mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-08-10 18:54:47 +02:00
Compare commits
30 Commits
Author | SHA1 | Date | |
---|---|---|---|
fa9621e5e9 | |||
b5d3521626 | |||
4e5674a5d5 | |||
4c66b6a828 | |||
c30bffc8a5 | |||
8fdfb0ba92 | |||
c71363f14c | |||
a09e9123ca | |||
d42cf6d0df | |||
ef47d77492 | |||
75171c2b79 | |||
a2eeb941f6 | |||
0e689f83d8 | |||
d5afebd37c | |||
4b1c32e8ea | |||
b5dde365e9 | |||
02dfd5b8c3 | |||
c63ce24834 | |||
137321915f | |||
24cd12f647 | |||
e46bc56e71 | |||
6fb98370ba | |||
0729da9a3b | |||
5dc74e3aff | |||
ac8ef34039 | |||
b26345cc7b | |||
8dac3c6e10 | |||
6417e59aad | |||
dc12994603 | |||
b0f2aa0ea6 |
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
[submodule "bindings/ios"]
|
||||
path = bindings/ios
|
||||
url = https://github.com/ggerganov/whisper.spm
|
@ -9,6 +9,11 @@ if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
|
||||
set(WHISPER_STANDALONE ON)
|
||||
include(cmake/GitVars.cmake)
|
||||
include(cmake/BuildTypes.cmake)
|
||||
|
||||
# configure project version
|
||||
if (EXISTS "${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl")
|
||||
configure_file(${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl ${CMAKE_SOURCE_DIR}/bindings/ios/Makefile @ONLY)
|
||||
endif()
|
||||
else()
|
||||
set(WHISPER_STANDALONE OFF)
|
||||
endif()
|
||||
@ -47,7 +52,7 @@ else()
|
||||
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
endif()
|
||||
|
||||
option(WHISPER_PERF "whisper: enable perf timings" OFF)
|
||||
option(WHISPER_PERF "whisper: enable perf timings" OFF)
|
||||
|
||||
# sanitizers
|
||||
|
||||
@ -89,6 +94,17 @@ if (APPLE AND NOT WHISPER_NO_ACCELERATE)
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
find_library(METALPERFORMANCE_FRAMEWORK MetalPerformanceShaders REQUIRED)
|
||||
|
||||
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
${METALPERFORMANCE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (WHISPER_SUPPORT_OPENBLAS)
|
||||
@ -151,6 +167,10 @@ else()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_PERF)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper - this is the main library of the project
|
||||
#
|
||||
@ -159,6 +179,7 @@ set(TARGET whisper)
|
||||
|
||||
add_library(${TARGET}
|
||||
ggml.c
|
||||
ggml-mtl.m
|
||||
whisper.cpp
|
||||
)
|
||||
|
||||
|
33
Makefile
33
Makefile
@ -1,6 +1,14 @@
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
|
||||
ifndef UNAME_P
|
||||
UNAME_P := $(shell uname -p)
|
||||
endif
|
||||
|
||||
ifndef UNAME_M
|
||||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||
@ -8,8 +16,8 @@ ifeq ($(UNAME_S),Darwin)
|
||||
ifneq ($(UNAME_P),arm)
|
||||
SYSCTL_M := $(shell sysctl -n hw.optional.arm64)
|
||||
ifeq ($(SYSCTL_M),1)
|
||||
UNAME_P := arm
|
||||
UNAME_M := arm64
|
||||
# UNAME_P := arm
|
||||
# UNAME_M := arm64
|
||||
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
|
||||
endif
|
||||
endif
|
||||
@ -47,11 +55,11 @@ endif
|
||||
ifeq ($(UNAME_M),amd64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
ifneq ($(filter arm%,$(UNAME_M)),)
|
||||
ifndef WHISPER_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
CFLAGS += -DGGML_USE_ACCELERATE -DGGML_PERF
|
||||
LDFLAGS += -framework Foundation -framework Accelerate -framework Metal -framework MetalKit -framework MetalPerformanceShaders
|
||||
endif
|
||||
endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
@ -73,18 +81,21 @@ endif
|
||||
# Build library + main
|
||||
#
|
||||
|
||||
main: examples/main/main.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp whisper.o ggml.o -o main $(LDFLAGS)
|
||||
main: examples/main/main.cpp ggml.o ggml-mtl.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp whisper.o ggml.o ggml-mtl.o -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
ggml.o: ggml.c ggml.h
|
||||
$(CC) $(CFLAGS) -c ggml.c
|
||||
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
|
||||
|
||||
ggml-mtl.o: ggml-mtl.m ggml-mtl.h
|
||||
$(CC) $(CFLAGS) -c ggml-mtl.m -o ggml-mtl.o
|
||||
|
||||
whisper.o: whisper.cpp whisper.h
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
|
||||
|
||||
libwhisper.a: ggml.o whisper.o
|
||||
ar rcs libwhisper.a ggml.o whisper.o
|
||||
libwhisper.a: ggml.o ggml-mtl.o whisper.o
|
||||
$(AR) rcs libwhisper.a ggml.o ggml-mtl.o whisper.o
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream bench libwhisper.a
|
||||
|
190
README.md
190
README.md
@ -26,14 +26,41 @@ Supported platforms:
|
||||
|
||||
The entire implementation of the model is contained in 2 source files:
|
||||
|
||||
- [ggml.h](ggml.h) / [ggml.c](ggml.c)
|
||||
- [whisper.h](whisper.h) / [whisper.cpp](whisper.cpp)
|
||||
- Tensor operations: [ggml.h](ggml.h) / [ggml.c](ggml.c)
|
||||
- Transformer inference: [whisper.h](whisper.h) / [whisper.cpp](whisper.cpp)
|
||||
|
||||
Having such a lightweight implementation of the model allows to easily integrate it in different platforms and applications.
|
||||
As an example, here is a video of running the model on an iPhone 13 device - fully offline, on-device:
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/197385372-962a6dea-bca1-4d50-bf96-1d8c27b98c81.mp4
|
||||
|
||||
## Implementation details
|
||||
|
||||
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
|
||||
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
|
||||
- Sample usage is demonstrated in [main.cpp](examples/main)
|
||||
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
|
||||
- Various other examples are available in the [examples](examples) folder
|
||||
|
||||
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
|
||||
instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
|
||||
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
||||
|
||||
## Limitations
|
||||
|
||||
- Inference only
|
||||
- No GPU support
|
||||
- Very basic greedy sampling scheme - always pick up the token with highest probability.
|
||||
This should be similar to the [GreedyDecoder](https://github.com/openai/whisper/blob/main/whisper/decoding.py#L249-L274)
|
||||
from the original python implementation, so in order to make a fair comparison between the 2 implementations, make sure
|
||||
to run the python code with the following parameters:
|
||||
|
||||
```
|
||||
whisper --best_of None --beam_size None ...
|
||||
```
|
||||
|
||||
In the future, `whisper.cpp` will support more sampling strategies.
|
||||
|
||||
## Quick start
|
||||
|
||||
First, download one of the Whisper models converted in [ggml format](models). For example:
|
||||
@ -59,8 +86,8 @@ For a quick demo, simply run `make base.en`:
|
||||
```java
|
||||
$ make base.en
|
||||
|
||||
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp
|
||||
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp -o whisper.o
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o ggml.o -o main -framework Accelerate
|
||||
./main -h
|
||||
|
||||
@ -70,13 +97,18 @@ options:
|
||||
-h, --help show this help message and exit
|
||||
-s SEED, --seed SEED RNG seed (default: -1)
|
||||
-t N, --threads N number of threads to use during computation (default: 4)
|
||||
-p N, --processors N number of processors to use during computation (default: 1)
|
||||
-ot N, --offset-t N time offset in milliseconds (default: 0)
|
||||
-on N, --offset-n N segment index offset (default: 0)
|
||||
-mc N, --max-context N maximum number of text context tokens to store (default: max)
|
||||
-ml N, --max-len N maximum segment length in characters (default: 0)
|
||||
-wt N, --word-thold N word timestamp probability threshold (default: 0.010000)
|
||||
-v, --verbose verbose output
|
||||
--translate translate from source language to english
|
||||
-otxt, --output-txt output result in a text file
|
||||
-ovtt, --output-vtt output result in a vtt file
|
||||
-osrt, --output-srt output result in a srt file
|
||||
-owts, --output-words output script for generating karaoke video
|
||||
-ps, --print_special print special tokens
|
||||
-pc, --print_colors print colors
|
||||
-nt, --no_timestamps do not print timestamps
|
||||
@ -86,7 +118,7 @@ options:
|
||||
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
Downloading ggml model base.en ...
|
||||
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
|
||||
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
|
||||
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
|
||||
You can now use it like this:
|
||||
|
||||
@ -114,23 +146,26 @@ whisper_model_load: n_text_layer = 6
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 2
|
||||
whisper_model_load: mem_required = 505.00 MB
|
||||
whisper_model_load: mem_required = 670.00 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: ggml ctx size = 163.43 MB
|
||||
whisper_model_load: ggml ctx size = 140.60 MB
|
||||
whisper_model_load: memory size = 22.83 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
|
||||
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, lang = en, task = transcribe, timestamps = 1 ...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
[00:00.000 --> 00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
|
||||
whisper_print_timings: load time = 87.21 ms
|
||||
whisper_print_timings: mel time = 24.26 ms
|
||||
whisper_print_timings: sample time = 3.87 ms
|
||||
whisper_print_timings: encode time = 323.67 ms / 53.94 ms per layer
|
||||
whisper_print_timings: decode time = 83.25 ms / 13.87 ms per layer
|
||||
whisper_print_timings: total time = 522.66 ms
|
||||
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
|
||||
|
||||
whisper_print_timings: load time = 105.91 ms
|
||||
whisper_print_timings: mel time = 24.62 ms
|
||||
whisper_print_timings: sample time = 3.63 ms
|
||||
whisper_print_timings: encode time = 324.71 ms / 54.12 ms per layer
|
||||
whisper_print_timings: decode time = 83.58 ms / 13.93 ms per layer
|
||||
whisper_print_timings: total time = 542.81 ms
|
||||
```
|
||||
|
||||
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
|
||||
@ -172,8 +207,8 @@ make large
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~280 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~430 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~4.7 GB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` |
|
||||
@ -185,7 +220,7 @@ in about half a minute on a MacBook M1 Pro, using `medium.en` model:
|
||||
|
||||
<details>
|
||||
<summary>Expand to see the result</summary>
|
||||
|
||||
|
||||
```java
|
||||
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
|
||||
|
||||
@ -273,32 +308,108 @@ to highlight words with high or low confidence:
|
||||
|
||||
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
|
||||
|
||||
## Implementation details
|
||||
## Controlling the length of the generated text segments (experimental)
|
||||
|
||||
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
|
||||
- The high-level C-style API is implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
|
||||
- Sample usage is demonstrated in [main.cpp](examples/main)
|
||||
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
|
||||
- Various other examples are available in the [examples](examples) folder
|
||||
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
|
||||
|
||||
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
|
||||
instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
|
||||
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
|
||||
|
||||
## Limitations
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
- Inference only
|
||||
- No GPU support
|
||||
- Very basic greedy sampling scheme - always pick up the token with highest probability.
|
||||
This should be similar to the [GreedyDecoder](https://github.com/openai/whisper/blob/main/whisper/decoding.py#L249-L274)
|
||||
from the original python implementation, so in order to make a fair comparison between the 2 implementations, make sure
|
||||
to run the python code with the following parameters:
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
```
|
||||
whisper --best_of None --beam_size None ...
|
||||
```
|
||||
[00:00:00.000 --> 00:00:00.850] And so my
|
||||
[00:00:00.850 --> 00:00:01.590] fellow
|
||||
[00:00:01.590 --> 00:00:04.140] Americans, ask
|
||||
[00:00:04.140 --> 00:00:05.660] not what your
|
||||
[00:00:05.660 --> 00:00:06.840] country can do
|
||||
[00:00:06.840 --> 00:00:08.430] for you, ask
|
||||
[00:00:08.430 --> 00:00:09.440] what you can do
|
||||
[00:00:09.440 --> 00:00:10.020] for your
|
||||
[00:00:10.020 --> 00:00:11.000] country.
|
||||
```
|
||||
|
||||
In the future, `whisper.cpp` will support more sampling strategies.
|
||||
## Word-level timestamp
|
||||
|
||||
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
[00:00:00.000 --> 00:00:00.320]
|
||||
[00:00:00.320 --> 00:00:00.370] And
|
||||
[00:00:00.370 --> 00:00:00.690] so
|
||||
[00:00:00.690 --> 00:00:00.850] my
|
||||
[00:00:00.850 --> 00:00:01.590] fellow
|
||||
[00:00:01.590 --> 00:00:02.850] Americans
|
||||
[00:00:02.850 --> 00:00:03.300] ,
|
||||
[00:00:03.300 --> 00:00:04.140] ask
|
||||
[00:00:04.140 --> 00:00:04.990] not
|
||||
[00:00:04.990 --> 00:00:05.410] what
|
||||
[00:00:05.410 --> 00:00:05.660] your
|
||||
[00:00:05.660 --> 00:00:06.260] country
|
||||
[00:00:06.260 --> 00:00:06.600] can
|
||||
[00:00:06.600 --> 00:00:06.840] do
|
||||
[00:00:06.840 --> 00:00:07.010] for
|
||||
[00:00:07.010 --> 00:00:08.170] you
|
||||
[00:00:08.170 --> 00:00:08.190] ,
|
||||
[00:00:08.190 --> 00:00:08.430] ask
|
||||
[00:00:08.430 --> 00:00:08.910] what
|
||||
[00:00:08.910 --> 00:00:09.040] you
|
||||
[00:00:09.040 --> 00:00:09.320] can
|
||||
[00:00:09.320 --> 00:00:09.440] do
|
||||
[00:00:09.440 --> 00:00:09.760] for
|
||||
[00:00:09.760 --> 00:00:10.020] your
|
||||
[00:00:10.020 --> 00:00:10.510] country
|
||||
[00:00:10.510 --> 00:00:11.000] .
|
||||
```
|
||||
|
||||
## Karaoke-style movie generation (experimental)
|
||||
|
||||
The [main](examples/main) example provides support for output of karaoke-style movies, where the
|
||||
currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script.
|
||||
This requires to have `ffmpeg` installed.
|
||||
|
||||
Here are a few *"typical"* examples:
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
|
||||
source ./samples/jfk.wav.wts
|
||||
ffplay ./samples/jfk.wav.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199337465-dbee4b5e-9aeb-48a3-b1c6-323ac4db5b2c.mp4
|
||||
|
||||
---
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
|
||||
source ./samples/mm0.wav.wts
|
||||
ffplay ./samples/mm0.wav.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199337504-cc8fd233-0cb7-4920-95f9-4227de3570aa.mp4
|
||||
|
||||
---
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
|
||||
source ./samples/gb0.wav.wts
|
||||
ffplay ./samples/gb0.wav.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a0cd-f28a317987ba.mp4
|
||||
|
||||
---
|
||||
|
||||
## Benchmarks
|
||||
|
||||
@ -326,9 +437,12 @@ For more details, see the conversion script [models/convert-pt-to-ggml.py](model
|
||||
## Bindings
|
||||
|
||||
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs)
|
||||
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm)
|
||||
- [ ] Python:
|
||||
- [ ] Java:
|
||||
|
||||
## Examples
|
||||
|
||||
There are various examples of using the library for different projects in the [examples](examples) folder. Check them out!
|
||||
|
||||
## [Frequently asked questions (#126)](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
1
bindings/ios
Submodule
1
bindings/ios
Submodule
Submodule bindings/ios added at 4bda8e9d80
49
examples/generate-karaoke.sh
Executable file
49
examples/generate-karaoke.sh
Executable file
@ -0,0 +1,49 @@
|
||||
#!/bin/bash
|
||||
|
||||
executable="./main"
|
||||
model="base.en"
|
||||
model_path="models/ggml-$model.bin"
|
||||
|
||||
# require sox and ffmpeg to be installed
|
||||
if ! command -v sox &> /dev/null
|
||||
then
|
||||
echo "sox could not be found"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v ffmpeg &> /dev/null
|
||||
then
|
||||
echo "ffmpeg could not be found"
|
||||
exit 2
|
||||
fi
|
||||
|
||||
if [ ! -f "$executable" ]; then
|
||||
echo "'$executable' does not exist. Please build it first."
|
||||
exit 3
|
||||
fi
|
||||
|
||||
if [ ! -f "$model_path" ]; then
|
||||
echo "'$model_path' does not exist. Please download it first."
|
||||
exit 4
|
||||
fi
|
||||
|
||||
# record some raw audio
|
||||
sox -d rec.wav
|
||||
|
||||
# resample to 16kHz
|
||||
ffmpeg -y -i ./rec.wav -ar 16000 -ac 1 -c:a pcm_s16le ./rec16.wav > /dev/null 2>&1
|
||||
|
||||
# run Whisper
|
||||
echo "Processing ..."
|
||||
./main -m models/ggml-base.en.bin rec16.wav -owts > /dev/null 2>&1
|
||||
|
||||
# generate Karaoke video
|
||||
echo "Generating video ..."
|
||||
source rec16.wav.wts > /dev/null 2>&1
|
||||
|
||||
# play the video
|
||||
echo "Playing ./rec16.wav.mp4 ..."
|
||||
ffplay -loglevel 0 -autoexit ./rec16.wav.mp4
|
||||
|
||||
echo "Done"
|
||||
exit 0
|
@ -6,21 +6,29 @@ It can be used as a reference for using the `whisper.cpp` library in other proje
|
||||
```
|
||||
./main -h
|
||||
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
usage: ./bin/main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-s SEED, --seed SEED RNG seed (default: -1)
|
||||
-t N, --threads N number of threads to use during computation (default: 4)
|
||||
-o N, --offset N offset in milliseconds (default: 0)
|
||||
-p N, --processors N number of processors to use during computation (default: 1)
|
||||
-ot N, --offset-t N time offset in milliseconds (default: 0)
|
||||
-on N, --offset-n N segment index offset (default: 0)
|
||||
-mc N, --max-context N maximum number of text context tokens to store (default: max)
|
||||
-ml N, --max-len N maximum segment length in characters (default: 0)
|
||||
-wt N, --word-thold N word timestamp probability threshold (default: 0.010000)
|
||||
-v, --verbose verbose output
|
||||
--translate translate from source language to english
|
||||
-otxt, --output-txt output result in a text file
|
||||
-ovtt, --output-vtt output result in a vtt file
|
||||
-osrt, --output-srt output result in a srt file
|
||||
-owts, --output-words output script for generating karaoke video
|
||||
-ps, --print_special print special tokens
|
||||
-pc, --print_colors print colors
|
||||
-nt, --no_timestamps do not print timestamps
|
||||
-l LANG, --language LANG spoken language (default: en)
|
||||
-m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
|
||||
-f FNAME, --file FNAME input WAV file path
|
||||
-h, --help show this help message and exit
|
||||
|
||||
```
|
||||
|
@ -36,6 +36,7 @@ std::string to_timestamp(int64_t t, bool comma = false) {
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
// helper function to replace substrings
|
||||
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
for (size_t pos = 0; ; pos += replace.length()) {
|
||||
pos = s.find(search, pos);
|
||||
@ -45,31 +46,6 @@ void replace_all(std::string & s, const std::string & search, const std::string
|
||||
}
|
||||
}
|
||||
|
||||
// a cost-function that is high for text that takes longer to pronounce
|
||||
float voice_length(const std::string & text) {
|
||||
float res = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < text.size(); ++i) {
|
||||
if (text[i] == ' ') {
|
||||
res += 0.01f;
|
||||
} else if (text[i] == ',') {
|
||||
res += 2.00f;
|
||||
} else if (text[i] == '.') {
|
||||
res += 3.00f;
|
||||
} else if (text[i] == '!') {
|
||||
res += 3.00f;
|
||||
} else if (text[i] == '?') {
|
||||
res += 3.00f;
|
||||
} else if (text[i] >= '0' && text[i] <= '9') {
|
||||
res += 3.00f;
|
||||
} else {
|
||||
res += 1.00f;
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t seed = -1; // RNG seed, not used currently
|
||||
@ -77,7 +53,9 @@ struct whisper_params {
|
||||
int32_t n_processors = 1;
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
|
||||
float word_thold = 0.01f;
|
||||
|
||||
@ -118,8 +96,12 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
params.offset_t_ms = std::stoi(argv[++i]);
|
||||
} else if (arg == "-on" || arg == "--offset-n") {
|
||||
params.offset_n = std::stoi(argv[++i]);
|
||||
} else if (arg == "-d" || arg == "--duration") {
|
||||
params.duration_ms = std::stoi(argv[++i]);
|
||||
} else if (arg == "-mc" || arg == "--max-context") {
|
||||
params.max_context = std::stoi(argv[++i]);
|
||||
} else if (arg == "-ml" || arg == "--max-len") {
|
||||
params.max_len = std::stoi(argv[++i]);
|
||||
} else if (arg == "-wt" || arg == "--word-thold") {
|
||||
params.word_thold = std::stof(argv[++i]);
|
||||
} else if (arg == "-v" || arg == "--verbose") {
|
||||
@ -175,14 +157,16 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
|
||||
fprintf(stderr, " -p N, --processors N number of processors to use during computation (default: %d)\n", params.n_processors);
|
||||
fprintf(stderr, " -ot N, --offset-t N time offset in milliseconds (default: %d)\n", params.offset_t_ms);
|
||||
fprintf(stderr, " -on N, --offset-n N segment index offset (default: %d)\n", params.offset_n);
|
||||
fprintf(stderr, " -d N, --duration N duration of audio to process in milliseconds (default: %d)\n", params.duration_ms);
|
||||
fprintf(stderr, " -mc N, --max-context N maximum number of text context tokens to store (default: max)\n");
|
||||
fprintf(stderr, " -ml N, --max-len N maximum segment length in characters (default: %d)\n", params.max_len);
|
||||
fprintf(stderr, " -wt N, --word-thold N word timestamp probability threshold (default: %f)\n", params.word_thold);
|
||||
fprintf(stderr, " -v, --verbose verbose output\n");
|
||||
fprintf(stderr, " --translate translate from source language to english\n");
|
||||
fprintf(stderr, " -otxt, --output-txt output result in a text file\n");
|
||||
fprintf(stderr, " -ovtt, --output-vtt output result in a vtt file\n");
|
||||
fprintf(stderr, " -osrt, --output-srt output result in a srt file\n");
|
||||
fprintf(stderr, " -owts, --output-words output word-level timestamps to a text file\n");
|
||||
fprintf(stderr, " -owts, --output-words output script for generating karaoke video\n");
|
||||
fprintf(stderr, " -ps, --print_special print special tokens\n");
|
||||
fprintf(stderr, " -pc, --print_colors print colors\n");
|
||||
fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n");
|
||||
@ -192,65 +176,67 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, void * user_data) {
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
|
||||
const whisper_params & params = *(whisper_params *) user_data;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
|
||||
// print the last segment
|
||||
const int i = n_segments - 1;
|
||||
if (i == 0) {
|
||||
// print the last n_new segments
|
||||
const int s0 = n_segments - n_new;
|
||||
if (s0 == 0) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
if (params.no_timestamps) {
|
||||
if (params.print_colors) {
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
for (int i = s0; i < n_segments; i++) {
|
||||
if (params.no_timestamps) {
|
||||
if (params.print_colors) {
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
printf("%s", text);
|
||||
}
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
printf("%s", text);
|
||||
}
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
if (params.print_colors) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
if (params.print_colors) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
printf("\n");
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
}
|
||||
printf("\n");
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -320,364 +306,118 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
return true;
|
||||
}
|
||||
|
||||
// word-level timestamps (experimental)
|
||||
// TODO: probably still has bugs, needs refactoring, etc..
|
||||
// TODO: auto threshold
|
||||
// TODO: extra pass to detect unused speech and assign to tokens
|
||||
// karaoke video generation
|
||||
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
|
||||
// TODO: font parameter adjustments
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, const std::vector<float> & pcmf32) {
|
||||
if (params.output_wts) {
|
||||
std::vector<float> pcm_avg(pcmf32.size(), 0);
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec) {
|
||||
std::ofstream fout(fname);
|
||||
|
||||
// average the fabs of the signal
|
||||
{
|
||||
const int hw = 32;
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
for (int i = 0; i < pcmf32.size(); i++) {
|
||||
float sum = 0;
|
||||
for (int j = -hw; j <= hw; j++) {
|
||||
if (i + j >= 0 && i + j < pcmf32.size()) {
|
||||
sum += fabs(pcmf32[i + j]);
|
||||
}
|
||||
}
|
||||
pcm_avg[i] = sum/(2*hw + 1);
|
||||
}
|
||||
// TODO: become parameter
|
||||
static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
|
||||
fout << "#!/bin/bash" << "\n";
|
||||
fout << "\n";
|
||||
|
||||
fout << "ffmpeg -i " << fname_inp << " -f lavfi -i color=size=1200x120:duration=" << t_sec << ":rate=25:color=black -vf \"";
|
||||
|
||||
for (int i = 0; i < whisper_full_n_segments(ctx); i++) {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
const int n = whisper_full_n_tokens(ctx, i);
|
||||
|
||||
std::vector<whisper_token_data> tokens(n);
|
||||
for (int j = 0; j < n; ++j) {
|
||||
tokens[j] = whisper_full_get_token_data(ctx, i, j);
|
||||
}
|
||||
|
||||
struct token_info {
|
||||
int64_t t0 = -1;
|
||||
int64_t t1 = -1;
|
||||
if (i > 0) {
|
||||
fout << ",";
|
||||
}
|
||||
|
||||
int64_t tt0 = -1;
|
||||
int64_t tt1 = -1;
|
||||
|
||||
whisper_token id;
|
||||
whisper_token tid;
|
||||
|
||||
float p = 0.0f;
|
||||
float pt = 0.0f;
|
||||
float ptsum = 0.0f;
|
||||
|
||||
std::string text;
|
||||
float vlen = 0.0f; // voice length of this token
|
||||
};
|
||||
|
||||
int64_t t_beg = 0;
|
||||
int64_t t_last = 0;
|
||||
|
||||
whisper_token tid_last = 0;
|
||||
|
||||
std::ofstream fout(fname);
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
fout << "!/bin/bash" << "\n";
|
||||
fout << "\n";
|
||||
|
||||
fout << "ffmpeg -i " << fname_inp << " -f lavfi -i color=size=1200x120:duration=" << float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE << ":rate=25:color=black -vf \"";
|
||||
// background text
|
||||
fout << "drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='':enable='between(t," << t0/100.0 << "," << t0/100.0 << ")'";
|
||||
|
||||
bool is_first = true;
|
||||
|
||||
for (int i = 0; i < whisper_full_n_segments(ctx); i++) {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
for (int j = 0; j < n; ++j) {
|
||||
const auto & token = tokens[j];
|
||||
|
||||
const char *text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
const int s0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100));
|
||||
const int s1 = std::min((int) pcmf32.size(), (int) (t1*WHISPER_SAMPLE_RATE/100));
|
||||
|
||||
const int n = whisper_full_n_tokens(ctx, i);
|
||||
|
||||
std::vector<token_info> tokens(n);
|
||||
|
||||
if (n <= 1) {
|
||||
if (tokens[j].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int j = 0; j < n; ++j) {
|
||||
struct whisper_token_data token = whisper_full_get_token_data(ctx, i, j);
|
||||
std::string txt_bg;
|
||||
std::string txt_fg; // highlight token
|
||||
std::string txt_ul; // underline
|
||||
|
||||
if (j == 0) {
|
||||
if (token.id == whisper_token_beg(ctx)) {
|
||||
tokens[j ].t0 = t0;
|
||||
tokens[j ].t1 = t0;
|
||||
tokens[j + 1].t0 = t0;
|
||||
txt_bg = "> ";
|
||||
txt_fg = "> ";
|
||||
txt_ul = "\\ \\ ";
|
||||
|
||||
t_beg = t0;
|
||||
t_last = t0;
|
||||
tid_last = whisper_token_beg(ctx);
|
||||
} else {
|
||||
tokens[j ].t0 = t_last;
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(ctx));
|
||||
|
||||
tokens[j].id = token.id;
|
||||
tokens[j].tid = token.tid;
|
||||
tokens[j].p = token.p;
|
||||
tokens[j].pt = token.pt;
|
||||
tokens[j].ptsum = token.ptsum;
|
||||
|
||||
tokens[j].text = whisper_token_to_str(ctx, token.id);
|
||||
//tokens[j].vlen = tokens[j].pt;
|
||||
tokens[j].vlen = voice_length(tokens[j].text);
|
||||
|
||||
if (token.pt > params.word_thold && token.ptsum > 0.01 && token.tid > tid_last) {
|
||||
if (j > 0) {
|
||||
tokens[j - 1].t1 = tt;
|
||||
}
|
||||
tokens[j].t0 = tt;
|
||||
tid_last = token.tid;
|
||||
}
|
||||
}
|
||||
|
||||
tokens[n - 2].t1 = t1;
|
||||
tokens[n - 1].t0 = t1;
|
||||
tokens[n - 1].t1 = t1;
|
||||
|
||||
t_last = t1;
|
||||
|
||||
int p0 = 0;
|
||||
int p1 = 0;
|
||||
while (true) {
|
||||
while (p1 < n && tokens[p1].t1 < 0) {
|
||||
p1++;
|
||||
}
|
||||
|
||||
if (p1 >= n) {
|
||||
p1--;
|
||||
}
|
||||
|
||||
if (p1 > p0) {
|
||||
double psum = 0.0;
|
||||
for (int j = p0; j <= p1; j++) {
|
||||
psum += tokens[j].vlen;
|
||||
}
|
||||
|
||||
//printf("analyzing %d - %d, psum = %f\n", p0, p1, psum);
|
||||
|
||||
const double dt = tokens[p1].t1 - tokens[p0].t0;
|
||||
|
||||
for (int j = p0 + 1; j <= p1; j++) {
|
||||
const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum;
|
||||
//const double ct = tokens[j - 1].t0 + (dt*(j - p0))/(p1 - p0 + 1);
|
||||
//const double ct = tokens[p0].t0 + (dt*(j - p0))/(p1 - p0 + 1);
|
||||
|
||||
tokens[j - 1].t1 = ct;
|
||||
tokens[j ].t0 = ct;
|
||||
}
|
||||
}
|
||||
|
||||
p1++;
|
||||
p0 = p1;
|
||||
if (p1 >= n) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < n - 1; j++) {
|
||||
if (tokens[j].t1 < 0) {
|
||||
tokens[j + 1].t0 = tokens[j].t1;
|
||||
}
|
||||
|
||||
tokens[j].tt0 = tokens[j].t0;
|
||||
tokens[j].tt1 = tokens[j].t1;
|
||||
}
|
||||
|
||||
// VAD
|
||||
{
|
||||
const int hw = WHISPER_SAMPLE_RATE; // take one second of audio around the token
|
||||
int ncnt = 0;
|
||||
for (int k = 0; k < n; ++k) {
|
||||
const auto & token2 = tokens[k];
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
const int64_t t0 = tokens[j].t0;
|
||||
const int64_t t1 = tokens[j].t1;
|
||||
|
||||
int s0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100));
|
||||
int s1 = std::min((int) pcmf32.size() - 1, (int) (t1*WHISPER_SAMPLE_RATE/100));
|
||||
|
||||
const int ss0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100) - hw);
|
||||
const int ss1 = std::min((int) pcmf32.size() - 1, (int) (t1*WHISPER_SAMPLE_RATE/100) + hw);
|
||||
|
||||
const int n = ss1 - ss0;
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int k = ss0; k < ss1; k++) {
|
||||
sum += pcm_avg[k];
|
||||
if (tokens[k].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float avg = sum/n;
|
||||
const std::string txt = whisper_token_to_str(ctx, token2.id);
|
||||
|
||||
const float thold = 0.5*avg;
|
||||
txt_bg += txt;
|
||||
|
||||
{
|
||||
int k = s0;
|
||||
if (pcm_avg[k] > thold && j > 0) {
|
||||
while (k > 0 && pcm_avg[k] > thold) {
|
||||
k--;
|
||||
}
|
||||
tokens[j].t0 = (int64_t) (100*k/WHISPER_SAMPLE_RATE);
|
||||
if (tokens[j].t0 < tokens[j - 1].t1) {
|
||||
tokens[j].t0 = tokens[j - 1].t1;
|
||||
} else {
|
||||
s0 = k;
|
||||
}
|
||||
} else {
|
||||
while (pcm_avg[k] < thold && k < s1) {
|
||||
k++;
|
||||
}
|
||||
s0 = k;
|
||||
tokens[j].t0 = 100*k/WHISPER_SAMPLE_RATE;
|
||||
if (k == j) {
|
||||
for (int l = 0; l < (int) txt.size(); ++l) {
|
||||
txt_fg += txt[l];
|
||||
txt_ul += "_";
|
||||
}
|
||||
txt_fg += "|";
|
||||
} else {
|
||||
for (int l = 0; l < (int) txt.size(); ++l) {
|
||||
txt_fg += "\\ ";
|
||||
txt_ul += "\\ ";
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int k = s1;
|
||||
if (pcm_avg[k] > thold) {
|
||||
while (k < (int) pcmf32.size() - 1 && pcm_avg[k] > thold) {
|
||||
k++;
|
||||
}
|
||||
tokens[j].t1 = 100*k/WHISPER_SAMPLE_RATE;
|
||||
if (j < n - 1 && tokens[j].t1 > tokens[j + 1].t0) {
|
||||
tokens[j].t1 = tokens[j + 1].t0;
|
||||
} else {
|
||||
s1 = k;
|
||||
}
|
||||
} else {
|
||||
while (pcm_avg[k] < thold && k > s0) {
|
||||
k--;
|
||||
}
|
||||
s1 = k;
|
||||
tokens[j].t1 = 100*k/WHISPER_SAMPLE_RATE;
|
||||
}
|
||||
}
|
||||
ncnt += txt.size();
|
||||
}
|
||||
|
||||
::replace_all(txt_bg, "'", "’");
|
||||
::replace_all(txt_bg, "\"", "\\\"");
|
||||
::replace_all(txt_fg, "'", "’");
|
||||
::replace_all(txt_fg, "\"", "\\\"");
|
||||
}
|
||||
|
||||
const int t_expand = 0;
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (j > 0) {
|
||||
tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand));
|
||||
}
|
||||
if (j < n - 1) {
|
||||
tokens[j].t1 = tokens[j].t1 + t_expand;
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < n; ++j) {
|
||||
const auto & token = tokens[j];
|
||||
const auto tt = token.pt > params.word_thold && token.ptsum > 0.01 ? whisper_token_to_str(ctx, token.tid) : "[?]";
|
||||
printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__,
|
||||
tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, token.text.c_str());
|
||||
|
||||
if (tokens[j].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
//printf("[%s --> %s] %s\n", to_timestamp(token.t0).c_str(), to_timestamp(token.t1).c_str(), whisper_token_to_str(ctx, token.id));
|
||||
|
||||
//fout << "# " << to_timestamp(token.t0) << " --> " << to_timestamp(token.t1) << " " << whisper_token_to_str(ctx, token.id) << "\n";
|
||||
}
|
||||
|
||||
static const int line_wrap = 60;
|
||||
static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
|
||||
if (!is_first) {
|
||||
fout << ",";
|
||||
}
|
||||
|
||||
// background text
|
||||
fout << "drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='':enable='between(t," << t0/100.0 << "," << t0/100.0 << ")'";
|
||||
|
||||
is_first = false;
|
||||
|
||||
for (int j = 0; j < n; ++j) {
|
||||
const auto & token = tokens[j];
|
||||
|
||||
if (tokens[j].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
std::string txt_bg;
|
||||
std::string txt_fg; // highlight token
|
||||
std::string txt_ul; // underline
|
||||
|
||||
txt_bg = "> ";
|
||||
txt_fg = "> ";
|
||||
txt_ul = "\\ \\ ";
|
||||
|
||||
{
|
||||
int ncnt = 0;
|
||||
for (int k = 0; k < n; ++k) {
|
||||
const auto & token2 = tokens[k];
|
||||
|
||||
if (tokens[k].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const std::string txt = whisper_token_to_str(ctx, token2.id);
|
||||
|
||||
txt_bg += txt;
|
||||
|
||||
if (k == j) {
|
||||
for (int l = 0; l < (int) txt.size(); ++l) {
|
||||
txt_fg += txt[l];
|
||||
txt_ul += "_";
|
||||
}
|
||||
txt_fg += "|";
|
||||
} else {
|
||||
for (int l = 0; l < (int) txt.size(); ++l) {
|
||||
txt_fg += "\\ ";
|
||||
txt_ul += "\\ ";
|
||||
}
|
||||
}
|
||||
|
||||
ncnt += txt.size();
|
||||
|
||||
if (ncnt > line_wrap) {
|
||||
if (k < j) {
|
||||
txt_bg = "> ";
|
||||
txt_fg = "> ";
|
||||
txt_ul = "\\ \\ ";
|
||||
ncnt = 0;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
::replace_all(txt_bg, "'", "’");
|
||||
::replace_all(txt_bg, "\"", "\\\"");
|
||||
::replace_all(txt_fg, "'", "’");
|
||||
::replace_all(txt_fg, "\"", "\\\"");
|
||||
}
|
||||
|
||||
if (is_first) {
|
||||
// background text
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='" << txt_bg << "':enable='between(t," << token.tt0/100.0 << "," << token.tt1/100.0 << ")'";
|
||||
|
||||
// foreground text
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2:text='" << txt_fg << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
|
||||
|
||||
// underline
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2+16:text='" << txt_ul << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='" << txt_bg << "':enable='between(t," << t0/100.0 << "," << t1/100.0 << ")'";
|
||||
is_first = false;
|
||||
}
|
||||
|
||||
// foreground text
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2:text='" << txt_fg << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
|
||||
|
||||
// underline
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2+16:text='" << txt_ul << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
|
||||
}
|
||||
|
||||
fout << "\" -c:v libx264 -pix_fmt yuv420p -y " << fname_inp << ".mp4" << "\n";
|
||||
|
||||
fout << "\n\n";
|
||||
fout << "echo \"Your video has been saved to " << fname_inp << ".mp4\"" << "\n";
|
||||
fout << "\n";
|
||||
fout << "echo \" ffplay " << fname_inp << ".mp4\"\n";
|
||||
fout << "\n";
|
||||
|
||||
fout.close();
|
||||
|
||||
fprintf(stderr, "%s: run 'source %s' to generate karaoke video\n", __func__, fname);
|
||||
}
|
||||
|
||||
fout << "\" -c:v libx264 -pix_fmt yuv420p -y " << fname_inp << ".mp4" << "\n";
|
||||
|
||||
fout << "\n\n";
|
||||
fout << "echo \"Your video has been saved to " << fname_inp << ".mp4\"" << "\n";
|
||||
fout << "\n";
|
||||
fout << "echo \" ffplay " << fname_inp << ".mp4\"\n";
|
||||
fout << "\n";
|
||||
|
||||
fout.close();
|
||||
|
||||
fprintf(stderr, "%s: run 'source %s' to generate karaoke video\n", __func__, fname);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -796,6 +536,11 @@ int main(int argc, char ** argv) {
|
||||
wparams.n_threads = params.n_threads;
|
||||
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
|
||||
wparams.offset_ms = params.offset_t_ms;
|
||||
wparams.duration_ms = params.duration_ms;
|
||||
|
||||
wparams.token_timestamps = params.output_wts || params.max_len > 0;
|
||||
wparams.thold_pt = params.word_thold;
|
||||
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
|
||||
|
||||
// this callback is called on each new segment
|
||||
if (!wparams.print_realtime) {
|
||||
@ -834,7 +579,7 @@ int main(int argc, char ** argv) {
|
||||
// output to WTS file
|
||||
if (params.output_wts) {
|
||||
const auto fname_wts = fname_inp + ".wts";
|
||||
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, pcmf32);
|
||||
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -78,6 +78,14 @@ There are a lot of ways to improve this idea and I don't have much experience wi
|
||||
*"optimize by sorting the data first"*
|
||||
|
||||
The plugin would then make an appropriate query using the selected text and code context to Copilot or GPT-3 and return the result.
|
||||
|
||||
Here is a proof-of-concept:
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199078847-0278fcde-5667-4748-ba0d-7d55381d6047.mp4
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/200067939-f98d2ac2-7519-438a-85f9-79db0841ba4f.mp4
|
||||
|
||||
For explanation how this works see: https://twitter.com/ggerganov/status/1587168771789258756
|
||||
|
||||
## Discussion
|
||||
|
||||
|
7
extra/sha-all.sh
Executable file
7
extra/sha-all.sh
Executable file
@ -0,0 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Compute the SHA1 of all model files in ./models/ggml-*.bin
|
||||
|
||||
for f in ./models/ggml-*.bin; do
|
||||
shasum "$f" -a 1
|
||||
done
|
38
ggml-mtl.h
Normal file
38
ggml-mtl.h
Normal file
@ -0,0 +1,38 @@
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
// TODO: this will hold dynamic context data in the future
|
||||
// currently unused
|
||||
struct ggml_mtl_context {
|
||||
void * dummy;
|
||||
};
|
||||
|
||||
struct ggml_mtl_object {
|
||||
int32_t id;
|
||||
void * data;
|
||||
};
|
||||
|
||||
struct ggml_mtl_context * ggml_mtl_init(void);
|
||||
|
||||
struct ggml_mtl_object ggml_mtl_alloc(size_t size);
|
||||
|
||||
// multiply matrix by vector
|
||||
void ggml_mtl_mul_mat_vec_f16(
|
||||
struct ggml_mtl_context * ctx,
|
||||
struct ggml_mtl_object src0, // matrix f16
|
||||
const __fp16 * src1, // vector f16
|
||||
float * dst, // vector f32
|
||||
int nrows,
|
||||
int ncols);
|
||||
|
||||
// multiply matrix by matrix
|
||||
void ggml_mtl_mul_mat_f16(
|
||||
struct ggml_mtl_context * ctx,
|
||||
struct ggml_mtl_object src0, // matrix f16
|
||||
const __fp16 * src1, // matrix f16
|
||||
float * dst, // matrix f32
|
||||
int nrows0,
|
||||
int nrows1,
|
||||
int ncols);
|
162
ggml-mtl.m
Normal file
162
ggml-mtl.m
Normal file
@ -0,0 +1,162 @@
|
||||
#import "ggml-mtl.h"
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
#import <Metal/Metal.h>
|
||||
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
|
||||
|
||||
#define GGML_MTL_MAX_BUFFERS 256
|
||||
|
||||
// global static storage for Metal buffers
|
||||
// TODO: move this into a dynamic context
|
||||
static id<MTLBuffer> g_buffers[GGML_MTL_MAX_BUFFERS];
|
||||
|
||||
// global MTL context
|
||||
// TODO: move this into a dynamic context
|
||||
static id<MTLDevice> g_device;
|
||||
static id<MTLCommandQueue> g_command_queue;
|
||||
|
||||
struct ggml_mtl_context * ggml_mtl_init() {
|
||||
// TODO: implement properly
|
||||
// for now, init the global MTL context and MTL buffers
|
||||
g_device = MTLCreateSystemDefaultDevice();
|
||||
|
||||
g_command_queue = [g_device newCommandQueue];
|
||||
if (g_command_queue == nil)
|
||||
{
|
||||
NSLog(@"Failed to find the command queue.");
|
||||
return nil;
|
||||
}
|
||||
|
||||
return nil;
|
||||
}
|
||||
|
||||
// search for unallocated buffer slot and use it
|
||||
struct ggml_mtl_object ggml_mtl_alloc(size_t size) {
|
||||
// TODO: temporarily making sure that the buffers are nil at the start
|
||||
static bool first = true;
|
||||
if (first) {
|
||||
for (int i = 0; i < GGML_MTL_MAX_BUFFERS; ++i) {
|
||||
assert(g_buffers[i] == nil);
|
||||
}
|
||||
first = false;
|
||||
}
|
||||
|
||||
struct ggml_mtl_object obj = { -1, nil };
|
||||
|
||||
for (int i = 0; i < GGML_MTL_MAX_BUFFERS; i++) {
|
||||
if (g_buffers[i] == nil) {
|
||||
g_buffers[i] = [g_device newBufferWithLength:size options:MTLResourceStorageModeManaged];
|
||||
|
||||
// lunk the MTL buffer to the ggml object
|
||||
obj.id = i;
|
||||
obj.data = [g_buffers[i] contents];
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return obj;
|
||||
}
|
||||
|
||||
struct params_mul_mat_vec {
|
||||
int N; // rows
|
||||
int M; // cols
|
||||
};
|
||||
|
||||
// multiply matrix with a vector using MPSMatrixVectorMultiplication
|
||||
void ggml_mtl_mul_mat_vec_f16(
|
||||
struct ggml_mtl_context * ctx,
|
||||
struct ggml_mtl_object src0,
|
||||
const __fp16 * src1,
|
||||
float * dst,
|
||||
int nrows,
|
||||
int ncols) {
|
||||
(void) ctx; // unused
|
||||
|
||||
// Create a command buffer to hold commands.
|
||||
id<MTLCommandBuffer> commandBuffer = [g_command_queue commandBuffer];
|
||||
assert(commandBuffer != nil);
|
||||
|
||||
// make managed device buffer to store src1
|
||||
id<MTLBuffer> src1_buffer = [g_device newBufferWithBytes:src1 length:ncols*sizeof(__fp16) options:MTLResourceStorageModeManaged];
|
||||
id<MTLBuffer> dst_buffer = [g_device newBufferWithLength:nrows*sizeof(float) options:MTLResourceStorageModeManaged];
|
||||
|
||||
// MPSMatrixDescriptor
|
||||
MPSMatrixDescriptor *src0_desc = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows columns:ncols rowBytes:ncols*sizeof(__fp16) dataType:MPSDataTypeFloat16];
|
||||
MPSVectorDescriptor *src1_desc = [MPSVectorDescriptor vectorDescriptorWithLength:ncols dataType:MPSDataTypeFloat16];
|
||||
MPSVectorDescriptor *dst_desc = [MPSVectorDescriptor vectorDescriptorWithLength:nrows dataType:MPSDataTypeFloat32];
|
||||
|
||||
// MPSMatrix
|
||||
MPSMatrix *src0_mat = [[MPSMatrix alloc] initWithBuffer:g_buffers[src0.id] descriptor:src0_desc];
|
||||
MPSVector *src1_vec = [[MPSVector alloc] initWithBuffer:src1_buffer descriptor:src1_desc];
|
||||
MPSVector *dst_vec = [[MPSVector alloc] initWithBuffer:dst_buffer descriptor:dst_desc];
|
||||
|
||||
// MPSMatrixVectorMultiplication
|
||||
MPSMatrixVectorMultiplication *mul_mat_vec = [[MPSMatrixVectorMultiplication alloc] initWithDevice:g_device transpose:NO rows:nrows columns:ncols alpha:1.0 beta:0.0];
|
||||
|
||||
// encode
|
||||
[mul_mat_vec encodeToCommandBuffer:commandBuffer
|
||||
inputMatrix:src0_mat
|
||||
inputVector:src1_vec
|
||||
resultVector:dst_vec];
|
||||
|
||||
[commandBuffer commit];
|
||||
[commandBuffer waitUntilCompleted];
|
||||
|
||||
// copy GPU result to CPU
|
||||
memcpy(dst, [dst_buffer contents], nrows*sizeof(float));
|
||||
}
|
||||
|
||||
// multiply matrix with a matrix using MPSMatrixMultiplication
|
||||
void ggml_mtl_mul_mat_f16(
|
||||
struct ggml_mtl_context * ctx,
|
||||
struct ggml_mtl_object src0,
|
||||
const __fp16 * src1,
|
||||
float * dst,
|
||||
int nrows0,
|
||||
int nrows1,
|
||||
int ncols) {
|
||||
(void) ctx; // unused
|
||||
|
||||
// Create a command buffer to hold commands.
|
||||
id<MTLCommandBuffer> commandBuffer = [g_command_queue commandBuffer];
|
||||
assert(commandBuffer != nil);
|
||||
|
||||
// make managed device buffer to store src1
|
||||
id<MTLBuffer> src1_buffer = [g_device newBufferWithBytes:src1 length:ncols*nrows1*sizeof(__fp16) options:MTLResourceStorageModeManaged];
|
||||
id<MTLBuffer> dst_buffer = [g_device newBufferWithLength:nrows0*nrows1*sizeof(float) options:MTLResourceStorageModeManaged];
|
||||
|
||||
// MPSMatrixDescriptor
|
||||
MPSMatrixDescriptor *src0_desc = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows0 columns:ncols rowBytes:ncols*sizeof(__fp16) dataType:MPSDataTypeFloat16];
|
||||
MPSMatrixDescriptor *src1_desc = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows1 columns:ncols rowBytes:ncols*sizeof(__fp16) dataType:MPSDataTypeFloat16];
|
||||
MPSMatrixDescriptor *dst_desc = [MPSMatrixDescriptor matrixDescriptorWithRows:nrows1 columns:nrows0 rowBytes:nrows0*sizeof(float) dataType:MPSDataTypeFloat32];
|
||||
|
||||
// MPSMatrix
|
||||
MPSMatrix *src0_mat = [[MPSMatrix alloc] initWithBuffer:g_buffers[src0.id] descriptor:src0_desc];
|
||||
MPSMatrix *src1_mat = [[MPSMatrix alloc] initWithBuffer:src1_buffer descriptor:src1_desc];
|
||||
MPSMatrix *dst_mat = [[MPSMatrix alloc] initWithBuffer:dst_buffer descriptor:dst_desc];
|
||||
|
||||
//// MPSMatrixMultiplication z = x * yT
|
||||
//MPSMatrixMultiplication *mul_mat = [[MPSMatrixMultiplication alloc] initWithDevice:g_device transposeLeft:NO transposeRight:YES resultRows:nrows resultColumns:nrows interiorColumns:ncols alpha:1.0 beta:0.0];
|
||||
|
||||
//// encode
|
||||
//[mul_mat encodeToCommandBuffer:commandBuffer
|
||||
// leftMatrix:src0_mat
|
||||
// rightMatrix:src1_mat
|
||||
// resultMatrix:dst_mat];
|
||||
|
||||
// MPSMatrixMultiplication zT = xT * y
|
||||
MPSMatrixMultiplication *mul_mat = [[MPSMatrixMultiplication alloc] initWithDevice:g_device transposeLeft:NO transposeRight:YES resultRows:nrows1 resultColumns:nrows0 interiorColumns:ncols alpha:1.0 beta:0.0];
|
||||
|
||||
// encode
|
||||
[mul_mat encodeToCommandBuffer:commandBuffer
|
||||
leftMatrix:src1_mat
|
||||
rightMatrix:src0_mat
|
||||
resultMatrix:dst_mat];
|
||||
|
||||
[commandBuffer commit];
|
||||
[commandBuffer waitUntilCompleted];
|
||||
|
||||
// copy GPU result to CPU
|
||||
memcpy(dst, [dst_buffer contents], nrows0*nrows1*sizeof(float));
|
||||
}
|
156
ggml.c
156
ggml.c
@ -1,5 +1,7 @@
|
||||
#include "ggml.h"
|
||||
|
||||
#include "ggml-mtl.h"
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
#elif !defined(__FreeBSD__)
|
||||
@ -14,7 +16,7 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#if defined _MSC_VER
|
||||
#if defined _MSC_VER || defined(__MINGW32__)
|
||||
#include <Windows.h>
|
||||
|
||||
typedef volatile LONG atomic_int;
|
||||
@ -44,6 +46,11 @@ static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void
|
||||
static int pthread_join(pthread_t thread, void* unused) {
|
||||
return (int) WaitForSingleObject(thread, INFINITE);
|
||||
}
|
||||
|
||||
static int sched_yield (void) {
|
||||
Sleep (0);
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
#include <pthread.h>
|
||||
#include <stdatomic.h>
|
||||
@ -193,7 +200,7 @@ static ggml_fp16_t table_exp_f16[1 << 16];
|
||||
// timing
|
||||
//
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
static int64_t timer_freq;
|
||||
void ggml_time_init(void) {
|
||||
LARGE_INTEGER frequency;
|
||||
@ -1302,6 +1309,8 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
||||
|
||||
static bool first_time = true;
|
||||
if (first_time) {
|
||||
ggml_mtl_init(); // TODO: fix this
|
||||
|
||||
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
|
||||
g_state.contexts[i].used = false;
|
||||
}
|
||||
@ -1457,6 +1466,104 @@ struct ggml_tensor * ggml_new_tensor_impl(
|
||||
/*.perf_cycles =*/ 0,
|
||||
/*.perf_time_us =*/ 0,
|
||||
/*.data =*/ data == NULL ? (void *)(result + 1) : data,
|
||||
/*.id =*/ -1,
|
||||
/*.pad =*/ { 0 },
|
||||
};
|
||||
|
||||
ggml_assert_aligned(result->data);
|
||||
|
||||
for (int i = 0; i < n_dims; i++) {
|
||||
result->ne[i] = ne[i];
|
||||
}
|
||||
|
||||
result->nb[0] = GGML_TYPE_SIZE[type];
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
|
||||
}
|
||||
|
||||
ctx->n_objects++;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_mtl_impl(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int n_dims,
|
||||
const int* ne,
|
||||
void* data) {
|
||||
// always insert objects at the end of the context's memory pool
|
||||
struct ggml_object * obj_cur = ctx->objects_end;
|
||||
|
||||
const size_t cur_offset = obj_cur == NULL ? 0 : obj_cur->offset;
|
||||
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
|
||||
const size_t cur_end = cur_offset + cur_size;
|
||||
|
||||
struct ggml_mtl_object obj_mtl;
|
||||
{
|
||||
assert(data == NULL); // TODO: in-place metal buffer, need page aligned memory
|
||||
size_t size_needed_mtl = 0;
|
||||
if (data == NULL) {
|
||||
size_needed_mtl += GGML_TYPE_SIZE[type];
|
||||
for (int i = 0; i < n_dims; i++) {
|
||||
size_needed_mtl *= ne[i];
|
||||
}
|
||||
}
|
||||
|
||||
obj_mtl = ggml_mtl_alloc(size_needed_mtl);
|
||||
}
|
||||
|
||||
size_t size_needed = 0;
|
||||
size_needed += sizeof(struct ggml_tensor);
|
||||
|
||||
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
|
||||
GGML_PRINT("%s: not enough space in the context's memory pool\n", __func__);
|
||||
assert(false);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
char * const mem_buffer = ctx->mem_buffer;
|
||||
|
||||
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
|
||||
|
||||
*obj_new = (struct ggml_object) {
|
||||
.offset = cur_end + GGML_OBJECT_SIZE,
|
||||
.size = size_needed,
|
||||
.next = NULL,
|
||||
};
|
||||
|
||||
if (obj_cur != NULL) {
|
||||
obj_cur->next = obj_new;
|
||||
} else {
|
||||
// this is the first object in this context
|
||||
ctx->objects_begin = obj_new;
|
||||
}
|
||||
|
||||
ctx->objects_end = obj_new;
|
||||
|
||||
//GGML_PRINT_DEBUG("%s: inserted new object at %zu\n", __func__, cur_end);
|
||||
|
||||
struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offset);
|
||||
|
||||
ggml_assert_aligned(result);
|
||||
|
||||
*result = (struct ggml_tensor) {
|
||||
/*.type =*/ type,
|
||||
/*.n_dims =*/ n_dims,
|
||||
/*.ne =*/ { 1, 1, 1, 1 },
|
||||
/*.nb =*/ { 0, 0, 0, 0 },
|
||||
/*.op =*/ GGML_OP_NONE,
|
||||
/*.is_param =*/ false,
|
||||
/*.grad =*/ NULL,
|
||||
/*.src0 =*/ NULL,
|
||||
/*.src1 =*/ NULL,
|
||||
/*.opt =*/ { NULL },
|
||||
/*.n_tasks =*/ 0,
|
||||
/*.perf_runs =*/ 0,
|
||||
/*.perf_cycles =*/ 0,
|
||||
/*.perf_time_us =*/ 0,
|
||||
/*.data =*/ obj_mtl.data,
|
||||
/*.id =*/ obj_mtl.id,
|
||||
/*.pad =*/ { 0 },
|
||||
};
|
||||
|
||||
@ -1484,6 +1591,14 @@ struct ggml_tensor * ggml_new_tensor(
|
||||
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_mtl(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int n_dims,
|
||||
const int* ne) {
|
||||
return ggml_new_tensor_mtl_impl(ctx, type, n_dims, ne, NULL);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_1d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
@ -1500,6 +1615,15 @@ struct ggml_tensor * ggml_new_tensor_2d(
|
||||
return ggml_new_tensor(ctx, type, 2, ne);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_2d_mtl(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1) {
|
||||
const int ne[2] = { ne0, ne1 };
|
||||
return ggml_new_tensor_mtl(ctx, type, 2, ne);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_3d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
@ -3145,7 +3269,10 @@ void ggml_compute_forward_add_f32(
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
if (nb10 == sizeof(float)) {
|
||||
for (int j = ith; j < n; j += nth) {
|
||||
const int j0 = (n/nth)*ith;
|
||||
const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
|
||||
|
||||
for (int j = j0; j < j1; j++) {
|
||||
ggml_vec_add_f32(nc,
|
||||
(float *) ((char *) dst->data + j*nb1),
|
||||
(float *) ((char *) src0->data + j*nb01),
|
||||
@ -4335,8 +4462,11 @@ void ggml_compute_forward_mul_mat_f16_f32(
|
||||
// nb00 < nb01 - src0 is transposed
|
||||
// compute by src0 columns
|
||||
|
||||
// are we using Metal?
|
||||
const bool is_mtl = src0->id >= 0;
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
||||
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
||||
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst) && !is_mtl) {
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
if (params->ith != 0) return;
|
||||
@ -4464,6 +4594,20 @@ void ggml_compute_forward_mul_mat_f16_f32(
|
||||
|
||||
// parallelize by src0 rows using ggml_vec_dot_f32
|
||||
|
||||
if (is_mtl) {
|
||||
assert(ne02 == 1);
|
||||
assert(ne03 == 1);
|
||||
|
||||
if (params->ith == 0) {
|
||||
printf("XXXXXXXXXXX src0->ne[0] = %d, src0->ne[1] = %d\n", src0->ne[0], src0->ne[1]);
|
||||
printf("XXXXXXXXXXX src1->ne[0] = %d, src1->ne[1] = %d\n", src1->ne[0], src1->ne[1]);
|
||||
struct ggml_mtl_object src0_mtl = { src0->id, src0->data };
|
||||
ggml_fp16_t * src1_fp16 = params->wdata;
|
||||
ggml_mtl_mul_mat_f16(NULL, src0_mtl, src1_fp16, dst->data, ne01, ne11, ne00);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// total rows in src0
|
||||
const int nr = ne01*ne02*ne03;
|
||||
|
||||
@ -6852,7 +6996,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
} break;
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
node->n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
@ -8084,7 +8228,7 @@ int ggml_cpu_has_avx512(void) {
|
||||
}
|
||||
|
||||
int ggml_cpu_has_neon(void) {
|
||||
#if defined(__ARM_NEON__)
|
||||
#if defined(__ARM_NEON)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
|
9
ggml.h
9
ggml.h
@ -108,7 +108,8 @@ struct ggml_tensor {
|
||||
int64_t perf_time_us;
|
||||
|
||||
void * data;
|
||||
char padding[8];
|
||||
int32_t id; // TODO: mtl buffer id
|
||||
char pad[4];
|
||||
};
|
||||
|
||||
// computation graph
|
||||
@ -173,6 +174,12 @@ struct ggml_tensor * ggml_new_tensor_2d(
|
||||
int ne0,
|
||||
int ne1);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_2d_mtl(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int ne0,
|
||||
int ne1);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor_3d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
|
@ -22,6 +22,20 @@ A third option to obtain the model files is to download them from Hugging Face:
|
||||
|
||||
https://huggingface.co/datasets/ggerganov/whisper.cpp/tree/main
|
||||
|
||||
## Available models
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| tiny.en | 75 MB | ~390 MB | `c78c86eb1a8faa21b369bcd33207cc90d64ae9df` |
|
||||
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| base.en | 142 MB | ~500 MB | `137c40403d78fd54d454da0f9bd998f78703390c` |
|
||||
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| small.en | 466 MB | ~1.0 GB | `db8a495a91d927739e50b3fc1cc4c6b8f6c2d022` |
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| medium.en | 1.5 GB | ~2.6 GB | `8c30f0e44ce9560643ebd10bbe50cd20eafd3723` |
|
||||
| large | 2.9 GB | ~4.7 GB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` |
|
||||
|
||||
## Model files for testing purposes
|
||||
|
||||
The model files pefixed with `for-tests-` are empty (i.e. do not contain any weights) and are used by the CI for testing purposes.
|
||||
|
63
models/download-ggml-model.cmd
Normal file
63
models/download-ggml-model.cmd
Normal file
@ -0,0 +1,63 @@
|
||||
@echo off
|
||||
|
||||
pushd %~dp0
|
||||
set models_path=%CD%
|
||||
popd
|
||||
|
||||
set argc=0
|
||||
for %%x in (%*) do set /A argc+=1
|
||||
|
||||
set models=tiny.en tiny base.en base small.en small medium.en medium large
|
||||
|
||||
if %argc% neq 1 (
|
||||
echo.
|
||||
echo Usage: download-ggml-model.cmd model
|
||||
CALL :list_models
|
||||
goto :eof
|
||||
)
|
||||
|
||||
set model=%1
|
||||
|
||||
for %%b in (%models%) do (
|
||||
if "%%b"=="%model%" (
|
||||
CALL :download_model
|
||||
goto :eof
|
||||
)
|
||||
)
|
||||
|
||||
echo Invalid model: %model%
|
||||
CALL :list_models
|
||||
goto :eof
|
||||
|
||||
:download_model
|
||||
echo Downloading ggml model %model%...
|
||||
|
||||
cd %models_path%
|
||||
|
||||
if exist "ggml-%model%.bin" (
|
||||
echo Model %model% already exists. Skipping download.
|
||||
goto :eof
|
||||
)
|
||||
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://ggml.ggerganov.com/ggml-model-whisper-%model%.bin -OutFile ggml-%model%.bin"
|
||||
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo Failed to download ggml model %model%
|
||||
echo Please try again later or download the original Whisper model files and convert them yourself.
|
||||
goto :eof
|
||||
)
|
||||
|
||||
echo Done! Model %model% saved in %models_path%\models\ggml-%model%.bin
|
||||
echo You can now use it like this:
|
||||
echo main.exe -m %models_path%\models\ggml-%model%.bin -f %models_path%\samples\jfk.wav
|
||||
|
||||
goto :eof
|
||||
|
||||
:list_models
|
||||
echo.
|
||||
echo Available models:
|
||||
(for %%a in (%models%) do (
|
||||
echo %%a
|
||||
))
|
||||
echo.
|
||||
exit /b
|
500
whisper.cpp
500
whisper.cpp
@ -133,11 +133,19 @@ static const std::map<std::string, std::pair<int, std::string>> g_lang = {
|
||||
static const size_t MB = 1024*1024;
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_MODEL = {
|
||||
{ MODEL_TINY, 86ull*MB },
|
||||
{ MODEL_BASE, 165ull*MB },
|
||||
{ MODEL_SMALL, 540ull*MB },
|
||||
{ MODEL_MEDIUM, 1650ull*MB },
|
||||
{ MODEL_LARGE, 3260ull*MB },
|
||||
{ MODEL_TINY, 74ull*MB },
|
||||
{ MODEL_BASE, 142ull*MB },
|
||||
{ MODEL_SMALL, 466ull*MB },
|
||||
{ MODEL_MEDIUM, 1464ull*MB },
|
||||
{ MODEL_LARGE, 2952ull*MB },
|
||||
};
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_MEMORY = {
|
||||
{ MODEL_TINY, 12ull*MB },
|
||||
{ MODEL_BASE, 24ull*MB },
|
||||
{ MODEL_SMALL, 70ull*MB },
|
||||
{ MODEL_MEDIUM, 184ull*MB },
|
||||
{ MODEL_LARGE, 306ull*MB },
|
||||
};
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
|
||||
@ -410,6 +418,12 @@ struct whisper_context {
|
||||
std::vector<whisper_segment> result_all;
|
||||
|
||||
std::vector<whisper_token> prompt_past;
|
||||
|
||||
// [EXPERIMENTAL] token-level timestamps data
|
||||
int64_t t_beg;
|
||||
int64_t t_last;
|
||||
whisper_token tid_last;
|
||||
std::vector<float> energy; // PCM signal energy
|
||||
};
|
||||
|
||||
// load the model from a ggml file
|
||||
@ -423,7 +437,7 @@ struct whisper_context {
|
||||
//
|
||||
// see the convert-pt-to-ggml.py script for details
|
||||
//
|
||||
bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
static bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
auto & model = wctx.model;
|
||||
@ -498,7 +512,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
|
||||
wctx.buf_model = new std::vector<uint8_t>();
|
||||
wctx.buf_model->resize(MEM_REQ_MODEL.at(model.type));
|
||||
wctx.buf_memory.resize(std::max(MEM_REQ_MODEL.at(model.type), MEM_REQ_MODEL.at(model.type))); // TODO: TMP !!!
|
||||
wctx.buf_memory.resize(MEM_REQ_MEMORY.at(model.type));
|
||||
wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
|
||||
wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
|
||||
|
||||
@ -722,20 +736,6 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
}
|
||||
}
|
||||
|
||||
// create the ggml memory context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = wctx.buf_memory.size(),
|
||||
.mem_buffer = wctx.buf_memory.data(),
|
||||
};
|
||||
|
||||
model.ctx_mem = ggml_init(params);
|
||||
if (!model.ctx_mem) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
auto & ctx = model.ctx;
|
||||
@ -788,10 +788,10 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
|
||||
layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state);
|
||||
layer.mlp_0_w = ggml_new_tensor_2d_mtl(ctx, wtype, n_audio_state, 4*n_audio_state); // offload to GPU
|
||||
layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state);
|
||||
|
||||
layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state);
|
||||
layer.mlp_1_w = ggml_new_tensor_2d_mtl(ctx, wtype, 4*n_audio_state, n_audio_state); // offload to GPU
|
||||
layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
|
||||
layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state);
|
||||
@ -932,6 +932,20 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
}
|
||||
}
|
||||
|
||||
// create the ggml memory context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = wctx.buf_memory.size(),
|
||||
.mem_buffer = wctx.buf_memory.data(),
|
||||
};
|
||||
|
||||
model.ctx_mem = ggml_init(params);
|
||||
if (!model.ctx_mem) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// key + value memory
|
||||
{
|
||||
auto & ctx = model.ctx_mem;
|
||||
@ -1054,7 +1068,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
// - n_threads: number of threads to use
|
||||
// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
|
||||
//
|
||||
bool whisper_encode(
|
||||
static bool whisper_encode(
|
||||
whisper_context & wctx,
|
||||
const int n_threads,
|
||||
const int mel_offset) {
|
||||
@ -1328,7 +1342,7 @@ bool whisper_encode(
|
||||
ggml_build_forward_expand(&gf, inpO);
|
||||
ggml_graph_compute (ctxL, &gf);
|
||||
|
||||
//ggml_graph_print(&gf);
|
||||
ggml_graph_print(&gf);
|
||||
}
|
||||
|
||||
// TODO: this is a hack to have per-layer computation graphs - need to come up with something better
|
||||
@ -1440,7 +1454,7 @@ bool whisper_encode(
|
||||
// - n_tokens: number of tokens in the prompt
|
||||
// - n_past: number of past tokens to prefix the prompt with
|
||||
//
|
||||
bool whisper_decode(
|
||||
static bool whisper_decode(
|
||||
whisper_context & wctx,
|
||||
const int n_threads,
|
||||
const whisper_token * tokens,
|
||||
@ -1803,10 +1817,12 @@ bool whisper_decode(
|
||||
}
|
||||
|
||||
// the most basic sampling scheme - select the top token
|
||||
whisper_token_data whisper_sample_best(
|
||||
static whisper_token_data whisper_sample_best(
|
||||
const whisper_vocab & vocab,
|
||||
const float * probs) {
|
||||
whisper_token_data result;
|
||||
whisper_token_data result = {
|
||||
0, 0, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f,
|
||||
};
|
||||
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
@ -1879,7 +1895,7 @@ whisper_token_data whisper_sample_best(
|
||||
}
|
||||
|
||||
// samples only from the timestamps tokens
|
||||
whisper_vocab::id whisper_sample_timestamp(
|
||||
static whisper_vocab::id whisper_sample_timestamp(
|
||||
const whisper_vocab & vocab,
|
||||
const float * probs) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
@ -1931,7 +1947,7 @@ static std::string to_timestamp(int64_t t, bool comma = false) {
|
||||
// naive Discrete Fourier Transform
|
||||
// input is real-valued
|
||||
// output is complex-valued
|
||||
void dft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
static void dft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
int N = in.size();
|
||||
|
||||
out.resize(N*2);
|
||||
@ -1955,7 +1971,7 @@ void dft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
// poor man's implementation - use something better
|
||||
// input is real-valued
|
||||
// output is complex-valued
|
||||
void fft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
static void fft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
out.resize(in.size()*2);
|
||||
|
||||
int N = in.size();
|
||||
@ -2006,7 +2022,7 @@ void fft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
}
|
||||
|
||||
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
|
||||
bool log_mel_spectrogram(
|
||||
static bool log_mel_spectrogram(
|
||||
const float * samples,
|
||||
const int n_samples,
|
||||
const int sample_rate,
|
||||
@ -2323,6 +2339,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.n_max_text_ctx =*/ 16384,
|
||||
/*.offset_ms =*/ 0,
|
||||
/*.duration_ms =*/ 0,
|
||||
|
||||
/*.translate =*/ false,
|
||||
/*.no_context =*/ false,
|
||||
@ -2331,6 +2348,11 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
/*.print_realtime =*/ false,
|
||||
/*.print_timestamps =*/ true,
|
||||
|
||||
/*.token_timestamps =*/ false,
|
||||
/*.thold_pt =*/ 0.01f,
|
||||
/*.thold_ptsum =*/ 0.01f,
|
||||
/*.max_len =*/ 0,
|
||||
|
||||
/*.language =*/ "en",
|
||||
|
||||
/*.greedy =*/ {
|
||||
@ -2355,6 +2377,7 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.n_max_text_ctx =*/ 16384,
|
||||
/*.offset_ms =*/ 0,
|
||||
/*.duration_ms =*/ 0,
|
||||
|
||||
/*.translate =*/ false,
|
||||
/*.no_context =*/ false,
|
||||
@ -2363,6 +2386,11 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
/*.print_realtime =*/ false,
|
||||
/*.print_timestamps =*/ true,
|
||||
|
||||
/*.token_timestamps =*/ false,
|
||||
/*.thold_pt =*/ 0.01f,
|
||||
/*.thold_ptsum =*/ 0.01f,
|
||||
/*.max_len =*/ 0,
|
||||
|
||||
/*.language =*/ "en",
|
||||
|
||||
/*.greedy =*/ {
|
||||
@ -2384,6 +2412,68 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
return result;
|
||||
}
|
||||
|
||||
// forward declarations
|
||||
static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window);
|
||||
static void whisper_exp_compute_token_level_timestamps(
|
||||
struct whisper_context * ctx,
|
||||
int i_segment,
|
||||
float thold_pt,
|
||||
float thold_ptsum);
|
||||
|
||||
// wrap the last segment to max_len characters
|
||||
// returns the number of new segments
|
||||
static int whisper_wrap_segment(struct whisper_context * ctx, int max_len) {
|
||||
auto segment = ctx->result_all.back();
|
||||
|
||||
int res = 1;
|
||||
int acc = 0;
|
||||
|
||||
std::string text;
|
||||
|
||||
for (int i = 0; i < (int) segment.tokens.size(); i++) {
|
||||
const auto & token = segment.tokens[i];
|
||||
if (token.id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto txt = whisper_token_to_str(ctx, token.id);
|
||||
|
||||
const int cur = strlen(txt);
|
||||
|
||||
if (acc + cur > max_len && i > 0) {
|
||||
// split here
|
||||
ctx->result_all.back().text = std::move(text);
|
||||
ctx->result_all.back().t1 = token.t0;
|
||||
ctx->result_all.back().tokens.resize(i);
|
||||
|
||||
ctx->result_all.push_back({});
|
||||
ctx->result_all.back().t0 = token.t0;
|
||||
ctx->result_all.back().t1 = segment.t1;
|
||||
|
||||
// add tokens [i, end] to the new segment
|
||||
ctx->result_all.back().tokens.insert(
|
||||
ctx->result_all.back().tokens.end(),
|
||||
segment.tokens.begin() + i,
|
||||
segment.tokens.end());
|
||||
|
||||
acc = 0;
|
||||
text = "";
|
||||
|
||||
segment = ctx->result_all.back();
|
||||
i = -1;
|
||||
|
||||
res++;
|
||||
} else {
|
||||
acc += cur;
|
||||
text += txt;
|
||||
}
|
||||
}
|
||||
|
||||
ctx->result_all.back().text = std::move(text);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
int whisper_full(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_full_params params,
|
||||
@ -2400,12 +2490,20 @@ int whisper_full(
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (params.token_timestamps) {
|
||||
ctx->t_beg = 0;
|
||||
ctx->t_last = 0;
|
||||
ctx->tid_last = 0;
|
||||
ctx->energy = get_signal_energy(samples, n_samples, 32);
|
||||
}
|
||||
|
||||
const int seek_start = params.offset_ms/10;
|
||||
const int seek_end = seek_start + (params.duration_ms == 0 ? whisper_n_len(ctx) : params.duration_ms/10);
|
||||
|
||||
// if length of spectrogram is less than 1s (100 samples), then return
|
||||
// basically don't process anything that is less than 1s
|
||||
// see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39
|
||||
if (whisper_n_len(ctx) < 100 + seek_start) {
|
||||
if (seek_end < 100 + seek_start) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -2438,7 +2536,7 @@ int whisper_full(
|
||||
// main loop
|
||||
int seek = seek_start;
|
||||
while (true) {
|
||||
int progress_cur = (100*seek)/whisper_n_len(ctx);
|
||||
const int progress_cur = (100*(seek - seek_start))/(seek_end - seek_start);
|
||||
while (progress_cur >= progress_prev + progress_step) {
|
||||
progress_prev += progress_step;
|
||||
if (params.print_progress) {
|
||||
@ -2446,7 +2544,7 @@ int whisper_full(
|
||||
}
|
||||
}
|
||||
|
||||
if (seek + 100 >= whisper_n_len(ctx)) {
|
||||
if (seek + 100 >= seek_end) {
|
||||
break;
|
||||
}
|
||||
|
||||
@ -2527,7 +2625,7 @@ int whisper_full(
|
||||
// end of text token
|
||||
if (token.id == whisper_token_eot(ctx)) {
|
||||
if (result_len == 0) {
|
||||
if (seek + seek_delta + 100 >= whisper_n_len(ctx)) {
|
||||
if (seek + seek_delta + 100 >= seek_end) {
|
||||
result_len = i + 1;
|
||||
} else {
|
||||
// TODO: figure out how to resolve this
|
||||
@ -2549,6 +2647,7 @@ int whisper_full(
|
||||
}
|
||||
}
|
||||
|
||||
// shrink down to result_len
|
||||
tokens_cur.resize(result_len);
|
||||
|
||||
for (const auto & r : tokens_cur) {
|
||||
@ -2587,8 +2686,19 @@ int whisper_full(
|
||||
for (int j = i0; j <= i; j++) {
|
||||
result_all.back().tokens.push_back(tokens_cur[j]);
|
||||
}
|
||||
|
||||
int n_new = 1;
|
||||
|
||||
if (params.token_timestamps) {
|
||||
whisper_exp_compute_token_level_timestamps(
|
||||
ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
|
||||
|
||||
if (params.max_len > 0) {
|
||||
n_new = whisper_wrap_segment(ctx, params.max_len);
|
||||
}
|
||||
}
|
||||
if (params.new_segment_callback) {
|
||||
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
|
||||
params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data);
|
||||
}
|
||||
}
|
||||
text = "";
|
||||
@ -2617,8 +2727,19 @@ int whisper_full(
|
||||
for (int j = i0; j < (int) tokens_cur.size(); j++) {
|
||||
result_all.back().tokens.push_back(tokens_cur[j]);
|
||||
}
|
||||
|
||||
int n_new = 1;
|
||||
|
||||
if (params.token_timestamps) {
|
||||
whisper_exp_compute_token_level_timestamps(
|
||||
ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
|
||||
|
||||
if (params.max_len > 0) {
|
||||
n_new = whisper_wrap_segment(ctx, params.max_len);
|
||||
}
|
||||
}
|
||||
if (params.new_segment_callback) {
|
||||
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
|
||||
params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -2752,7 +2873,7 @@ int whisper_full_parallel(
|
||||
|
||||
// call the new_segment_callback for each segment
|
||||
if (params.new_segment_callback) {
|
||||
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
|
||||
params.new_segment_callback(ctx, 1, params.new_segment_callback_user_data);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2828,3 +2949,304 @@ const char * whisper_print_system_info() {
|
||||
|
||||
return s.c_str();
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
//
|
||||
// Experimental stuff below
|
||||
//
|
||||
// Not sure if these should be part of the library at all, because the quality of the results is not
|
||||
// guaranteed. Might get removed at some point unless a robust algorithm implementation is found
|
||||
//
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
//
|
||||
// token-level timestamps
|
||||
//
|
||||
|
||||
static int timestamp_to_sample(int64_t t, int n_samples) {
|
||||
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
|
||||
}
|
||||
|
||||
static int64_t sample_to_timestamp(int i_sample) {
|
||||
return (100*i_sample)/WHISPER_SAMPLE_RATE;
|
||||
}
|
||||
|
||||
// a cost-function / heuristic that is high for text that takes longer to pronounce
|
||||
// obviously, can be improved
|
||||
static float voice_length(const std::string & text) {
|
||||
float res = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < text.size(); ++i) {
|
||||
if (text[i] == ' ') {
|
||||
res += 0.01f;
|
||||
} else if (text[i] == ',') {
|
||||
res += 2.00f;
|
||||
} else if (text[i] == '.') {
|
||||
res += 3.00f;
|
||||
} else if (text[i] == '!') {
|
||||
res += 3.00f;
|
||||
} else if (text[i] == '?') {
|
||||
res += 3.00f;
|
||||
} else if (text[i] >= '0' && text[i] <= '9') {
|
||||
res += 3.00f;
|
||||
} else {
|
||||
res += 1.00f;
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// average the fabs of the signal
|
||||
static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window) {
|
||||
const int hw = n_samples_per_half_window;
|
||||
|
||||
std::vector<float> result(n_samples);
|
||||
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
float sum = 0;
|
||||
for (int j = -hw; j <= hw; j++) {
|
||||
if (i + j >= 0 && i + j < n_samples) {
|
||||
sum += fabs(signal[i + j]);
|
||||
}
|
||||
}
|
||||
result[i] = sum/(2*hw + 1);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void whisper_exp_compute_token_level_timestamps(
|
||||
struct whisper_context * ctx,
|
||||
int i_segment,
|
||||
float thold_pt,
|
||||
float thold_ptsum) {
|
||||
auto & segment = ctx->result_all[i_segment];
|
||||
auto & tokens = segment.tokens;
|
||||
|
||||
const int n_samples = ctx->energy.size();
|
||||
|
||||
if (n_samples == 0) {
|
||||
fprintf(stderr, "%s: no signal data available\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t t0 = segment.t0;
|
||||
const int64_t t1 = segment.t1;
|
||||
|
||||
const int s0 = timestamp_to_sample(t0, n_samples);
|
||||
const int s1 = timestamp_to_sample(t1, n_samples);
|
||||
|
||||
const int n = tokens.size();
|
||||
|
||||
if (n == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (n == 1) {
|
||||
tokens[0].t0 = t0;
|
||||
tokens[0].t1 = t1;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
auto & t_beg = ctx->t_beg;
|
||||
auto & t_last = ctx->t_last;
|
||||
auto & tid_last = ctx->tid_last;
|
||||
|
||||
for (int j = 0; j < n; ++j) {
|
||||
auto & token = tokens[j];
|
||||
|
||||
if (j == 0) {
|
||||
if (token.id == whisper_token_beg(ctx)) {
|
||||
tokens[j ].t0 = t0;
|
||||
tokens[j ].t1 = t0;
|
||||
tokens[j + 1].t0 = t0;
|
||||
|
||||
t_beg = t0;
|
||||
t_last = t0;
|
||||
tid_last = whisper_token_beg(ctx);
|
||||
} else {
|
||||
tokens[j ].t0 = t_last;
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(ctx));
|
||||
|
||||
tokens[j].id = token.id;
|
||||
tokens[j].tid = token.tid;
|
||||
tokens[j].p = token.p;
|
||||
tokens[j].pt = token.pt;
|
||||
tokens[j].ptsum = token.ptsum;
|
||||
|
||||
tokens[j].vlen = voice_length(whisper_token_to_str(ctx, token.id));
|
||||
|
||||
if (token.pt > thold_pt && token.ptsum > thold_ptsum && token.tid > tid_last && tt <= t1) {
|
||||
if (j > 0) {
|
||||
tokens[j - 1].t1 = tt;
|
||||
}
|
||||
tokens[j].t0 = tt;
|
||||
tid_last = token.tid;
|
||||
}
|
||||
}
|
||||
|
||||
tokens[n - 2].t1 = t1;
|
||||
tokens[n - 1].t0 = t1;
|
||||
tokens[n - 1].t1 = t1;
|
||||
|
||||
t_last = t1;
|
||||
|
||||
// find intervals of tokens with unknown timestamps
|
||||
// fill the timestamps by proportionally splitting the interval based on the token voice lengths
|
||||
{
|
||||
int p0 = 0;
|
||||
int p1 = 0;
|
||||
|
||||
while (true) {
|
||||
while (p1 < n && tokens[p1].t1 < 0) {
|
||||
p1++;
|
||||
}
|
||||
|
||||
if (p1 >= n) {
|
||||
p1--;
|
||||
}
|
||||
|
||||
if (p1 > p0) {
|
||||
double psum = 0.0;
|
||||
for (int j = p0; j <= p1; j++) {
|
||||
psum += tokens[j].vlen;
|
||||
}
|
||||
|
||||
//printf("analyzing %d - %d, psum = %f\n", p0, p1, psum);
|
||||
|
||||
const double dt = tokens[p1].t1 - tokens[p0].t0;
|
||||
|
||||
// split the time proportionally to the voice length
|
||||
for (int j = p0 + 1; j <= p1; j++) {
|
||||
const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum;
|
||||
|
||||
tokens[j - 1].t1 = ct;
|
||||
tokens[j ].t0 = ct;
|
||||
}
|
||||
}
|
||||
|
||||
p1++;
|
||||
p0 = p1;
|
||||
if (p1 >= n) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// fix up (just in case)
|
||||
for (int j = 0; j < n - 1; j++) {
|
||||
if (tokens[j].t1 < 0) {
|
||||
tokens[j + 1].t0 = tokens[j].t1;
|
||||
}
|
||||
|
||||
if (j > 0) {
|
||||
if (tokens[j - 1].t1 > tokens[j].t0) {
|
||||
tokens[j].t0 = tokens[j - 1].t1;
|
||||
tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// VAD
|
||||
// expand or contract tokens based on voice activity
|
||||
{
|
||||
const int hw = WHISPER_SAMPLE_RATE/8;
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (tokens[j].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int s0 = timestamp_to_sample(tokens[j].t0, n_samples);
|
||||
int s1 = timestamp_to_sample(tokens[j].t1, n_samples);
|
||||
|
||||
const int ss0 = std::max(s0 - hw, 0);
|
||||
const int ss1 = std::min(s1 + hw, n_samples);
|
||||
|
||||
const int ns = ss1 - ss0;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int k = ss0; k < ss1; k++) {
|
||||
sum += ctx->energy[k];
|
||||
}
|
||||
|
||||
const float thold = 0.5*sum/ns;
|
||||
|
||||
{
|
||||
int k = s0;
|
||||
if (ctx->energy[k] > thold && j > 0) {
|
||||
while (k > 0 && ctx->energy[k] > thold) {
|
||||
k--;
|
||||
}
|
||||
tokens[j].t0 = sample_to_timestamp(k);
|
||||
if (tokens[j].t0 < tokens[j - 1].t1) {
|
||||
tokens[j].t0 = tokens[j - 1].t1;
|
||||
} else {
|
||||
s0 = k;
|
||||
}
|
||||
} else {
|
||||
while (ctx->energy[k] < thold && k < s1) {
|
||||
k++;
|
||||
}
|
||||
s0 = k;
|
||||
tokens[j].t0 = sample_to_timestamp(k);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int k = s1;
|
||||
if (ctx->energy[k] > thold) {
|
||||
while (k < n_samples - 1 && ctx->energy[k] > thold) {
|
||||
k++;
|
||||
}
|
||||
tokens[j].t1 = sample_to_timestamp(k);
|
||||
if (j < ns - 1 && tokens[j].t1 > tokens[j + 1].t0) {
|
||||
tokens[j].t1 = tokens[j + 1].t0;
|
||||
} else {
|
||||
s1 = k;
|
||||
}
|
||||
} else {
|
||||
while (ctx->energy[k] < thold && k > s0) {
|
||||
k--;
|
||||
}
|
||||
s1 = k;
|
||||
tokens[j].t1 = sample_to_timestamp(k);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// fixed token expand (optional)
|
||||
//{
|
||||
// const int t_expand = 0;
|
||||
|
||||
// for (int j = 0; j < n; j++) {
|
||||
// if (j > 0) {
|
||||
// tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand));
|
||||
// }
|
||||
// if (j < n - 1) {
|
||||
// tokens[j].t1 = tokens[j].t1 + t_expand;
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
// debug info
|
||||
//for (int j = 0; j < n; ++j) {
|
||||
// const auto & token = tokens[j];
|
||||
// const auto tt = token.pt > thold_pt && token.ptsum > 0.01 ? whisper_token_to_str(ctx, token.tid) : "[?]";
|
||||
// printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__,
|
||||
// tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, whisper_token_to_str(ctx, token.id));
|
||||
|
||||
// if (tokens[j].id >= whisper_token_eot(ctx)) {
|
||||
// continue;
|
||||
// }
|
||||
//}
|
||||
}
|
||||
|
26
whisper.h
26
whisper.h
@ -68,14 +68,21 @@ extern "C" {
|
||||
|
||||
typedef int whisper_token;
|
||||
|
||||
struct whisper_token_data {
|
||||
typedef struct whisper_token_data {
|
||||
whisper_token id; // token id
|
||||
whisper_token tid; // forced timestamp token id
|
||||
|
||||
float p; // probability of the token
|
||||
float pt; // probability of the timestamp token
|
||||
float ptsum; // sum of probabilities of all timestamp tokens
|
||||
};
|
||||
|
||||
// token-level timestamp data
|
||||
// do not use if you haven't computed token-level timestamps
|
||||
int64_t t0; // start time of the token
|
||||
int64_t t1; // end time of the token
|
||||
|
||||
float vlen; // voice length of the token
|
||||
} whisper_token_data;
|
||||
|
||||
// Allocates all memory needed for the model and loads the model from the given file.
|
||||
// Returns NULL on failure.
|
||||
@ -129,7 +136,7 @@ extern "C" {
|
||||
// You can also implement your own sampling method using the whisper_get_probs() function.
|
||||
// whisper_sample_best() returns the token with the highest probability
|
||||
// whisper_sample_timestamp() returns the most probable timestamp token
|
||||
WHISPER_API struct whisper_token_data whisper_sample_best(struct whisper_context * ctx);
|
||||
WHISPER_API whisper_token_data whisper_sample_best(struct whisper_context * ctx);
|
||||
WHISPER_API whisper_token whisper_sample_timestamp(struct whisper_context * ctx);
|
||||
|
||||
// Return the id of the specified language, returns -1 if not found
|
||||
@ -172,14 +179,15 @@ extern "C" {
|
||||
// Text segment callback
|
||||
// Called on every newly generated text segment
|
||||
// Use the whisper_full_...() functions to obtain the text segments
|
||||
typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, void * user_data);
|
||||
typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, int n_new, void * user_data);
|
||||
|
||||
struct whisper_full_params {
|
||||
enum whisper_sampling_strategy strategy;
|
||||
|
||||
int n_threads;
|
||||
int n_max_text_ctx;
|
||||
int offset_ms;
|
||||
int offset_ms; // start offset in ms
|
||||
int duration_ms; // audio duration to process in ms
|
||||
|
||||
bool translate;
|
||||
bool no_context;
|
||||
@ -188,6 +196,12 @@ extern "C" {
|
||||
bool print_realtime;
|
||||
bool print_timestamps;
|
||||
|
||||
// [EXPERIMENTAL] token-level timestamps
|
||||
bool token_timestamps; // enable token-level timestamps
|
||||
float thold_pt; // timestamp token probability threshold (~0.01)
|
||||
float thold_ptsum; // timestamp token sum probability threshold (~0.01)
|
||||
int max_len; // max segment length in characters
|
||||
|
||||
const char * language;
|
||||
|
||||
struct {
|
||||
@ -244,7 +258,7 @@ extern "C" {
|
||||
|
||||
// Get token data for the specified token in the specified segment.
|
||||
// This contains probabilities, timestamps, etc.
|
||||
WHISPER_API struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
WHISPER_API whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
|
||||
// Get the probability of the specified token in the specified segment.
|
||||
WHISPER_API float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
|
Reference in New Issue
Block a user