#include #include "wkv.hpp" constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE // Helper function for the main kernel template static void rwkv_wkv6_f32_kernel( const int B, const int T, const int C, const int H, const float* k, const float* v, const float* r, const float* tf, const float* td, const float* s, float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) { const int tid = item_ct1.get_local_id(2); const int bid = item_ct1.get_group(2); const int head_size = block_size; const int batch_i = bid / H; const int head_i = bid % H; const int state_size = C * head_size; const int n_seq_tokens = T / B; // Set up shared memory pointers float* _k = shared_mem; float* _r = _k + head_size; float* _tf = _r + head_size; float* _td = _tf + head_size; // Local state array float state[block_size]; // Load initial state #pragma unroll for (int i = 0; i < head_size; i++) { state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid]; } // Sync threads before shared memory operations item_ct1.barrier(sycl::access::fence_space::local_space); // Load time-mixing parameters _tf[tid] = tf[head_i * head_size + tid]; item_ct1.barrier(sycl::access::fence_space::local_space); // Main sequence processing loop for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { item_ct1.barrier(sycl::access::fence_space::local_space); // Load current timestep data to shared memory _k[tid] = k[t]; _r[tid] = r[t]; _td[tid] = td[t]; item_ct1.barrier(sycl::access::fence_space::local_space); const float _v = v[t]; float y = 0; // Process in chunks of 4 for better vectorization sycl::float4 k4, r4, tf4, td4, s4; #pragma unroll for (int j = 0; j < head_size; j += 4) { // Load data in vec4 chunks k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]); r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]); tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]); td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]); s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]); // Compute key-value product sycl::float4 kv4 = k4 * _v; // Accumulate weighted sum y += sycl::dot(r4, tf4 * kv4 + s4); // Update state s4 = s4 * td4 + kv4; // Store updated state state[j] = s4.x(); state[j+1] = s4.y(); state[j+2] = s4.z(); state[j+3] = s4.w(); } dst[t] = y; } // Save final state #pragma unroll for (int i = 0; i < head_size; i++) { dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i]; } } template static void rwkv_wkv7_f32_kernel( const int B, const int T, const int C, const int H, const float* r, const float* w, const float* k, const float* v, const float* a, const float* b, const float* s, float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) { const int tid = item_ct1.get_local_id(2); const int bid = item_ct1.get_group(2); const int head_size = block_size; const int batch_i = bid / H; const int head_i = bid % H; const int state_size = C * head_size; const int n_seq_tokens = T / B; float* _r = shared_mem; float* _w = _r + head_size; float* _k = _w + head_size; float* _a = _k + head_size; float* _b = _a + head_size; float state[block_size]; #pragma unroll for (int i = 0; i < head_size; i++) { state[i] = s[batch_i * state_size + head_i * head_size * head_size + tid * head_size + i]; } for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { item_ct1.barrier(sycl::access::fence_space::local_space); _r[tid] = r[t]; _w[tid] = w[t]; _k[tid] = k[t]; _a[tid] = a[t]; _b[tid] = b[t]; item_ct1.barrier(sycl::access::fence_space::local_space); const float _v = v[t]; float y = 0, sa = 0; sycl::float4 a4, s4; #pragma unroll for (int j = 0; j < head_size; j += 4) { a4 = sycl::float4(_a[j], _a[j+1], _a[j+2], _a[j+3]); s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]); sa += sycl::dot(a4, s4); } sycl::float4 r4, w4, k4, b4; #pragma unroll for (int j = 0; j < head_size; j += 4) { r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]); w4 = sycl::float4(_w[j], _w[j+1], _w[j+2], _w[j+3]); k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]); b4 = sycl::float4(_b[j], _b[j+1], _b[j+2], _b[j+3]); s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]); sycl::float4 kv4 = k4 * _v; s4 = s4 * w4 + kv4 + sa * b4; y += sycl::dot(r4, s4); state[j] = s4.x(); state[j+1] = s4.y(); state[j+2] = s4.z(); state[j+3] = s4.w(); } dst[t] = y; } #pragma unroll for (int i = 0; i < head_size; i++) { dst[T * C + batch_i * state_size + head_i * head_size * head_size + tid * head_size + i] = state[i]; } } void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { const ggml_tensor *src0 = dst->src[0]; const ggml_tensor *src1 = dst->src[1]; const float* k_d = (const float*)dst->src[0]->data; const float* v_d = (const float*)dst->src[1]->data; const float* r_d = (const float*)dst->src[2]->data; const float* tf_d = (const float*)dst->src[3]->data; const float* td_d = (const float*)dst->src[4]->data; const float* s_d = (const float*)dst->src[5]->data; float* dst_d = (float*)dst->data; const int64_t B = dst->src[5]->ne[1]; const int64_t T = dst->src[0]->ne[2]; const int64_t C = dst->ne[0]; const int64_t H = dst->src[0]->ne[1]; GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32); GGML_ASSERT(C % H == 0); GGML_ASSERT(C / H == WKV_BLOCK_SIZE || C / H == WKV_BLOCK_SIZE * 2); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64 dpct::queue_ptr stream = ctx.stream(); // Calculate execution configuration const size_t shared_mem_size = C / H * 4 * sizeof(float); // For k, r, tf, td sycl::range<3> block_dims(1, 1, C / H); sycl::range<3> grid_dims(1, 1, B * H); // Submit kernel if (C / H == WKV_BLOCK_SIZE) { stream->submit([&](sycl::handler& cgh) { sycl::local_accessor shared_mem_acc(shared_mem_size, cgh); cgh.parallel_for( sycl::nd_range<3>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { rwkv_wkv6_f32_kernel( B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d, item_ct1, (float*)shared_mem_acc.get_multi_ptr().get() ); }); }); } else { stream->submit([&](sycl::handler& cgh) { sycl::local_accessor shared_mem_acc(shared_mem_size, cgh); cgh.parallel_for( sycl::nd_range<3>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { rwkv_wkv6_f32_kernel( B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d, item_ct1, (float*)shared_mem_acc.get_multi_ptr().get() ); }); }); } GGML_UNUSED(src0); GGML_UNUSED(src1); } void ggml_sycl_op_rwkv_wkv7(ggml_backend_sycl_context& ctx, ggml_tensor* dst) { const ggml_tensor *src0 = dst->src[0]; const ggml_tensor *src1 = dst->src[1]; const float* r_d = (const float*)dst->src[0]->data; const float* w_d = (const float*)dst->src[1]->data; const float* k_d = (const float*)dst->src[2]->data; const float* v_d = (const float*)dst->src[3]->data; const float* a_d = (const float*)dst->src[4]->data; const float* b_d = (const float*)dst->src[5]->data; const float* s_d = (const float*)dst->src[6]->data; float* dst_d = (float*)dst->data; const int64_t B = dst->src[6]->ne[1]; const int64_t T = dst->src[0]->ne[2]; const int64_t C = dst->ne[0]; const int64_t H = dst->src[0]->ne[1]; GGML_ASSERT(dst->src[6]->type == GGML_TYPE_F32); GGML_ASSERT(C % H == 0); GGML_ASSERT(C / H == WKV_BLOCK_SIZE || C / H == WKV_BLOCK_SIZE * 2); dpct::queue_ptr stream = ctx.stream(); // Calculate execution configuration const size_t shared_mem_size = C / H * 5 * sizeof(float); // For r, w, k, a, b sycl::range<3> block_dims(1, 1, C / H); sycl::range<3> grid_dims(1, 1, B * H); // Submit kernel if (C / H == WKV_BLOCK_SIZE) { stream->submit([&](sycl::handler& cgh) { sycl::local_accessor shared_mem_acc(shared_mem_size, cgh); cgh.parallel_for( sycl::nd_range<3>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { rwkv_wkv7_f32_kernel( B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d, item_ct1, (float*)shared_mem_acc.get_multi_ptr().get() ); }); }); } else { stream->submit([&](sycl::handler& cgh) { sycl::local_accessor shared_mem_acc(shared_mem_size, cgh); cgh.parallel_for( sycl::nd_range<3>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) { rwkv_wkv7_f32_kernel( B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d, item_ct1, (float*)shared_mem_acc.get_multi_ptr().get() ); }); }); } GGML_UNUSED(src0); GGML_UNUSED(src1); }