import os import subprocess import re import csv import wave import contextlib import argparse # Custom action to handle comma-separated list class ListAction(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, [int(val) for val in values.split(",")]) parser = argparse.ArgumentParser(description="Benchmark the speech recognition model") # Define the argument to accept a list parser.add_argument( "-t", "--threads", dest="threads", action=ListAction, default=[4], help="List of thread counts to benchmark (comma-separated, default: 4)", ) parser.add_argument( "-p", "--processors", dest="processors", action=ListAction, default=[1], help="List of processor counts to benchmark (comma-separated, default: 1)", ) parser.add_argument( "-f", "--filename", type=str, default="./samples/jfk.wav", help="Relative path of the file to transcribe (default: ./samples/jfk.wav)", ) # Parse the command line arguments args = parser.parse_args() sample_file = args.filename threads = args.threads processors = args.processors # Define the models, threads, and processor counts to benchmark models = [ "ggml-tiny.en.bin", "ggml-tiny.bin", "ggml-base.en.bin", "ggml-base.bin", "ggml-small.en.bin", "ggml-small.bin", "ggml-medium.en.bin", "ggml-medium.bin", "ggml-large-v1.bin", "ggml-large-v2.bin", "ggml-large-v3.bin", "ggml-large-v3-turbo.bin", ] metal_device = "" # Initialize a dictionary to hold the results results = {} gitHashHeader = "Commit" modelHeader = "Model" hardwareHeader = "Hardware" recordingLengthHeader = "Recording Length (seconds)" threadHeader = "Thread" processorCountHeader = "Processor Count" loadTimeHeader = "Load Time (ms)" sampleTimeHeader = "Sample Time (ms)" encodeTimeHeader = "Encode Time (ms)" decodeTimeHeader = "Decode Time (ms)" sampleTimePerRunHeader = "Sample Time per Run (ms)" encodeTimePerRunHeader = "Encode Time per Run (ms)" decodeTimePerRunHeader = "Decode Time per Run (ms)" totalTimeHeader = "Total Time (ms)" def check_file_exists(file: str) -> bool: return os.path.isfile(file) def get_git_short_hash() -> str: try: return ( subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]) .decode() .strip() ) except subprocess.CalledProcessError as e: return "" def wav_file_length(file: str = sample_file) -> float: with contextlib.closing(wave.open(file, "r")) as f: frames = f.getnframes() rate = f.getframerate() duration = frames / float(rate) return duration def extract_metrics(output: str, label: str) -> tuple[float, float]: match = re.search(rf"{label} \s*=\s*(\d+\.\d+)\s*ms\s*/\s*(\d+)\s*runs", output) time = float(match.group(1)) if match else None runs = float(match.group(2)) if match else None return time, runs def extract_device(output: str) -> str: match = re.search(r"picking default device: (.*)", output) device = match.group(1) if match else "Not found" return device # Check if the sample file exists if not check_file_exists(sample_file): raise FileNotFoundError(f"Sample file {sample_file} not found") recording_length = wav_file_length() # Check that all models exist # Filter out models from list that are not downloaded filtered_models = [] for model in models: if check_file_exists(f"models/{model}"): filtered_models.append(model) else: print(f"Model {model} not found, removing from list") models = filtered_models # Loop over each combination of parameters for model in filtered_models: for thread in threads: for processor_count in processors: # Construct the command to run cmd = f"./main -m models/{model} -t {thread} -p {processor_count} -f {sample_file}" # Run the command and get the output process = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) output = "" while process.poll() is None: output += process.stdout.read().decode() # Parse the output load_time_match = re.search(r"load time\s*=\s*(\d+\.\d+)\s*ms", output) load_time = float(load_time_match.group(1)) if load_time_match else None metal_device = extract_device(output) sample_time, sample_runs = extract_metrics(output, "sample time") encode_time, encode_runs = extract_metrics(output, "encode time") decode_time, decode_runs = extract_metrics(output, "decode time") total_time_match = re.search(r"total time\s*=\s*(\d+\.\d+)\s*ms", output) total_time = float(total_time_match.group(1)) if total_time_match else None model_name = model.replace("ggml-", "").replace(".bin", "") print( f"Ran model={model_name} threads={thread} processor_count={processor_count}, took {total_time}ms" ) # Store the times in the results dictionary results[(model_name, thread, processor_count)] = { loadTimeHeader: load_time, sampleTimeHeader: sample_time, encodeTimeHeader: encode_time, decodeTimeHeader: decode_time, sampleTimePerRunHeader: round(sample_time / sample_runs, 2), encodeTimePerRunHeader: round(encode_time / encode_runs, 2), decodeTimePerRunHeader: round(decode_time / decode_runs, 2), totalTimeHeader: total_time, } # Write the results to a CSV file with open("benchmark_results.csv", "w", newline="") as csvfile: fieldnames = [ gitHashHeader, modelHeader, hardwareHeader, recordingLengthHeader, threadHeader, processorCountHeader, loadTimeHeader, sampleTimeHeader, encodeTimeHeader, decodeTimeHeader, sampleTimePerRunHeader, encodeTimePerRunHeader, decodeTimePerRunHeader, totalTimeHeader, ] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() shortHash = get_git_short_hash() # Sort the results by total time in ascending order sorted_results = sorted(results.items(), key=lambda x: x[1].get(totalTimeHeader, 0)) for params, times in sorted_results: row = { gitHashHeader: shortHash, modelHeader: params[0], hardwareHeader: metal_device, recordingLengthHeader: recording_length, threadHeader: params[1], processorCountHeader: params[2], } row.update(times) writer.writerow(row)