_user_data user_data = { &params, &pcmf32s, 0 };
const auto & grammar_parsed = params.grammar_parsed; const auto & grammar_parsed = params.grammar_parsed;

View File

@ -1,9 +1,10 @@
if (WHISPER_SDL2) if (WHISPER_SDL2)
# command set(TARGET whisper-command)
set(TARGET command)
add_executable(${TARGET} command.cpp) add_executable(${TARGET} command.cpp)
include(DefaultTargetOptions) include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS ${TARGET} RUNTIME)
endif () endif ()

View File

@ -1,14 +1,14 @@
# command # whisper.cpp/examples/command
This is a basic Voice Assistant example that accepts voice commands from the microphone. This is a basic Voice Assistant example that accepts voice commands from the microphone.
More info is available in [issue #171](https://github.com/ggerganov/whisper.cpp/issues/171). More info is available in [issue #171](https://github.com/ggerganov/whisper.cpp/issues/171).
```bash ```bash
# Run with default arguments and small model # Run with default arguments and small model
./command -m ./models/ggml-small.en.bin -t 8 ./whisper-command -m ./models/ggml-small.en.bin -t 8
# On Raspberry Pi, use tiny or base models + "-ac 768" for better performance # On Raspberry Pi, use tiny or base models + "-ac 768" for better performance
./command -m ./models/ggml-tiny.en.bin -ac 768 -t 3 -c 0 ./whisper-command -m ./models/ggml-tiny.en.bin -ac 768 -t 3 -c 0
``` ```
https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4 https://user-images.githubusercontent.com/1991296/204038393-2f846eae-c255-4099-a76d-5735c25c49da.mp4
@ -23,10 +23,10 @@ Initial tests show that this approach might be extremely efficient in terms of p
```bash ```bash
# Run in guided mode, the list of allowed commands is in commands.txt # Run in guided mode, the list of allowed commands is in commands.txt
./command -m ./models/ggml-base.en.bin -cmd ./examples/command/commands.txt ./whisper-command -m ./models/ggml-base.en.bin -cmd ./examples/command/commands.txt
# On Raspberry Pi, in guided mode you can use "-ac 128" for extra performance # On Raspberry Pi, in guided mode you can use "-ac 128" for extra performance
./command -m ./models/ggml-tiny.en.bin -cmd ./examples/command/commands.txt -ac 128 -t 3 -c 0 ./whisper-command -m ./models/ggml-tiny.en.bin -cmd ./examples/command/commands.txt -ac 128 -t 3 -c 0
``` ```
https://user-images.githubusercontent.com/1991296/207435352-8fc4ed3f-bde5-4555-9b8b-aeeb76bee969.mp4 https://user-images.githubusercontent.com/1991296/207435352-8fc4ed3f-bde5-4555-9b8b-aeeb76bee969.mp4
@ -34,7 +34,7 @@ https://user-images.githubusercontent.com/1991296/207435352-8fc4ed3f-bde5-4555-9
## Building ## Building
The `command` tool depends on SDL2 library to capture audio from the microphone. You can build it like this: The `whisper-command` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash ```bash
# Install SDL2 # Install SDL2
@ -47,5 +47,6 @@ sudo dnf install SDL2 SDL2-devel
# Install SDL2 on Mac OS # Install SDL2 on Mac OS
brew install sdl2 brew install sdl2
make command cmake -B build -DWHISPER_SDL2=ON
cmake --build build --config Release
``` ```

View File

@ -21,6 +21,12 @@
#include <thread> #include <thread>
#include <vector> #include <vector>
#include <map> #include <map>
#include <chrono>
#if defined(_WIN32)
#define NOMINMAX
#include <windows.h>
#endif
// command-line parameters // command-line parameters
struct whisper_params { struct whisper_params {
@ -679,6 +685,10 @@ static int process_general_transcription(struct whisper_context * ctx, audio_asy
} }
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
#if defined(_WIN32)
SetConsoleOutputCP(CP_UTF8);
#endif
whisper_params params; whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) { if (whisper_params_parse(argc, argv, params) == false) {

View File

@ -72,9 +72,6 @@ bool ggml_common_quantize_0(
case GGML_FTYPE_MOSTLY_IQ4_XS: case GGML_FTYPE_MOSTLY_IQ4_XS:
case GGML_FTYPE_MOSTLY_IQ1_M: case GGML_FTYPE_MOSTLY_IQ1_M:
case GGML_FTYPE_MOSTLY_BF16: case GGML_FTYPE_MOSTLY_BF16:
case GGML_FTYPE_MOSTLY_Q4_0_4_4:
case GGML_FTYPE_MOSTLY_Q4_0_4_8:
case GGML_FTYPE_MOSTLY_Q4_0_8_8:
{ {
fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype); fprintf(stderr, "%s: invalid model type %d\n", __func__, ftype);
return false; return false;
@ -212,9 +209,6 @@ bool ggml_common_quantize_0(
case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ1_M:
case GGML_TYPE_BF16: case GGML_TYPE_BF16:
case GGML_TYPE_Q4_0_4_4:
case GGML_TYPE_Q4_0_4_8:
case GGML_TYPE_Q4_0_8_8:
case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0: case GGML_TYPE_TQ2_0:
case GGML_TYPE_COUNT: case GGML_TYPE_COUNT:

View File

@ -1,5 +1,7 @@
#include "common-sdl.h" #include "common-sdl.h"
#include <cstdio>
audio_async::audio_async(int len_ms) { audio_async::audio_async(int len_ms) {
m_len_ms = len_ms; m_len_ms = len_ms;

View File

@ -0,0 +1,4 @@
add_executable(main ./deprecation-warning.cpp)
add_executable(bench ./deprecation-warning.cpp)
add_executable(stream ./deprecation-warning.cpp)
add_executable(command ./deprecation-warning.cpp)

View File

@ -0,0 +1,17 @@
# Migration notice for binary filenames
> [!IMPORTANT]
[2024 Dec 20] Binaries have been renamed w/ a `whisper-` prefix. `main` is now `whisper-cli`, `server` is `whisper-server`, etc (https://github.com/ggerganov/whisper.cpp/pull/2648)
This migration was important, but it is a breaking change that may not always be immediately obvious to users.
Please update all scripts and workflows to use the new binary names.
| Old Filename | New Filename |
| ---- | ---- |
| main | whisper-cli |
| bench | whisper-bench |
| stream | whisper-stream |
| command | whisper-command |
| server | whisper-server |
| talk-llama | whisper-talk-llama |

View File

@ -0,0 +1,38 @@
// Warns users that this filename was deprecated, and provides a link for more information.
#include <cstdio>
#include <string>
// Main
int main(int argc, char** argv) {
std::string filename = "main";
if (argc >= 1) {
filename = argv[0];
}
// Get only the program name from the full path
size_t pos = filename.find_last_of("/\\");
if (pos != std::string::npos) {
filename = filename.substr(pos+1);
}
// Append "whisper-" to the beginning of filename to get the replacemnt filename
std::string replacement_filename = "whisper-" + filename;
// The exception is if the filename is "main", then our replacement filename is "whisper-cli"
if (filename == "main") {
replacement_filename = "whisper-cli";
}
if (filename == "main.exe") {
replacement_filename = "whisper-cli.exe";
}
fprintf(stdout, "\n");
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str());
fprintf(stdout, " See https://github.com/ggerganov/whisper.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
fprintf(stdout, "\n");
return EXIT_FAILURE;
}

View File

@ -11,7 +11,7 @@
# Press Ctrl+C to stop recording # Press Ctrl+C to stop recording
# #
executable="./main" executable="./build/bin/whisper-cli"
model="base.en" model="base.en"
model_path="models/ggml-$model.bin" model_path="models/ggml-$model.bin"
@ -46,7 +46,7 @@ ffmpeg -y -i ./rec.wav -ar 16000 -ac 1 -c:a pcm_s16le ./rec16.wav > /dev/null 2>
# run Whisper # run Whisper
echo "Processing ..." echo "Processing ..."
./main -m models/ggml-base.en.bin rec16.wav -owts > /dev/null 2>&1 ${executable} -m models/ggml-base.en.bin rec16.wav -owts > /dev/null 2>&1
# generate Karaoke video # generate Karaoke video
echo "Generating video ..." echo "Generating video ..."

View File

@ -14,7 +14,7 @@ model="base.en"
check_requirements() check_requirements()
{ {
if ! command -v ./main &>/dev/null; then if ! command -v ./build/bin/whisper-cli &>/dev/null; then
echo "whisper.cpp main executable is required (make)" echo "whisper.cpp main executable is required (make)"
exit 1 exit 1
fi fi
@ -100,7 +100,7 @@ while [ $running -eq 1 ]; do
err=$(cat /tmp/whisper-live.err | wc -l) err=$(cat /tmp/whisper-live.err | wc -l)
done done
./main -t 8 -m ./models/ggml-${model}.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1 ./build/bin/whisper-cli -t 8 -m ./models/ggml-${model}.bin -f /tmp/whisper-live.wav --no-timestamps -otxt 2> /tmp/whispererr | tail -n 1
while [ $SECONDS -lt $((($i+1)*$step_s)) ]; do while [ $SECONDS -lt $((($i+1)*$step_s)) ]; do
sleep 1 sleep 1
@ -109,4 +109,4 @@ while [ $running -eq 1 ]; do
done done
killall -v ffmpeg killall -v ffmpeg
killall -v main killall -v whisper-cli

View File

@ -11,6 +11,7 @@
#include <vector> #include <vector>
#include <deque> #include <deque>
#include <set> #include <set>
#include <chrono>
using json = nlohmann::json; using json = nlohmann::json;
@ -181,7 +182,7 @@ static json unguided_transcription(struct whisper_context * ctx, audio_async &au
wparams.n_threads = params.n_threads; wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx; wparams.audio_ctx = params.audio_ctx;
wparams.suppress_non_speech_tokens = true; wparams.suppress_nst = true;
// run the transformer and a single decoding pass // run the transformer and a single decoding pass
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__); fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
@ -225,7 +226,7 @@ static json guided_transcription(struct whisper_context * ctx, audio_async &audi
wparams.prompt_tokens = cs.prompt_tokens.data(); wparams.prompt_tokens = cs.prompt_tokens.data();
wparams.prompt_n_tokens = cs.prompt_tokens.size(); wparams.prompt_n_tokens = cs.prompt_tokens.size();
// TODO: properly expose as option // TODO: properly expose as option
wparams.suppress_non_speech_tokens = true; wparams.suppress_nst = true;
// run the transformer and a single decoding pass // run the transformer and a single decoding pass
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {

View File

@ -1,4 +1,4 @@
set(TARGET server) set(TARGET whisper-server)
add_executable(${TARGET} server.cpp httplib.h) add_executable(${TARGET} server.cpp httplib.h)
include(DefaultTargetOptions) include(DefaultTargetOptions)
@ -8,3 +8,5 @@ target_link_libraries(${TARGET} PRIVATE common json_cpp whisper ${CMAKE_THREAD_L
if (WIN32) if (WIN32)
target_link_libraries(${TARGET} PRIVATE ws2_32) target_link_libraries(${TARGET} PRIVATE ws2_32)
endif() endif()
install(TARGETS ${TARGET} RUNTIME)

View File

@ -1,4 +1,4 @@
# whisper.cpp http server # whisper.cpp/examples/server
Simple http server. WAV Files are passed to the inference model via http requests. Simple http server. WAV Files are passed to the inference model via http requests.
@ -7,9 +7,9 @@ https://github.com/ggerganov/whisper.cpp/assets/1991296/e983ee53-8741-4eb5-9048-
## Usage ## Usage
``` ```
./server -h ./build/bin/whisper-server -h
usage: ./bin/server [options] usage: ./build/bin/whisper-server [options]
options: options:
-h, --help [default] show this help message and exit -h, --help [default] show this help message and exit

View File

@ -12,6 +12,7 @@
#include <vector> #include <vector>
#include <cstring> #include <cstring>
#include <sstream> #include <sstream>
#include <chrono>
#if defined(_MSC_VER) #if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data #pragma warning(disable: 4244 4267) // possible loss of data
@ -61,6 +62,7 @@ struct whisper_params {
float logprob_thold = -1.00f; float logprob_thold = -1.00f;
float temperature = 0.00f; float temperature = 0.00f;
float temperature_inc = 0.20f; float temperature_inc = 0.20f;
float no_speech_thold = 0.6f;
bool debug_mode = false; bool debug_mode = false;
bool translate = false; bool translate = false;
@ -76,6 +78,7 @@ struct whisper_params {
bool no_timestamps = false; bool no_timestamps = false;
bool use_gpu = true; bool use_gpu = true;
bool flash_attn = false; bool flash_attn = false;
bool suppress_nst = false;
std::string language = "en"; std::string language = "en";
std::string prompt = ""; std::string prompt = "";
@ -134,7 +137,9 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
fprintf(stderr, " --public PATH, [%-7s] Path to the public folder\n", sparams.public_path.c_str()); fprintf(stderr, " --public PATH, [%-7s] Path to the public folder\n", sparams.public_path.c_str());
fprintf(stderr, " --request-path PATH, [%-7s] Request path for all requests\n", sparams.request_path.c_str()); fprintf(stderr, " --request-path PATH, [%-7s] Request path for all requests\n", sparams.request_path.c_str());
fprintf(stderr, " --inference-path PATH, [%-7s] Inference path for all requests\n", sparams.inference_path.c_str()); fprintf(stderr, " --inference-path PATH, [%-7s] Inference path for all requests\n", sparams.inference_path.c_str());
fprintf(stderr, " --convert, [%-7s] Convert audio to WAV, requires ffmpeg on the server", sparams.ffmpeg_converter ? "true" : "false"); fprintf(stderr, " --convert, [%-7s] Convert audio to WAV, requires ffmpeg on the server\n", sparams.ffmpeg_converter ? "true" : "false");
fprintf(stderr, " -sns, --suppress-nst [%-7s] suppress non-speech tokens\n", params.suppress_nst ? "true" : "false");
fprintf(stderr, " -nth N, --no-speech-thold N [%-7.2f] no speech threshold\n", params.no_speech_thold);
fprintf(stderr, "\n"); fprintf(stderr, "\n");
} }
@ -179,6 +184,9 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params, serve
else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; } else if (arg == "-dtw" || arg == "--dtw") { params.dtw = argv[++i]; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; } else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; } else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-sns" || arg == "--suppress-nst") { params.suppress_nst = true; }
else if (arg == "-nth" || arg == "--no-speech-thold") { params.no_speech_thold = std::stof(argv[++i]); }
// server params // server params
else if ( arg == "--port") { sparams.port = std::stoi(argv[++i]); } else if ( arg == "--port") { sparams.port = std::stoi(argv[++i]); }
else if ( arg == "--host") { sparams.hostname = argv[++i]; } else if ( arg == "--host") { sparams.hostname = argv[++i]; }
@ -216,6 +224,24 @@ void check_ffmpeg_availibility() {
} }
} }
std::string generate_temp_filename(const std::string &prefix, const std::string &extension) {
auto now = std::chrono::system_clock::now();
auto now_time_t = std::chrono::system_clock::to_time_t(now);
static std::mt19937 rng{std::random_device{}()};
std::uniform_int_distribution<long long> dist(0, 1e9);
std::stringstream ss;
ss << prefix
<< "-"
<< std::put_time(std::localtime(&now_time_t), "%Y%m%d-%H%M%S")
<< "-"
<< dist(rng)
<< extension;
return ss.str();
}
bool convert_to_wav(const std::string & temp_filename, std::string & error_resp) { bool convert_to_wav(const std::string & temp_filename, std::string & error_resp) {
std::ostringstream cmd_stream; std::ostringstream cmd_stream;
std::string converted_filename_temp = temp_filename + "_temp.wav"; std::string converted_filename_temp = temp_filename + "_temp.wav";
@ -472,6 +498,14 @@ void get_req_parameters(const Request & req, whisper_params & params)
{ {
params.temperature_inc = std::stof(req.get_file_value("temperature_inc").content); params.temperature_inc = std::stof(req.get_file_value("temperature_inc").content);
} }
if (req.has_file("suppress_non_speech"))
{
params.suppress_nst = parse_str_to_bool(req.get_file_value("suppress_non_speech").content);
}
if (req.has_file("suppress_nst"))
{
params.suppress_nst = parse_str_to_bool(req.get_file_value("suppress_nst").content);
}
} }
} // namespace } // namespace
@ -677,8 +711,7 @@ int main(int argc, char ** argv) {
if (sparams.ffmpeg_converter) { if (sparams.ffmpeg_converter) {
// if file is not wav, convert to wav // if file is not wav, convert to wav
// write to temporary file // write to temporary file
const std::string temp_filename_base = std::tmpnam(nullptr); const std::string temp_filename = generate_temp_filename("whisper-server", ".wav");
const std::string temp_filename = temp_filename_base + ".wav";
std::ofstream temp_file{temp_filename, std::ios::binary}; std::ofstream temp_file{temp_filename, std::ios::binary};
temp_file << audio_file.content; temp_file << audio_file.content;
temp_file.close(); temp_file.close();
@ -711,7 +744,6 @@ int main(int argc, char ** argv) {
} }
} }
printf("Successfully loaded %s\n", filename.c_str()); printf("Successfully loaded %s\n", filename.c_str());
// print system information // print system information
@ -779,6 +811,7 @@ int main(int argc, char ** argv) {
wparams.beam_search.beam_size = params.beam_size; wparams.beam_search.beam_size = params.beam_size;
wparams.temperature = params.temperature; wparams.temperature = params.temperature;
wparams.no_speech_thold = params.no_speech_thold;
wparams.temperature_inc = params.temperature_inc; wparams.temperature_inc = params.temperature_inc;
wparams.entropy_thold = params.entropy_thold; wparams.entropy_thold = params.entropy_thold;
wparams.logprob_thold = params.logprob_thold; wparams.logprob_thold = params.logprob_thold;
@ -786,6 +819,8 @@ int main(int argc, char ** argv) {
wparams.no_timestamps = params.no_timestamps; wparams.no_timestamps = params.no_timestamps;
wparams.token_timestamps = !params.no_timestamps && params.response_format == vjson_format; wparams.token_timestamps = !params.no_timestamps && params.response_format == vjson_format;
wparams.suppress_nst = params.suppress_nst;
whisper_print_user_data user_data = { &params, &pcmf32s, 0 }; whisper_print_user_data user_data = { &params, &pcmf32s, 0 };
// this callback is called on each new segment // this callback is called on each new segment
@ -929,7 +964,7 @@ int main(int argc, char ** argv) {
// TODO compression_ratio and no_speech_prob are not implemented yet // TODO compression_ratio and no_speech_prob are not implemented yet
// segment["compression_ratio"] = 0; // segment["compression_ratio"] = 0;
// segment["no_speech_prob"] = 0; segment["no_speech_prob"] = whisper_full_get_segment_no_speech_prob(ctx, i);
jres["segments"].push_back(segment); jres["segments"].push_back(segment);
} }

View File

@ -1,9 +1,10 @@
if (WHISPER_SDL2) if (WHISPER_SDL2)
# stream set(TARGET whisper-stream)
set(TARGET stream)
add_executable(${TARGET} stream.cpp) add_executable(${TARGET} stream.cpp)
include(DefaultTargetOptions) include(DefaultTargetOptions)
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS ${TARGET} RUNTIME)
endif () endif ()

View File

@ -1,11 +1,11 @@
# stream # whisper.cpp/examples/stream
This is a naive example of performing real-time inference on audio from your microphone. This is a naive example of performing real-time inference on audio from your microphone.
The `stream` tool samples the audio every half a second and runs the transcription continously. The `whisper-stream` tool samples the audio every half a second and runs the transcription continously.
More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10). More info is available in [issue #10](https://github.com/ggerganov/whisper.cpp/issues/10).
```bash ```bash
./stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000 ./build/bin/whisper-stream -m ./models/ggml-base.en.bin -t 8 --step 500 --length 5000
``` ```
https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4 https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a80f-28ba83be7d09.mp4
@ -15,7 +15,7 @@ https://user-images.githubusercontent.com/1991296/194935793-76afede7-cfa8-48d8-a
Setting the `--step` argument to `0` enables the sliding window mode: Setting the `--step` argument to `0` enables the sliding window mode:
```bash ```bash
./stream -m ./models/ggml-small.en.bin -t 6 --step 0 --length 30000 -vth 0.6 ./build/bin/whisper-stream -m ./models/ggml-base.en.bin -t 6 --step 0 --length 30000 -vth 0.6
``` ```
In this mode, the tool will transcribe only after some speech activity is detected. A very In this mode, the tool will transcribe only after some speech activity is detected. A very
@ -27,7 +27,7 @@ a transcription block that is suitable for parsing.
## Building ## Building
The `stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this: The `whisper-stream` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash ```bash
# Install SDL2 # Install SDL2
@ -40,21 +40,10 @@ sudo dnf install SDL2 SDL2-devel
# Install SDL2 on Mac OS # Install SDL2 on Mac OS
brew install sdl2 brew install sdl2
make stream cmake -B build -DWHISPER_SDL2=ON
``` cmake --build build --config Release
Ensure you are at the root of the repo when running `make stream`. Not within the `examples/stream` dir ./build/bin/whisper-stream
as the libraries needed like `common-sdl.h` are located within `examples`. Attempting to compile within
`examples/steam` means your compiler cannot find them and it gives an error it cannot find the file.
```bash
whisper.cpp/examples/stream$ make stream
g++ stream.cpp -o stream
stream.cpp:6:10: fatal error: common/sdl.h: No such file or directory
6 | #include "common/sdl.h"
| ^~~~~~~~~~~~~~
compilation terminated.
make: *** [<builtin>: stream] Error 1
``` ```
## Web version ## Web version

View File

@ -12,7 +12,12 @@
#include <thread> #include <thread>
#include <vector> #include <vector>
#include <fstream> #include <fstream>
#include <chrono>
#if defined(_WIN32)
#define NOMINMAX
#include <windows.h>
#endif
// command-line parameters // command-line parameters
struct whisper_params { struct whisper_params {
@ -113,6 +118,10 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
} }
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
#if defined(_WIN32)
SetConsoleOutputCP(CP_UTF8);
#endif
whisper_params params; whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) { if (whisper_params_parse(argc, argv, params) == false) {
@ -157,6 +166,7 @@ int main(int argc, char ** argv) {
cparams.use_gpu = params.use_gpu; cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn; cparams.flash_attn = params.flash_attn;
fprintf(stderr, "whisper_init_from_file_with_params ...\n");
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams); struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
std::vector<float> pcmf32 (n_samples_30s, 0.0f); std::vector<float> pcmf32 (n_samples_30s, 0.0f);
@ -166,6 +176,8 @@ int main(int argc, char ** argv) {
std::vector<whisper_token> prompt_tokens; std::vector<whisper_token> prompt_tokens;
// print some info about the processing // print some info about the processing
fprintf(stderr, "whisper_init_from_file_with_params ok\n");
{ {
fprintf(stderr, "\n"); fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) { if (!whisper_is_multilingual(ctx)) {

View File

@ -5,5 +5,5 @@
set(TARGET ls-sycl-device) set(TARGET ls-sycl-device)
add_executable(${TARGET} ls-sycl-device.cpp) add_executable(${TARGET} ls-sycl-device.cpp)
install(TARGETS ${TARGET} RUNTIME) install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT}) target_link_libraries(${TARGET} PRIVATE common whisper ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17) target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@ -7,10 +7,13 @@ cd build
source /opt/intel/oneapi/setvars.sh source /opt/intel/oneapi/setvars.sh
#for FP16 #for FP16
#cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON # faster for long-prompt inference #cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DWHISPER_SYCL_F16=ON # faster for long-prompt inference
#for FP32 #for FP32
cmake .. -DWHISPER_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx cmake .. -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#for other features from the examples, e.g. stream and talk link with SDL2:
#cmake .. -DGGML_SYCL=ON -DWHISPER_SDL2=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
#build example/main only #build example/main only
#cmake --build . --config Release --target main #cmake --build . --config Release --target main

View File

@ -1,11 +1,26 @@
if (WHISPER_SDL2) if (WHISPER_SDL2)
# talk-llama set(CMAKE_CXX_STANDARD 17)
set(TARGET talk-llama) set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(TARGET whisper-talk-llama)
add_executable(${TARGET} talk-llama.cpp add_executable(${TARGET} talk-llama.cpp
llama.cpp llama.cpp
llama-vocab.cpp llama-adapter.cpp
llama-arch.cpp
llama-batch.cpp
llama-chat.cpp
llama-context.cpp
llama-cparams.cpp
llama-grammar.cpp llama-grammar.cpp
llama-hparams.cpp
llama-impl.cpp
llama-kv-cache.cpp
llama-mmap.cpp
llama-model-loader.cpp
llama-model.cpp
llama-quant.cpp
llama-sampling.cpp llama-sampling.cpp
llama-vocab.cpp
unicode.cpp unicode.cpp
unicode-data.cpp) unicode-data.cpp)
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS}) target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})

View File

@ -1,4 +1,4 @@
# talk-llama # whisper.cpp/examples/talk-llama
Talk with an LLaMA AI in your terminal Talk with an LLaMA AI in your terminal
@ -12,7 +12,7 @@ https://github.com/ggerganov/whisper.cpp/assets/1991296/d97a3788-bf2a-4756-9a43-
## Building ## Building
The `talk-llama` tool depends on SDL2 library to capture audio from the microphone. You can build it like this: The `whisper-talk-llama` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
```bash ```bash
# Install SDL2 # Install SDL2
@ -25,11 +25,12 @@ sudo dnf install SDL2 SDL2-devel
# Install SDL2 on Mac OS # Install SDL2 on Mac OS
brew install sdl2 brew install sdl2
# Build the "talk-llama" executable # Build the "whisper-talk-llama" executable
make talk-llama cmake -B build -S . -DWHISPER_SDL2=ON
cmake --build build --config Release
# Run it # Run it
./talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8 ./build/bin/whisper-talk-llama -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
``` ```
- The `-mw` argument specifies the Whisper model that you would like to use. Recommended `base` or `small` for real-time experience - The `-mw` argument specifies the Whisper model that you would like to use. Recommended `base` or `small` for real-time experience
@ -37,16 +38,16 @@ make talk-llama
## Session ## Session
The `talk-llama` tool supports session management to enable more coherent and continuous conversations. By maintaining context from previous interactions, it can better understand and respond to user requests in a more natural way. The `whisper-talk-llama` tool supports session management to enable more coherent and continuous conversations. By maintaining context from previous interactions, it can better understand and respond to user requests in a more natural way.
To enable session support, use the `--session FILE` command line option when running the program. The `talk-llama` model state will be saved to the specified file after each interaction. If the file does not exist, it will be created. If the file exists, the model state will be loaded from it, allowing you to resume a previous session. To enable session support, use the `--session FILE` command line option when running the program. The `whisper-talk-llama` model state will be saved to the specified file after each interaction. If the file does not exist, it will be created. If the file exists, the model state will be loaded from it, allowing you to resume a previous session.
This feature is especially helpful for maintaining context in long conversations or when interacting with the AI assistant across multiple sessions. It ensures that the assistant remembers the previous interactions and can provide more relevant and contextual responses. This feature is especially helpful for maintaining context in long conversations or when interacting with the AI assistant across multiple sessions. It ensures that the assistant remembers the previous interactions and can provide more relevant and contextual responses.
Example usage: Example usage:
```bash ```bash
./talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8 ./build/bin/whisper-talk-llama --session ./my-session-file -mw ./models/ggml-small.en.bin -ml ../llama.cpp/models/llama-13b/ggml-model-q4_0.gguf -p "Georgi" -t 8
``` ```
## TTS ## TTS

View File

@ -0,0 +1,347 @@
#include "llama-adapter.h"
#include "llama-impl.h"
#include "llama-mmap.h"
#include "llama-model.h"
#include <algorithm>
#include <map>
#include <cassert>
#include <stdexcept>
// vec
struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
return nullptr;
}
return tensors[il];
}
struct ggml_tensor * llama_adapter_cvec::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
ggml_tensor * layer_dir = tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx, cur, layer_dir);
}
return cur;
}
bool llama_adapter_cvec::init(const llama_model & model) {
const auto & hparams = model.hparams;
GGML_ASSERT(tensors.empty());
GGML_ASSERT(ctxs.empty());
GGML_ASSERT(bufs.empty());
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
struct ggml_init_params params = {
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
// make tensors
tensors.reserve(hparams.n_layer);
tensors.push_back(nullptr); // there's never a tensor for layer 0
for (size_t il = 1; il < hparams.n_layer; il++) {
ggml_backend_buffer_type_t buft = model.select_buft(il);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
return false;
}
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
tensors.push_back(tensor);
}
// allocate tensors / buffers and zero
bufs.reserve(ctx_map.size());
for (auto it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
return false;
}
ggml_backend_buffer_clear(buf, 0);
bufs.emplace_back(buf);
}
return true;
}
int32_t llama_adapter_cvec::apply(
const llama_model & model,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end) {
const auto & hparams = model.hparams;
if (data == nullptr) {
// disable the current control vector (but leave allocated for later)
layer_start = -1;
layer_end = -1;
return 0;
}
if (n_embd != (int) hparams.n_embd) {
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
return 1;
}
if (tensors.empty()) {
if (!init(model)) {
return 1;
}
}
layer_start = il_start;
layer_end = il_end;
for (size_t il = 1; il < hparams.n_layer; il++) {
assert(tensors[il] != nullptr);
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
if (off + n_embd <= len) {
ggml_backend_tensor_set(tensors[il], data + off, 0, n_embd * ggml_element_size(tensors[il]));
}
}
return 0;
}
// lora
llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor * w) {
const std::string name(w->name);
const auto pos = ab_map.find(name);
if (pos != ab_map.end()) {
return &pos->second;
}
return nullptr;
}
static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) {
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
ggml_context * ctx_init;
struct gguf_init_params meta_gguf_params = {
/* .no_alloc = */ true,
/* .ctx = */ &ctx_init,
};
gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) };
if (!ctx_gguf) {
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
}
ggml_context_ptr ctx { ctx_init };
// check metadata
{
auto get_kv_str = [&](const std::string & key) -> std::string {
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id));
};
auto get_kv_f32 = [&](const std::string & key) -> float {
int id = gguf_find_key(ctx_gguf.get(), key.c_str());
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id);
};
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
if (general_type != "adapter") {
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
}
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
auto general_arch = llm_arch_from_string(general_arch_str);
if (general_arch != model.arch) {
throw std::runtime_error("model arch and LoRA arch mismatch");
}
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
if (adapter_type != "lora") {
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
}
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
}
int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
// contexts for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
// add a new context
struct ggml_init_params params = {
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * buft_ctx = ggml_init(params);
if (!buft_ctx) {
return nullptr;
}
ctx_map[buft] = buft_ctx;
adapter.ctxs.emplace_back(buft_ctx);
return buft_ctx;
};
return it->second;
};
// bundle lora_a and lora_b into pairs
std::map<std::string, llama_adapter_lora_weight> ab_map;
auto str_endswith = [](const std::string & str, const std::string & suffix) {
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
};
for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) {
std::string name(cur->name);
if (str_endswith(name, ".lora_a")) {
replace_all(name, ".lora_a", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_adapter_lora_weight(cur, nullptr);
} else {
ab_map[name].a = cur;
}
} else if (str_endswith(name, ".lora_b")) {
replace_all(name, ".lora_b", "");
if (ab_map.find(name) == ab_map.end()) {
ab_map[name] = llama_adapter_lora_weight(nullptr, cur);
} else {
ab_map[name].b = cur;
}
} else if (str_endswith(name, "_norm.weight")) {
// TODO: add support for norm vector
// for now, we don't really care because most adapters still work fine without it
continue;
} else {
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
}
}
// add tensors
for (auto & it : ab_map) {
const std::string & name = it.first;
llama_adapter_lora_weight & w = it.second;
bool is_token_embd = str_endswith(name, "token_embd.weight");
if (!w.a || !w.b) {
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
}
// device buft and device ctx
const auto * model_tensor = model.get_tensor(name.c_str());
if (!model_tensor) {
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
}
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
// validate tensor shape
if (is_token_embd) {
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
}
} else {
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
}
if (w.a->ne[1] != w.b->ne[0]) {
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
}
}
// save tensor to adapter
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
ggml_set_name(tensor_a, w.a->name);
ggml_set_name(tensor_b, w.b->name);
adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b);
}
// allocate tensors / buffers and zero
{
adapter.ctxs.reserve(ctx_map.size());
adapter.bufs.reserve(ctx_map.size());
for (auto & it : ctx_map) {
ggml_backend_buffer_type_t buft = it.first;
ggml_context * ctx_dev = it.second;
ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
if (!buf) {
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
}
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
adapter.bufs.emplace_back(std::move(buf));
}
}
// set tensor data
{
llama_file gguf_file(path_lora, "rb");
std::vector<uint8_t> read_buf;
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
size_t size = ggml_nbytes(orig);
read_buf.resize(size);
gguf_file.seek(offs, SEEK_SET);
gguf_file.read_raw(read_buf.data(), size);
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
};
for (auto & it : adapter.ab_map) {
auto orig = ab_map[it.first];
auto dev = it.second;
set_tensor(orig.a, dev.a);
set_tensor(orig.b, dev.b);
}
}
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
}
struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) {
struct llama_adapter_lora * adapter = new llama_adapter_lora();
try {
llama_adapter_lora_init_impl(*model, path_lora, *adapter);
return adapter;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
delete adapter;
}
return nullptr;
}
void llama_adapter_lora_free(struct llama_adapter_lora * adapter) {
delete adapter;
}

View File

@ -0,0 +1,74 @@
#pragma once
#include "llama.h"
#include "ggml-cpp.h"
#include <string>
#include <unordered_map>
#include <vector>
// TODO: pimpl
//
// llama_adapter_cvec
//
struct llama_adapter_cvec {
struct ggml_tensor * tensor_for(int il) const;
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
int32_t apply(
const llama_model & model,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
private:
bool init(const llama_model & model);
int32_t layer_start = -1;
int32_t layer_end = -1;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
std::vector<struct ggml_tensor *> tensors; // per layer
};
//
// llama_adapter_lora
//
struct llama_adapter_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
// get actual scale based on rank and alpha
float get_scale(float alpha, float adapter_scale) const {
const float rank = (float) b->ne[0];
const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
return scale;
}
llama_adapter_lora_weight() = default;
llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
};
struct llama_adapter_lora {
// map tensor name to lora_a_b
std::unordered_map<std::string, struct llama_adapter_lora_weight> ab_map;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
float alpha;
llama_adapter_lora() = default;
~llama_adapter_lora() = default;
llama_adapter_lora_weight * get_weight(struct ggml_tensor * w);
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,402 @@
#pragma once
#include "ggml.h" // ggml_op
#include <string>
//
// gguf constants (sync with gguf.py)
//
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
LLM_ARCH_GROK,
LLM_ARCH_GPT2,
LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX,
LLM_ARCH_MPT,
LLM_ARCH_STARCODER,
LLM_ARCH_REFACT,
LLM_ARCH_BERT,
LLM_ARCH_NOMIC_BERT,
LLM_ARCH_JINA_BERT_V2,
LLM_ARCH_BLOOM,
LLM_ARCH_STABLELM,
LLM_ARCH_QWEN,
LLM_ARCH_QWEN2,
LLM_ARCH_QWEN2MOE,
LLM_ARCH_QWEN2VL,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE,
LLM_ARCH_PLAMO,
LLM_ARCH_CODESHELL,
LLM_ARCH_ORION,
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
LLM_ARCH_MINICPM3,
LLM_ARCH_GEMMA,
LLM_ARCH_GEMMA2,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
LLM_ARCH_COMMAND_R,
LLM_ARCH_COHERE2,
LLM_ARCH_DBRX,
LLM_ARCH_OLMO,
LLM_ARCH_OLMO2,
LLM_ARCH_OLMOE,
LLM_ARCH_OPENELM,
LLM_ARCH_ARCTIC,
LLM_ARCH_DEEPSEEK,
LLM_ARCH_DEEPSEEK2,
LLM_ARCH_CHATGLM,
LLM_ARCH_BITNET,
LLM_ARCH_T5,
LLM_ARCH_T5ENCODER,
LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON,
LLM_ARCH_EXAONE,
LLM_ARCH_RWKV6,
LLM_ARCH_RWKV6QWEN2,
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_UNKNOWN,
};
enum llm_kv {
LLM_KV_GENERAL_TYPE,
LLM_KV_GENERAL_ARCHITECTURE,
LLM_KV_GENERAL_QUANTIZATION_VERSION,
LLM_KV_GENERAL_ALIGNMENT,
LLM_KV_GENERAL_NAME,
LLM_KV_GENERAL_AUTHOR,
LLM_KV_GENERAL_VERSION,
LLM_KV_GENERAL_URL,
LLM_KV_GENERAL_DESCRIPTION,
LLM_KV_GENERAL_LICENSE,
LLM_KV_GENERAL_SOURCE_URL,
LLM_KV_GENERAL_SOURCE_HF_REPO,
LLM_KV_VOCAB_SIZE,
LLM_KV_CONTEXT_LENGTH,
LLM_KV_EMBEDDING_LENGTH,
LLM_KV_FEATURES_LENGTH,
LLM_KV_BLOCK_COUNT,
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
LLM_KV_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
LLM_KV_USE_PARALLEL_RESIDUAL,
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_EXPERT_COUNT,
LLM_KV_EXPERT_USED_COUNT,
LLM_KV_EXPERT_SHARED_COUNT,
LLM_KV_EXPERT_WEIGHTS_SCALE,
LLM_KV_EXPERT_WEIGHTS_NORM,
LLM_KV_EXPERT_GATING_FUNC,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
LLM_KV_SWIN_NORM,
LLM_KV_RESCALE_EVERY_N_LAYERS,
LLM_KV_TIME_MIX_EXTRA_DIM,
LLM_KV_TIME_DECAY_EXTRA_DIM,
LLM_KV_RESIDUAL_SCALE,
LLM_KV_EMBEDDING_SCALE,
LLM_KV_TOKEN_SHIFT_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
LLM_KV_ATTENTION_CLAMP_KQV,
LLM_KV_ATTENTION_KEY_LENGTH,
LLM_KV_ATTENTION_VALUE_LENGTH,
LLM_KV_ATTENTION_LAYERNORM_EPS,
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
LLM_KV_ATTENTION_GROUPNORM_EPS,
LLM_KV_ATTENTION_GROUPNORM_GROUPS,
LLM_KV_ATTENTION_CAUSAL,
LLM_KV_ATTENTION_Q_LORA_RANK,
LLM_KV_ATTENTION_KV_LORA_RANK,
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
LLM_KV_ROPE_FREQ_BASE,
LLM_KV_ROPE_SCALE_LINEAR,
LLM_KV_ROPE_SCALING_TYPE,
LLM_KV_ROPE_SCALING_FACTOR,
LLM_KV_ROPE_SCALING_ATTN_FACTOR,
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
LLM_KV_ROPE_SCALING_FINETUNED,
LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
LLM_KV_SPLIT_NO,
LLM_KV_SPLIT_COUNT,
LLM_KV_SPLIT_TENSORS_COUNT,
LLM_KV_SSM_INNER_SIZE,
LLM_KV_SSM_CONV_KERNEL,
LLM_KV_SSM_STATE_SIZE,
LLM_KV_SSM_TIME_STEP_RANK,
LLM_KV_SSM_DT_B_C_RMS,
LLM_KV_WKV_HEAD_SIZE,
LLM_KV_TOKENIZER_MODEL,
LLM_KV_TOKENIZER_PRE,
LLM_KV_TOKENIZER_LIST,
LLM_KV_TOKENIZER_TOKEN_TYPE,
LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
LLM_KV_TOKENIZER_SCORES,
LLM_KV_TOKENIZER_MERGES,
LLM_KV_TOKENIZER_BOS_ID,
LLM_KV_TOKENIZER_EOS_ID,
LLM_KV_TOKENIZER_EOT_ID,
LLM_KV_TOKENIZER_EOM_ID,
LLM_KV_TOKENIZER_UNK_ID,
LLM_KV_TOKENIZER_SEP_ID,
LLM_KV_TOKENIZER_PAD_ID,
LLM_KV_TOKENIZER_CLS_ID,
LLM_KV_TOKENIZER_MASK_ID,
LLM_KV_TOKENIZER_ADD_BOS,
LLM_KV_TOKENIZER_ADD_EOS,
LLM_KV_TOKENIZER_ADD_PREFIX,
LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
LLM_KV_TOKENIZER_CHAT_TEMPLATE_N,
LLM_KV_TOKENIZER_FIM_PRE_ID,
LLM_KV_TOKENIZER_FIM_SUF_ID,
LLM_KV_TOKENIZER_FIM_MID_ID,
LLM_KV_TOKENIZER_FIM_PAD_ID,
LLM_KV_TOKENIZER_FIM_REP_ID,
LLM_KV_TOKENIZER_FIM_SEP_ID,
LLM_KV_ADAPTER_TYPE,
LLM_KV_ADAPTER_LORA_ALPHA,
LLM_KV_POSNET_EMBEDDING_LENGTH,
LLM_KV_POSNET_BLOCK_COUNT,
LLM_KV_CONVNEXT_EMBEDDING_LENGTH,
LLM_KV_CONVNEXT_BLOCK_COUNT,
// deprecated:
LLM_KV_TOKENIZER_PREFIX_ID,
LLM_KV_TOKENIZER_SUFFIX_ID,
LLM_KV_TOKENIZER_MIDDLE_ID,
};
enum llm_tensor {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_TOKEN_EMBD_NORM,
LLM_TENSOR_TOKEN_TYPES,
LLM_TENSOR_POS_EMBD,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ROPE_FACTORS_LONG,
LLM_TENSOR_ROPE_FACTORS_SHORT,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_QKV,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
LLM_TENSOR_ATTN_OUT_NORM,
LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_ACT,
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
LLM_TENSOR_FFN_GATE_EXP,
LLM_TENSOR_FFN_UP_EXP,
LLM_TENSOR_FFN_NORM_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_FFN_EXP_PROBS_B,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
LLM_TENSOR_SSM_IN,
LLM_TENSOR_SSM_CONV1D,
LLM_TENSOR_SSM_X,
LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_D,
LLM_TENSOR_SSM_OUT,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,
LLM_TENSOR_TIME_MIX_LERP_X,
LLM_TENSOR_TIME_MIX_LERP_W,
LLM_TENSOR_TIME_MIX_LERP_K,
LLM_TENSOR_TIME_MIX_LERP_V,
LLM_TENSOR_TIME_MIX_LERP_R,
LLM_TENSOR_TIME_MIX_LERP_G,
LLM_TENSOR_TIME_MIX_LERP_FUSED,
LLM_TENSOR_TIME_MIX_FIRST,
LLM_TENSOR_TIME_MIX_DECAY,
LLM_TENSOR_TIME_MIX_DECAY_W1,
LLM_TENSOR_TIME_MIX_DECAY_W2,
LLM_TENSOR_TIME_MIX_KEY,
LLM_TENSOR_TIME_MIX_VALUE,
LLM_TENSOR_TIME_MIX_RECEPTANCE,
LLM_TENSOR_TIME_MIX_GATE,
LLM_TENSOR_TIME_MIX_LN,
LLM_TENSOR_TIME_MIX_OUTPUT,
LLM_TENSOR_CHANNEL_MIX_LERP_K,
LLM_TENSOR_CHANNEL_MIX_LERP_R,
LLM_TENSOR_CHANNEL_MIX_KEY,
LLM_TENSOR_CHANNEL_MIX_RECEPTANCE,
LLM_TENSOR_CHANNEL_MIX_VALUE,
LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_SUB_NORM,
LLM_TENSOR_FFN_SUB_NORM,
LLM_TENSOR_DEC_ATTN_NORM,
LLM_TENSOR_DEC_ATTN_Q,
LLM_TENSOR_DEC_ATTN_K,
LLM_TENSOR_DEC_ATTN_V,
LLM_TENSOR_DEC_ATTN_OUT,
LLM_TENSOR_DEC_ATTN_REL_B,
LLM_TENSOR_DEC_CROSS_ATTN_NORM,
LLM_TENSOR_DEC_CROSS_ATTN_Q,
LLM_TENSOR_DEC_CROSS_ATTN_K,
LLM_TENSOR_DEC_CROSS_ATTN_V,
LLM_TENSOR_DEC_CROSS_ATTN_OUT,
LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
LLM_TENSOR_DEC_FFN_NORM,
LLM_TENSOR_DEC_FFN_GATE,
LLM_TENSOR_DEC_FFN_DOWN,
LLM_TENSOR_DEC_FFN_UP,
LLM_TENSOR_DEC_OUTPUT_NORM,
LLM_TENSOR_ENC_ATTN_NORM,
LLM_TENSOR_ENC_ATTN_Q,
LLM_TENSOR_ENC_ATTN_K,
LLM_TENSOR_ENC_ATTN_V,
LLM_TENSOR_ENC_ATTN_OUT,
LLM_TENSOR_ENC_ATTN_REL_B,
LLM_TENSOR_ENC_FFN_NORM,
LLM_TENSOR_ENC_FFN_GATE,
LLM_TENSOR_ENC_FFN_DOWN,
LLM_TENSOR_ENC_FFN_UP,
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
LLM_TENSOR_CONV1D,
LLM_TENSOR_CONVNEXT_DW,
LLM_TENSOR_CONVNEXT_NORM,
LLM_TENSOR_CONVNEXT_PW1,
LLM_TENSOR_CONVNEXT_PW2,
LLM_TENSOR_CONVNEXT_GAMMA,
LLM_TENSOR_POS_NET_CONV1,
LLM_TENSOR_POS_NET_CONV2,
LLM_TENSOR_POS_NET_NORM,
LLM_TENSOR_POS_NET_NORM1,
LLM_TENSOR_POS_NET_NORM2,
LLM_TENSOR_POS_NET_ATTN_NORM,
LLM_TENSOR_POS_NET_ATTN_Q,
LLM_TENSOR_POS_NET_ATTN_K,
LLM_TENSOR_POS_NET_ATTN_V,
LLM_TENSOR_POS_NET_ATTN_OUT,
};
enum llm_tensor_layer {
LLM_TENSOR_LAYER_INPUT,
LLM_TENSOR_LAYER_REPEATING,
LLM_TENSOR_LAYER_OUTPUT,
};
struct LLM_KV {
LLM_KV(llm_arch arch, const char * suffix = nullptr);
llm_arch arch;
const char * suffix;
std::string operator()(llm_kv kv) const;
};
// helper to handle gguf constants
// usage:
//
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
//
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
//
struct LLM_TN_IMPL {
const llm_arch arch;
const llm_tensor tensor;
const char * const suffix;
const int bid;
const int xid;
std::string str() const;
operator std::string() const {
return str();
}
friend bool operator==(const std::string & str, const LLM_TN_IMPL & tn) {
return str == tn.str();
}
friend bool operator!=(const std::string & str, const LLM_TN_IMPL & tn) {
return str != tn.str();
}
};
struct LLM_TN {
LLM_TN(llm_arch arch) : arch(arch) {}
llm_arch arch;
LLM_TN_IMPL operator()(llm_tensor tensor, const char * suffix, int bid = -1, int xid = -1) const {
return { arch, tensor, suffix, bid, xid };
}
LLM_TN_IMPL operator()(llm_tensor tensor, int bid = -1, int xid = -1) const {
return { arch, tensor, nullptr, bid, xid };
}
};
struct llm_tensor_info {
llm_tensor_layer layer;
ggml_op op;
};
const char * llm_arch_name(llm_arch arch);
llm_arch llm_arch_from_string(const std::string & name);
const llm_tensor_info & llm_tensor_info_for(llm_tensor tensor);

View File

@ -0,0 +1,368 @@
#include "llama-batch.h"
#include <cstring>
#include <algorithm>
llama_ubatch llama_sbatch::reserve_ubatch(size_t n_ubatch, bool has_embd) {
// clear empty sequences
// the previous ubatch is assumed to be gone,
// so nothing should refer to values in these sequences anymore.
for (size_t i = seq.size(); i-- > 0;) {
if (seq[i].length == 0) {
seq.pop_back();
} else {
break;
}
}
ubatch_token.resize(!has_embd ? n_ubatch : 0);
ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0);
ubatch_pos.resize(n_ubatch);
ubatch_n_seq_id.resize(n_ubatch);
ubatch_seq_id.resize(n_ubatch);
ubatch_output.resize(n_ubatch);
llama_ubatch ubatch = {
/*equal_seqs =*/ true,
/*n_tokens =*/ 0,
/*n_seq_tokens =*/ 0,
/*n_seqs =*/ 0,
/*token =*/ !has_embd ? ubatch_token.data() : nullptr,
/*embd =*/ has_embd ? ubatch_embd.data() : nullptr,
/*pos =*/ ubatch_pos.data(),
/*n_seq_id =*/ ubatch_n_seq_id.data(),
/*seq_id =*/ ubatch_seq_id.data(),
/*output =*/ ubatch_output.data(),
};
return ubatch;
}
void llama_sbatch::add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length) {
GGML_ASSERT(batch != nullptr);
GGML_ASSERT(length <= seq.length);
// Can only add sequences of equal lengths to a batch,
// otherwise it isn't clear to which sequence a token belongs
GGML_ASSERT(seq.n_seq_id == 0 || ubatch.n_seqs == 0 || length == (size_t) ubatch.n_tokens / ubatch.n_seqs);
GGML_ASSERT((seq.n_seq_id != 0) == ubatch.equal_seqs);
// NOTE: loops are separated for cache-friendliness
if (batch->token) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
ubatch.token[ubatch.n_tokens + i] = batch->token[ids[seq.offset + i]];
}
} else {
// simple split
ubatch.token = batch->token + seq.offset;
}
} else {
ubatch.token = nullptr;
}
if (batch->embd) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
memcpy(
ubatch.embd + (n_embd * (ubatch.n_tokens + i)),
batch->embd + (n_embd * ids[seq.offset + i]),
n_embd * sizeof(float)
);
}
} else {
// simple split
ubatch.embd = batch->embd + (n_embd * seq.offset);
}
} else {
ubatch.embd = nullptr;
}
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
ubatch.pos[ubatch.n_tokens + i] = batch->pos[ids[seq.offset + i]];
}
} else {
// simple split
ubatch.pos = batch->pos + seq.offset;
}
if (ubatch.equal_seqs) {
ubatch.n_seq_id[ubatch.n_seqs] = seq.n_seq_id;
if (seq.seq_id) {
ubatch.seq_id[ubatch.n_seqs] = seq.seq_id;
}
} else {
// simple split
if (batch->n_seq_id) {
ubatch.n_seq_id = batch->n_seq_id + seq.offset;
} else {
for (size_t i = 0; i < length; ++i) {
ubatch.n_seq_id[ubatch.n_seqs + i] = 1;
}
}
if (batch->seq_id) {
ubatch.seq_id = batch->seq_id + seq.offset;
}
}
if (logits_all) {
for (size_t i = 0; i < length; ++i) {
ubatch.output[ubatch.n_tokens + i] = 1;
out_ids.push_back(ids[seq.offset + i]);
}
} else if (batch->logits) {
if (ubatch.equal_seqs) {
for (size_t i = 0; i < length; ++i) {
size_t id = ids[seq.offset + i];
int8_t is_output = batch->logits[id];
ubatch.output[ubatch.n_tokens + i] = is_output;
if (is_output) { out_ids.push_back(id); }
}
} else {
// simple split
ubatch.output = batch->logits + seq.offset;
for (size_t i = 0; i < length; ++i) {
if (ubatch.output[i] != 0) { out_ids.push_back(seq.offset + i); }
}
}
} else {
// only get last output
for (size_t i = 0; i < length; ++i) {
size_t id = ids[seq.offset + i];
int8_t is_last = id == ids.size() - 1;
ubatch.output[ubatch.n_tokens + i] = is_last;
if (is_last) { out_ids.push_back(id); }
}
}
if (ubatch.n_tokens == 0 && ubatch.n_seqs == 0) {
ubatch.n_seq_tokens = ubatch.equal_seqs ? length : 1;
}
ubatch.n_tokens += length;
ubatch.n_seqs += ubatch.equal_seqs ? 1 : length; // virtual sequences for simple splits
seq.offset += length;
seq.length -= length;
n_tokens -= length;
GGML_ASSERT(ubatch.n_tokens == ubatch.n_seq_tokens * ubatch.n_seqs);
}
llama_ubatch llama_sbatch::split_simple(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
ubatch.equal_seqs = false;
if (!seq.empty()) {
llama_sbatch_seq & s = seq[0];
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
GGML_ASSERT(seq.size() == 1 && s.n_seq_id == 0); // don't mix with other splits
add_seq_to_ubatch(ubatch, s, length);
}
return ubatch;
}
llama_ubatch llama_sbatch::split_equal(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
if (!seq.empty()) {
size_t length = 0;
size_t n_tokens_in_ubatch = 0;
GGML_ASSERT(seq[0].n_seq_id > 0); // should not be mixed with simple splits
// smallest first, because it's easier to split this way;
// starting from the end to pop in constant time.
for (size_t i = seq.size(); i-- > 0;) {
llama_sbatch_seq & s = seq[i];
GGML_ASSERT(s.length > 0);
if (length == 0) {
length = s.length < n_ubatch ? s.length : n_ubatch;
}
add_seq_to_ubatch(ubatch, s, length);
n_tokens_in_ubatch += length;
// shared prompts can't be mixed with any of their sequences,
// so it's safer to compute them in their own ubatch
if (s.n_seq_id > 1) { break; }
// stop when there isn't enough space for another sequence
if (length + n_tokens_in_ubatch > n_ubatch) { break; }
}
}
return ubatch;
}
llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
if (!seq.empty()) {
llama_sbatch_seq & s = seq[seq.size() - 1];
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
GGML_ASSERT(s.n_seq_id > 0); // should not be mixed with simple splits
add_seq_to_ubatch(ubatch, s, length);
}
return ubatch;
}
void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
GGML_ASSERT(batch.n_tokens >= 0);
this->batch = &batch;
this->n_embd = n_embd;
this->logits_all = logits_all;
n_tokens = batch.n_tokens;
ids.resize(n_tokens);
out_ids.clear();
// TODO: reserve out_ids and seq
for (size_t i = 0; i < n_tokens; ++i) {
ids[i] = i;
}
if (simple_split) {
seq.resize(1);
llama_sbatch_seq & s = seq[0];
s.n_seq_id = 0;
s.seq_id = nullptr;
s.offset = 0;
s.length = n_tokens;
return;
}
std::sort(ids.begin(), ids.end(),
[&batch](size_t a, size_t b) {
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
int32_t n_seq_b = batch.n_seq_id ? batch.n_seq_id[b] : 1;
// sort by seq_id, then by pos
if (n_seq_a == n_seq_b) {
if (batch.seq_id) {
for (int32_t i = 0; i < n_seq_a; ++i) {
llama_seq_id seq_id_a = batch.seq_id[a][i];
llama_seq_id seq_id_b = batch.seq_id[b][i];
// smaller seq_ids go first
if (seq_id_a != seq_id_b) {
return seq_id_a < seq_id_b;
}
}
}
// when all else is equal, sort by pos
if (batch.pos) {
return batch.pos[a] < batch.pos[b];
}
// no pos, sort by id
return a < b;
}
// shared prompts go first
return n_seq_a > n_seq_b;
}
);
// init seq
llama_sbatch_seq * last_seq = nullptr;
for (size_t i = 0; i < n_tokens; ++i) {
const size_t bi = ids[i];
const int32_t n_seqs = batch.n_seq_id[bi];
llama_seq_id * seq_ids = batch.seq_id[bi];
if (last_seq != nullptr) {
bool same = n_seqs == last_seq->n_seq_id;
for (int32_t j = 0; same && j < n_seqs; ++j) {
if (seq_ids[j] != last_seq->seq_id[j]) {
same = false;
}
}
if (same) {
last_seq->length += 1;
continue;
}
}
llama_sbatch_seq new_seq = {n_seqs, seq_ids, i, 1};
seq.push_back(new_seq);
last_seq = &seq.back();
}
// keep shared prompts first at the end, then sort by length descending.
std::sort(seq.begin(), seq.end(),
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
if (a.n_seq_id == b.n_seq_id) {
return a.length > b.length;
}
return a.n_seq_id < b.n_seq_id;
}
);
}
llama_batch_allocr::llama_batch_allocr(struct llama_batch in_batch, llama_pos p0) {
batch = in_batch;
GGML_ASSERT(batch.n_tokens > 0);
if (!batch.pos) {
pos.resize(batch.n_tokens);
for (int32_t i = 0; i < batch.n_tokens; i++) {
pos[i] = i + p0;
}
batch.pos = pos.data();
}
if (!batch.n_seq_id) {
n_seq_id.resize(batch.n_tokens);
for (int32_t i = 0; i < batch.n_tokens; i++) {
n_seq_id[i] = seq_id_0.size();
}
batch.n_seq_id = n_seq_id.data();
}
if (!batch.seq_id) {
seq_id.resize(batch.n_tokens + 1);
seq_id[batch.n_tokens] = NULL;
for (int32_t i = 0; i < batch.n_tokens; i++) {
seq_id[i] = seq_id_0.data();
}
batch.seq_id = seq_id.data();
}
if (!batch.logits) {
logits.resize(batch.n_tokens);
logits[logits.size() - 1] = true;
batch.logits = logits.data();
}
}
//
// interface implementation
//
struct llama_batch llama_batch_get_one(
llama_token * tokens,
int32_t n_tokens) {
return {
/*n_tokens =*/ n_tokens,
/*tokens =*/ tokens,
/*embd =*/ nullptr,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
/*logits =*/ nullptr,
};
}
struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
llama_batch batch = {
/*n_tokens =*/ 0,
/*tokens =*/ nullptr,
/*embd =*/ nullptr,
/*pos =*/ nullptr,
/*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr,
/*logits =*/ nullptr,
};
if (embd) {
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
} else {
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
for (int i = 0; i < n_tokens_alloc; ++i) {
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
}
batch.seq_id[n_tokens_alloc] = nullptr;
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
return batch;
}
void llama_batch_free(struct llama_batch batch) {
if (batch.token) free(batch.token);
if (batch.embd) free(batch.embd);
if (batch.pos) free(batch.pos);
if (batch.n_seq_id) free(batch.n_seq_id);
if (batch.seq_id) {
for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
free(batch.seq_id[i]);
}
free(batch.seq_id);
}
if (batch.logits) free(batch.logits);
}

View File

@ -0,0 +1,88 @@
#pragma once
#include "llama.h"
#include <array>
#include <vector>
// very similar to llama_batch,
// but has more metadata about sequences
struct llama_ubatch {
bool equal_seqs;
// TODO: whole_seqs for embeddings?
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
uint32_t n_seq_tokens; // tokens per sequence
uint32_t n_seqs;
llama_token * token; // [n_tokens]
float * embd; // [n_embd, n_tokens]
llama_pos * pos; // [n_tokens]
int32_t * n_seq_id; // [n_seqs]
llama_seq_id ** seq_id; // [n_seqs]
int8_t * output; // [n_tokens]
};
struct llama_sbatch_seq {
int32_t n_seq_id;
llama_seq_id * seq_id;
size_t offset;
size_t length;
};
// sequence-length-aware batch splitting
struct llama_sbatch {
// tokens left in this batch
size_t n_tokens;
size_t n_embd;
bool logits_all; // TODO: remove once lctx.logits_all is removed too
// sorted indices into the batch
std::vector<size_t> ids;
// batch indices of the output
std::vector<size_t> out_ids;
std::vector<llama_sbatch_seq> seq;
const llama_batch * batch = nullptr;
// buffers for the ubatch
std::vector<llama_token> ubatch_token;
std::vector<float> ubatch_embd;
std::vector<llama_pos> ubatch_pos;
std::vector<int32_t> ubatch_n_seq_id;
std::vector<llama_seq_id *> ubatch_seq_id;
std::vector<int8_t> ubatch_output;
llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false);
void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length);
// simple split, unknown number of sequences of unequal lengths
llama_ubatch split_simple(size_t n_ubatch);
// make batches of equal-length sequences
llama_ubatch split_equal(size_t n_ubatch);
// sequence-wise split
llama_ubatch split_seq(size_t n_ubatch);
void from_batch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
};
// temporary allocate memory for the input batch if needed
struct llama_batch_allocr {
struct llama_batch batch;
std::array<llama_seq_id, 1> seq_id_0 = { 0 }; // default sequence id
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id *> seq_id;
std::vector<int8_t> logits;
// optionally fulfill the batch returned by llama_batch_get_one
llama_batch_allocr(struct llama_batch in_batch, llama_pos p0);
};

View File

@ -0,0 +1,587 @@
#include "llama-chat.h"
#include "llama.h"
#include <map>
#include <sstream>
#if __cplusplus >= 202000L
#define LU8(x) (const char*)(u8##x)
#else
#define LU8(x) u8##x
#endif
// trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) {
size_t start = 0;
size_t end = str.size();
while (start < end && isspace(str[start])) {
start += 1;
}
while (end > start && isspace(str[end - 1])) {
end -= 1;
}
return str.substr(start, end - start);
}
static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "chatml", LLM_CHAT_TEMPLATE_CHATML },
{ "llama2", LLM_CHAT_TEMPLATE_LLAMA_2 },
{ "llama2-sys", LLM_CHAT_TEMPLATE_LLAMA_2_SYS },
{ "llama2-sys-bos", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS },
{ "llama2-sys-strip", LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP },
{ "mistral-v1", LLM_CHAT_TEMPLATE_MISTRAL_V1 },
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
{ "zephyr", LLM_CHAT_TEMPLATE_ZEPHYR },
{ "monarch", LLM_CHAT_TEMPLATE_MONARCH },
{ "gemma", LLM_CHAT_TEMPLATE_GEMMA },
{ "orion", LLM_CHAT_TEMPLATE_ORION },
{ "openchat", LLM_CHAT_TEMPLATE_OPENCHAT },
{ "vicuna", LLM_CHAT_TEMPLATE_VICUNA },
{ "vicuna-orca", LLM_CHAT_TEMPLATE_VICUNA_ORCA },
{ "deepseek", LLM_CHAT_TEMPLATE_DEEPSEEK },
{ "deepseek2", LLM_CHAT_TEMPLATE_DEEPSEEK_2 },
{ "deepseek3", LLM_CHAT_TEMPLATE_DEEPSEEK_3 },
{ "command-r", LLM_CHAT_TEMPLATE_COMMAND_R },
{ "llama3", LLM_CHAT_TEMPLATE_LLAMA_3 },
{ "chatglm3", LLM_CHAT_TEMPLATE_CHATGML_3 },
{ "chatglm4", LLM_CHAT_TEMPLATE_CHATGML_4 },
{ "glmedge", LLM_CHAT_TEMPLATE_GLMEDGE },
{ "minicpm", LLM_CHAT_TEMPLATE_MINICPM },
{ "exaone3", LLM_CHAT_TEMPLATE_EXAONE_3 },
{ "rwkv-world", LLM_CHAT_TEMPLATE_RWKV_WORLD },
{ "granite", LLM_CHAT_TEMPLATE_GRANITE },
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
return LLM_CHAT_TEMPLATES.at(name);
}
llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
try {
return llm_chat_template_from_str(tmpl);
} catch (const std::out_of_range &) {
// ignore
}
auto tmpl_contains = [&tmpl](const char * haystack) -> bool {
return tmpl.find(haystack) != std::string::npos;
};
if (tmpl_contains("<|im_start|>")) {
return tmpl_contains("<|im_sep|>")
? LLM_CHAT_TEMPLATE_PHI_4
: LLM_CHAT_TEMPLATE_CHATML;
} else if (tmpl.find("mistral") == 0 || tmpl_contains("[INST]")) {
if (tmpl_contains("[SYSTEM_PROMPT]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V7;
} else if (
// catches official 'v1' template
tmpl_contains("' [INST] ' + system_message")
// catches official 'v3' and 'v3-tekken' templates
|| tmpl_contains("[AVAILABLE_TOOLS]")
) {
// Official mistral 'v1', 'v3' and 'v3-tekken' templates
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
if (tmpl_contains(" [INST]")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V1;
} else if (tmpl_contains("\"[INST]\"")) {
return LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN;
}
return LLM_CHAT_TEMPLATE_MISTRAL_V3;
} else {
// llama2 template and its variants
// [variant] support system message
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
bool support_system_message = tmpl_contains("<<SYS>>");
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
bool strip_message = tmpl_contains("content.strip()");
if (strip_message) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
} else if (add_bos_inside_history) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
} else if (support_system_message) {
return LLM_CHAT_TEMPLATE_LLAMA_2_SYS;
} else {
return LLM_CHAT_TEMPLATE_LLAMA_2;
}
}
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>")) {
return LLM_CHAT_TEMPLATE_PHI_3;
} else if (tmpl_contains("<|assistant|>") && tmpl_contains("<|user|>")) {
return tmpl_contains("</s>") ? LLM_CHAT_TEMPLATE_FALCON_3 : LLM_CHAT_TEMPLATE_GLMEDGE;
} else if (tmpl_contains("<|user|>") && tmpl_contains("<|endoftext|>")) {
return LLM_CHAT_TEMPLATE_ZEPHYR;
} else if (tmpl_contains("bos_token + message['role']")) {
return LLM_CHAT_TEMPLATE_MONARCH;
} else if (tmpl_contains("<start_of_turn>")) {
return LLM_CHAT_TEMPLATE_GEMMA;
} else if (tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
// OrionStarAI/Orion-14B-Chat
return LLM_CHAT_TEMPLATE_ORION;
} else if (tmpl_contains("GPT4 Correct ")) {
// openchat/openchat-3.5-0106
return LLM_CHAT_TEMPLATE_OPENCHAT;
} else if (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: ")) {
// eachadea/vicuna-13b-1.1 (and Orca variant)
if (tmpl_contains("SYSTEM: ")) {
return LLM_CHAT_TEMPLATE_VICUNA_ORCA;
}
return LLM_CHAT_TEMPLATE_VICUNA;
} else if (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>")) {
// deepseek-ai/deepseek-coder-33b-instruct
return LLM_CHAT_TEMPLATE_DEEPSEEK;
} else if (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>")) {
// CohereForAI/c4ai-command-r-plus
return LLM_CHAT_TEMPLATE_COMMAND_R;
} else if (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>")) {
return LLM_CHAT_TEMPLATE_LLAMA_3;
} else if (tmpl_contains("[gMASK]sop")) {
// chatglm3-6b
return LLM_CHAT_TEMPLATE_CHATGML_3;
} else if (tmpl_contains("[gMASK]<sop>")) {
return LLM_CHAT_TEMPLATE_CHATGML_4;
} else if (tmpl_contains(LU8("<用户>"))) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
return LLM_CHAT_TEMPLATE_MINICPM;
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
} else if (tmpl_contains(LU8("<Assistant>")) && tmpl_contains(LU8("<User>")) && tmpl_contains(LU8("<end▁of▁sentence>"))) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
return LLM_CHAT_TEMPLATE_EXAONE_3;
} else if (tmpl_contains("rwkv-world")) {
return LLM_CHAT_TEMPLATE_RWKV_WORLD;
} else if (tmpl_contains("<|start_of_role|>")) {
return LLM_CHAT_TEMPLATE_GRANITE;
} else if (tmpl_contains("message['role'] + additional_special_tokens[0] + message['content'] + additional_special_tokens[1]")) {
return LLM_CHAT_TEMPLATE_GIGACHAT;
} else if (tmpl_contains("<|role_start|>")) {
return LLM_CHAT_TEMPLATE_MEGREZ;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
// Simple version of "llama_apply_chat_template" that only works with strings
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
int32_t llm_chat_apply_template(
llm_chat_template tmpl,
const std::vector<const llama_chat_message *> & chat,
std::string & dest, bool add_ass) {
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
std::stringstream ss;
if (tmpl == LLM_CHAT_TEMPLATE_CHATML) {
// chatml template
for (auto message : chat) {
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
}
if (add_ass) {
ss << "<|im_start|>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
// Official mistral 'v7' template
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
for (auto message : chat) {
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << "[SYSTEM_PROMPT] " << content << "[/SYSTEM_PROMPT]";
} else if (role == "user") {
ss << "[INST] " << content << "[/INST]";
}
else {
ss << " " << content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3
|| tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN) {
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/chat_templates.md
// See: https://github.com/mistralai/cookbook/blob/main/concept-deep-dive/tokenization/templates.md
std::string leading_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1 ? " " : "";
std::string trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN ? "" : " ";
bool trim_assistant_message = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V3;
bool is_inside_turn = false;
for (auto message : chat) {
if (!is_inside_turn) {
ss << leading_space << "[INST]" << trailing_space;
is_inside_turn = true;
}
std::string role(message->role);
std::string content(message->content);
if (role == "system") {
ss << content << "\n\n";
} else if (role == "user") {
ss << content << leading_space << "[/INST]";
} else {
ss << trailing_space << (trim_assistant_message ? trim(content) : content) << "</s>";
is_inside_turn = false;
}
}
} else if (
tmpl == LLM_CHAT_TEMPLATE_LLAMA_2
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS
|| tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP) {
// llama2 template and its variants
// [variant] support system message
// See: https://huggingface.co/blog/llama2#how-to-prompt-llama-2
bool support_system_message = tmpl != LLM_CHAT_TEMPLATE_LLAMA_2;
// [variant] add BOS inside history
bool add_bos_inside_history = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS;
// [variant] trim spaces from the input message
bool strip_message = tmpl == LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP;
// construct the prompt
bool is_inside_turn = true; // skip BOS at the beginning
ss << "[INST] ";
for (auto message : chat) {
std::string content = strip_message ? trim(message->content) : message->content;
std::string role(message->role);
if (!is_inside_turn) {
is_inside_turn = true;
ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
}
if (role == "system") {
if (support_system_message) {
ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
} else {
// if the model does not support system message, we still include it in the first message, but without <<SYS>>
ss << content << "\n";
}
} else if (role == "user") {
ss << content << " [/INST]";
} else {
ss << content << "</s>";
is_inside_turn = false;
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_3) {
// Phi 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_PHI_4) {
// chatml template
for (auto message : chat) {
ss << "<|im_start|>" << message->role << "<|im_sep|>" << message->content << "<|im_end|>";
}
if (add_ass) {
ss << "<|im_start|>assistant<|im_sep|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_FALCON_3) {
// Falcon 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>\n" << message->content << "\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_ZEPHYR) {
// zephyr template
for (auto message : chat) {
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
}
if (add_ass) {
ss << "<|assistant|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MONARCH) {
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
for (auto message : chat) {
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
ss << bos << message->role << "\n" << message->content << "</s>\n";
}
if (add_ass) {
ss << "<s>assistant\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GEMMA) {
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
system_prompt = trim(message->content);
continue;
}
// in gemma, "assistant" is "model"
role = role == "assistant" ? "model" : message->role;
ss << "<start_of_turn>" << role << "\n";
if (!system_prompt.empty() && role != "model") {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << trim(message->content) << "<end_of_turn>\n";
}
if (add_ass) {
ss << "<start_of_turn>model\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_ORION) {
// OrionStarAI/Orion-14B-Chat
std::string system_prompt = "";
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// there is no system message support, we will merge it with user prompt
system_prompt = message->content;
continue;
} else if (role == "user") {
ss << "Human: ";
if (!system_prompt.empty()) {
ss << system_prompt << "\n\n";
system_prompt = "";
}
ss << message->content << "\n\nAssistant: </s>";
} else {
ss << message->content << "</s>";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_OPENCHAT) {
// openchat/openchat-3.5-0106,
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "<|end_of_turn|>";
} else {
role[0] = toupper(role[0]);
ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
}
}
if (add_ass) {
ss << "GPT4 Correct Assistant:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_VICUNA || tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
// eachadea/vicuna-13b-1.1 (and Orca variant)
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
// Orca-Vicuna variant uses a system prefix
if (tmpl == LLM_CHAT_TEMPLATE_VICUNA_ORCA) {
ss << "SYSTEM: " << message->content << "\n";
} else {
ss << message->content << "\n\n";
}
} else if (role == "user") {
ss << "USER: " << message->content << "\n";
} else if (role == "assistant") {
ss << "ASSISTANT: " << message->content << "</s>\n";
}
}
if (add_ass) {
ss << "ASSISTANT:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK) {
// deepseek-ai/deepseek-coder-33b-instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content;
} else if (role == "user") {
ss << "### Instruction:\n" << message->content << "\n";
} else if (role == "assistant") {
ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
}
}
if (add_ass) {
ss << "### Response:\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_COMMAND_R) {
// CohereForAI/c4ai-command-r-plus
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "user") {
ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
} else if (role == "assistant") {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
}
}
if (add_ass) {
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA_3) {
// Llama 3
for (auto message : chat) {
std::string role(message->role);
ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
}
if (add_ass) {
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_3) {
// chatglm3-6b
ss << "[gMASK]" << "sop";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n " << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGML_4) {
ss << "[gMASK]" << "<sop>";
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
for (auto message : chat) {
std::string role(message->role);
ss << "<|" << role << "|>" << "\n" << message->content;
}
if (add_ass) {
ss << "<|assistant|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MINICPM) {
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
for (auto message : chat) {
std::string role(message->role);
if (role == "user") {
ss << LU8("<用户>");
ss << trim(message->content);
ss << "<AI>";
} else {
ss << trim(message->content);
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_2) {
// DeepSeek-V2
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << "User: " << message->content << "\n\n";
} else if (role == "assistant") {
ss << "Assistant: " << message->content << LU8("<end▁of▁sentence>");
}
}
if (add_ass) {
ss << "Assistant:";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_DEEPSEEK_3) {
// DeepSeek-V3
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << message->content << "\n\n";
} else if (role == "user") {
ss << LU8("<User>") << message->content;
} else if (role == "assistant") {
ss << LU8("<Assistant>") << message->content << LU8("<end▁of▁sentence>");
}
}
if (add_ass) {
ss << LU8("<Assistant>");
}
} else if (tmpl == LLM_CHAT_TEMPLATE_EXAONE_3) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
// EXAONE-3.0-7.8B-Instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
} else if (role == "user") {
ss << "[|user|]" << trim(message->content) << "\n";
} else if (role == "assistant") {
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
}
}
if (add_ass) {
ss << "[|assistant|]";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_RWKV_WORLD) {
// this template requires the model to have "\n\n" as EOT token
for (auto message : chat) {
std::string role(message->role);
if (role == "user") {
ss << "User: " << message->content << "\n\nAssistant:";
} else {
ss << message->content << "\n\n";
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GRANITE) {
// IBM Granite template
for (const auto & message : chat) {
std::string role(message->role);
ss << "<|start_of_role|>" << role << "<|end_of_role|>";
if (role == "assistant_tool_call") {
ss << "<|tool_call|>";
}
ss << message->content << "<|end_of_text|>\n";
}
if (add_ass) {
ss << "<|start_of_role|>assistant<|end_of_role|>\n";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_GIGACHAT) {
// GigaChat template
bool has_system = !chat.empty() && std::string(chat[0]->role) == "system";
// Handle system message if present
if (has_system) {
ss << "<s>" << chat[0]->content << "<|message_sep|>";
} else {
ss << "<s>";
}
// Process remaining messages
for (size_t i = has_system ? 1 : 0; i < chat.size(); i++) {
std::string role(chat[i]->role);
if (role == "user") {
ss << "user<|role_sep|>" << chat[i]->content << "<|message_sep|>"
<< "available functions<|role_sep|>[]<|message_sep|>";
} else if (role == "assistant") {
ss << "assistant<|role_sep|>" << chat[i]->content << "<|message_sep|>";
}
}
// Add generation prompt if needed
if (add_ass) {
ss << "assistant<|role_sep|>";
}
} else if (tmpl == LLM_CHAT_TEMPLATE_MEGREZ) {
// Megrez template
for (auto message : chat) {
std::string role(message->role);
ss << "<|role_start|>" << role << "<|role_end|>" << message->content << "<|turn_end|>";
}
if (add_ass) {
ss << "<|role_start|>assistant<|role_end|>";
}
} else {
// template not supported
return -1;
}
dest = ss.str();
return dest.size();
}
// public interface
int32_t llama_chat_builtin_templates(const char ** output, size_t len) {
auto it = LLM_CHAT_TEMPLATES.begin();
for (size_t i = 0; i < std::min(len, LLM_CHAT_TEMPLATES.size()); i++) {
output[i] = it->first.c_str();
std::advance(it, 1);
}
return (int32_t) LLM_CHAT_TEMPLATES.size();
}

View File

@ -0,0 +1,53 @@
#pragma once
#include <string>
#include <vector>
#include <cstdint>
enum llm_chat_template {
LLM_CHAT_TEMPLATE_CHATML,
LLM_CHAT_TEMPLATE_LLAMA_2,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_BOS,
LLM_CHAT_TEMPLATE_LLAMA_2_SYS_STRIP,
LLM_CHAT_TEMPLATE_MISTRAL_V1,
LLM_CHAT_TEMPLATE_MISTRAL_V3,
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
LLM_CHAT_TEMPLATE_MISTRAL_V7,
LLM_CHAT_TEMPLATE_PHI_3,
LLM_CHAT_TEMPLATE_PHI_4,
LLM_CHAT_TEMPLATE_FALCON_3,
LLM_CHAT_TEMPLATE_ZEPHYR,
LLM_CHAT_TEMPLATE_MONARCH,
LLM_CHAT_TEMPLATE_GEMMA,
LLM_CHAT_TEMPLATE_ORION,
LLM_CHAT_TEMPLATE_OPENCHAT,
LLM_CHAT_TEMPLATE_VICUNA,
LLM_CHAT_TEMPLATE_VICUNA_ORCA,
LLM_CHAT_TEMPLATE_DEEPSEEK,
LLM_CHAT_TEMPLATE_DEEPSEEK_2,
LLM_CHAT_TEMPLATE_DEEPSEEK_3,
LLM_CHAT_TEMPLATE_COMMAND_R,
LLM_CHAT_TEMPLATE_LLAMA_3,
LLM_CHAT_TEMPLATE_CHATGML_3,
LLM_CHAT_TEMPLATE_CHATGML_4,
LLM_CHAT_TEMPLATE_GLMEDGE,
LLM_CHAT_TEMPLATE_MINICPM,
LLM_CHAT_TEMPLATE_EXAONE_3,
LLM_CHAT_TEMPLATE_RWKV_WORLD,
LLM_CHAT_TEMPLATE_GRANITE,
LLM_CHAT_TEMPLATE_GIGACHAT,
LLM_CHAT_TEMPLATE_MEGREZ,
LLM_CHAT_TEMPLATE_UNKNOWN,
};
struct llama_chat_message;
llm_chat_template llm_chat_template_from_str(const std::string & name);
llm_chat_template llm_chat_detect_template(const std::string & tmpl);
int32_t llm_chat_apply_template(
llm_chat_template tmpl,
const std::vector<const llama_chat_message *> & chat,
std::string & dest, bool add_ass);

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,128 @@
#pragma once
#include "llama.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include "llama-kv-cache.h"
#include "llama-adapter.h"
#include "ggml-cpp.h"
#include <map>
#include <unordered_map>
#include <vector>
#include <set>
struct llama_context {
llama_context(const llama_model & model)
: model(model)
, t_start_us(model.t_start_us)
, t_load_us(model.t_load_us) {}
const struct llama_model & model;
struct llama_cparams cparams;
struct llama_sbatch sbatch; // TODO: revisit if needed
struct llama_kv_cache kv_self;
struct llama_adapter_cvec cvec;
std::unordered_map<struct llama_adapter_lora *, float> lora;
std::vector<ggml_backend_ptr> backends;
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
ggml_backend_t backend_cpu = nullptr;
ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr;
bool has_evaluated_once = false;
mutable int64_t t_start_us;
mutable int64_t t_load_us;
mutable int64_t t_p_eval_us = 0;
mutable int64_t t_eval_us = 0;
mutable int64_t t_compute_start_us = 0;
mutable int64_t n_queued_tokens = 0;
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
mutable int32_t n_eval = 0; // number of eval calls
// host buffer for the model output (logits and embeddings)
ggml_backend_buffer_ptr buf_output;
// decode output (2-dimensional array: [n_outputs][n_vocab])
size_t logits_size = 0; // capacity (of floats) for logits
float * logits = nullptr;
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
bool logits_all = false;
// embeddings output (2-dimensional array: [n_outputs][n_embd])
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
size_t embd_size = 0; // capacity (of floats) for embeddings
float * embd = nullptr;
// sequence embeddings output (map of [n_embd] vectors)
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
std::map<llama_seq_id, std::vector<float>> embd_seq;
// whether we are computing encoder output or decoder output
bool is_encoding = false;
// TODO: find a better way to accommodate mutli-dimension position encoding methods
// number of position id each token get, 1 for each token in most cases.
// when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
int n_pos_per_token = 1;
// output of the encoder part of the encoder-decoder models
std::vector<float> embd_enc;
std::vector<std::set<llama_seq_id>> seq_ids_enc;
// memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta;
ggml_backend_sched_ptr sched;
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
// input tensors
struct ggml_tensor * inp_tokens; // I32 [n_batch]
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
struct ggml_tensor * inp_pos; // I32 [n_batch]
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
struct ggml_tensor * inp_cls; // I32 [n_batch]
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
};
// TODO: make these methods of llama_context
void llama_set_k_shift(struct llama_context & lctx);
void llama_set_s_copy(struct llama_context & lctx);
void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch);
// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs);
// make the outputs have the same order they had in the user-provided batch
void llama_output_reorder(struct llama_context & ctx);
// For internal test use
// TODO: remove
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(struct llama_context * ctx);

View File

@ -0,0 +1 @@
#include "llama-cparams.h"

View File

@ -0,0 +1,37 @@
#pragma once
#include "llama.h"
#include <cstdint>
struct llama_cparams {
uint32_t n_ctx; // context size used during inference
uint32_t n_batch;
uint32_t n_ubatch;
uint32_t n_seq_max;
int n_threads; // number of threads to use for generation
int n_threads_batch; // number of threads to use for batch processing
float rope_freq_base;
float rope_freq_scale;
uint32_t n_ctx_orig_yarn;
// These hyperparameters are not exposed in GGUF, because all
// existing YaRN models use the same values for them.
float yarn_ext_factor;
float yarn_attn_factor;
float yarn_beta_fast;
float yarn_beta_slow;
float defrag_thold;
bool embeddings;
bool causal_attn;
bool offload_kqv;
bool flash_attn;
bool no_perf;
enum llama_pooling_type pooling_type;
ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
};

View File

@ -1,5 +1,6 @@
#include "llama-grammar.h" #include "llama-grammar.h"
#include "llama-impl.h"
#include "llama-vocab.h" #include "llama-vocab.h"
#include "llama-sampling.h" #include "llama-sampling.h"
@ -559,7 +560,7 @@ bool llama_grammar_parser::parse(const char * src) {
} }
} }
} catch (const std::exception & err) { } catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what()); fprintf(stderr, "%s: error parsing grammar: %s\n\n%s\n", __func__, err.what(), src);
rules.clear(); rules.clear();
return false; return false;
} }
@ -822,15 +823,11 @@ llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar)
return grammar->stacks; return grammar->stacks;
} }
void llama_grammar_accept( void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr) {
const llama_grammar_rules & rules, llama_grammar_stacks stacks_new;
const llama_grammar_stacks & stacks, stacks_new.reserve(grammar->stacks.size());
const uint32_t chr,
llama_grammar_stacks & stacks_new) {
stacks_new.clear();
stacks_new.reserve(stacks.size());
for (const auto & stack : stacks) { for (const auto & stack : grammar->stacks) {
if (stack.empty()) { if (stack.empty()) {
continue; continue;
} }
@ -844,9 +841,11 @@ void llama_grammar_accept(
if (!llama_grammar_is_end_of_sequence(pos)) { if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos); new_stack.push_back(pos);
} }
llama_grammar_advance_stack(rules, new_stack, stacks_new); llama_grammar_advance_stack(grammar->rules, new_stack, stacks_new);
} }
} }
grammar->stacks = std::move(stacks_new);
} }
llama_grammar_candidates llama_grammar_reject_candidates_for_stack( llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
@ -961,10 +960,28 @@ struct llama_grammar * llama_grammar_init_impl(
// Important: vec_rules has to be moved here, not copied, because stacks contains // Important: vec_rules has to be moved here, not copied, because stacks contains
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
// then the pointers would be invalidated when the local vec_rules goes out of scope. // then the pointers would be invalidated when the local vec_rules goes out of scope.
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, }; return new llama_grammar {
vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy =*/ false,
/* .awaiting_trigger = */ false,
/* .trigger_buffer = */ "",
/* .trigger_tokens = */ {},
/* .trigger_words = */ {},
};
} }
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root) { struct llama_grammar * llama_grammar_init_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
llama_grammar_parser parser; llama_grammar_parser parser;
// if there is a grammar, parse it // if there is a grammar, parse it
@ -1036,10 +1053,31 @@ struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab,
} }
} while (true); } while (true);
std::vector<llama_token> vec_trigger_tokens;
std::vector<std::string> vec_trigger_words;
for (size_t i = 0; i < num_trigger_tokens; i++) {
GGML_ASSERT(trigger_tokens != nullptr);
vec_trigger_tokens.push_back(trigger_tokens[i]);
}
for (size_t i = 0; i < num_trigger_words; i++) {
GGML_ASSERT(trigger_words != nullptr);
vec_trigger_words.push_back(trigger_words[i]);
}
// Important: vec_rules has to be moved here, not copied, because stacks contains // Important: vec_rules has to be moved here, not copied, because stacks contains
// pointers to elements of vec_rules. If vec_rules were copied into llama_grammar // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
// then the pointers would be invalidated when the local vec_rules goes out of scope. // then the pointers would be invalidated when the local vec_rules goes out of scope.
return new llama_grammar { vocab, std::move(vec_rules), std::move(stacks), {}, }; return new llama_grammar {
vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy = */ lazy,
/* .awaiting_trigger = */ lazy,
/* .trigger_buffer = */ "",
std::move(vec_trigger_tokens),
std::move(vec_trigger_words),
};
} }
void llama_grammar_free_impl(struct llama_grammar * grammar) { void llama_grammar_free_impl(struct llama_grammar * grammar) {
@ -1051,7 +1089,17 @@ void llama_grammar_free_impl(struct llama_grammar * grammar) {
} }
struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & grammar) { struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & grammar) {
llama_grammar * result = new llama_grammar { grammar.vocab, grammar.rules, grammar.stacks, grammar.partial_utf8, }; llama_grammar * result = new llama_grammar {
grammar.vocab,
grammar.rules,
grammar.stacks,
grammar.partial_utf8,
grammar.lazy,
grammar.awaiting_trigger,
grammar.trigger_buffer,
grammar.trigger_tokens,
grammar.trigger_words,
};
// redirect elements in stacks to point to new rules // redirect elements in stacks to point to new rules
for (size_t is = 0; is < result->stacks.size(); is++) { for (size_t is = 0; is < result->stacks.size(); is++) {
@ -1072,6 +1120,10 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_data_array * cur_p) { void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_data_array * cur_p) {
GGML_ASSERT(grammar.vocab != nullptr); GGML_ASSERT(grammar.vocab != nullptr);
if (grammar.awaiting_trigger) {
return;
}
bool allow_eog = false; bool allow_eog = false;
for (const auto & stack : grammar.stacks) { for (const auto & stack : grammar.stacks) {
if (stack.empty()) { if (stack.empty()) {
@ -1088,9 +1140,9 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
for (size_t i = 0; i < cur_p->size; ++i) { for (size_t i = 0; i < cur_p->size; ++i) {
const llama_token id = cur_p->data[i].id; const llama_token id = cur_p->data[i].id;
const std::string & piece = grammar.vocab->cache_token_to_piece.at(id); const std::string & piece = grammar.vocab->token_to_piece(id);
if (llama_token_is_eog_impl(*grammar.vocab, id)) { if (grammar.vocab->is_eog(id)) {
if (!allow_eog) { if (!allow_eog) {
cur_p->data[i].logit = -INFINITY; cur_p->data[i].logit = -INFINITY;
} }
@ -1111,7 +1163,35 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) { void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) {
GGML_ASSERT(grammar.vocab != nullptr); GGML_ASSERT(grammar.vocab != nullptr);
if (llama_token_is_eog_impl(*grammar.vocab, token)) { const auto & piece = grammar.vocab->token_to_piece(token);
if (grammar.awaiting_trigger) {
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
grammar.awaiting_trigger = false;
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, piece);
LLAMA_LOG_DEBUG("Grammar triggered on token %u (`%s`)", token, piece.c_str());
return;
} else {
// TODO: consider a smarter incremental substring search algorithm (store last position to search from).
grammar.trigger_buffer += piece;
for (const auto & word : grammar.trigger_words) {
auto pos = grammar.trigger_buffer.find(word);
if (pos != std::string::npos) {
grammar.awaiting_trigger = false;
auto constrained_str = grammar.trigger_buffer.substr(pos);
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, constrained_str);
LLAMA_LOG_DEBUG("Grammar triggered on word `%s`", word.c_str());
return;
}
}
LLAMA_LOG_DEBUG("Grammar still awaiting trigger after token %d (`%s`) (buffer: `%s`)\n", token, piece.c_str(), grammar.trigger_buffer.c_str());
return;
}
}
if (grammar.vocab->is_eog(token)) {
for (const auto & stack : grammar.stacks) { for (const auto & stack : grammar.stacks) {
if (stack.empty()) { if (stack.empty()) {
return; return;
@ -1120,19 +1200,20 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
const std::string & piece = grammar.vocab->cache_token_to_piece.at(token); llama_grammar_accept_str(grammar, piece);
}
void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string & piece) {
// Note terminating 0 in decoded string // Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar.partial_utf8); const auto decoded = decode_utf8(piece, grammar.partial_utf8);
const auto & code_points = decoded.first; const auto & code_points = decoded.first;
llama_grammar_stacks stacks_new;
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
llama_grammar_accept(grammar.rules, grammar.stacks, *it, stacks_new); llama_grammar_accept(&grammar, *it);
grammar.stacks = std::move(stacks_new);
} }
grammar.partial_utf8 = decoded.second; grammar.partial_utf8 = decoded.second;
GGML_ASSERT(!grammar.stacks.empty()); if (grammar.stacks.empty()) {
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece);
}
} }

View File

@ -1,8 +1,10 @@
#pragma once #pragma once
#include "llama-impl.h" #include "llama.h"
#include <map> #include <map>
#include <string>
#include <vector>
struct llama_vocab; struct llama_vocab;
@ -58,6 +60,7 @@ using llama_grammar_rules = std::vector<llama_grammar_rule>;
using llama_grammar_stacks = std::vector<llama_grammar_stack>; using llama_grammar_stacks = std::vector<llama_grammar_stack>;
using llama_grammar_candidates = std::vector<llama_grammar_candidate>; using llama_grammar_candidates = std::vector<llama_grammar_candidate>;
// TODO: remove, needed for tests atm
const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar); const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar * grammar);
llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar); llama_grammar_stacks & llama_grammar_get_stacks( struct llama_grammar * grammar);
@ -65,11 +68,7 @@ const llama_grammar_rules & llama_grammar_get_rules (const struct llama_grammar
// be positioned at a character range (see `llama_grammar_advance_stack`), and // be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those // produces the N possible stacks if the given char is accepted at those
// positions // positions
void llama_grammar_accept( void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr);
const llama_grammar_rules & rules,
const llama_grammar_stacks & stacks,
uint32_t chr,
llama_grammar_stacks & stacks_new);
std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack( std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
const llama_grammar_rules & rules, const llama_grammar_rules & rules,
@ -115,6 +114,15 @@ struct llama_grammar {
// buffer for partially generated UTF-8 sequence from accepted tokens // buffer for partially generated UTF-8 sequence from accepted tokens
llama_partial_utf8 partial_utf8; llama_partial_utf8 partial_utf8;
// lazy grammars wait for trigger words or tokens before constraining the sampling.
// we still ahve trigger_tokens for non-lazy grammars to force printing of special trigger tokens.
// (useful e.g. for tool_choice=required)
bool lazy = false;
bool awaiting_trigger = false; // Initialized to true for lazy grammars only
std::string trigger_buffer; // Output buffered by lazy grammar. Will be cleared once trigger is found.
std::vector<llama_token> trigger_tokens; // Tokens that trigger a lazy grammar, or tokens to force printing of (even if special).
std::vector<std::string> trigger_words;
}; };
// //
@ -128,7 +136,15 @@ struct llama_grammar * llama_grammar_init_impl(
size_t n_rules, size_t n_rules,
size_t start_rule_index); size_t start_rule_index);
struct llama_grammar * llama_grammar_init_impl(const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root); struct llama_grammar * llama_grammar_init_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens);
void llama_grammar_free_impl(struct llama_grammar * grammar); void llama_grammar_free_impl(struct llama_grammar * grammar);
@ -142,3 +158,7 @@ void llama_grammar_apply_impl(
void llama_grammar_accept_impl( void llama_grammar_accept_impl(
struct llama_grammar & grammar, struct llama_grammar & grammar,
llama_token token); llama_token token);
void llama_grammar_accept_str(
struct llama_grammar & grammar,
const std::string & piece);

View File

@ -0,0 +1,71 @@
#include "llama-hparams.h"
#include "ggml.h"
uint32_t llama_hparams::n_head(uint32_t il) const {
if (il < n_layer) {
return n_head_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
if (il < n_layer) {
return n_head_kv_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_ff(uint32_t il) const {
if (il < n_layer) {
return n_ff_arr[il];
}
GGML_ABORT("fatal error");
}
uint32_t llama_hparams::n_gqa(uint32_t il) const {
const uint32_t n_head = this->n_head(il);
const uint32_t n_head_kv = this->n_head_kv(il);
if (n_head_kv == 0) {
return 0;
}
return n_head/n_head_kv;
}
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_k * n_head_kv;
}
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
return n_embd_head_v * n_head_kv;
}
uint32_t llama_hparams::n_embd_k_s() const {
if (wkv_head_size != 0) {
// for RWKV models
return token_shift_count * n_embd;
}
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
}
uint32_t llama_hparams::n_embd_v_s() const {
if (wkv_head_size != 0) {
// corresponds to RWKV's wkv_states size
return n_embd * wkv_head_size;
}
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}

View File

@ -0,0 +1,139 @@
#pragma once
#include "llama.h"
#include <array>
// bump if necessary
#define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 256 // DeepSeekV3
enum llama_expert_gating_func_type {
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
};
struct llama_hparams_posnet {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams_convnext {
uint32_t n_embd;
uint32_t n_layer;
};
struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
bool use_par_res;
bool swin_norm;
uint32_t n_ctx_train; // context size the model was trained on
uint32_t n_embd;
uint32_t n_embd_features = 0;
uint32_t n_layer;
uint32_t n_rot;
uint32_t n_swa = 0; // sliding window attention (SWA)
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
uint32_t n_expert_used = 0;
uint32_t n_rel_attn_bkts = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
struct llama_hparams_convnext convnext;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
uint32_t n_ff_exp = 0;
uint32_t n_ff_shexp = 0;
uint32_t n_expert_shared = 0;
uint32_t n_norm_groups = 0;
float expert_weights_scale = 0.0;
bool expert_weights_norm = false;
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
float f_norm_eps;
float f_norm_rms_eps;
float f_norm_group_eps;
float f_attn_logit_softcapping = 50.0f;
float f_final_logit_softcapping = 30.0f;
// for RWKV
uint32_t rescale_every_n_layers = 0;
uint32_t time_mix_extra_dim = 0;
uint32_t time_decay_extra_dim = 0;
uint32_t wkv_head_size = 0;
uint32_t token_shift_count = 2;
float rope_attn_factor = 1.0f;
float rope_freq_base_train;
float rope_freq_scale_train;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul;
std::array<int, 4> rope_sections;
// for State Space Models
uint32_t ssm_d_conv = 0;
uint32_t ssm_d_inner = 0;
uint32_t ssm_d_state = 0;
uint32_t ssm_dt_rank = 0;
bool ssm_dt_b_c_rms = false;
float f_clamp_kqv = 0.0f;
float f_max_alibi_bias = 0.0f;
float f_logit_scale = 0.0f;
// Additional scale factors (Granite/Granite MoE)
float f_residual_scale = 0.0f;
float f_embedding_scale = 0.0f;
float f_attention_scale = 0.0f;
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
uint32_t n_head(uint32_t il = 0) const;
uint32_t n_head_kv(uint32_t il = 0) const;
uint32_t n_ff(uint32_t il = 0) const;
uint32_t n_gqa(uint32_t il = 0) const;
// dimension of key embeddings across all k-v heads
uint32_t n_embd_k_gqa(uint32_t il = 0) const;
// dimension of value embeddings across all k-v heads
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
// dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
uint32_t n_embd_k_s() const;
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");

Some files were not shown because too many files have changed in this diff Show More