#import "ggml-metal.h" #import "ggml-backend-impl.h" #import "ggml.h" #import #import #undef MIN #undef MAX #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #ifdef GGML_METAL_NDEBUG #define GGML_METAL_LOG_INFO(...) #define GGML_METAL_LOG_WARN(...) #define GGML_METAL_LOG_ERROR(...) #else #define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__) #define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__) #define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) #endif #define UNUSED(x) (void)(x) #define GGML_MAX_CONCUR (2*GGML_DEFAULT_GRAPH_SIZE) struct ggml_metal_buffer { const char * name; void * data; size_t size; id metal; }; struct ggml_metal_context { int n_cb; id device; id queue; id library; id command_buffers [GGML_METAL_MAX_COMMAND_BUFFERS]; id command_encoders[GGML_METAL_MAX_COMMAND_BUFFERS]; dispatch_queue_t d_queue; int n_buffers; struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS]; int concur_list[GGML_MAX_CONCUR]; int concur_list_len; // custom kernels #define GGML_METAL_DECL_KERNEL(name) \ id function_##name; \ id pipeline_##name GGML_METAL_DECL_KERNEL(add); GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast GGML_METAL_DECL_KERNEL(mul); GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast GGML_METAL_DECL_KERNEL(scale); GGML_METAL_DECL_KERNEL(scale_4); GGML_METAL_DECL_KERNEL(silu); GGML_METAL_DECL_KERNEL(relu); GGML_METAL_DECL_KERNEL(gelu); GGML_METAL_DECL_KERNEL(soft_max); GGML_METAL_DECL_KERNEL(soft_max_4); GGML_METAL_DECL_KERNEL(diag_mask_inf); GGML_METAL_DECL_KERNEL(diag_mask_inf_8); GGML_METAL_DECL_KERNEL(get_rows_f32); GGML_METAL_DECL_KERNEL(get_rows_f16); GGML_METAL_DECL_KERNEL(get_rows_q4_0); GGML_METAL_DECL_KERNEL(get_rows_q4_1); GGML_METAL_DECL_KERNEL(get_rows_q5_0); GGML_METAL_DECL_KERNEL(get_rows_q5_1); GGML_METAL_DECL_KERNEL(get_rows_q8_0); GGML_METAL_DECL_KERNEL(get_rows_q2_K); GGML_METAL_DECL_KERNEL(get_rows_q3_K); GGML_METAL_DECL_KERNEL(get_rows_q4_K); GGML_METAL_DECL_KERNEL(get_rows_q5_K); GGML_METAL_DECL_KERNEL(get_rows_q6_K); GGML_METAL_DECL_KERNEL(rms_norm); GGML_METAL_DECL_KERNEL(norm); GGML_METAL_DECL_KERNEL(mul_mv_f32_f32); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_1row); GGML_METAL_DECL_KERNEL(mul_mv_f16_f32_l4); GGML_METAL_DECL_KERNEL(mul_mv_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mv_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mv_q5_0_f32); GGML_METAL_DECL_KERNEL(mul_mv_q5_1_f32); GGML_METAL_DECL_KERNEL(mul_mv_q8_0_f32); GGML_METAL_DECL_KERNEL(mul_mv_q2_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q3_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q4_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q5_K_f32); GGML_METAL_DECL_KERNEL(mul_mv_q6_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_f32_f32); GGML_METAL_DECL_KERNEL(mul_mm_f16_f32); GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32); GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32); GGML_METAL_DECL_KERNEL(mul_mm_q5_0_f32); GGML_METAL_DECL_KERNEL(mul_mm_q5_1_f32); GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32); GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32); GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32); GGML_METAL_DECL_KERNEL(rope_f32); GGML_METAL_DECL_KERNEL(rope_f16); GGML_METAL_DECL_KERNEL(alibi_f32); GGML_METAL_DECL_KERNEL(cpy_f32_f16); GGML_METAL_DECL_KERNEL(cpy_f32_f32); GGML_METAL_DECL_KERNEL(cpy_f16_f16); GGML_METAL_DECL_KERNEL(concat); GGML_METAL_DECL_KERNEL(sqr); #undef GGML_METAL_DECL_KERNEL }; // MSL code // TODO: move the contents here when ready // for now it is easier to work in a separate file static NSString * const msl_library_source = @"see metal.metal"; // Here to assist with NSBundle Path Hack @interface GGMLMetalClass : NSObject @end @implementation GGMLMetalClass @end ggml_log_callback ggml_metal_log_callback = NULL; void * ggml_metal_log_user_data = NULL; void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) { ggml_metal_log_callback = log_callback; ggml_metal_log_user_data = user_data; } static void ggml_metal_log(enum ggml_log_level level, const char* format, ...){ if (ggml_metal_log_callback != NULL) { va_list args; va_start(args, format); char buffer[128]; int len = vsnprintf(buffer, 128, format, args); if (len < 128) { ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data); } else { char* buffer2 = malloc(len+1); vsnprintf(buffer2, len+1, format, args); buffer2[len] = 0; ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data); free(buffer2); } va_end(args); } } struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_LOG_INFO("%s: allocating\n", __func__); id device; NSString * s; #if TARGET_OS_OSX // Show all the Metal device instances in the system NSArray * devices = MTLCopyAllDevices(); for (device in devices) { s = [device name]; GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [s UTF8String]); } #endif // Pick and show default Metal device device = MTLCreateSystemDefaultDevice(); s = [device name]; GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [s UTF8String]); // Configure context struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); ctx->device = device; ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS); ctx->queue = [ctx->device newCommandQueue]; ctx->n_buffers = 0; ctx->concur_list_len = 0; ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT); // load library { NSBundle * bundle = nil; #ifdef SWIFT_PACKAGE bundle = SWIFTPM_MODULE_BUNDLE; #else bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; #endif NSError * error = nil; NSString * libPath = [bundle pathForResource:@"default" ofType:@"metallib"]; if (libPath != nil) { NSURL * libURL = [NSURL fileURLWithPath:libPath]; GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [libPath UTF8String]); ctx->library = [ctx->device newLibraryWithURL:libURL error:&error]; } else { GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__); NSString * sourcePath; NSString * ggmlMetalPathResources = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"]; if (ggmlMetalPathResources) { sourcePath = [ggmlMetalPathResources stringByAppendingPathComponent:@"ggml-metal.metal"]; } else { sourcePath = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; } if (sourcePath == nil) { GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__); sourcePath = @"ggml-metal.metal"; } GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [sourcePath UTF8String]); NSString * src = [NSString stringWithContentsOfFile:sourcePath encoding:NSUTF8StringEncoding error:&error]; if (error) { GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } MTLCompileOptions* options = nil; #ifdef GGML_QKK_64 options = [MTLCompileOptions new]; options.preprocessorMacros = @{ @"QK_K" : @(64) }; #endif ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error]; } if (error) { GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; } } // load kernels { NSError * error = nil; /* GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \ (int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \ (int) ctx->pipeline_##name.threadExecutionWidth); \ */ #define GGML_METAL_ADD_KERNEL(name) \ ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \ ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \ if (error) { \ GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \ return NULL; \ } GGML_METAL_ADD_KERNEL(add); GGML_METAL_ADD_KERNEL(add_row); GGML_METAL_ADD_KERNEL(mul); GGML_METAL_ADD_KERNEL(mul_row); GGML_METAL_ADD_KERNEL(scale); GGML_METAL_ADD_KERNEL(scale_4); GGML_METAL_ADD_KERNEL(silu); GGML_METAL_ADD_KERNEL(relu); GGML_METAL_ADD_KERNEL(gelu); GGML_METAL_ADD_KERNEL(soft_max); GGML_METAL_ADD_KERNEL(soft_max_4); GGML_METAL_ADD_KERNEL(diag_mask_inf); GGML_METAL_ADD_KERNEL(diag_mask_inf_8); GGML_METAL_ADD_KERNEL(get_rows_f32); GGML_METAL_ADD_KERNEL(get_rows_f16); GGML_METAL_ADD_KERNEL(get_rows_q4_0); GGML_METAL_ADD_KERNEL(get_rows_q4_1); GGML_METAL_ADD_KERNEL(get_rows_q5_0); GGML_METAL_ADD_KERNEL(get_rows_q5_1); GGML_METAL_ADD_KERNEL(get_rows_q8_0); GGML_METAL_ADD_KERNEL(get_rows_q2_K); GGML_METAL_ADD_KERNEL(get_rows_q3_K); GGML_METAL_ADD_KERNEL(get_rows_q4_K); GGML_METAL_ADD_KERNEL(get_rows_q5_K); GGML_METAL_ADD_KERNEL(get_rows_q6_K); GGML_METAL_ADD_KERNEL(rms_norm); GGML_METAL_ADD_KERNEL(norm); GGML_METAL_ADD_KERNEL(mul_mv_f32_f32); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_1row); GGML_METAL_ADD_KERNEL(mul_mv_f16_f32_l4); GGML_METAL_ADD_KERNEL(mul_mv_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mv_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mv_q5_0_f32); GGML_METAL_ADD_KERNEL(mul_mv_q5_1_f32); GGML_METAL_ADD_KERNEL(mul_mv_q8_0_f32); GGML_METAL_ADD_KERNEL(mul_mv_q2_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q3_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q5_K_f32); GGML_METAL_ADD_KERNEL(mul_mv_q6_K_f32); if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) { GGML_METAL_ADD_KERNEL(mul_mm_f32_f32); GGML_METAL_ADD_KERNEL(mul_mm_f16_f32); GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32); GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32); GGML_METAL_ADD_KERNEL(mul_mm_q5_0_f32); GGML_METAL_ADD_KERNEL(mul_mm_q5_1_f32); GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32); GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32); GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32); } GGML_METAL_ADD_KERNEL(rope_f32); GGML_METAL_ADD_KERNEL(rope_f16); GGML_METAL_ADD_KERNEL(alibi_f32); GGML_METAL_ADD_KERNEL(cpy_f32_f16); GGML_METAL_ADD_KERNEL(cpy_f32_f32); GGML_METAL_ADD_KERNEL(cpy_f16_f16); GGML_METAL_ADD_KERNEL(concat); GGML_METAL_ADD_KERNEL(sqr); #undef GGML_METAL_ADD_KERNEL } #if TARGET_OS_OSX // print MTL GPU family: GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]); // determine max supported GPU family // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) { if ([ctx->device supportsFamily:i]) { GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - MTLGPUFamilyApple1 + 1, i); break; } } GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); if (ctx->device.maxTransferRate != 0) { GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); } else { GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__); } #endif return ctx; } void ggml_metal_free(struct ggml_metal_context * ctx) { GGML_METAL_LOG_INFO("%s: deallocating\n", __func__); #define GGML_METAL_DEL_KERNEL(name) \ [ctx->function_##name release]; \ [ctx->pipeline_##name release]; GGML_METAL_DEL_KERNEL(add); GGML_METAL_DEL_KERNEL(add_row); GGML_METAL_DEL_KERNEL(mul); GGML_METAL_DEL_KERNEL(mul_row); GGML_METAL_DEL_KERNEL(scale); GGML_METAL_DEL_KERNEL(scale_4); GGML_METAL_DEL_KERNEL(silu); GGML_METAL_DEL_KERNEL(relu); GGML_METAL_DEL_KERNEL(gelu); GGML_METAL_DEL_KERNEL(soft_max); GGML_METAL_DEL_KERNEL(soft_max_4); GGML_METAL_DEL_KERNEL(diag_mask_inf); GGML_METAL_DEL_KERNEL(diag_mask_inf_8); GGML_METAL_DEL_KERNEL(get_rows_f32); GGML_METAL_DEL_KERNEL(get_rows_f16); GGML_METAL_DEL_KERNEL(get_rows_q4_0); GGML_METAL_DEL_KERNEL(get_rows_q4_1); GGML_METAL_DEL_KERNEL(get_rows_q5_0); GGML_METAL_DEL_KERNEL(get_rows_q5_1); GGML_METAL_DEL_KERNEL(get_rows_q8_0); GGML_METAL_DEL_KERNEL(get_rows_q2_K); GGML_METAL_DEL_KERNEL(get_rows_q3_K); GGML_METAL_DEL_KERNEL(get_rows_q4_K); GGML_METAL_DEL_KERNEL(get_rows_q5_K); GGML_METAL_DEL_KERNEL(get_rows_q6_K); GGML_METAL_DEL_KERNEL(rms_norm); GGML_METAL_DEL_KERNEL(norm); GGML_METAL_DEL_KERNEL(mul_mv_f32_f32); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_1row); GGML_METAL_DEL_KERNEL(mul_mv_f16_f32_l4); GGML_METAL_DEL_KERNEL(mul_mv_q4_0_f32); GGML_METAL_DEL_KERNEL(mul_mv_q4_1_f32); GGML_METAL_DEL_KERNEL(mul_mv_q5_0_f32); GGML_METAL_DEL_KERNEL(mul_mv_q5_1_f32); GGML_METAL_DEL_KERNEL(mul_mv_q8_0_f32); GGML_METAL_DEL_KERNEL(mul_mv_q2_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q3_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q4_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q5_K_f32); GGML_METAL_DEL_KERNEL(mul_mv_q6_K_f32); if ([ctx->device supportsFamily:MTLGPUFamilyApple7]) { GGML_METAL_DEL_KERNEL(mul_mm_f32_f32); GGML_METAL_DEL_KERNEL(mul_mm_f16_f32); GGML_METAL_DEL_KERNEL(mul_mm_q4_0_f32); GGML_METAL_DEL_KERNEL(mul_mm_q4_1_f32); GGML_METAL_DEL_KERNEL(mul_mm_q5_0_f32); GGML_METAL_DEL_KERNEL(mul_mm_q5_1_f32); GGML_METAL_DEL_KERNEL(mul_mm_q8_0_f32); GGML_METAL_DEL_KERNEL(mul_mm_q2_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q3_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q4_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q5_K_f32); GGML_METAL_DEL_KERNEL(mul_mm_q6_K_f32); } GGML_METAL_DEL_KERNEL(rope_f32); GGML_METAL_DEL_KERNEL(rope_f16); GGML_METAL_DEL_KERNEL(alibi_f32); GGML_METAL_DEL_KERNEL(cpy_f32_f16); GGML_METAL_DEL_KERNEL(cpy_f32_f32); GGML_METAL_DEL_KERNEL(cpy_f16_f16); GGML_METAL_DEL_KERNEL(concat); GGML_METAL_DEL_KERNEL(sqr); #undef GGML_METAL_DEL_KERNEL for (int i = 0; i < ctx->n_buffers; ++i) { [ctx->buffers[i].metal release]; } [ctx->library release]; [ctx->queue release]; [ctx->device release]; dispatch_release(ctx->d_queue); free(ctx); } void * ggml_metal_host_malloc(size_t n) { void * data = NULL; const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n); if (result != 0) { GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__); return NULL; } return data; } void ggml_metal_host_free(void * data) { free(data); } void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) { ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS); } int ggml_metal_if_optimized(struct ggml_metal_context * ctx) { return ctx->concur_list_len; } int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) { return ctx->concur_list; } // finds the Metal buffer that contains the tensor data on the GPU device // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the // Metal buffer based on the host memory pointer // static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { //GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); const int64_t tsize = ggml_nbytes(t); // find the view that contains the tensor fully for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; //GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, ctx->buffers[%d].size = %10ld, name = %s\n", ioffs, tsize, ioffs + tsize, i, ctx->buffers[i].size, ctx->buffers[i].name); if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { *offs = (size_t) ioffs; //GGML_METAL_LOG_INFO("%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); return ctx->buffers[i].metal; } } GGML_METAL_LOG_ERROR("%s: error: buffer is nil\n", __func__); return nil; } bool ggml_metal_add_buffer( struct ggml_metal_context * ctx, const char * name, void * data, size_t size, size_t max_size) { if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { GGML_METAL_LOG_ERROR("%s: error: too many buffers\n", __func__); return false; } if (data) { // verify that the buffer does not overlap with any of the existing buffers for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data; if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { GGML_METAL_LOG_ERROR("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); return false; } } const size_t size_page = sysconf(_SC_PAGESIZE); size_t size_aligned = size; if ((size_aligned % size_page) != 0) { size_aligned += (size_page - (size_aligned % size_page)); } // the buffer fits into the max buffer size allowed by the device if (size_aligned <= ctx->device.maxBufferLength) { ctx->buffers[ctx->n_buffers].name = name; ctx->buffers[ctx->n_buffers].data = data; ctx->buffers[ctx->n_buffers].size = size; ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); return false; } GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); ++ctx->n_buffers; } else { // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into // one of the views const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case const size_t size_step = ctx->device.maxBufferLength - size_ovlp; const size_t size_view = ctx->device.maxBufferLength; for (size_t i = 0; i < size; i += size_step) { const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); ctx->buffers[ctx->n_buffers].name = name; ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); ctx->buffers[ctx->n_buffers].size = size_step_aligned; ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; if (ctx->buffers[ctx->n_buffers].metal == nil) { GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); return false; } GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); if (i + size_step < size) { GGML_METAL_LOG_INFO("\n"); } ++ctx->n_buffers; } } #if TARGET_OS_OSX GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", ctx->device.currentAllocatedSize / 1024.0 / 1024.0, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { GGML_METAL_LOG_WARN(", warning: current allocated size is greater than the recommended max working set size\n", __func__); } else { GGML_METAL_LOG_INFO("\n"); } #else GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0); #endif } return true; } void ggml_metal_set_tensor( struct ggml_metal_context * ctx, struct ggml_tensor * t) { size_t offs; id id_dst = ggml_metal_get_buffer(ctx, t, &offs); memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t)); } void ggml_metal_get_tensor( struct ggml_metal_context * ctx, struct ggml_tensor * t) { size_t offs; id id_src = ggml_metal_get_buffer(ctx, t, &offs); memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t)); } void ggml_metal_graph_find_concurrency( struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem) { int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time int nodes_unused[GGML_MAX_CONCUR]; for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; } for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; } ctx->concur_list_len = 0; int n_left = gf->n_nodes; int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos while (n_left > 0) { // number of nodes at a layer (that can be issued concurrently) int concurrency = 0; for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) { if (nodes_unused[i]) { // if the requirements for gf->nodes[i] are satisfied int exe_flag = 1; // scan all srcs for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) { struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind]; if (src_cur) { // if is leaf nodes it's satisfied. // TODO: ggml_is_leaf() if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) { continue; } // otherwise this src should be the output from previous nodes. int is_found = 0; // scan 2*search_depth back because we inserted barrier. //for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) { for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) { if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) { is_found = 1; break; } } if (is_found == 0) { exe_flag = 0; break; } } } if (exe_flag && check_mem) { // check if nodes[i]'s data will be overwritten by a node before nodes[i]. // if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3] int64_t data_start = (int64_t) gf->nodes[i]->data; int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]); for (int j = n_start; j < i; j++) { if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \ && gf->nodes[j]->op != GGML_OP_VIEW \ && gf->nodes[j]->op != GGML_OP_TRANSPOSE \ && gf->nodes[j]->op != GGML_OP_PERMUTE) { if (((int64_t)gf->nodes[j]->data) >= data_start + length || \ ((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) { continue; } exe_flag = 0; } } } if (exe_flag) { ctx->concur_list[level_pos + concurrency] = i; nodes_unused[i] = 0; concurrency++; ctx->concur_list_len++; } } } n_left -= concurrency; // adding a barrier different layer ctx->concur_list[level_pos + concurrency] = -1; ctx->concur_list_len++; // jump all sorted nodes at nodes_bak while (!nodes_unused[n_start]) { n_start++; } level_pos += concurrency + 1; } if (ctx->concur_list_len > GGML_MAX_CONCUR) { GGML_METAL_LOG_WARN("%s: too many elements for metal ctx->concur_list!\n", __func__); } } void ggml_metal_graph_compute( struct ggml_metal_context * ctx, struct ggml_cgraph * gf) { @autoreleasepool { // if there is ctx->concur_list, dispatch concurrently // else fallback to serial dispatch MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor; const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR; const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes; edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial; // create multiple command buffers and enqueue them // then, we encode the graph into the command buffers in parallel const int n_cb = ctx->n_cb; for (int i = 0; i < n_cb; ++i) { ctx->command_buffers[i] = [ctx->queue commandBuffer]; // enqueue the command buffers in order to specify their execution order [ctx->command_buffers[i] enqueue]; ctx->command_encoders[i] = [ctx->command_buffers[i] computeCommandEncoderWithDescriptor: edesc]; } for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) { const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb; dispatch_async(ctx->d_queue, ^{ size_t offs_src0 = 0; size_t offs_src1 = 0; size_t offs_dst = 0; id command_buffer = ctx->command_buffers[cb_idx]; id encoder = ctx->command_encoders[cb_idx]; const int node_start = (cb_idx + 0) * n_nodes_per_cb; const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes); for (int ind = node_start; ind < node_end; ++ind) { const int i = has_concur ? ctx->concur_list[ind] : ind; if (i == -1) { [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers]; continue; } //GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); struct ggml_tensor * src0 = gf->nodes[i]->src[0]; struct ggml_tensor * src1 = gf->nodes[i]->src[1]; struct ggml_tensor * dst = gf->nodes[i]; switch (dst->op) { case GGML_OP_NONE: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_TRANSPOSE: case GGML_OP_PERMUTE: { // noop -> next node } continue; default: { } break; } const int64_t ne00 = src0 ? src0->ne[0] : 0; const int64_t ne01 = src0 ? src0->ne[1] : 0; const int64_t ne02 = src0 ? src0->ne[2] : 0; const int64_t ne03 = src0 ? src0->ne[3] : 0; const uint64_t nb00 = src0 ? src0->nb[0] : 0; const uint64_t nb01 = src0 ? src0->nb[1] : 0; const uint64_t nb02 = src0 ? src0->nb[2] : 0; const uint64_t nb03 = src0 ? src0->nb[3] : 0; const int64_t ne10 = src1 ? src1->ne[0] : 0; const int64_t ne11 = src1 ? src1->ne[1] : 0; const int64_t ne12 = src1 ? src1->ne[2] : 0; const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); const uint64_t nb10 = src1 ? src1->nb[0] : 0; const uint64_t nb11 = src1 ? src1->nb[1] : 0; const uint64_t nb12 = src1 ? src1->nb[2] : 0; const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); const int64_t ne0 = dst ? dst->ne[0] : 0; const int64_t ne1 = dst ? dst->ne[1] : 0; const int64_t ne2 = dst ? dst->ne[2] : 0; const int64_t ne3 = dst ? dst->ne[3] : 0; const uint64_t nb0 = dst ? dst->nb[0] : 0; const uint64_t nb1 = dst ? dst->nb[1] : 0; const uint64_t nb2 = dst ? dst->nb[2] : 0; const uint64_t nb3 = dst ? dst->nb[3] : 0; const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; id id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil; id id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil; id id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil; //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op)); //if (src0) { // GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, // ggml_is_contiguous(src0), src0->name); //} //if (src1) { // GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, // ggml_is_contiguous(src1), src1->name); //} //if (dst) { // GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, // dst->name); //} switch (dst->op) { case GGML_OP_CONCAT: { const int64_t nb = ne00; [encoder setComputePipelineState:ctx->pipeline_concat]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; [encoder setBytes:&nb length:sizeof(nb) atIndex:27]; const int nth = MIN(1024, ne0); [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ADD: { GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); bool bcast_row = false; int64_t nb = ne00; if (ggml_nelements(src1) == ne10 && ne00 % 4 == 0) { // src1 is a row GGML_ASSERT(ne11 == 1); nb = ne00 / 4; [encoder setComputePipelineState:ctx->pipeline_add_row]; bcast_row = true; } else { [encoder setComputePipelineState:ctx->pipeline_add]; } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; [encoder setBytes:&nb length:sizeof(nb) atIndex:27]; if (bcast_row) { const int64_t n = ggml_nelements(dst)/4; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } else { const int nth = MIN(1024, ne0); [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } } break; case GGML_OP_MUL: { GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); // utilize float4 GGML_ASSERT(ne00 % 4 == 0); const int64_t nb = ne00/4; if (ggml_nelements(src1) == ne10) { // src1 is a row GGML_ASSERT(ne11 == 1); [encoder setComputePipelineState:ctx->pipeline_mul_row]; } else { [encoder setComputePipelineState:ctx->pipeline_mul]; } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&nb length:sizeof(nb) atIndex:3]; const int64_t n = ggml_nelements(dst)/4; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SCALE: { GGML_ASSERT(ggml_is_contiguous(src0)); const float scale = *(const float *) src1->data; int64_t n = ggml_nelements(dst); if (n % 4 == 0) { n /= 4; [encoder setComputePipelineState:ctx->pipeline_scale_4]; } else { [encoder setComputePipelineState:ctx->pipeline_scale]; } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_UNARY: switch (ggml_get_unary_op(gf->nodes[i])) { case GGML_UNARY_OP_SILU: { [encoder setComputePipelineState:ctx->pipeline_silu]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); GGML_ASSERT(n % 4 == 0); [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_RELU: { [encoder setComputePipelineState:ctx->pipeline_relu]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_UNARY_OP_GELU: { [encoder setComputePipelineState:ctx->pipeline_gelu]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); GGML_ASSERT(n % 4 == 0); [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; default: { GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } break; case GGML_OP_SQR: { GGML_ASSERT(ggml_is_contiguous(src0)); [encoder setComputePipelineState:ctx->pipeline_sqr]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; const int64_t n = ggml_nelements(dst); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_SOFT_MAX: { int nth = 32; // SIMD width if (ne00%4 == 0) { [encoder setComputePipelineState:ctx->pipeline_soft_max_4]; } else { do { nth *= 2; } while (nth <= ne00 && nth <= 1024); nth /= 2; [encoder setComputePipelineState:ctx->pipeline_soft_max]; } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_DIAG_MASK_INF: { const int n_past = ((int32_t *)(dst->op_params))[0]; if (ne00%8 == 0) { [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf_8]; } else { [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf]; } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; if (ne00%8 == 0) { [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } else { [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } } break; case GGML_OP_MUL_MAT: { GGML_ASSERT(ne00 == ne10); GGML_ASSERT(ne03 == ne13); const uint gqa = ne12/ne02; // find the break-even point where the matrix-matrix kernel becomes more efficient compared // to the matrix-vector kernel int ne11_mm_min = 1; #if 0 // the numbers below are measured on M2 Ultra for 7B and 13B models // these numbers do not translate to other devices or model sizes // TODO: need to find a better approach if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) { switch (src0t) { case GGML_TYPE_F16: ne11_mm_min = 2; break; case GGML_TYPE_Q8_0: ne11_mm_min = 7; break; case GGML_TYPE_Q2_K: ne11_mm_min = 15; break; case GGML_TYPE_Q3_K: ne11_mm_min = 7; break; case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: ne11_mm_min = 15; break; case GGML_TYPE_Q4_K: ne11_mm_min = 11; break; case GGML_TYPE_Q5_0: // not tested yet case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet case GGML_TYPE_Q5_K: ne11_mm_min = 7; break; case GGML_TYPE_Q6_K: ne11_mm_min = 7; break; default: ne11_mm_min = 1; break; } } #endif // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1t == GGML_TYPE_F32 && ne00 % 32 == 0 && ne00 >= 64 && ne11 > ne11_mm_min) { //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); switch (src0->type) { case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f32_f32]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break; case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_0_f32]; break; case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_1_f32]; break; case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break; case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break; case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break; case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break; case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break; case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break; default: GGML_ASSERT(false && "MUL MAT-MAT not implemented"); } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12]; [encoder setBytes:&gqa length:sizeof(gqa) atIndex:13]; [encoder setThreadgroupMemoryLength:8192 atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; } else { int nth0 = 32; int nth1 = 1; int nrows = 1; //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); // use custom matrix x vector kernel switch (src0t) { case GGML_TYPE_F32: { [encoder setComputePipelineState:ctx->pipeline_mul_mv_f32_f32]; nrows = 4; } break; case GGML_TYPE_F16: { nth0 = 32; nth1 = 1; if (ne11 * ne12 < 4) { [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_1row]; } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32_l4]; nrows = ne11; } else { [encoder setComputePipelineState:ctx->pipeline_mul_mv_f16_f32]; nrows = 4; } } break; case GGML_TYPE_Q4_0: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 8; nth1 = 8; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_0_f32]; } break; case GGML_TYPE_Q4_1: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 8; nth1 = 8; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_1_f32]; } break; case GGML_TYPE_Q5_0: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 8; nth1 = 8; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_0_f32]; } break; case GGML_TYPE_Q5_1: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 8; nth1 = 8; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_1_f32]; } break; case GGML_TYPE_Q8_0: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 8; nth1 = 8; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q8_0_f32]; } break; case GGML_TYPE_Q2_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 2; nth1 = 32; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q2_K_f32]; } break; case GGML_TYPE_Q3_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 2; nth1 = 32; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q3_K_f32]; } break; case GGML_TYPE_Q4_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 4; //1; nth1 = 8; //32; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q4_K_f32]; } break; case GGML_TYPE_Q5_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 2; nth1 = 32; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q5_K_f32]; } break; case GGML_TYPE_Q6_K: { GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne12 == 1); nth0 = 2; nth1 = 32; [encoder setComputePipelineState:ctx->pipeline_mul_mv_q6_K_f32]; } break; default: { GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t); GGML_ASSERT(false && "not implemented"); } }; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9]; [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10]; [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11]; [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12]; [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13]; [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14]; [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15]; [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16]; [encoder setBytes:&gqa length:sizeof(gqa) atIndex:17]; if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q4_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q3_K) { #ifdef GGML_QKK_64 [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; #else [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; #endif } else if (src0t == GGML_TYPE_Q5_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else if (src0t == GGML_TYPE_Q6_K) { [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } else { int64_t ny = (ne11 + nrows - 1)/nrows; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; } } } break; case GGML_OP_GET_ROWS: { switch (src0->type) { case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_get_rows_f32]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break; case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break; case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break; case GGML_TYPE_Q5_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_0]; break; case GGML_TYPE_Q5_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_1]; break; case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break; case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break; case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break; case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break; case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break; case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break; default: GGML_ASSERT(false && "not implemented"); } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:5]; const int64_t n = ggml_nelements(src1); [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; } break; case GGML_OP_RMS_NORM: { GGML_ASSERT(ne00 % 4 == 0); float eps; memcpy(&eps, dst->op_params, sizeof(float)); const int nth = MIN(512, ne00); [encoder setComputePipelineState:ctx->pipeline_rms_norm]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setThreadgroupMemoryLength:GGML_PAD(nth/32*sizeof(float), 16) atIndex:0]; const int64_t nrows = ggml_nrows(src0); [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_NORM: { float eps; memcpy(&eps, dst->op_params, sizeof(float)); const int nth = MIN(256, ne00); [encoder setComputePipelineState:ctx->pipeline_norm]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; [encoder setBytes:&eps length:sizeof( float) atIndex:4]; [encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0]; const int64_t nrows = ggml_nrows(src0); [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ALIBI: { GGML_ASSERT((src0t == GGML_TYPE_F32)); const int nth = MIN(1024, ne00); //const int n_past = ((int32_t *) dst->op_params)[0]; const int n_head = ((int32_t *) dst->op_params)[1]; float max_bias; memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); [encoder setComputePipelineState:ctx->pipeline_alibi_f32]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; [encoder setBytes:&m1 length:sizeof( float) atIndex:19]; [encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_ROPE: { GGML_ASSERT(ne10 == ne02); const int nth = MIN(1024, ne00); const int n_past = ((int32_t *) dst->op_params)[0]; const int n_dims = ((int32_t *) dst->op_params)[1]; const int mode = ((int32_t *) dst->op_params)[2]; const int n_orig_ctx = ((int32_t *) dst->op_params)[3]; float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); switch (src0->type) { case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_rope_f32]; break; case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_rope_f16]; break; default: GGML_ASSERT(false); }; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18]; [encoder setBytes:&n_past length:sizeof( int) atIndex:19]; [encoder setBytes:&n_dims length:sizeof( int) atIndex:20]; [encoder setBytes:&mode length:sizeof( int) atIndex:21]; [encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22]; [encoder setBytes:&freq_base length:sizeof( float) atIndex:23]; [encoder setBytes:&freq_scale length:sizeof( float) atIndex:24]; [encoder setBytes:&ext_factor length:sizeof( float) atIndex:25]; [encoder setBytes:&attn_factor length:sizeof( float) atIndex:26]; [encoder setBytes:&beta_fast length:sizeof( float) atIndex:27]; [encoder setBytes:&beta_slow length:sizeof( float) atIndex:28]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; case GGML_OP_DUP: case GGML_OP_CPY: case GGML_OP_CONT: { const int nth = MIN(1024, ne00); switch (src0t) { case GGML_TYPE_F32: { switch (dstt) { case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break; case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break; default: GGML_ASSERT(false && "not implemented"); }; } break; case GGML_TYPE_F16: { switch (dstt) { case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break; case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break; default: GGML_ASSERT(false && "not implemented"); }; } break; default: GGML_ASSERT(false && "not implemented"); } [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; } break; default: { GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); GGML_ASSERT(false); } } } if (encoder != nil) { [encoder endEncoding]; encoder = nil; } [command_buffer commit]; }); } // wait for all threads to finish dispatch_barrier_sync(ctx->d_queue, ^{}); // check status of command buffers // needed to detect if the device ran out-of-memory for example (#1881) for (int i = 0; i < n_cb; i++) { [ctx->command_buffers[i] waitUntilCompleted]; MTLCommandBufferStatus status = (MTLCommandBufferStatus) [ctx->command_buffers[i] status]; if (status != MTLCommandBufferStatusCompleted) { GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status); GGML_ASSERT(false); } } } } //////////////////////////////////////////////////////////////////////////////// // backend interface static const char * ggml_backend_metal_name(ggml_backend_t backend) { return "Metal"; UNUSED(backend); } static void ggml_backend_metal_free(ggml_backend_t backend) { struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; ggml_metal_free(ctx); free(backend); } static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { return (void *)buffer->context; } static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { free(buffer->context); UNUSED(buffer); } static struct ggml_backend_buffer_i metal_backend_buffer_i = { /* .free_buffer = */ ggml_backend_metal_buffer_free_buffer, /* .get_base = */ ggml_backend_metal_buffer_get_base, /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes /* .init_tensor = */ NULL, // no initialization required /* .free_tensor = */ NULL, // no cleanup required }; static ggml_backend_buffer_t ggml_backend_metal_alloc_buffer(ggml_backend_t backend, size_t size) { struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; void * data = ggml_metal_host_malloc(size); // TODO: set proper name of the buffers ggml_metal_add_buffer(ctx, "backend", data, size, 0); return ggml_backend_buffer_init(backend, metal_backend_buffer_i, data, size); } static size_t ggml_backend_metal_get_alignment(ggml_backend_t backend) { return 32; UNUSED(backend); } static void ggml_backend_metal_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); memcpy((char *)tensor->data + offset, data, size); UNUSED(backend); } static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); memcpy(data, (const char *)tensor->data + offset, size); UNUSED(backend); } static void ggml_backend_metal_synchronize(ggml_backend_t backend) { UNUSED(backend); } static void ggml_backend_metal_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); UNUSED(backend); } static void ggml_backend_metal_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) { ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src)); UNUSED(backend); } static void ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context; ggml_metal_graph_compute(metal_ctx, cgraph); } static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { return true; UNUSED(backend); UNUSED(op); } static struct ggml_backend_i metal_backend_i = { /* .get_name = */ ggml_backend_metal_name, /* .free = */ ggml_backend_metal_free, /* .alloc_buffer = */ ggml_backend_metal_alloc_buffer, /* .get_alignment = */ ggml_backend_metal_get_alignment, /* .set_tensor_async = */ ggml_backend_metal_set_tensor_async, /* .get_tensor_async = */ ggml_backend_metal_get_tensor_async, /* .synchronize = */ ggml_backend_metal_synchronize, /* .cpy_tensor_from = */ ggml_backend_metal_cpy_tensor_from, /* .cpy_tensor_to = */ ggml_backend_metal_cpy_tensor_to, /* .graph_plan_create = */ NULL, // the metal implementation does not require creating graph plans atm /* .graph_plan_free = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_metal_graph_compute, /* .supports_op = */ ggml_backend_metal_supports_op, }; ggml_backend_t ggml_backend_metal_init(void) { struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS); ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend)); *metal_backend = (struct ggml_backend) { /* .interface = */ metal_backend_i, /* .context = */ ctx, }; return metal_backend; } bool ggml_backend_is_metal(ggml_backend_t backend) { return backend->iface.get_name == ggml_backend_metal_name; } void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; ggml_metal_set_n_cb(ctx, n_cb); }