mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-07-01 23:10:47 +02:00
Compare commits
43 Commits
Author | SHA1 | Date | |
---|---|---|---|
0a2621b637 | |||
1b7a7df793 | |||
4af1689ee5 | |||
b10d75199e | |||
ea3344eb8f | |||
83c742f1a7 | |||
41b48ab7f1 | |||
a728be9cdb | |||
46a68fb9b5 | |||
ccd56a9c5b | |||
3500ce8727 | |||
7519eabf65 | |||
b21213c23e | |||
9e700e1821 | |||
0bfe728b84 | |||
4e5674a5d5 | |||
4c66b6a828 | |||
c30bffc8a5 | |||
8fdfb0ba92 | |||
c71363f14c | |||
a09e9123ca | |||
d42cf6d0df | |||
ef47d77492 | |||
75171c2b79 | |||
a2eeb941f6 | |||
0e689f83d8 | |||
d5afebd37c | |||
4b1c32e8ea | |||
b5dde365e9 | |||
02dfd5b8c3 | |||
c63ce24834 | |||
137321915f | |||
24cd12f647 | |||
e46bc56e71 | |||
6fb98370ba | |||
0729da9a3b | |||
5dc74e3aff | |||
ac8ef34039 | |||
b26345cc7b | |||
8dac3c6e10 | |||
6417e59aad | |||
dc12994603 | |||
b0f2aa0ea6 |
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
[submodule "bindings/ios"]
|
||||
path = bindings/ios
|
||||
url = https://github.com/ggerganov/whisper.spm
|
@ -9,6 +9,11 @@ if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
|
||||
set(WHISPER_STANDALONE ON)
|
||||
include(cmake/GitVars.cmake)
|
||||
include(cmake/BuildTypes.cmake)
|
||||
|
||||
# configure project version
|
||||
if (EXISTS "${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl")
|
||||
configure_file(${CMAKE_SOURCE_DIR}/bindings/ios/Makefile-tmpl ${CMAKE_SOURCE_DIR}/bindings/ios/Makefile @ONLY)
|
||||
endif()
|
||||
else()
|
||||
set(WHISPER_STANDALONE OFF)
|
||||
endif()
|
||||
@ -43,11 +48,13 @@ option(WHISPER_SUPPORT_SDL2 "whisper: support for libSDL2" OFF)
|
||||
|
||||
if (APPLE)
|
||||
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
|
||||
option(WHISPER_NO_AVX "whisper: disable AVX" OFF)
|
||||
option(WHISPER_NO_AVX2 "whisper: disable AVX2" OFF)
|
||||
else()
|
||||
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
|
||||
endif()
|
||||
|
||||
option(WHISPER_PERF "whisper: enable perf timings" OFF)
|
||||
option(WHISPER_PERF "whisper: enable perf timings" OFF)
|
||||
|
||||
# sanitizers
|
||||
|
||||
@ -138,19 +145,29 @@ if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES
|
||||
else()
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} /arch:AVX2")
|
||||
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /arch:AVX2")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /arch:AVX2")
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /arch:AVX2")
|
||||
else()
|
||||
if (EMSCRIPTEN)
|
||||
# we require support for WASM SIMD 128-bit
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -pthread -msimd128")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -pthread")
|
||||
else()
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx -mavx2 -mfma -mf16c")
|
||||
if(NOT WHISPER_NO_AVX)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx")
|
||||
endif()
|
||||
if(NOT WHISPER_NO_AVX2)
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mavx2")
|
||||
endif()
|
||||
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mfma -mf16c")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (WHISPER_PERF)
|
||||
set(WHISPER_EXTRA_FLAGS ${WHISPER_EXTRA_FLAGS} -DGGML_PERF)
|
||||
endif()
|
||||
|
||||
#
|
||||
# whisper - this is the main library of the project
|
||||
#
|
||||
|
53
Makefile
53
Makefile
@ -1,6 +1,14 @@
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
|
||||
ifndef UNAME_P
|
||||
UNAME_P := $(shell uname -p)
|
||||
endif
|
||||
|
||||
ifndef UNAME_M
|
||||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||
@ -8,8 +16,8 @@ ifeq ($(UNAME_S),Darwin)
|
||||
ifneq ($(UNAME_P),arm)
|
||||
SYSCTL_M := $(shell sysctl -n hw.optional.arm64)
|
||||
ifeq ($(SYSCTL_M),1)
|
||||
UNAME_P := arm
|
||||
UNAME_M := arm64
|
||||
# UNAME_P := arm
|
||||
# UNAME_M := arm64
|
||||
warn := $(warning Your arch is announced as x86_64, but it seems to actually be ARM64. Not fixing that can lead to bad performance. For more info see: https://github.com/ggerganov/whisper.cpp/issues/66\#issuecomment-1282546789)
|
||||
endif
|
||||
endif
|
||||
@ -42,12 +50,24 @@ endif
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
ifeq ($(UNAME_M),x86_64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
CFLAGS += -mfma -mf16c
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
AVX1_M := $(shell sysctl machdep.cpu.features)
|
||||
ifneq (,$(findstring AVX1.0,$(AVX1_M)))
|
||||
CFLAGS += -mavx
|
||||
endif
|
||||
AVX2_M := $(shell sysctl machdep.cpu.leaf7_features)
|
||||
ifneq (,$(findstring AVX2,$(AVX2_M)))
|
||||
CFLAGS += -mavx2
|
||||
endif
|
||||
else
|
||||
CFLAGS += -mavx -mavx2
|
||||
endif
|
||||
endif
|
||||
ifeq ($(UNAME_M),amd64)
|
||||
CFLAGS += -mavx -mavx2 -mfma -mf16c
|
||||
endif
|
||||
ifneq ($(filter arm%,$(UNAME_M)),)
|
||||
ifndef WHISPER_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_ACCELERATE
|
||||
@ -69,25 +89,26 @@ ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
#
|
||||
# Build library + main
|
||||
#
|
||||
default: main
|
||||
|
||||
main: examples/main/main.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp whisper.o ggml.o -o main $(LDFLAGS)
|
||||
./main -h
|
||||
#
|
||||
# Build library
|
||||
#
|
||||
|
||||
ggml.o: ggml.c ggml.h
|
||||
$(CC) $(CFLAGS) -c ggml.c
|
||||
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
|
||||
|
||||
whisper.o: whisper.cpp whisper.h
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp
|
||||
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
|
||||
|
||||
libwhisper.a: ggml.o whisper.o
|
||||
ar rcs libwhisper.a ggml.o whisper.o
|
||||
$(AR) rcs libwhisper.a ggml.o whisper.o
|
||||
|
||||
libwhisper.so: ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f *.o main stream bench libwhisper.a
|
||||
rm -f *.o main stream bench libwhisper.a libwhisper.so
|
||||
|
||||
#
|
||||
# Examples
|
||||
@ -95,6 +116,10 @@ clean:
|
||||
|
||||
CC_SDL=`sdl2-config --cflags --libs`
|
||||
|
||||
main: examples/main/main.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o whisper.o -o main $(LDFLAGS)
|
||||
./main -h
|
||||
|
||||
stream: examples/stream/stream.cpp ggml.o whisper.o
|
||||
$(CXX) $(CXXFLAGS) examples/stream/stream.cpp ggml.o whisper.o -o stream $(CC_SDL) $(LDFLAGS)
|
||||
|
||||
|
190
README.md
190
README.md
@ -26,14 +26,41 @@ Supported platforms:
|
||||
|
||||
The entire implementation of the model is contained in 2 source files:
|
||||
|
||||
- [ggml.h](ggml.h) / [ggml.c](ggml.c)
|
||||
- [whisper.h](whisper.h) / [whisper.cpp](whisper.cpp)
|
||||
- Tensor operations: [ggml.h](ggml.h) / [ggml.c](ggml.c)
|
||||
- Transformer inference: [whisper.h](whisper.h) / [whisper.cpp](whisper.cpp)
|
||||
|
||||
Having such a lightweight implementation of the model allows to easily integrate it in different platforms and applications.
|
||||
As an example, here is a video of running the model on an iPhone 13 device - fully offline, on-device:
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/197385372-962a6dea-bca1-4d50-bf96-1d8c27b98c81.mp4
|
||||
|
||||
## Implementation details
|
||||
|
||||
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
|
||||
- The transformer model and the high-level C-style API are implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
|
||||
- Sample usage is demonstrated in [main.cpp](examples/main)
|
||||
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
|
||||
- Various other examples are available in the [examples](examples) folder
|
||||
|
||||
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
|
||||
instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
|
||||
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
||||
|
||||
## Limitations
|
||||
|
||||
- Inference only
|
||||
- No GPU support
|
||||
- Very basic greedy sampling scheme - always pick up the token with highest probability.
|
||||
This should be similar to the [GreedyDecoder](https://github.com/openai/whisper/blob/main/whisper/decoding.py#L249-L274)
|
||||
from the original python implementation, so in order to make a fair comparison between the 2 implementations, make sure
|
||||
to run the python code with the following parameters:
|
||||
|
||||
```
|
||||
whisper --best_of None --beam_size None ...
|
||||
```
|
||||
|
||||
In the future, `whisper.cpp` will support more sampling strategies.
|
||||
|
||||
## Quick start
|
||||
|
||||
First, download one of the Whisper models converted in [ggml format](models). For example:
|
||||
@ -59,8 +86,8 @@ For a quick demo, simply run `make base.en`:
|
||||
```java
|
||||
$ make base.en
|
||||
|
||||
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp
|
||||
cc -I. -O3 -std=c11 -pthread -DGGML_USE_ACCELERATE -c ggml.c -o ggml.o
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread -c whisper.cpp -o whisper.o
|
||||
c++ -I. -I./examples -O3 -std=c++11 -pthread examples/main/main.cpp whisper.o ggml.o -o main -framework Accelerate
|
||||
./main -h
|
||||
|
||||
@ -70,13 +97,18 @@ options:
|
||||
-h, --help show this help message and exit
|
||||
-s SEED, --seed SEED RNG seed (default: -1)
|
||||
-t N, --threads N number of threads to use during computation (default: 4)
|
||||
-p N, --processors N number of processors to use during computation (default: 1)
|
||||
-ot N, --offset-t N time offset in milliseconds (default: 0)
|
||||
-on N, --offset-n N segment index offset (default: 0)
|
||||
-mc N, --max-context N maximum number of text context tokens to store (default: max)
|
||||
-ml N, --max-len N maximum segment length in characters (default: 0)
|
||||
-wt N, --word-thold N word timestamp probability threshold (default: 0.010000)
|
||||
-v, --verbose verbose output
|
||||
--translate translate from source language to english
|
||||
-otxt, --output-txt output result in a text file
|
||||
-ovtt, --output-vtt output result in a vtt file
|
||||
-osrt, --output-srt output result in a srt file
|
||||
-owts, --output-words output script for generating karaoke video
|
||||
-ps, --print_special print special tokens
|
||||
-pc, --print_colors print colors
|
||||
-nt, --no_timestamps do not print timestamps
|
||||
@ -86,7 +118,7 @@ options:
|
||||
|
||||
bash ./models/download-ggml-model.sh base.en
|
||||
Downloading ggml model base.en ...
|
||||
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
|
||||
ggml-base.en.bin 100%[========================>] 141.11M 6.34MB/s in 24s
|
||||
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
|
||||
You can now use it like this:
|
||||
|
||||
@ -114,23 +146,26 @@ whisper_model_load: n_text_layer = 6
|
||||
whisper_model_load: n_mels = 80
|
||||
whisper_model_load: f16 = 1
|
||||
whisper_model_load: type = 2
|
||||
whisper_model_load: mem_required = 505.00 MB
|
||||
whisper_model_load: mem_required = 670.00 MB
|
||||
whisper_model_load: adding 1607 extra tokens
|
||||
whisper_model_load: ggml ctx size = 163.43 MB
|
||||
whisper_model_load: ggml ctx size = 140.60 MB
|
||||
whisper_model_load: memory size = 22.83 MB
|
||||
whisper_model_load: model size = 140.54 MB
|
||||
|
||||
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, lang = en, task = transcribe, timestamps = 1 ...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
[00:00.000 --> 00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
main: processing 'samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
|
||||
whisper_print_timings: load time = 87.21 ms
|
||||
whisper_print_timings: mel time = 24.26 ms
|
||||
whisper_print_timings: sample time = 3.87 ms
|
||||
whisper_print_timings: encode time = 323.67 ms / 53.94 ms per layer
|
||||
whisper_print_timings: decode time = 83.25 ms / 13.87 ms per layer
|
||||
whisper_print_timings: total time = 522.66 ms
|
||||
[00:00:00.000 --> 00:00:11.000] And so my fellow Americans, ask not what your country can do for you, ask what you can do for your country.
|
||||
|
||||
|
||||
whisper_print_timings: load time = 105.91 ms
|
||||
whisper_print_timings: mel time = 24.62 ms
|
||||
whisper_print_timings: sample time = 3.63 ms
|
||||
whisper_print_timings: encode time = 324.71 ms / 54.12 ms per layer
|
||||
whisper_print_timings: decode time = 83.58 ms / 13.93 ms per layer
|
||||
whisper_print_timings: total time = 542.81 ms
|
||||
```
|
||||
|
||||
The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
|
||||
@ -172,8 +207,8 @@ make large
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~280 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~430 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| large | 2.9 GB | ~4.7 GB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` |
|
||||
@ -185,7 +220,7 @@ in about half a minute on a MacBook M1 Pro, using `medium.en` model:
|
||||
|
||||
<details>
|
||||
<summary>Expand to see the result</summary>
|
||||
|
||||
|
||||
```java
|
||||
$ ./main -m models/ggml-medium.en.bin -f samples/gb1.wav -t 8
|
||||
|
||||
@ -273,32 +308,108 @@ to highlight words with high or low confidence:
|
||||
|
||||
<img width="965" alt="image" src="https://user-images.githubusercontent.com/1991296/197356445-311c8643-9397-4e5e-b46e-0b4b4daa2530.png">
|
||||
|
||||
## Implementation details
|
||||
## Controlling the length of the generated text segments (experimental)
|
||||
|
||||
- The core tensor operations are implemented in C ([ggml.h](ggml.h) / [ggml.c](ggml.c))
|
||||
- The high-level C-style API is implemented in C++ ([whisper.h](whisper.h) / [whisper.cpp](whisper.cpp))
|
||||
- Sample usage is demonstrated in [main.cpp](examples/main)
|
||||
- Sample real-time audio transcription from the microphone is demonstrated in [stream.cpp](examples/stream)
|
||||
- Various other examples are available in the [examples](examples) folder
|
||||
For example, to limit the line length to a maximum of 16 characters, simply add `-ml 16`:
|
||||
|
||||
The tensor operators are optimized heavily for Apple silicon CPUs. Depending on the computation size, Arm Neon SIMD
|
||||
instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
|
||||
the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 16
|
||||
|
||||
## Limitations
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
- Inference only
|
||||
- No GPU support
|
||||
- Very basic greedy sampling scheme - always pick up the token with highest probability.
|
||||
This should be similar to the [GreedyDecoder](https://github.com/openai/whisper/blob/main/whisper/decoding.py#L249-L274)
|
||||
from the original python implementation, so in order to make a fair comparison between the 2 implementations, make sure
|
||||
to run the python code with the following parameters:
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
```
|
||||
whisper --best_of None --beam_size None ...
|
||||
```
|
||||
[00:00:00.000 --> 00:00:00.850] And so my
|
||||
[00:00:00.850 --> 00:00:01.590] fellow
|
||||
[00:00:01.590 --> 00:00:04.140] Americans, ask
|
||||
[00:00:04.140 --> 00:00:05.660] not what your
|
||||
[00:00:05.660 --> 00:00:06.840] country can do
|
||||
[00:00:06.840 --> 00:00:08.430] for you, ask
|
||||
[00:00:08.430 --> 00:00:09.440] what you can do
|
||||
[00:00:09.440 --> 00:00:10.020] for your
|
||||
[00:00:10.020 --> 00:00:11.000] country.
|
||||
```
|
||||
|
||||
In the future, `whisper.cpp` will support more sampling strategies.
|
||||
## Word-level timestamp
|
||||
|
||||
The `--max-len` argument can be used to obtain word-level timestamps. Simply use `-ml 1`:
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -ml 1
|
||||
|
||||
whisper_model_load: loading model from './models/ggml-base.en.bin'
|
||||
...
|
||||
system_info: n_threads = 4 / 10 | AVX2 = 0 | AVX512 = 0 | NEON = 1 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 |
|
||||
|
||||
main: processing './samples/jfk.wav' (176000 samples, 11.0 sec), 4 threads, 1 processors, lang = en, task = transcribe, timestamps = 1 ...
|
||||
|
||||
[00:00:00.000 --> 00:00:00.320]
|
||||
[00:00:00.320 --> 00:00:00.370] And
|
||||
[00:00:00.370 --> 00:00:00.690] so
|
||||
[00:00:00.690 --> 00:00:00.850] my
|
||||
[00:00:00.850 --> 00:00:01.590] fellow
|
||||
[00:00:01.590 --> 00:00:02.850] Americans
|
||||
[00:00:02.850 --> 00:00:03.300] ,
|
||||
[00:00:03.300 --> 00:00:04.140] ask
|
||||
[00:00:04.140 --> 00:00:04.990] not
|
||||
[00:00:04.990 --> 00:00:05.410] what
|
||||
[00:00:05.410 --> 00:00:05.660] your
|
||||
[00:00:05.660 --> 00:00:06.260] country
|
||||
[00:00:06.260 --> 00:00:06.600] can
|
||||
[00:00:06.600 --> 00:00:06.840] do
|
||||
[00:00:06.840 --> 00:00:07.010] for
|
||||
[00:00:07.010 --> 00:00:08.170] you
|
||||
[00:00:08.170 --> 00:00:08.190] ,
|
||||
[00:00:08.190 --> 00:00:08.430] ask
|
||||
[00:00:08.430 --> 00:00:08.910] what
|
||||
[00:00:08.910 --> 00:00:09.040] you
|
||||
[00:00:09.040 --> 00:00:09.320] can
|
||||
[00:00:09.320 --> 00:00:09.440] do
|
||||
[00:00:09.440 --> 00:00:09.760] for
|
||||
[00:00:09.760 --> 00:00:10.020] your
|
||||
[00:00:10.020 --> 00:00:10.510] country
|
||||
[00:00:10.510 --> 00:00:11.000] .
|
||||
```
|
||||
|
||||
## Karaoke-style movie generation (experimental)
|
||||
|
||||
The [main](examples/main) example provides support for output of karaoke-style movies, where the
|
||||
currently pronounced word is highlighted. Use the `-wts` argument and run the generated bash script.
|
||||
This requires to have `ffmpeg` installed.
|
||||
|
||||
Here are a few *"typical"* examples:
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/jfk.wav -owts
|
||||
source ./samples/jfk.wav.wts
|
||||
ffplay ./samples/jfk.wav.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199337465-dbee4b5e-9aeb-48a3-b1c6-323ac4db5b2c.mp4
|
||||
|
||||
---
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/mm0.wav -owts
|
||||
source ./samples/mm0.wav.wts
|
||||
ffplay ./samples/mm0.wav.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199337504-cc8fd233-0cb7-4920-95f9-4227de3570aa.mp4
|
||||
|
||||
---
|
||||
|
||||
```java
|
||||
./main -m ./models/ggml-base.en.bin -f ./samples/gb0.wav -owts
|
||||
source ./samples/gb0.wav.wts
|
||||
ffplay ./samples/gb0.wav.mp4
|
||||
```
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199337538-b7b0c7a3-2753-4a88-a0cd-f28a317987ba.mp4
|
||||
|
||||
---
|
||||
|
||||
## Benchmarks
|
||||
|
||||
@ -326,9 +437,12 @@ For more details, see the conversion script [models/convert-pt-to-ggml.py](model
|
||||
## Bindings
|
||||
|
||||
- [X] Rust: [tazz4843/whisper-rs](https://github.com/tazz4843/whisper-rs)
|
||||
- [X] Objective-C / Swift: [ggerganov/whisper.spm](https://github.com/ggerganov/whisper.spm)
|
||||
- [ ] Python:
|
||||
- [ ] Java:
|
||||
|
||||
## Examples
|
||||
|
||||
There are various examples of using the library for different projects in the [examples](examples) folder. Check them out!
|
||||
|
||||
## [Frequently asked questions (#126)](https://github.com/ggerganov/whisper.cpp/discussions/126)
|
||||
|
1
bindings/ios
Submodule
1
bindings/ios
Submodule
Submodule bindings/ios added at 4bda8e9d80
File diff suppressed because one or more lines are too long
49
examples/generate-karaoke.sh
Executable file
49
examples/generate-karaoke.sh
Executable file
@ -0,0 +1,49 @@
|
||||
#!/bin/bash
|
||||
|
||||
executable="./main"
|
||||
model="base.en"
|
||||
model_path="models/ggml-$model.bin"
|
||||
|
||||
# require sox and ffmpeg to be installed
|
||||
if ! command -v sox &> /dev/null
|
||||
then
|
||||
echo "sox could not be found"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if ! command -v ffmpeg &> /dev/null
|
||||
then
|
||||
echo "ffmpeg could not be found"
|
||||
exit 2
|
||||
fi
|
||||
|
||||
if [ ! -f "$executable" ]; then
|
||||
echo "'$executable' does not exist. Please build it first."
|
||||
exit 3
|
||||
fi
|
||||
|
||||
if [ ! -f "$model_path" ]; then
|
||||
echo "'$model_path' does not exist. Please download it first."
|
||||
exit 4
|
||||
fi
|
||||
|
||||
# record some raw audio
|
||||
sox -d rec.wav
|
||||
|
||||
# resample to 16kHz
|
||||
ffmpeg -y -i ./rec.wav -ar 16000 -ac 1 -c:a pcm_s16le ./rec16.wav > /dev/null 2>&1
|
||||
|
||||
# run Whisper
|
||||
echo "Processing ..."
|
||||
./main -m models/ggml-base.en.bin rec16.wav -owts > /dev/null 2>&1
|
||||
|
||||
# generate Karaoke video
|
||||
echo "Generating video ..."
|
||||
source rec16.wav.wts > /dev/null 2>&1
|
||||
|
||||
# play the video
|
||||
echo "Playing ./rec16.wav.mp4 ..."
|
||||
ffplay -loglevel 0 -autoexit ./rec16.wav.mp4
|
||||
|
||||
echo "Done"
|
||||
exit 0
|
@ -6,21 +6,29 @@ It can be used as a reference for using the `whisper.cpp` library in other proje
|
||||
```
|
||||
./main -h
|
||||
|
||||
usage: ./main [options] file0.wav file1.wav ...
|
||||
usage: ./bin/main [options] file0.wav file1.wav ...
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-s SEED, --seed SEED RNG seed (default: -1)
|
||||
-t N, --threads N number of threads to use during computation (default: 4)
|
||||
-o N, --offset N offset in milliseconds (default: 0)
|
||||
-p N, --processors N number of processors to use during computation (default: 1)
|
||||
-ot N, --offset-t N time offset in milliseconds (default: 0)
|
||||
-on N, --offset-n N segment index offset (default: 0)
|
||||
-mc N, --max-context N maximum number of text context tokens to store (default: max)
|
||||
-ml N, --max-len N maximum segment length in characters (default: 0)
|
||||
-wt N, --word-thold N word timestamp probability threshold (default: 0.010000)
|
||||
-v, --verbose verbose output
|
||||
--translate translate from source language to english
|
||||
-otxt, --output-txt output result in a text file
|
||||
-ovtt, --output-vtt output result in a vtt file
|
||||
-osrt, --output-srt output result in a srt file
|
||||
-owts, --output-words output script for generating karaoke video
|
||||
-ps, --print_special print special tokens
|
||||
-pc, --print_colors print colors
|
||||
-nt, --no_timestamps do not print timestamps
|
||||
-l LANG, --language LANG spoken language (default: en)
|
||||
-m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
|
||||
-f FNAME, --file FNAME input WAV file path
|
||||
-h, --help show this help message and exit
|
||||
|
||||
```
|
||||
|
@ -36,6 +36,7 @@ std::string to_timestamp(int64_t t, bool comma = false) {
|
||||
return std::string(buf);
|
||||
}
|
||||
|
||||
// helper function to replace substrings
|
||||
void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
for (size_t pos = 0; ; pos += replace.length()) {
|
||||
pos = s.find(search, pos);
|
||||
@ -45,29 +46,6 @@ void replace_all(std::string & s, const std::string & search, const std::string
|
||||
}
|
||||
}
|
||||
|
||||
// a cost-function that is high for text that takes longer to pronounce
|
||||
float voice_length(const std::string & text) {
|
||||
float res = 0.0f;
|
||||
|
||||
// letters - add 1
|
||||
// digits - add 3
|
||||
// else - 0
|
||||
for (size_t i = 0; i < text.size(); ++i) {
|
||||
if (text[i] >= '0' && text[i] <= '9') {
|
||||
res += 3.0f;
|
||||
} else if (text[i] >= 'a' && text[i] <= 'z') {
|
||||
res += 1.0f;
|
||||
} else if (text[i] >= 'A' && text[i] <= 'Z') {
|
||||
res += 1.0f;
|
||||
} else {
|
||||
res += 0.01f;
|
||||
}
|
||||
// TODO: support unicode
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
int32_t seed = -1; // RNG seed, not used currently
|
||||
@ -75,10 +53,13 @@ struct whisper_params {
|
||||
int32_t n_processors = 1;
|
||||
int32_t offset_t_ms = 0;
|
||||
int32_t offset_n = 0;
|
||||
int32_t duration_ms = 0;
|
||||
int32_t max_context = -1;
|
||||
int32_t max_len = 0;
|
||||
|
||||
float word_thold = 0.1f;
|
||||
float word_thold = 0.01f;
|
||||
|
||||
bool speed_up = false;
|
||||
bool verbose = false;
|
||||
bool translate = false;
|
||||
bool output_txt = false;
|
||||
@ -116,10 +97,16 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
params.offset_t_ms = std::stoi(argv[++i]);
|
||||
} else if (arg == "-on" || arg == "--offset-n") {
|
||||
params.offset_n = std::stoi(argv[++i]);
|
||||
} else if (arg == "-d" || arg == "--duration") {
|
||||
params.duration_ms = std::stoi(argv[++i]);
|
||||
} else if (arg == "-mc" || arg == "--max-context") {
|
||||
params.max_context = std::stoi(argv[++i]);
|
||||
} else if (arg == "-ml" || arg == "--max-len") {
|
||||
params.max_len = std::stoi(argv[++i]);
|
||||
} else if (arg == "-wt" || arg == "--word-thold") {
|
||||
params.word_thold = std::stof(argv[++i]);
|
||||
} else if (arg == "-su" || arg == "--speed-up") {
|
||||
params.speed_up = true;
|
||||
} else if (arg == "-v" || arg == "--verbose") {
|
||||
params.verbose = true;
|
||||
} else if (arg == "--translate") {
|
||||
@ -173,14 +160,17 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
|
||||
fprintf(stderr, " -p N, --processors N number of processors to use during computation (default: %d)\n", params.n_processors);
|
||||
fprintf(stderr, " -ot N, --offset-t N time offset in milliseconds (default: %d)\n", params.offset_t_ms);
|
||||
fprintf(stderr, " -on N, --offset-n N segment index offset (default: %d)\n", params.offset_n);
|
||||
fprintf(stderr, " -d N, --duration N duration of audio to process in milliseconds (default: %d)\n", params.duration_ms);
|
||||
fprintf(stderr, " -mc N, --max-context N maximum number of text context tokens to store (default: max)\n");
|
||||
fprintf(stderr, " -ml N, --max-len N maximum segment length in characters (default: %d)\n", params.max_len);
|
||||
fprintf(stderr, " -wt N, --word-thold N word timestamp probability threshold (default: %f)\n", params.word_thold);
|
||||
fprintf(stderr, " -su, --speed-up speed up audio by factor of 2 (faster processing, reduced accuracy, default: %s)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -v, --verbose verbose output\n");
|
||||
fprintf(stderr, " --translate translate from source language to english\n");
|
||||
fprintf(stderr, " -otxt, --output-txt output result in a text file\n");
|
||||
fprintf(stderr, " -ovtt, --output-vtt output result in a vtt file\n");
|
||||
fprintf(stderr, " -osrt, --output-srt output result in a srt file\n");
|
||||
fprintf(stderr, " -owts, --output-words output word-level timestamps to a text file\n");
|
||||
fprintf(stderr, " -owts, --output-words output script for generating karaoke video\n");
|
||||
fprintf(stderr, " -ps, --print_special print special tokens\n");
|
||||
fprintf(stderr, " -pc, --print_colors print colors\n");
|
||||
fprintf(stderr, " -nt, --no_timestamps do not print timestamps\n");
|
||||
@ -190,65 +180,67 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, void * user_data) {
|
||||
void whisper_print_segment_callback(struct whisper_context * ctx, int n_new, void * user_data) {
|
||||
const whisper_params & params = *(whisper_params *) user_data;
|
||||
|
||||
const int n_segments = whisper_full_n_segments(ctx);
|
||||
|
||||
// print the last segment
|
||||
const int i = n_segments - 1;
|
||||
if (i == 0) {
|
||||
// print the last n_new segments
|
||||
const int s0 = n_segments - n_new;
|
||||
if (s0 == 0) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
if (params.no_timestamps) {
|
||||
if (params.print_colors) {
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
for (int i = s0; i < n_segments; i++) {
|
||||
if (params.no_timestamps) {
|
||||
if (params.print_colors) {
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
printf("%s", text);
|
||||
}
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
printf("%s", text);
|
||||
}
|
||||
fflush(stdout);
|
||||
} else {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
if (params.print_colors) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
if (params.print_colors) {
|
||||
printf("[%s --> %s] ", to_timestamp(t0).c_str(), to_timestamp(t1).c_str());
|
||||
for (int j = 0; j < whisper_full_n_tokens(ctx, i); ++j) {
|
||||
if (params.print_special_tokens == false) {
|
||||
const whisper_token id = whisper_full_get_token_id(ctx, i, j);
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
}
|
||||
printf("\n");
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
const char * text = whisper_full_get_token_text(ctx, i, j);
|
||||
const float p = whisper_full_get_token_p (ctx, i, j);
|
||||
|
||||
const int col = std::max(0, std::min((int) k_colors.size(), (int) (std::pow(p, 3)*float(k_colors.size()))));
|
||||
|
||||
printf("%s%s%s", k_colors[col].c_str(), text, "\033[0m");
|
||||
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
}
|
||||
printf("\n");
|
||||
} else {
|
||||
const char * text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -318,566 +310,41 @@ bool output_srt(struct whisper_context * ctx, const char * fname, const whisper_
|
||||
return true;
|
||||
}
|
||||
|
||||
struct Interval {
|
||||
int x0;
|
||||
int x1;
|
||||
int type;
|
||||
};
|
||||
|
||||
struct IntervalArray : public std::vector<Interval> {
|
||||
int F = -1;
|
||||
};
|
||||
|
||||
std::vector<IntervalArray> fit_text_to_audio(const IntervalArray & input, int N, float alpha = 2.0f) {
|
||||
const int x_max = input.back().x1;
|
||||
|
||||
std::vector<int> ls;
|
||||
std::vector<int> rs;
|
||||
std::vector<int> xs;
|
||||
std::vector<int> gs;
|
||||
|
||||
int G_max = 0;
|
||||
|
||||
for (const auto & ii : input) {
|
||||
if (ii.type == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ls.push_back(ii.x0);
|
||||
rs.push_back(ii.x1);
|
||||
xs.push_back(ii.x0);
|
||||
xs.push_back(ii.x1);
|
||||
|
||||
gs.push_back(G_max);
|
||||
G_max += ii.x1 - ii.x0;
|
||||
gs.push_back(G_max);
|
||||
}
|
||||
|
||||
const int inf = 100*G_max;
|
||||
|
||||
struct Cell {
|
||||
int fval = -1;
|
||||
int xprev = -1;
|
||||
int w = -1;
|
||||
};
|
||||
|
||||
// Function F + initial conditions
|
||||
std::vector<std::vector<Cell>> F(xs.size());
|
||||
for (auto & Fx : F) {
|
||||
Fx.resize(N + 1);
|
||||
for (auto & f : Fx) f.fval = inf;
|
||||
Fx[0].fval = alpha*G_max;
|
||||
}
|
||||
|
||||
// DP core
|
||||
for (int n = 1; n <= N; ++n) {
|
||||
for (int ix = 0; ix < (int) xs.size(); ++ix) {
|
||||
const int x = xs[ix];
|
||||
|
||||
int best_fval = inf;
|
||||
int best_xprev = -1;
|
||||
int best_w = -1;
|
||||
|
||||
for (int il = 0; il < (int) ls.size(); ++il) {
|
||||
const int l = ls[il];
|
||||
|
||||
if (l < n) continue;
|
||||
if (l >= x) break;
|
||||
|
||||
for (int ir = il; ir < (int) rs.size(); ++ir) {
|
||||
const int r = rs[ir];
|
||||
|
||||
if (r < l + 1) continue;
|
||||
if (r > x) break;
|
||||
|
||||
const int cur_fval = F[2*il][n - 1].fval + (r - l) - (alpha + 1)*(gs[2*ir + 1] - gs[2*il]);
|
||||
|
||||
if (cur_fval < best_fval) {
|
||||
best_fval = cur_fval;
|
||||
best_xprev = 2*il;
|
||||
best_w = r - l;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
F[ix][n].fval = best_fval;
|
||||
F[ix][n].xprev = best_xprev;
|
||||
F[ix][n].w = best_w;
|
||||
}
|
||||
}
|
||||
|
||||
// generate output
|
||||
std::vector<IntervalArray> res(N + 1);
|
||||
{
|
||||
for (int i = 1; i <= N; ++i) {
|
||||
IntervalArray resCur;
|
||||
|
||||
int n = i;
|
||||
|
||||
std::vector<int> grid(x_max + 1, 0); // initally, everything is background
|
||||
|
||||
int best_ix = 0;
|
||||
int best_fval = F[0][n].fval;
|
||||
for (int ix = 1; ix < (int) xs.size(); ++ix) {
|
||||
if (F[ix][n].fval < best_fval) {
|
||||
best_ix = ix;
|
||||
best_fval = F[ix][n].fval;
|
||||
}
|
||||
}
|
||||
|
||||
resCur.F = (i == input.size()/2) ? 0 : best_fval;
|
||||
while (true) {
|
||||
const int ix = F[best_ix][n].xprev;
|
||||
const int w = F[best_ix][n].w;
|
||||
for (int x = xs[ix]; x < xs[ix] + w; ++x) {
|
||||
grid[x] = 1; // i.e. green
|
||||
}
|
||||
best_ix = F[best_ix][n].xprev;
|
||||
if (--n == 0) break;
|
||||
}
|
||||
|
||||
int x0 = 0;
|
||||
int type = grid[0];
|
||||
for (int x1 = 1; x1 <= x_max; ++x1) {
|
||||
if (grid[x1] != grid[x1 - 1] || x1 == x_max) {
|
||||
if (type == 1) {
|
||||
resCur.push_back({x0, x1, 1});
|
||||
}
|
||||
x0 = x1;
|
||||
type = grid[x1];
|
||||
}
|
||||
}
|
||||
|
||||
res[i] = std::move(resCur);
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
// word-level timestamps (experimental)
|
||||
// TODO: probably still has bugs, needs refactoring, etc..
|
||||
// TODO: auto threshold
|
||||
// TODO: extra pass to detect unused speech and assign to tokens
|
||||
// karaoke video generation
|
||||
// outputs a bash script that uses ffmpeg to generate a video with the subtitles
|
||||
// TODO: font parameter adjustments
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, const std::vector<float> & pcmf32) {
|
||||
std::vector<float> pcm_avg(pcmf32.size(), 0);
|
||||
|
||||
// average the fabs of the signal
|
||||
{
|
||||
const int hw = 32;
|
||||
|
||||
for (int i = 0; i < pcmf32.size(); i++) {
|
||||
float sum = 0;
|
||||
for (int j = -hw; j <= hw; j++) {
|
||||
if (i + j >= 0 && i + j < pcmf32.size()) {
|
||||
sum += fabs(pcmf32[i + j]);
|
||||
}
|
||||
}
|
||||
pcm_avg[i] = sum/(2*hw + 1);
|
||||
}
|
||||
}
|
||||
|
||||
struct token_info {
|
||||
int64_t t0 = -1;
|
||||
int64_t t1 = -1;
|
||||
|
||||
int64_t tt0 = -1;
|
||||
int64_t tt1 = -1;
|
||||
|
||||
whisper_token id;
|
||||
whisper_token tid;
|
||||
|
||||
float p = 0.0f;
|
||||
float pt = 0.0f;
|
||||
float ptsum = 0.0f;
|
||||
|
||||
std::string text;
|
||||
float vlen = 0.0f; // voice length of this token
|
||||
|
||||
void calc_vlen(struct whisper_context * ctx) {
|
||||
if (id >= whisper_token_eot(ctx)) {
|
||||
vlen = 0.1f;
|
||||
return;
|
||||
}
|
||||
|
||||
vlen = voice_length(text);
|
||||
}
|
||||
|
||||
bool is_voice() const {
|
||||
return vlen > 0.5f;
|
||||
}
|
||||
};
|
||||
|
||||
int64_t t_beg = 0;
|
||||
int64_t t_last = 0;
|
||||
|
||||
whisper_token tid_last = 0;
|
||||
|
||||
bool output_wts(struct whisper_context * ctx, const char * fname, const char * fname_inp, const whisper_params & params, float t_sec) {
|
||||
std::ofstream fout(fname);
|
||||
|
||||
fprintf(stderr, "%s: saving output to '%s'\n", __func__, fname);
|
||||
|
||||
fout << "!/bin/bash" << "\n";
|
||||
// TODO: become parameter
|
||||
static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
|
||||
fout << "#!/bin/bash" << "\n";
|
||||
fout << "\n";
|
||||
|
||||
fout << "ffmpeg -i " << fname_inp << " -f lavfi -i color=size=1200x120:duration=" << float(pcm_avg.size() + 1000)/WHISPER_SAMPLE_RATE << ":rate=25:color=black -vf \"";
|
||||
|
||||
bool is_first = true;
|
||||
fout << "ffmpeg -i " << fname_inp << " -f lavfi -i color=size=1200x120:duration=" << t_sec << ":rate=25:color=black -vf \"";
|
||||
|
||||
for (int i = 0; i < whisper_full_n_segments(ctx); i++) {
|
||||
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
|
||||
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
|
||||
|
||||
const char *text = whisper_full_get_segment_text(ctx, i);
|
||||
|
||||
const int s0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100));
|
||||
const int s1 = std::min((int) pcm_avg.size(), (int) (t1*WHISPER_SAMPLE_RATE/100));
|
||||
|
||||
const int n = whisper_full_n_tokens(ctx, i);
|
||||
|
||||
std::vector<token_info> tokens(n);
|
||||
|
||||
if (n <= 1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
std::vector<whisper_token_data> tokens(n);
|
||||
for (int j = 0; j < n; ++j) {
|
||||
struct whisper_token_data token = whisper_full_get_token_data(ctx, i, j);
|
||||
|
||||
if (j == 0) {
|
||||
if (token.id == whisper_token_beg(ctx)) {
|
||||
tokens[j ].t0 = t0;
|
||||
tokens[j ].t1 = t0;
|
||||
tokens[j + 1].t0 = t0;
|
||||
|
||||
t_beg = t0;
|
||||
t_last = t0;
|
||||
tid_last = whisper_token_beg(ctx);
|
||||
} else {
|
||||
tokens[j ].t0 = t_last;
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(ctx));
|
||||
|
||||
tokens[j].id = token.id;
|
||||
tokens[j].tid = token.tid;
|
||||
tokens[j].p = token.p;
|
||||
tokens[j].pt = token.pt;
|
||||
tokens[j].ptsum = token.ptsum;
|
||||
|
||||
tokens[j].text = whisper_token_to_str(ctx, token.id);
|
||||
tokens[j].calc_vlen(ctx);
|
||||
|
||||
if (token.pt > params.word_thold && token.ptsum > 0.01 && token.tid > tid_last) {
|
||||
if (j > 0) {
|
||||
tokens[j - 1].t1 = tt;
|
||||
}
|
||||
tokens[j].t0 = tt;
|
||||
tid_last = token.tid;
|
||||
}
|
||||
tokens[j] = whisper_full_get_token_data(ctx, i, j);
|
||||
}
|
||||
|
||||
tokens[n - 2].t1 = t1;
|
||||
tokens[n - 1].t0 = t1;
|
||||
tokens[n - 1].t1 = t1;
|
||||
|
||||
t_last = t1;
|
||||
|
||||
{
|
||||
{
|
||||
int p0 = 0;
|
||||
int p1 = 0;
|
||||
|
||||
while (true) {
|
||||
while (p1 < n && tokens[p1].t1 < 0) {
|
||||
p1++;
|
||||
}
|
||||
|
||||
if (p1 >= n) {
|
||||
p1--;
|
||||
}
|
||||
|
||||
if (p1 > p0) {
|
||||
IntervalArray arr;
|
||||
|
||||
const int s0 = std::max(0, (int) (tokens[p0].t0*WHISPER_SAMPLE_RATE/100));
|
||||
const int s1 = std::min((int) pcm_avg.size() - 1, (int) (tokens[p1].t1*WHISPER_SAMPLE_RATE/100));
|
||||
|
||||
const int ns = s1 - s0;
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int k = s0; k < s1; k++) {
|
||||
sum += pcm_avg[k];
|
||||
}
|
||||
|
||||
const float thold = sum/ns;
|
||||
|
||||
printf("segment %4d: s0 = %6d, s1 = %6d, ns = %6d, thold = %f\n", i, s0, s1, ns, thold);
|
||||
|
||||
{
|
||||
int last_s = -1;
|
||||
int last_type = -1;
|
||||
for (int k = s0; k < s1; k++) {
|
||||
const int type = pcm_avg[k] > thold ? 1 : 0;
|
||||
|
||||
if (type != last_type) {
|
||||
if (last_type != -1) {
|
||||
arr.push_back({ last_s, k, last_type });
|
||||
}
|
||||
last_s = k;
|
||||
last_type = type;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//for (int k = 0; k < arr.size(); k++) {
|
||||
// printf(" %4d: %6d, %6d, %d\n", k, arr[k].x0, arr[k].x1, arr[k].type);
|
||||
//}
|
||||
|
||||
int n_voice = 0;
|
||||
|
||||
for (int j = p0; j <= p1; ++j) {
|
||||
if (tokens[j].is_voice()) {
|
||||
n_voice++;
|
||||
}
|
||||
}
|
||||
|
||||
if (n_voice > 0 && arr.size() > n_voice) {
|
||||
printf("xxxxxxxx n = %d, n_voice = %d, arr.size() = %d\n", n, n_voice, (int) arr.size());
|
||||
auto res = fit_text_to_audio(arr, n_voice, 2.0f);
|
||||
printf("done fit_text_to_audio, F = %d\n", res[n_voice].F);
|
||||
|
||||
{
|
||||
int tid = p0;
|
||||
for (int k = 0; k < (int) res[n_voice].size(); ++k) {
|
||||
while (!tokens[tid].is_voice() && tid <= p1) {
|
||||
//if (tokens[tid].t0 < 0) {
|
||||
// tokens[tid].t0 = (int64_t) (100*res[n_voice][k].x0/WHISPER_SAMPLE_RATE);
|
||||
//}
|
||||
//if (tokens[tid].t1 < 0) {
|
||||
// tokens[tid].t1 = tokens[tid].t0;
|
||||
//}
|
||||
|
||||
tid++;
|
||||
}
|
||||
|
||||
if (tid > p1) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (tokens[tid].t0 < 0) {
|
||||
tokens[tid].t0 = (int64_t) (100*res[n_voice][k].x0/WHISPER_SAMPLE_RATE);
|
||||
if (tid > 0) {
|
||||
tokens[tid - 1].t1 = tokens[tid].t0;
|
||||
}
|
||||
}
|
||||
|
||||
if (tokens[tid].t1 < 0) {
|
||||
tokens[tid].t1 = (int64_t) (100*res[n_voice][k].x1/WHISPER_SAMPLE_RATE);
|
||||
}
|
||||
|
||||
tid++;
|
||||
}
|
||||
|
||||
printf("xxxxxxxx n = %d, tid = %d\n", n, tid);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
p1++;
|
||||
p0 = p1;
|
||||
if (p1 >= n) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int p0 = 0;
|
||||
int p1 = 0;
|
||||
while (true) {
|
||||
while (p1 < n && tokens[p1].t1 < 0) {
|
||||
p1++;
|
||||
}
|
||||
|
||||
if (p1 >= n) {
|
||||
p1--;
|
||||
}
|
||||
|
||||
if (p1 > p0) {
|
||||
double psum = 0.0;
|
||||
for (int j = p0; j <= p1; j++) {
|
||||
psum += tokens[j].vlen;
|
||||
}
|
||||
|
||||
//printf("analyzing %d - %d, psum = %f\n", p0, p1, psum);
|
||||
|
||||
const double dt = tokens[p1].t1 - tokens[p0].t0;
|
||||
|
||||
for (int j = p0 + 1; j <= p1; j++) {
|
||||
const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum;
|
||||
//const double ct = tokens[j - 1].t0 + (dt*(j - p0))/(p1 - p0 + 1);
|
||||
//const double ct = tokens[p0].t0 + (dt*(j - p0))/(p1 - p0 + 1);
|
||||
|
||||
tokens[j - 1].t1 = ct;
|
||||
tokens[j ].t0 = ct;
|
||||
}
|
||||
}
|
||||
|
||||
p1++;
|
||||
p0 = p1;
|
||||
if (p1 >= n) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < n - 1; j++) {
|
||||
if (tokens[j + 1].t0 < 0) {
|
||||
tokens[j + 1].t0 = tokens[j].t1;
|
||||
}
|
||||
|
||||
tokens[j].tt0 = tokens[j].t0;
|
||||
tokens[j].tt1 = tokens[j].t1;
|
||||
|
||||
if (j < n - 2) {
|
||||
tokens[j].tt1 = std::max(tokens[j].tt1, tokens[j + 1].t0);
|
||||
}
|
||||
}
|
||||
|
||||
// VAD
|
||||
{
|
||||
const int hw = WHISPER_SAMPLE_RATE; // take one second of audio around the token
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
const int64_t t0 = tokens[j].t0;
|
||||
const int64_t t1 = tokens[j].t1;
|
||||
|
||||
int s0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100));
|
||||
int s1 = std::min((int) pcm_avg.size() - 1, (int) (t1*WHISPER_SAMPLE_RATE/100));
|
||||
|
||||
const int ss0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100) - hw);
|
||||
const int ss1 = std::min((int) pcm_avg.size() - 1, (int) (t1*WHISPER_SAMPLE_RATE/100) + hw);
|
||||
|
||||
const int n = ss1 - ss0;
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int k = ss0; k < ss1; k++) {
|
||||
sum += pcm_avg[k];
|
||||
}
|
||||
|
||||
const float avg = sum/n;
|
||||
|
||||
const float thold = 0.5*avg;
|
||||
|
||||
{
|
||||
int k = s0;
|
||||
if (pcm_avg[k] > thold && j > 0) {
|
||||
while (k > 0 && pcm_avg[k] > thold) {
|
||||
k--;
|
||||
}
|
||||
tokens[j].t0 = (int64_t) (100*k/WHISPER_SAMPLE_RATE);
|
||||
if (tokens[j].t0 < tokens[j - 1].t1) {
|
||||
tokens[j].t0 = tokens[j - 1].t1;
|
||||
} else {
|
||||
s0 = k;
|
||||
}
|
||||
} else {
|
||||
while (pcm_avg[k] < thold && k < s1) {
|
||||
k++;
|
||||
}
|
||||
s0 = k;
|
||||
tokens[j].t0 = 100*k/WHISPER_SAMPLE_RATE;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int k = s1;
|
||||
if (pcm_avg[k] > thold) {
|
||||
while (k < (int) pcm_avg.size() - 1 && pcm_avg[k] > thold) {
|
||||
k++;
|
||||
}
|
||||
tokens[j].t1 = 100*k/WHISPER_SAMPLE_RATE;
|
||||
if (j < n - 1 && tokens[j].t1 > tokens[j + 1].t0) {
|
||||
tokens[j].t1 = tokens[j + 1].t0;
|
||||
} else {
|
||||
s1 = k;
|
||||
}
|
||||
} else {
|
||||
while (pcm_avg[k] < thold && k > s0) {
|
||||
k--;
|
||||
}
|
||||
s1 = k;
|
||||
tokens[j].t1 = 100*k/WHISPER_SAMPLE_RATE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int t_expand = 0;
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (j > 0) {
|
||||
tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand));
|
||||
}
|
||||
if (j < n - 1) {
|
||||
tokens[j].t1 = tokens[j].t1 + t_expand;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
const std::string fname_tokens = "tokens-" + std::to_string(i) + ".txt";
|
||||
|
||||
std::ofstream fout(fname_tokens);
|
||||
|
||||
int s0 = std::max(0, (int) (t0*WHISPER_SAMPLE_RATE/100));
|
||||
int s1 = std::min((int) pcm_avg.size() - 1, (int) (t1*WHISPER_SAMPLE_RATE/100));
|
||||
|
||||
for (int j = s0; j < s1; j++) {
|
||||
int k = -1;
|
||||
for (int r = 0; r < n; r++) {
|
||||
if (j >= (int) (tokens[r].t0*WHISPER_SAMPLE_RATE/100) && j < (int) (tokens[r].t1*WHISPER_SAMPLE_RATE/100)) {
|
||||
k = r;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
fout << j << " " << pcm_avg[j] << " " << float(k%3 + 1)/30.0 << std::endl;
|
||||
}
|
||||
|
||||
fout.close();
|
||||
}
|
||||
|
||||
for (int j = 0; j < n; ++j) {
|
||||
const auto & token = tokens[j];
|
||||
const auto tt = token.pt > params.word_thold && token.ptsum > 0.01 ? whisper_token_to_str(ctx, token.tid) : "[?]";
|
||||
printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__,
|
||||
tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, token.text.c_str());
|
||||
|
||||
if (tokens[j].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
//printf("[%s --> %s] %s\n", to_timestamp(token.t0).c_str(), to_timestamp(token.t1).c_str(), whisper_token_to_str(ctx, token.id));
|
||||
|
||||
//fout << "# " << to_timestamp(token.t0) << " --> " << to_timestamp(token.t1) << " " << whisper_token_to_str(ctx, token.id) << "\n";
|
||||
}
|
||||
|
||||
static const int line_wrap = 60;
|
||||
static const char * font = "/System/Library/Fonts/Supplemental/Courier New Bold.ttf";
|
||||
|
||||
if (!is_first) {
|
||||
if (i > 0) {
|
||||
fout << ",";
|
||||
}
|
||||
|
||||
// background text
|
||||
fout << "drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='':enable='between(t," << t0/100.0 << "," << t0/100.0 << ")'";
|
||||
|
||||
is_first = false;
|
||||
bool is_first = true;
|
||||
|
||||
for (int j = 0; j < n; ++j) {
|
||||
const auto & token = tokens[j];
|
||||
@ -886,10 +353,6 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
|
||||
continue;
|
||||
}
|
||||
|
||||
//if (!tokens[j].is_voice()) {
|
||||
// continue;
|
||||
//}
|
||||
|
||||
std::string txt_bg;
|
||||
std::string txt_fg; // highlight token
|
||||
std::string txt_ul; // underline
|
||||
@ -925,17 +388,6 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
|
||||
}
|
||||
|
||||
ncnt += txt.size();
|
||||
|
||||
if (ncnt > line_wrap) {
|
||||
if (k < j) {
|
||||
txt_bg = "> ";
|
||||
txt_fg = "> ";
|
||||
txt_ul = "\\ \\ ";
|
||||
ncnt = 0;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
::replace_all(txt_bg, "'", "’");
|
||||
@ -944,8 +396,11 @@ bool output_wts(struct whisper_context * ctx, const char * fname, const char * f
|
||||
::replace_all(txt_fg, "\"", "\\\"");
|
||||
}
|
||||
|
||||
// background text
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='" << txt_bg << "':enable='between(t," << token.tt0/100.0 << "," << token.tt1/100.0 << ")'";
|
||||
if (is_first) {
|
||||
// background text
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=gray:x=(w-text_w)/2:y=h/2:text='" << txt_bg << "':enable='between(t," << t0/100.0 << "," << t1/100.0 << ")'";
|
||||
is_first = false;
|
||||
}
|
||||
|
||||
// foreground text
|
||||
fout << ",drawtext=fontfile='" << font << "':fontsize=24:fontcolor=lightgreen:x=(w-text_w)/2+8:y=h/2:text='" << txt_fg << "':enable='between(t," << token.t0/100.0 << "," << token.t1/100.0 << ")'";
|
||||
@ -1003,9 +458,30 @@ int main(int argc, char ** argv) {
|
||||
std::vector<float> pcmf32;
|
||||
{
|
||||
drwav wav;
|
||||
if (!drwav_init_file(&wav, fname_inp.c_str(), NULL)) {
|
||||
fprintf(stderr, "%s: failed to open WAV file '%s' - check your input\n", argv[0], fname_inp.c_str());
|
||||
whisper_print_usage(argc, argv, {});
|
||||
|
||||
if (fname_inp == "-") {
|
||||
std::vector<uint8_t> wav_data;
|
||||
{
|
||||
uint8_t buf[1024];
|
||||
while (true)
|
||||
{
|
||||
const size_t n = fread(buf, 1, sizeof(buf), stdin);
|
||||
if (n == 0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
wav_data.insert(wav_data.end(), buf, buf + n);
|
||||
}
|
||||
}
|
||||
|
||||
if (drwav_init_memory(&wav, wav_data.data(), wav_data.size(), NULL) == false)
|
||||
{
|
||||
fprintf(stderr, "error: failed to open WAV file from stdin\n");
|
||||
return 4;
|
||||
}
|
||||
}
|
||||
else if (drwav_init_file(&wav, fname_inp.c_str(), NULL) == false) {
|
||||
fprintf(stderr, "error: failed to open '%s' as WAV file\n", fname_inp.c_str());
|
||||
return 4;
|
||||
}
|
||||
|
||||
@ -1085,6 +561,13 @@ int main(int argc, char ** argv) {
|
||||
wparams.n_threads = params.n_threads;
|
||||
wparams.n_max_text_ctx = params.max_context >= 0 ? params.max_context : wparams.n_max_text_ctx;
|
||||
wparams.offset_ms = params.offset_t_ms;
|
||||
wparams.duration_ms = params.duration_ms;
|
||||
|
||||
wparams.token_timestamps = params.output_wts || params.max_len > 0;
|
||||
wparams.thold_pt = params.word_thold;
|
||||
wparams.max_len = params.output_wts && params.max_len == 0 ? 60 : params.max_len;
|
||||
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
// this callback is called on each new segment
|
||||
if (!wparams.print_realtime) {
|
||||
@ -1123,7 +606,7 @@ int main(int argc, char ** argv) {
|
||||
// output to WTS file
|
||||
if (params.output_wts) {
|
||||
const auto fname_wts = fname_inp + ".wts";
|
||||
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, pcmf32);
|
||||
output_wts(ctx, fname_wts.c_str(), fname_inp.c_str(), params, float(pcmf32.size() + 1000)/WHISPER_SAMPLE_RATE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -40,7 +40,10 @@ struct whisper_params {
|
||||
int32_t step_ms = 3000;
|
||||
int32_t length_ms = 10000;
|
||||
int32_t capture_id = -1;
|
||||
int32_t max_tokens = 32;
|
||||
int32_t audio_ctx = 0;
|
||||
|
||||
bool speed_up = false;
|
||||
bool verbose = false;
|
||||
bool translate = false;
|
||||
bool no_context = true;
|
||||
@ -68,6 +71,12 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
||||
params.length_ms = std::stoi(argv[++i]);
|
||||
} else if (arg == "-c" || arg == "--capture") {
|
||||
params.capture_id = std::stoi(argv[++i]);
|
||||
} else if (arg == "-mt" || arg == "--max_tokens") {
|
||||
params.max_tokens = std::stoi(argv[++i]);
|
||||
} else if (arg == "-ac" || arg == "--audio_ctx") {
|
||||
params.audio_ctx = std::stoi(argv[++i]);
|
||||
} else if (arg == "-su" || arg == "--speed-up") {
|
||||
params.speed_up = true;
|
||||
} else if (arg == "-v" || arg == "--verbose") {
|
||||
params.verbose = true;
|
||||
} else if (arg == "--translate") {
|
||||
@ -113,6 +122,9 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
|
||||
fprintf(stderr, " --step N audio step size in milliseconds (default: %d)\n", params.step_ms);
|
||||
fprintf(stderr, " --length N audio length in milliseconds (default: %d)\n", params.length_ms);
|
||||
fprintf(stderr, " -c ID, --capture ID capture device ID (default: -1)\n");
|
||||
fprintf(stderr, " -mt N, --max_tokens N maximum number of tokens per audio chunk (default: %d)\n", params.max_tokens);
|
||||
fprintf(stderr, " -ac N, --audio_ctx N audio context size (default: %d, 0 - all)\n", params.audio_ctx);
|
||||
fprintf(stderr, " -su, --speed-up speed up audio by factor of 2 (faster processing, reduced accuracy, default: %s)\n", params.speed_up ? "true" : "false");
|
||||
fprintf(stderr, " -v, --verbose verbose output\n");
|
||||
fprintf(stderr, " --translate translate from source language to english\n");
|
||||
fprintf(stderr, " -kc, --keep-context keep text context from earlier audio (default: false)\n");
|
||||
@ -217,6 +229,7 @@ int main(int argc, char ** argv) {
|
||||
const int n_samples = (params.step_ms/1000.0)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_len = (params.length_ms/1000.0)*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_30s = 30*WHISPER_SAMPLE_RATE;
|
||||
const int n_samples_keep = 0.2*WHISPER_SAMPLE_RATE;
|
||||
|
||||
std::vector<float> pcmf32(n_samples_30s, 0.0f);
|
||||
std::vector<float> pcmf32_old;
|
||||
@ -299,7 +312,7 @@ int main(int argc, char ** argv) {
|
||||
//const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_30s/30 - n_samples_new));
|
||||
|
||||
// take up to params.length_ms audio from previous iteration
|
||||
const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_len - n_samples_new));
|
||||
const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_keep + n_samples_len - n_samples_new));
|
||||
|
||||
//printf("processing: take = %d, new = %d, old = %d\n", n_samples_take, n_samples_new, (int) pcmf32_old.size());
|
||||
|
||||
@ -323,9 +336,14 @@ int main(int argc, char ** argv) {
|
||||
wparams.print_timestamps = !params.no_timestamps;
|
||||
wparams.translate = params.translate;
|
||||
wparams.no_context = params.no_context;
|
||||
wparams.single_segment = true;
|
||||
wparams.max_tokens = params.max_tokens;
|
||||
wparams.language = params.language.c_str();
|
||||
wparams.n_threads = params.n_threads;
|
||||
|
||||
wparams.audio_ctx = params.audio_ctx;
|
||||
wparams.speed_up = params.speed_up;
|
||||
|
||||
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
||||
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
|
||||
return 6;
|
||||
@ -373,7 +391,8 @@ int main(int argc, char ** argv) {
|
||||
if ((n_iter % n_new_line) == 0) {
|
||||
printf("\n");
|
||||
|
||||
pcmf32_old.clear();
|
||||
// keep part of the audio for next iteration to try to mitigate word boundary issues
|
||||
pcmf32_old = std::vector<float>(pcmf32.end() - n_samples_keep, pcmf32.end());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -78,6 +78,14 @@ There are a lot of ways to improve this idea and I don't have much experience wi
|
||||
*"optimize by sorting the data first"*
|
||||
|
||||
The plugin would then make an appropriate query using the selected text and code context to Copilot or GPT-3 and return the result.
|
||||
|
||||
Here is a proof-of-concept:
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/199078847-0278fcde-5667-4748-ba0d-7d55381d6047.mp4
|
||||
|
||||
https://user-images.githubusercontent.com/1991296/200067939-f98d2ac2-7519-438a-85f9-79db0841ba4f.mp4
|
||||
|
||||
For explanation how this works see: https://twitter.com/ggerganov/status/1587168771789258756
|
||||
|
||||
## Discussion
|
||||
|
||||
|
7
extra/sha-all.sh
Executable file
7
extra/sha-all.sh
Executable file
@ -0,0 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Compute the SHA1 of all model files in ./models/ggml-*.bin
|
||||
|
||||
for f in ./models/ggml-*.bin; do
|
||||
shasum "$f" -a 1
|
||||
done
|
28
ggml.c
28
ggml.c
@ -14,7 +14,7 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#if defined _MSC_VER
|
||||
#if defined _MSC_VER || defined(__MINGW32__)
|
||||
#include <Windows.h>
|
||||
|
||||
typedef volatile LONG atomic_int;
|
||||
@ -37,13 +37,24 @@ typedef HANDLE pthread_t;
|
||||
|
||||
typedef DWORD thread_ret_t;
|
||||
static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
|
||||
out = CreateThread(NULL, 0, func, arg, 0, NULL);
|
||||
return out != NULL;
|
||||
HANDLE handle = CreateThread(NULL, 0, func, arg, 0, NULL);
|
||||
if (handle == NULL)
|
||||
{
|
||||
return EAGAIN;
|
||||
}
|
||||
|
||||
*out = handle;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pthread_join(pthread_t thread, void* unused) {
|
||||
return (int) WaitForSingleObject(thread, INFINITE);
|
||||
}
|
||||
|
||||
static int sched_yield (void) {
|
||||
Sleep (0);
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
#include <pthread.h>
|
||||
#include <stdatomic.h>
|
||||
@ -193,7 +204,7 @@ static ggml_fp16_t table_exp_f16[1 << 16];
|
||||
// timing
|
||||
//
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
static int64_t timer_freq;
|
||||
void ggml_time_init(void) {
|
||||
LARGE_INTEGER frequency;
|
||||
@ -3145,7 +3156,10 @@ void ggml_compute_forward_add_f32(
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
if (nb10 == sizeof(float)) {
|
||||
for (int j = ith; j < n; j += nth) {
|
||||
const int j0 = (n/nth)*ith;
|
||||
const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
|
||||
|
||||
for (int j = j0; j < j1; j++) {
|
||||
ggml_vec_add_f32(nc,
|
||||
(float *) ((char *) dst->data + j*nb1),
|
||||
(float *) ((char *) src0->data + j*nb01),
|
||||
@ -6852,7 +6866,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
} break;
|
||||
case GGML_OP_ADD:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
node->n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_SUB:
|
||||
case GGML_OP_MUL:
|
||||
@ -8084,7 +8098,7 @@ int ggml_cpu_has_avx512(void) {
|
||||
}
|
||||
|
||||
int ggml_cpu_has_neon(void) {
|
||||
#if defined(__ARM_NEON__)
|
||||
#if defined(__ARM_NEON)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
|
175
ggml.h
175
ggml.h
@ -1,5 +1,174 @@
|
||||
#pragma once
|
||||
|
||||
//
|
||||
// GGML Tensor Library
|
||||
//
|
||||
// This documentation is still a work in progress.
|
||||
// If you wish some specific topics to be covered, feel free to drop a comment:
|
||||
//
|
||||
// https://github.com/ggerganov/whisper.cpp/issues/40
|
||||
//
|
||||
// ## Overview
|
||||
//
|
||||
// This library implements:
|
||||
//
|
||||
// - a set of tensor operations
|
||||
// - automatic differentiation
|
||||
// - basic optimization algorithms
|
||||
//
|
||||
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
||||
// but is not limited to, the following:
|
||||
//
|
||||
// - linear regression
|
||||
// - support vector machines
|
||||
// - neural networks
|
||||
//
|
||||
// The library allows the user to define a certain function using the available tensor operations. This function
|
||||
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
||||
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
||||
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
||||
// using one of the available optimization algorithms.
|
||||
//
|
||||
// For example, here we define the function: f(x) = a*x^2 + b
|
||||
//
|
||||
// {
|
||||
// struct ggml_init_params params = {
|
||||
// .mem_size = 16*1024*1024,
|
||||
// .mem_buffer = NULL,
|
||||
// };
|
||||
//
|
||||
// // memory allocation happens here
|
||||
// struct ggml_context * ctx = ggml_init(params);
|
||||
//
|
||||
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||||
//
|
||||
// ggml_set_param(ctx, x); // x is an input variable
|
||||
//
|
||||
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||||
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
||||
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
||||
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
||||
//
|
||||
// ...
|
||||
// }
|
||||
//
|
||||
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
||||
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
||||
//
|
||||
// {
|
||||
// ...
|
||||
//
|
||||
// struct ggml_cgraph gf = ggml_build_forward(f);
|
||||
//
|
||||
// // set the input variable and parameter values
|
||||
// ggml_set_f32(x, 2.0f);
|
||||
// ggml_set_f32(a, 3.0f);
|
||||
// ggml_set_f32(b, 4.0f);
|
||||
//
|
||||
// ggml_graph_compute(ctx0, &gf);
|
||||
//
|
||||
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
||||
//
|
||||
// ...
|
||||
// }
|
||||
//
|
||||
// The actual computation is performed in the ggml_graph_compute() function.
|
||||
//
|
||||
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
||||
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
||||
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
||||
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
||||
// actually needed.
|
||||
//
|
||||
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
||||
// differentiation and optimization algorithms.
|
||||
//
|
||||
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
||||
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
||||
// the user can avoid the memory allocation overhead at runtime.
|
||||
//
|
||||
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
||||
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
||||
//
|
||||
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
||||
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
||||
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
||||
// yet, but a few examples are demonstrated in the following operations:
|
||||
//
|
||||
// - ggml_permute()
|
||||
// - ggml_conv_1d_1s()
|
||||
// - ggml_conv_1d_2s()
|
||||
//
|
||||
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
||||
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
||||
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
||||
// calculus class, or watch the following video:
|
||||
//
|
||||
// What is Automatic Differentiation?
|
||||
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
||||
//
|
||||
//
|
||||
// ## Tensor data (struct ggml_tensor)
|
||||
//
|
||||
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
||||
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
||||
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
||||
//
|
||||
// {
|
||||
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
||||
//
|
||||
// assert(c->src[0] == a);
|
||||
// assert(c->src[1] == b);
|
||||
// }
|
||||
//
|
||||
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
||||
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
||||
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
||||
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
||||
// contiguous in memory.
|
||||
//
|
||||
// The data of the tensor is accessed via the "data" pointer. For example:
|
||||
//
|
||||
// {
|
||||
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
|
||||
//
|
||||
// // a[1, 2] = 1.0f;
|
||||
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
|
||||
//
|
||||
// // a[2, 0] = 2.0f;
|
||||
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
|
||||
//
|
||||
// ...
|
||||
// }
|
||||
//
|
||||
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
||||
//
|
||||
// ## The matrix multiplication operator (ggml_mul_mat)
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
// ## Multi-threading
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
// ## Overview of ggml.c
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
// ## SIMD optimizations
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
// ## Debugging ggml
|
||||
//
|
||||
// TODO
|
||||
//
|
||||
//
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@ -21,7 +190,8 @@ typedef __fp16 ggml_fp16_t;
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
#endif
|
||||
|
||||
float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||
// convert FP16 <-> FP32
|
||||
float ggml_fp16_to_fp32(ggml_fp16_t x);
|
||||
ggml_fp16_t ggml_fp32_to_fp16(float x);
|
||||
|
||||
struct ggml_object;
|
||||
@ -36,6 +206,7 @@ enum ggml_type {
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
enum ggml_op {
|
||||
GGML_OP_NONE = 0,
|
||||
|
||||
@ -136,7 +307,7 @@ struct ggml_init_params {
|
||||
void * mem_buffer; // if NULL, memory will be allocated internally
|
||||
};
|
||||
|
||||
void ggml_time_init(void);
|
||||
void ggml_time_init(void); // call this once at the beginning of the program
|
||||
int64_t ggml_time_ms(void);
|
||||
int64_t ggml_time_us(void);
|
||||
int64_t ggml_cycles(void);
|
||||
|
@ -22,6 +22,20 @@ A third option to obtain the model files is to download them from Hugging Face:
|
||||
|
||||
https://huggingface.co/datasets/ggerganov/whisper.cpp/tree/main
|
||||
|
||||
## Available models
|
||||
|
||||
| Model | Disk | Mem | SHA |
|
||||
| --- | --- | --- | --- |
|
||||
| tiny | 75 MB | ~390 MB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
|
||||
| tiny.en | 75 MB | ~390 MB | `c78c86eb1a8faa21b369bcd33207cc90d64ae9df` |
|
||||
| base | 142 MB | ~500 MB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
|
||||
| base.en | 142 MB | ~500 MB | `137c40403d78fd54d454da0f9bd998f78703390c` |
|
||||
| small | 466 MB | ~1.0 GB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
|
||||
| small.en | 466 MB | ~1.0 GB | `db8a495a91d927739e50b3fc1cc4c6b8f6c2d022` |
|
||||
| medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
|
||||
| medium.en | 1.5 GB | ~2.6 GB | `8c30f0e44ce9560643ebd10bbe50cd20eafd3723` |
|
||||
| large | 2.9 GB | ~4.7 GB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` |
|
||||
|
||||
## Model files for testing purposes
|
||||
|
||||
The model files pefixed with `for-tests-` are empty (i.e. do not contain any weights) and are used by the CI for testing purposes.
|
||||
|
@ -297,8 +297,6 @@ for name in list_vars.keys():
|
||||
name == "encoder.conv2.bias" or \
|
||||
name == "encoder.positional_embedding" or \
|
||||
name == "decoder.positional_embedding":
|
||||
ftype = 0
|
||||
data = data.astype(np.float32)
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype = 0
|
||||
|
63
models/download-ggml-model.cmd
Normal file
63
models/download-ggml-model.cmd
Normal file
@ -0,0 +1,63 @@
|
||||
@echo off
|
||||
|
||||
pushd %~dp0
|
||||
set models_path=%CD%
|
||||
popd
|
||||
|
||||
set argc=0
|
||||
for %%x in (%*) do set /A argc+=1
|
||||
|
||||
set models=tiny.en tiny base.en base small.en small medium.en medium large
|
||||
|
||||
if %argc% neq 1 (
|
||||
echo.
|
||||
echo Usage: download-ggml-model.cmd model
|
||||
CALL :list_models
|
||||
goto :eof
|
||||
)
|
||||
|
||||
set model=%1
|
||||
|
||||
for %%b in (%models%) do (
|
||||
if "%%b"=="%model%" (
|
||||
CALL :download_model
|
||||
goto :eof
|
||||
)
|
||||
)
|
||||
|
||||
echo Invalid model: %model%
|
||||
CALL :list_models
|
||||
goto :eof
|
||||
|
||||
:download_model
|
||||
echo Downloading ggml model %model%...
|
||||
|
||||
cd %models_path%
|
||||
|
||||
if exist "ggml-%model%.bin" (
|
||||
echo Model %model% already exists. Skipping download.
|
||||
goto :eof
|
||||
)
|
||||
|
||||
PowerShell -NoProfile -ExecutionPolicy Bypass -Command "Invoke-WebRequest -Uri https://ggml.ggerganov.com/ggml-model-whisper-%model%.bin -OutFile ggml-%model%.bin"
|
||||
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo Failed to download ggml model %model%
|
||||
echo Please try again later or download the original Whisper model files and convert them yourself.
|
||||
goto :eof
|
||||
)
|
||||
|
||||
echo Done! Model %model% saved in %models_path%\models\ggml-%model%.bin
|
||||
echo You can now use it like this:
|
||||
echo main.exe -m %models_path%\models\ggml-%model%.bin -f %models_path%\samples\jfk.wav
|
||||
|
||||
goto :eof
|
||||
|
||||
:list_models
|
||||
echo.
|
||||
echo Available models:
|
||||
(for %%a in (%models%) do (
|
||||
echo %%a
|
||||
))
|
||||
echo.
|
||||
exit /b
|
632
whisper.cpp
632
whisper.cpp
@ -133,11 +133,19 @@ static const std::map<std::string, std::pair<int, std::string>> g_lang = {
|
||||
static const size_t MB = 1024*1024;
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_MODEL = {
|
||||
{ MODEL_TINY, 86ull*MB },
|
||||
{ MODEL_BASE, 165ull*MB },
|
||||
{ MODEL_SMALL, 540ull*MB },
|
||||
{ MODEL_MEDIUM, 1650ull*MB },
|
||||
{ MODEL_LARGE, 3260ull*MB },
|
||||
{ MODEL_TINY, 74ull*MB },
|
||||
{ MODEL_BASE, 142ull*MB },
|
||||
{ MODEL_SMALL, 466ull*MB },
|
||||
{ MODEL_MEDIUM, 1464ull*MB },
|
||||
{ MODEL_LARGE, 2952ull*MB },
|
||||
};
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_MEMORY = {
|
||||
{ MODEL_TINY, 12ull*MB },
|
||||
{ MODEL_BASE, 24ull*MB },
|
||||
{ MODEL_SMALL, 70ull*MB },
|
||||
{ MODEL_MEDIUM, 184ull*MB },
|
||||
{ MODEL_LARGE, 306ull*MB },
|
||||
};
|
||||
|
||||
static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
|
||||
@ -410,6 +418,15 @@ struct whisper_context {
|
||||
std::vector<whisper_segment> result_all;
|
||||
|
||||
std::vector<whisper_token> prompt_past;
|
||||
|
||||
// [EXPERIMENTAL] token-level timestamps data
|
||||
int64_t t_beg;
|
||||
int64_t t_last;
|
||||
whisper_token tid_last;
|
||||
std::vector<float> energy; // PCM signal energy
|
||||
|
||||
// [EXPERIMENTAL] speed-up techniques
|
||||
int32_t exp_n_audio_ctx; // 0 - use default
|
||||
};
|
||||
|
||||
// load the model from a ggml file
|
||||
@ -423,7 +440,7 @@ struct whisper_context {
|
||||
//
|
||||
// see the convert-pt-to-ggml.py script for details
|
||||
//
|
||||
bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
static bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
auto & model = wctx.model;
|
||||
@ -498,7 +515,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
|
||||
wctx.buf_model = new std::vector<uint8_t>();
|
||||
wctx.buf_model->resize(MEM_REQ_MODEL.at(model.type));
|
||||
wctx.buf_memory.resize(std::max(MEM_REQ_MODEL.at(model.type), MEM_REQ_MODEL.at(model.type))); // TODO: TMP !!!
|
||||
wctx.buf_memory.resize(MEM_REQ_MEMORY.at(model.type));
|
||||
wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type)));
|
||||
wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type)));
|
||||
|
||||
@ -599,7 +616,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
const int n_audio_state = hparams.n_audio_state;
|
||||
const int n_audio_layer = hparams.n_audio_layer;
|
||||
|
||||
const int n_text_ctx = hparams.n_text_ctx;
|
||||
const int n_text_ctx = hparams.n_text_ctx;
|
||||
const int n_text_state = hparams.n_text_state;
|
||||
const int n_text_layer = hparams.n_text_layer;
|
||||
|
||||
@ -722,20 +739,6 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
}
|
||||
}
|
||||
|
||||
// create the ggml memory context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = wctx.buf_memory.size(),
|
||||
.mem_buffer = wctx.buf_memory.data(),
|
||||
};
|
||||
|
||||
model.ctx_mem = ggml_init(params);
|
||||
if (!model.ctx_mem) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
auto & ctx = model.ctx;
|
||||
@ -748,7 +751,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
const int n_audio_state = hparams.n_audio_state;
|
||||
const int n_audio_layer = hparams.n_audio_layer;
|
||||
|
||||
const int n_text_ctx = hparams.n_text_ctx;
|
||||
const int n_text_ctx = hparams.n_text_ctx;
|
||||
const int n_text_state = hparams.n_text_state;
|
||||
const int n_text_layer = hparams.n_text_layer;
|
||||
|
||||
@ -932,6 +935,20 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
}
|
||||
}
|
||||
|
||||
// create the ggml memory context
|
||||
{
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = wctx.buf_memory.size(),
|
||||
.mem_buffer = wctx.buf_memory.data(),
|
||||
};
|
||||
|
||||
model.ctx_mem = ggml_init(params);
|
||||
if (!model.ctx_mem) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// key + value memory
|
||||
{
|
||||
auto & ctx = model.ctx_mem;
|
||||
@ -953,7 +970,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
|
||||
// key/value memory for the cross-attention layer
|
||||
{
|
||||
const int n_audio_ctx = hparams.n_audio_ctx;
|
||||
const int n_audio_ctx = hparams.n_audio_ctx;
|
||||
|
||||
const int n_mem = n_text_layer*n_audio_ctx;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
@ -1054,7 +1071,7 @@ bool whisper_model_load(const std::string & fname, whisper_context & wctx) {
|
||||
// - n_threads: number of threads to use
|
||||
// - mel_offset: offset in the mel spectrogram (i.e. audio offset)
|
||||
//
|
||||
bool whisper_encode(
|
||||
static bool whisper_encode(
|
||||
whisper_context & wctx,
|
||||
const int n_threads,
|
||||
const int mel_offset) {
|
||||
@ -1062,13 +1079,11 @@ bool whisper_encode(
|
||||
const auto & mel_inp = wctx.mel;
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_ctx = hparams.n_audio_ctx;
|
||||
const int n_ctx = wctx.exp_n_audio_ctx > 0 ? wctx.exp_n_audio_ctx : hparams.n_audio_ctx;
|
||||
const int n_state = hparams.n_audio_state;
|
||||
const int n_head = hparams.n_audio_head;
|
||||
const int n_layer = hparams.n_audio_layer;
|
||||
|
||||
const int N = n_ctx;
|
||||
|
||||
const int n_mels = hparams.n_mels;
|
||||
assert(mel_inp.n_mel == n_mels);
|
||||
|
||||
@ -1118,7 +1133,30 @@ bool whisper_encode(
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
|
||||
// ===================================================================
|
||||
// NOTE: experimenting with partial evaluation of the encoder (ignore)
|
||||
//static int iter = -1;
|
||||
//const int n_iter = 1500/n_ctx;
|
||||
|
||||
//iter = (iter + 1) % n_iter;
|
||||
|
||||
//if (iter == 0) {
|
||||
// memset(model.memory_cross_k->data, 0, ggml_nbytes(model.memory_cross_k));
|
||||
// memset(model.memory_cross_v->data, 0, ggml_nbytes(model.memory_cross_v));
|
||||
//}
|
||||
|
||||
static int iter = 0;
|
||||
|
||||
const size_t e_pe_stride = model.e_pe->ne[0]*ggml_element_size(model.e_pe);
|
||||
const size_t e_pe_offset = model.e_pe->ne[0]*ggml_element_size(model.e_pe)*n_ctx*iter;
|
||||
|
||||
struct ggml_tensor * e_pe = ggml_view_2d(ctx0, model.e_pe, model.e_pe->ne[0], n_ctx, e_pe_stride, e_pe_offset);
|
||||
|
||||
cur = ggml_add(ctx0, e_pe, ggml_transpose(ctx0, cur));
|
||||
// ===================================================================
|
||||
|
||||
// original:
|
||||
//cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur));
|
||||
|
||||
struct ggml_tensor * inpL = cur;
|
||||
|
||||
@ -1184,14 +1222,14 @@ bool whisper_encode(
|
||||
ggml_permute(ctxL,
|
||||
ggml_cpy(ctxL,
|
||||
Qcur,
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctxL,
|
||||
ggml_cpy(ctxL,
|
||||
Kcur,
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * V =
|
||||
@ -1199,9 +1237,9 @@ bool whisper_encode(
|
||||
ggml_permute(ctxL,
|
||||
ggml_reshape_3d(ctxL,
|
||||
Vcur,
|
||||
n_state/n_head, n_head, N),
|
||||
n_state/n_head, n_head, n_ctx),
|
||||
1, 2, 0, 3),
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_ctx, n_state/n_head, n_head)
|
||||
);
|
||||
|
||||
struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
|
||||
@ -1210,14 +1248,14 @@ bool whisper_encode(
|
||||
ggml_permute(ctxL,
|
||||
ggml_cpy(ctxL,
|
||||
Qcur,
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * K =
|
||||
ggml_permute(ctxL,
|
||||
ggml_cpy(ctxL,
|
||||
Kcur,
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)),
|
||||
0, 2, 1, 3);
|
||||
|
||||
// K * Q
|
||||
@ -1235,7 +1273,7 @@ bool whisper_encode(
|
||||
// ggml_permute(ctxL,
|
||||
// ggml_cpy(ctxL,
|
||||
// Vcur,
|
||||
// ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
|
||||
// ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, n_ctx)),
|
||||
// 1, 2, 0, 3);
|
||||
|
||||
//struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max);
|
||||
@ -1245,9 +1283,9 @@ bool whisper_encode(
|
||||
ggml_permute(ctxL,
|
||||
ggml_reshape_3d(ctxL,
|
||||
Vcur,
|
||||
n_state/n_head, n_head, N),
|
||||
n_state/n_head, n_head, n_ctx),
|
||||
0, 2, 1, 3),
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
|
||||
ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_ctx, n_head)
|
||||
);
|
||||
|
||||
struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
|
||||
@ -1257,7 +1295,7 @@ bool whisper_encode(
|
||||
|
||||
cur = ggml_cpy(ctxL,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N));
|
||||
ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, n_ctx));
|
||||
}
|
||||
|
||||
// projection
|
||||
@ -1411,6 +1449,8 @@ bool whisper_encode(
|
||||
Vcross),
|
||||
Vcross);
|
||||
|
||||
//struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*hparams.n_audio_ctx + iter*n_ctx));
|
||||
//struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*hparams.n_audio_ctx + iter*n_ctx));
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx));
|
||||
|
||||
@ -1440,7 +1480,7 @@ bool whisper_encode(
|
||||
// - n_tokens: number of tokens in the prompt
|
||||
// - n_past: number of past tokens to prefix the prompt with
|
||||
//
|
||||
bool whisper_decode(
|
||||
static bool whisper_decode(
|
||||
whisper_context & wctx,
|
||||
const int n_threads,
|
||||
const whisper_token * tokens,
|
||||
@ -1460,7 +1500,7 @@ bool whisper_decode(
|
||||
const int n_layer = hparams.n_text_layer;
|
||||
|
||||
const int N = n_tokens;
|
||||
const int M = hparams.n_audio_ctx;
|
||||
const int M = wctx.exp_n_audio_ctx > 0 ? wctx.exp_n_audio_ctx : hparams.n_audio_ctx;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = wctx.buf_compute.size(),
|
||||
@ -1803,10 +1843,12 @@ bool whisper_decode(
|
||||
}
|
||||
|
||||
// the most basic sampling scheme - select the top token
|
||||
whisper_token_data whisper_sample_best(
|
||||
static whisper_token_data whisper_sample_best(
|
||||
const whisper_vocab & vocab,
|
||||
const float * probs) {
|
||||
whisper_token_data result;
|
||||
whisper_token_data result = {
|
||||
0, 0, 0.0f, 0.0f, 0.0f, -1, -1, 0.0f,
|
||||
};
|
||||
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
|
||||
@ -1879,7 +1921,7 @@ whisper_token_data whisper_sample_best(
|
||||
}
|
||||
|
||||
// samples only from the timestamps tokens
|
||||
whisper_vocab::id whisper_sample_timestamp(
|
||||
static whisper_vocab::id whisper_sample_timestamp(
|
||||
const whisper_vocab & vocab,
|
||||
const float * probs) {
|
||||
int n_logits = vocab.id_to_token.size();
|
||||
@ -1931,7 +1973,7 @@ static std::string to_timestamp(int64_t t, bool comma = false) {
|
||||
// naive Discrete Fourier Transform
|
||||
// input is real-valued
|
||||
// output is complex-valued
|
||||
void dft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
static void dft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
int N = in.size();
|
||||
|
||||
out.resize(N*2);
|
||||
@ -1955,7 +1997,7 @@ void dft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
// poor man's implementation - use something better
|
||||
// input is real-valued
|
||||
// output is complex-valued
|
||||
void fft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
static void fft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
out.resize(in.size()*2);
|
||||
|
||||
int N = in.size();
|
||||
@ -2006,7 +2048,7 @@ void fft(const std::vector<float> & in, std::vector<float> & out) {
|
||||
}
|
||||
|
||||
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124
|
||||
bool log_mel_spectrogram(
|
||||
static bool log_mel_spectrogram(
|
||||
const float * samples,
|
||||
const int n_samples,
|
||||
const int sample_rate,
|
||||
@ -2015,6 +2057,7 @@ bool log_mel_spectrogram(
|
||||
const int n_mel,
|
||||
const int n_threads,
|
||||
const whisper_filters & filters,
|
||||
const bool speed_up,
|
||||
whisper_mel & mel) {
|
||||
|
||||
// Hanning window
|
||||
@ -2028,7 +2071,7 @@ bool log_mel_spectrogram(
|
||||
mel.n_len = (n_samples)/fft_step;
|
||||
mel.data.resize(mel.n_mel*mel.n_len);
|
||||
|
||||
const int n_fft = 1 + fft_size/2;
|
||||
const int n_fft = 1 + (speed_up ? fft_size/4 : fft_size/2);
|
||||
|
||||
//printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len);
|
||||
//printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate);
|
||||
@ -2075,6 +2118,13 @@ bool log_mel_spectrogram(
|
||||
//}
|
||||
}
|
||||
|
||||
if (speed_up) {
|
||||
// scale down in the frequency domain results in a speed up in the time domain
|
||||
for (int j = 0; j < n_fft; j++) {
|
||||
fft_out[j] = 0.5*(fft_out[2*j] + fft_out[2*j + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// mel spectrogram
|
||||
for (int j = 0; j < mel.n_mel; j++) {
|
||||
double sum = 0.0;
|
||||
@ -2155,7 +2205,21 @@ void whisper_free(struct whisper_context * ctx) {
|
||||
int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, ctx->mel)) {
|
||||
if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, false, ctx->mel)) {
|
||||
fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
|
||||
ctx->t_mel_us = ggml_time_us() - t_start_us;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// same as whisper_pcm_to_mel, but applies a Phase Vocoder to speed up the audio x2
|
||||
int whisper_pcm_to_mel_phase_vocoder(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) {
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, 2*WHISPER_N_FFT, 2*WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, true, ctx->mel)) {
|
||||
fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
@ -2323,14 +2387,25 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.n_max_text_ctx =*/ 16384,
|
||||
/*.offset_ms =*/ 0,
|
||||
/*.duration_ms =*/ 0,
|
||||
|
||||
/*.translate =*/ false,
|
||||
/*.no_context =*/ false,
|
||||
/*.single_segment =*/ false,
|
||||
/*.print_special_tokens =*/ false,
|
||||
/*.print_progress =*/ true,
|
||||
/*.print_realtime =*/ false,
|
||||
/*.print_timestamps =*/ true,
|
||||
|
||||
/*.token_timestamps =*/ false,
|
||||
/*.thold_pt =*/ 0.01f,
|
||||
/*.thold_ptsum =*/ 0.01f,
|
||||
/*.max_len =*/ 0,
|
||||
/*.max_tokens =*/ 0,
|
||||
|
||||
/*.speed_up =*/ false,
|
||||
/*.audio_ctx =*/ 0,
|
||||
|
||||
/*.language =*/ "en",
|
||||
|
||||
/*.greedy =*/ {
|
||||
@ -2355,14 +2430,25 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
/*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()),
|
||||
/*.n_max_text_ctx =*/ 16384,
|
||||
/*.offset_ms =*/ 0,
|
||||
/*.duration_ms =*/ 0,
|
||||
|
||||
/*.translate =*/ false,
|
||||
/*.no_context =*/ false,
|
||||
/*.single_segment =*/ false,
|
||||
/*.print_special_tokens =*/ false,
|
||||
/*.print_progress =*/ true,
|
||||
/*.print_realtime =*/ false,
|
||||
/*.print_timestamps =*/ true,
|
||||
|
||||
/*.token_timestamps =*/ false,
|
||||
/*.thold_pt =*/ 0.01f,
|
||||
/*.thold_ptsum =*/ 0.01f,
|
||||
/*.max_len =*/ 0,
|
||||
/*.max_tokens =*/ 0,
|
||||
|
||||
/*.speed_up =*/ false,
|
||||
/*.audio_ctx =*/ 0,
|
||||
|
||||
/*.language =*/ "en",
|
||||
|
||||
/*.greedy =*/ {
|
||||
@ -2384,6 +2470,68 @@ struct whisper_full_params whisper_full_default_params(enum whisper_sampling_str
|
||||
return result;
|
||||
}
|
||||
|
||||
// forward declarations
|
||||
static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window);
|
||||
static void whisper_exp_compute_token_level_timestamps(
|
||||
struct whisper_context * ctx,
|
||||
int i_segment,
|
||||
float thold_pt,
|
||||
float thold_ptsum);
|
||||
|
||||
// wrap the last segment to max_len characters
|
||||
// returns the number of new segments
|
||||
static int whisper_wrap_segment(struct whisper_context * ctx, int max_len) {
|
||||
auto segment = ctx->result_all.back();
|
||||
|
||||
int res = 1;
|
||||
int acc = 0;
|
||||
|
||||
std::string text;
|
||||
|
||||
for (int i = 0; i < (int) segment.tokens.size(); i++) {
|
||||
const auto & token = segment.tokens[i];
|
||||
if (token.id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto txt = whisper_token_to_str(ctx, token.id);
|
||||
|
||||
const int cur = strlen(txt);
|
||||
|
||||
if (acc + cur > max_len && i > 0) {
|
||||
// split here
|
||||
ctx->result_all.back().text = std::move(text);
|
||||
ctx->result_all.back().t1 = token.t0;
|
||||
ctx->result_all.back().tokens.resize(i);
|
||||
|
||||
ctx->result_all.push_back({});
|
||||
ctx->result_all.back().t0 = token.t0;
|
||||
ctx->result_all.back().t1 = segment.t1;
|
||||
|
||||
// add tokens [i, end] to the new segment
|
||||
ctx->result_all.back().tokens.insert(
|
||||
ctx->result_all.back().tokens.end(),
|
||||
segment.tokens.begin() + i,
|
||||
segment.tokens.end());
|
||||
|
||||
acc = 0;
|
||||
text = "";
|
||||
|
||||
segment = ctx->result_all.back();
|
||||
i = -1;
|
||||
|
||||
res++;
|
||||
} else {
|
||||
acc += cur;
|
||||
text += txt;
|
||||
}
|
||||
}
|
||||
|
||||
ctx->result_all.back().text = std::move(text);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
int whisper_full(
|
||||
struct whisper_context * ctx,
|
||||
struct whisper_full_params params,
|
||||
@ -2395,17 +2543,32 @@ int whisper_full(
|
||||
result_all.clear();
|
||||
|
||||
// compute log mel spectrogram
|
||||
if (whisper_pcm_to_mel(ctx, samples, n_samples, params.n_threads) != 0) {
|
||||
fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__);
|
||||
return -1;
|
||||
if (params.speed_up) {
|
||||
if (whisper_pcm_to_mel_phase_vocoder(ctx, samples, n_samples, params.n_threads) != 0) {
|
||||
fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
} else {
|
||||
if (whisper_pcm_to_mel(ctx, samples, n_samples, params.n_threads) != 0) {
|
||||
fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
if (params.token_timestamps) {
|
||||
ctx->t_beg = 0;
|
||||
ctx->t_last = 0;
|
||||
ctx->tid_last = 0;
|
||||
ctx->energy = get_signal_energy(samples, n_samples, 32);
|
||||
}
|
||||
|
||||
const int seek_start = params.offset_ms/10;
|
||||
const int seek_end = seek_start + (params.duration_ms == 0 ? whisper_n_len(ctx) : params.duration_ms/10);
|
||||
|
||||
// if length of spectrogram is less than 1s (100 samples), then return
|
||||
// basically don't process anything that is less than 1s
|
||||
// see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39
|
||||
if (whisper_n_len(ctx) < 100 + seek_start) {
|
||||
if (seek_end < 100 + seek_start) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -2415,6 +2578,9 @@ int whisper_full(
|
||||
prompt_past.clear();
|
||||
}
|
||||
|
||||
// overwrite audio_ctx
|
||||
ctx->exp_n_audio_ctx = params.audio_ctx;
|
||||
|
||||
// these tokens determine the task that will be performed
|
||||
std::vector<whisper_token> prompt_init = { whisper_token_sot(ctx) };
|
||||
if (whisper_is_multilingual(ctx)) {
|
||||
@ -2438,7 +2604,7 @@ int whisper_full(
|
||||
// main loop
|
||||
int seek = seek_start;
|
||||
while (true) {
|
||||
int progress_cur = (100*seek)/whisper_n_len(ctx);
|
||||
const int progress_cur = (100*(seek - seek_start))/(seek_end - seek_start);
|
||||
while (progress_cur >= progress_prev + progress_step) {
|
||||
progress_prev += progress_step;
|
||||
if (params.print_progress) {
|
||||
@ -2446,7 +2612,7 @@ int whisper_full(
|
||||
}
|
||||
}
|
||||
|
||||
if (seek + 100 >= whisper_n_len(ctx)) {
|
||||
if (seek + 100 >= seek_end) {
|
||||
break;
|
||||
}
|
||||
|
||||
@ -2525,15 +2691,21 @@ int whisper_full(
|
||||
//}
|
||||
|
||||
// end of text token
|
||||
if (token.id == whisper_token_eot(ctx)) {
|
||||
if (token.id == whisper_token_eot(ctx) || (params.max_tokens > 0 && i > params.max_tokens)) {
|
||||
if (result_len == 0) {
|
||||
if (seek + seek_delta + 100 >= whisper_n_len(ctx)) {
|
||||
if (seek + seek_delta + 100 >= seek_end) {
|
||||
result_len = i + 1;
|
||||
} else {
|
||||
// TODO: figure out how to resolve this
|
||||
fprintf(stderr, "\n%s: failed to generate timestamp token - this should not happen\n\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
if (params.single_segment) {
|
||||
result_len = i + 1;
|
||||
seek_delta = 100*WHISPER_CHUNK_SIZE;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
@ -2549,6 +2721,7 @@ int whisper_full(
|
||||
}
|
||||
}
|
||||
|
||||
// shrink down to result_len
|
||||
tokens_cur.resize(result_len);
|
||||
|
||||
for (const auto & r : tokens_cur) {
|
||||
@ -2574,21 +2747,35 @@ int whisper_full(
|
||||
if (tokens_cur[i].id > whisper_token_beg(ctx)) {
|
||||
const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx));
|
||||
if (!text.empty()) {
|
||||
const auto tt0 = params.speed_up ? 2*t0 : t0;
|
||||
const auto tt1 = params.speed_up ? 2*t1 : t1;
|
||||
|
||||
if (params.print_realtime) {
|
||||
if (params.print_timestamps) {
|
||||
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str());
|
||||
printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str());
|
||||
} else {
|
||||
printf("%s", text.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
result_all.push_back({ t0, t1, text, {} });
|
||||
result_all.push_back({ tt0, tt1, text, {} });
|
||||
for (int j = i0; j <= i; j++) {
|
||||
result_all.back().tokens.push_back(tokens_cur[j]);
|
||||
}
|
||||
|
||||
int n_new = 1;
|
||||
|
||||
if (params.token_timestamps) {
|
||||
whisper_exp_compute_token_level_timestamps(
|
||||
ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
|
||||
|
||||
if (params.max_len > 0) {
|
||||
n_new = whisper_wrap_segment(ctx, params.max_len);
|
||||
}
|
||||
}
|
||||
if (params.new_segment_callback) {
|
||||
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
|
||||
params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data);
|
||||
}
|
||||
}
|
||||
text = "";
|
||||
@ -2604,21 +2791,35 @@ int whisper_full(
|
||||
if (!text.empty()) {
|
||||
const auto t1 = seek + seek_delta;
|
||||
|
||||
const auto tt0 = params.speed_up ? 2*t0 : t0;
|
||||
const auto tt1 = params.speed_up ? 2*t1 : t1;
|
||||
|
||||
if (params.print_realtime) {
|
||||
if (params.print_timestamps) {
|
||||
printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str());
|
||||
printf("[%s --> %s] %s\n", to_timestamp(tt0).c_str(), to_timestamp(tt1).c_str(), text.c_str());
|
||||
} else {
|
||||
printf("%s", text.c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
result_all.push_back({ t0, t1, text, {} });
|
||||
result_all.push_back({ tt0, tt1, text, {} });
|
||||
for (int j = i0; j < (int) tokens_cur.size(); j++) {
|
||||
result_all.back().tokens.push_back(tokens_cur[j]);
|
||||
}
|
||||
|
||||
int n_new = 1;
|
||||
|
||||
if (params.token_timestamps) {
|
||||
whisper_exp_compute_token_level_timestamps(
|
||||
ctx, result_all.size() - 1, params.thold_pt, params.thold_ptsum);
|
||||
|
||||
if (params.max_len > 0) {
|
||||
n_new = whisper_wrap_segment(ctx, params.max_len);
|
||||
}
|
||||
}
|
||||
if (params.new_segment_callback) {
|
||||
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
|
||||
params.new_segment_callback(ctx, n_new, params.new_segment_callback_user_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -2684,7 +2885,7 @@ int whisper_full_parallel(
|
||||
|
||||
// key/value memory for the cross-attention layer
|
||||
{
|
||||
const int n_audio_ctx = hparams.n_audio_ctx;
|
||||
const int n_audio_ctx = hparams.n_audio_ctx;
|
||||
|
||||
const int n_mem = n_text_layer*n_audio_ctx;
|
||||
const int n_elements = n_text_state*n_mem;
|
||||
@ -2752,7 +2953,7 @@ int whisper_full_parallel(
|
||||
|
||||
// call the new_segment_callback for each segment
|
||||
if (params.new_segment_callback) {
|
||||
params.new_segment_callback(ctx, params.new_segment_callback_user_data);
|
||||
params.new_segment_callback(ctx, 1, params.new_segment_callback_user_data);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2828,3 +3029,304 @@ const char * whisper_print_system_info() {
|
||||
|
||||
return s.c_str();
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
//
|
||||
// Experimental stuff below
|
||||
//
|
||||
// Not sure if these should be part of the library at all, because the quality of the results is not
|
||||
// guaranteed. Might get removed at some point unless a robust algorithm implementation is found
|
||||
//
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
//
|
||||
// token-level timestamps
|
||||
//
|
||||
|
||||
static int timestamp_to_sample(int64_t t, int n_samples) {
|
||||
return std::max(0, std::min((int) n_samples - 1, (int) ((t*WHISPER_SAMPLE_RATE)/100)));
|
||||
}
|
||||
|
||||
static int64_t sample_to_timestamp(int i_sample) {
|
||||
return (100*i_sample)/WHISPER_SAMPLE_RATE;
|
||||
}
|
||||
|
||||
// a cost-function / heuristic that is high for text that takes longer to pronounce
|
||||
// obviously, can be improved
|
||||
static float voice_length(const std::string & text) {
|
||||
float res = 0.0f;
|
||||
|
||||
for (size_t i = 0; i < text.size(); ++i) {
|
||||
if (text[i] == ' ') {
|
||||
res += 0.01f;
|
||||
} else if (text[i] == ',') {
|
||||
res += 2.00f;
|
||||
} else if (text[i] == '.') {
|
||||
res += 3.00f;
|
||||
} else if (text[i] == '!') {
|
||||
res += 3.00f;
|
||||
} else if (text[i] == '?') {
|
||||
res += 3.00f;
|
||||
} else if (text[i] >= '0' && text[i] <= '9') {
|
||||
res += 3.00f;
|
||||
} else {
|
||||
res += 1.00f;
|
||||
}
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// average the fabs of the signal
|
||||
static std::vector<float> get_signal_energy(const float * signal, int n_samples, int n_samples_per_half_window) {
|
||||
const int hw = n_samples_per_half_window;
|
||||
|
||||
std::vector<float> result(n_samples);
|
||||
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
float sum = 0;
|
||||
for (int j = -hw; j <= hw; j++) {
|
||||
if (i + j >= 0 && i + j < n_samples) {
|
||||
sum += fabs(signal[i + j]);
|
||||
}
|
||||
}
|
||||
result[i] = sum/(2*hw + 1);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static void whisper_exp_compute_token_level_timestamps(
|
||||
struct whisper_context * ctx,
|
||||
int i_segment,
|
||||
float thold_pt,
|
||||
float thold_ptsum) {
|
||||
auto & segment = ctx->result_all[i_segment];
|
||||
auto & tokens = segment.tokens;
|
||||
|
||||
const int n_samples = ctx->energy.size();
|
||||
|
||||
if (n_samples == 0) {
|
||||
fprintf(stderr, "%s: no signal data available\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t t0 = segment.t0;
|
||||
const int64_t t1 = segment.t1;
|
||||
|
||||
const int s0 = timestamp_to_sample(t0, n_samples);
|
||||
const int s1 = timestamp_to_sample(t1, n_samples);
|
||||
|
||||
const int n = tokens.size();
|
||||
|
||||
if (n == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (n == 1) {
|
||||
tokens[0].t0 = t0;
|
||||
tokens[0].t1 = t1;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
auto & t_beg = ctx->t_beg;
|
||||
auto & t_last = ctx->t_last;
|
||||
auto & tid_last = ctx->tid_last;
|
||||
|
||||
for (int j = 0; j < n; ++j) {
|
||||
auto & token = tokens[j];
|
||||
|
||||
if (j == 0) {
|
||||
if (token.id == whisper_token_beg(ctx)) {
|
||||
tokens[j ].t0 = t0;
|
||||
tokens[j ].t1 = t0;
|
||||
tokens[j + 1].t0 = t0;
|
||||
|
||||
t_beg = t0;
|
||||
t_last = t0;
|
||||
tid_last = whisper_token_beg(ctx);
|
||||
} else {
|
||||
tokens[j ].t0 = t_last;
|
||||
}
|
||||
}
|
||||
|
||||
const int64_t tt = t_beg + 2*(token.tid - whisper_token_beg(ctx));
|
||||
|
||||
tokens[j].id = token.id;
|
||||
tokens[j].tid = token.tid;
|
||||
tokens[j].p = token.p;
|
||||
tokens[j].pt = token.pt;
|
||||
tokens[j].ptsum = token.ptsum;
|
||||
|
||||
tokens[j].vlen = voice_length(whisper_token_to_str(ctx, token.id));
|
||||
|
||||
if (token.pt > thold_pt && token.ptsum > thold_ptsum && token.tid > tid_last && tt <= t1) {
|
||||
if (j > 0) {
|
||||
tokens[j - 1].t1 = tt;
|
||||
}
|
||||
tokens[j].t0 = tt;
|
||||
tid_last = token.tid;
|
||||
}
|
||||
}
|
||||
|
||||
tokens[n - 2].t1 = t1;
|
||||
tokens[n - 1].t0 = t1;
|
||||
tokens[n - 1].t1 = t1;
|
||||
|
||||
t_last = t1;
|
||||
|
||||
// find intervals of tokens with unknown timestamps
|
||||
// fill the timestamps by proportionally splitting the interval based on the token voice lengths
|
||||
{
|
||||
int p0 = 0;
|
||||
int p1 = 0;
|
||||
|
||||
while (true) {
|
||||
while (p1 < n && tokens[p1].t1 < 0) {
|
||||
p1++;
|
||||
}
|
||||
|
||||
if (p1 >= n) {
|
||||
p1--;
|
||||
}
|
||||
|
||||
if (p1 > p0) {
|
||||
double psum = 0.0;
|
||||
for (int j = p0; j <= p1; j++) {
|
||||
psum += tokens[j].vlen;
|
||||
}
|
||||
|
||||
//printf("analyzing %d - %d, psum = %f\n", p0, p1, psum);
|
||||
|
||||
const double dt = tokens[p1].t1 - tokens[p0].t0;
|
||||
|
||||
// split the time proportionally to the voice length
|
||||
for (int j = p0 + 1; j <= p1; j++) {
|
||||
const double ct = tokens[j - 1].t0 + dt*tokens[j - 1].vlen/psum;
|
||||
|
||||
tokens[j - 1].t1 = ct;
|
||||
tokens[j ].t0 = ct;
|
||||
}
|
||||
}
|
||||
|
||||
p1++;
|
||||
p0 = p1;
|
||||
if (p1 >= n) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// fix up (just in case)
|
||||
for (int j = 0; j < n - 1; j++) {
|
||||
if (tokens[j].t1 < 0) {
|
||||
tokens[j + 1].t0 = tokens[j].t1;
|
||||
}
|
||||
|
||||
if (j > 0) {
|
||||
if (tokens[j - 1].t1 > tokens[j].t0) {
|
||||
tokens[j].t0 = tokens[j - 1].t1;
|
||||
tokens[j].t1 = std::max(tokens[j].t0, tokens[j].t1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// VAD
|
||||
// expand or contract tokens based on voice activity
|
||||
{
|
||||
const int hw = WHISPER_SAMPLE_RATE/8;
|
||||
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (tokens[j].id >= whisper_token_eot(ctx)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int s0 = timestamp_to_sample(tokens[j].t0, n_samples);
|
||||
int s1 = timestamp_to_sample(tokens[j].t1, n_samples);
|
||||
|
||||
const int ss0 = std::max(s0 - hw, 0);
|
||||
const int ss1 = std::min(s1 + hw, n_samples);
|
||||
|
||||
const int ns = ss1 - ss0;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int k = ss0; k < ss1; k++) {
|
||||
sum += ctx->energy[k];
|
||||
}
|
||||
|
||||
const float thold = 0.5*sum/ns;
|
||||
|
||||
{
|
||||
int k = s0;
|
||||
if (ctx->energy[k] > thold && j > 0) {
|
||||
while (k > 0 && ctx->energy[k] > thold) {
|
||||
k--;
|
||||
}
|
||||
tokens[j].t0 = sample_to_timestamp(k);
|
||||
if (tokens[j].t0 < tokens[j - 1].t1) {
|
||||
tokens[j].t0 = tokens[j - 1].t1;
|
||||
} else {
|
||||
s0 = k;
|
||||
}
|
||||
} else {
|
||||
while (ctx->energy[k] < thold && k < s1) {
|
||||
k++;
|
||||
}
|
||||
s0 = k;
|
||||
tokens[j].t0 = sample_to_timestamp(k);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int k = s1;
|
||||
if (ctx->energy[k] > thold) {
|
||||
while (k < n_samples - 1 && ctx->energy[k] > thold) {
|
||||
k++;
|
||||
}
|
||||
tokens[j].t1 = sample_to_timestamp(k);
|
||||
if (j < ns - 1 && tokens[j].t1 > tokens[j + 1].t0) {
|
||||
tokens[j].t1 = tokens[j + 1].t0;
|
||||
} else {
|
||||
s1 = k;
|
||||
}
|
||||
} else {
|
||||
while (ctx->energy[k] < thold && k > s0) {
|
||||
k--;
|
||||
}
|
||||
s1 = k;
|
||||
tokens[j].t1 = sample_to_timestamp(k);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// fixed token expand (optional)
|
||||
//{
|
||||
// const int t_expand = 0;
|
||||
|
||||
// for (int j = 0; j < n; j++) {
|
||||
// if (j > 0) {
|
||||
// tokens[j].t0 = std::max(0, (int) (tokens[j].t0 - t_expand));
|
||||
// }
|
||||
// if (j < n - 1) {
|
||||
// tokens[j].t1 = tokens[j].t1 + t_expand;
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
|
||||
// debug info
|
||||
//for (int j = 0; j < n; ++j) {
|
||||
// const auto & token = tokens[j];
|
||||
// const auto tt = token.pt > thold_pt && token.ptsum > 0.01 ? whisper_token_to_str(ctx, token.tid) : "[?]";
|
||||
// printf("%s: %10s %6.3f %6.3f %6.3f %6.3f %5d %5d '%s'\n", __func__,
|
||||
// tt, token.p, token.pt, token.ptsum, token.vlen, (int) token.t0, (int) token.t1, whisper_token_to_str(ctx, token.id));
|
||||
|
||||
// if (tokens[j].id >= whisper_token_eot(ctx)) {
|
||||
// continue;
|
||||
// }
|
||||
//}
|
||||
}
|
||||
|
32
whisper.h
32
whisper.h
@ -68,14 +68,21 @@ extern "C" {
|
||||
|
||||
typedef int whisper_token;
|
||||
|
||||
struct whisper_token_data {
|
||||
typedef struct whisper_token_data {
|
||||
whisper_token id; // token id
|
||||
whisper_token tid; // forced timestamp token id
|
||||
|
||||
float p; // probability of the token
|
||||
float pt; // probability of the timestamp token
|
||||
float ptsum; // sum of probabilities of all timestamp tokens
|
||||
};
|
||||
|
||||
// token-level timestamp data
|
||||
// do not use if you haven't computed token-level timestamps
|
||||
int64_t t0; // start time of the token
|
||||
int64_t t1; // end time of the token
|
||||
|
||||
float vlen; // voice length of the token
|
||||
} whisper_token_data;
|
||||
|
||||
// Allocates all memory needed for the model and loads the model from the given file.
|
||||
// Returns NULL on failure.
|
||||
@ -129,7 +136,7 @@ extern "C" {
|
||||
// You can also implement your own sampling method using the whisper_get_probs() function.
|
||||
// whisper_sample_best() returns the token with the highest probability
|
||||
// whisper_sample_timestamp() returns the most probable timestamp token
|
||||
WHISPER_API struct whisper_token_data whisper_sample_best(struct whisper_context * ctx);
|
||||
WHISPER_API whisper_token_data whisper_sample_best(struct whisper_context * ctx);
|
||||
WHISPER_API whisper_token whisper_sample_timestamp(struct whisper_context * ctx);
|
||||
|
||||
// Return the id of the specified language, returns -1 if not found
|
||||
@ -172,22 +179,35 @@ extern "C" {
|
||||
// Text segment callback
|
||||
// Called on every newly generated text segment
|
||||
// Use the whisper_full_...() functions to obtain the text segments
|
||||
typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, void * user_data);
|
||||
typedef void (*whisper_new_segment_callback)(struct whisper_context * ctx, int n_new, void * user_data);
|
||||
|
||||
struct whisper_full_params {
|
||||
enum whisper_sampling_strategy strategy;
|
||||
|
||||
int n_threads;
|
||||
int n_max_text_ctx;
|
||||
int offset_ms;
|
||||
int offset_ms; // start offset in ms
|
||||
int duration_ms; // audio duration to process in ms
|
||||
|
||||
bool translate;
|
||||
bool no_context;
|
||||
bool single_segment; // force single segment output (useful for streaming)
|
||||
bool print_special_tokens;
|
||||
bool print_progress;
|
||||
bool print_realtime;
|
||||
bool print_timestamps;
|
||||
|
||||
// [EXPERIMENTAL] token-level timestamps
|
||||
bool token_timestamps; // enable token-level timestamps
|
||||
float thold_pt; // timestamp token probability threshold (~0.01)
|
||||
float thold_ptsum; // timestamp token sum probability threshold (~0.01)
|
||||
int max_len; // max segment length in characters
|
||||
int max_tokens; // max tokens per segment (0 = no limit)
|
||||
|
||||
// [EXPERIMENTAL] speed-up techniques
|
||||
bool speed_up; // speed-up the audio by 2x using Phase Vocoder
|
||||
int audio_ctx; // overwrite the audio context size (0 = use default)
|
||||
|
||||
const char * language;
|
||||
|
||||
struct {
|
||||
@ -244,7 +264,7 @@ extern "C" {
|
||||
|
||||
// Get token data for the specified token in the specified segment.
|
||||
// This contains probabilities, timestamps, etc.
|
||||
WHISPER_API struct whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
WHISPER_API whisper_token_data whisper_full_get_token_data(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
|
||||
// Get the probability of the specified token in the specified segment.
|
||||
WHISPER_API float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
|
Reference in New Issue
Block a user