#include "llama-kv-cache-unified.h" #include "llama-impl.h" #include "llama-model.h" #include "llama-context.h" #include #include #include #include #include #include // // llama_kv_cache_unified // llama_kv_cache_unified::llama_kv_cache_unified( const llama_model & model, layer_filter_cb && filter, ggml_type type_k, ggml_type type_v, bool v_trans, bool offload, uint32_t kv_size, uint32_t n_seq_max, uint32_t n_pad, uint32_t n_swa, llama_swa_type swa_type) : model(model), hparams(model.hparams), v_trans(v_trans), n_seq_max(n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) { GGML_ASSERT(kv_size % n_pad == 0); // create a context for each buffer type std::map ctx_map; auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { auto it = ctx_map.find(buft); if (it == ctx_map.end()) { ggml_init_params params = { /*.mem_size =*/ size_t(2u*hparams.n_layer*ggml_tensor_overhead()), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context * ctx = ggml_init(params); if (!ctx) { return nullptr; } ctx_map[buft] = ctx; ctxs.emplace_back(ctx); return ctx; } return it->second; }; head = 0; cells.resize(kv_size); for (uint32_t il = 0; il < hparams.n_layer; il++) { if (filter && !filter(il)) { LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il); continue; } const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); const char * dev_name = "CPU"; ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); if (offload) { auto * dev = model.dev_layer(il); buft = ggml_backend_dev_buffer_type(dev); dev_name = ggml_backend_dev_name(dev); } LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name); ggml_context * ctx = ctx_for_buft(buft); if (!ctx) { throw std::runtime_error("failed to create ggml context for kv cache"); } ggml_tensor * k; ggml_tensor * v; k = ggml_new_tensor_2d(ctx, type_k, n_embd_k_gqa, kv_size); v = ggml_new_tensor_2d(ctx, type_v, n_embd_v_gqa, kv_size); ggml_format_name(k, "cache_k_l%d", il); ggml_format_name(v, "cache_v_l%d", il); map_layer_ids[il] = layers.size(); layers.push_back({ il, k, v }); } // allocate tensors and initialize the buffers to avoid NaNs in the padding for (auto it : ctx_map) { auto * buft = it.first; auto * ctx = it.second; ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); if (!buf) { throw std::runtime_error("failed to allocate buffer for kv cache"); } LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); ggml_backend_buffer_clear(buf, 0); bufs.emplace_back(buf); } { const size_t memory_size_k = size_k_bytes(); const size_t memory_size_v = size_v_bytes(); LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); } } void llama_kv_cache_unified::clear() { cells.reset(); head = 0; for (auto & buf : bufs) { ggml_backend_buffer_clear(buf.get(), 0); } } bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { uint32_t new_head = cells.size(); if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } for (uint32_t i = 0; i < cells.size(); ++i) { if (!cells.pos_in(i, p0, p1)) { continue; } if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) { if (new_head == cells.size()) { new_head = i; } } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cells.size() && new_head < head) { head = new_head; } return true; } void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { if (seq_id_src == seq_id_dst) { return; } if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } for (uint32_t i = 0; i < cells.size(); ++i) { if (!cells.pos_in(i, p0, p1)) { continue; } if (cells.seq_has(i, seq_id_src)) { cells.seq_add(i, seq_id_dst); } } } void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) { uint32_t new_head = cells.size(); for (uint32_t i = 0; i < cells.size(); ++i) { if (cells.seq_keep(i, seq_id)) { if (new_head == cells.size()) { new_head = i; } } } // If we freed up a slot, set head to it so searching can start there. if (new_head != cells.size() && new_head < head) { head = new_head; } } void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { if (shift == 0) { return; } uint32_t new_head = cells.size(); if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } // If there is no range then return early to avoid looping over all cells. if (p0 == p1) { return; } for (uint32_t i = 0; i < cells.size(); ++i) { if (!cells.pos_in(i, p0, p1)) { continue; } if (cells.seq_has(i, seq_id)) { if (cells.pos_add(i, shift)) { if (new_head == cells.size()) { new_head = i; } } } } // If we freed up a slot, set head to it so searching can start there. // Otherwise we just start the next search from the beginning. head = new_head != cells.size() ? new_head : 0; } void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { if (d == 1) { return; } if (p0 < 0) { p0 = 0; } if (p1 < 0) { p1 = std::numeric_limits::max(); } // If there is no range then return early to avoid looping over the cache. if (p0 == p1) { return; } for (uint32_t i = 0; i < cells.size(); ++i) { if (!cells.pos_in(i, p0, p1)) { continue; } if (cells.seq_has(i, seq_id)) { cells.pos_div(i, d); } } } llama_pos llama_kv_cache_unified::seq_pos_min(llama_seq_id seq_id) const { return cells.seq_pos_min(seq_id); } llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const { return cells.seq_pos_max(seq_id); } llama_memory_state_ptr llama_kv_cache_unified::init_batch( const llama_batch & batch, uint32_t n_ubatch, bool embd_pooled, bool logits_all) { GGML_UNUSED(embd_pooled); auto sbatch = llama_sbatch(batch, hparams.n_embd, true, logits_all); std::vector ubatches; while (sbatch.n_tokens > 0) { ubatches.push_back(sbatch.split_simple(n_ubatch)); } auto heads = prepare(ubatches); if (heads.empty()) { return std::make_unique(LLAMA_MEMORY_STATUS_FAILED_PREPARE); } return std::make_unique(LLAMA_MEMORY_STATUS_SUCCESS, this, std::move(sbatch), std::move(heads), std::move(ubatches)); } llama_memory_state_ptr llama_kv_cache_unified::init_full() { return std::make_unique(LLAMA_MEMORY_STATUS_SUCCESS, this); } std::vector llama_kv_cache_unified::prepare(const std::vector & ubatches) { std::vector res; struct state { uint32_t head_old; // old position of the head, before placing the ubatch uint32_t head_new; // new position of the head, after placing the ubatch llama_kv_cells_unified cells; // copy of the old cells, before placing the ubatch }; // remember the old state of the cells so we can restore it in the end std::vector states; bool success = true; for (const auto & ubatch : ubatches) { // only find a suitable slot for the ubatch. don't modify the cells yet const int32_t head_new = find_slot(ubatch); if (head_new < 0) { success = false; break; } // remeber the position that we found res.push_back(head_new); // store the old state of the cells in the recovery stack states.push_back({head, (uint32_t) head_new, cells.cp(head_new, ubatch.n_tokens)}); // now emplace the ubatch apply_ubatch(head_new, ubatch); } // iterate backwards and restore the cells to their original state for (auto it = states.rbegin(); it != states.rend(); ++it) { cells.set(it->head_new, it->cells); head = it->head_old; } if (!success) { return {}; } return res; } bool llama_kv_cache_unified::update(llama_context & lctx) { bool updated = false; auto * sched = lctx.get_sched(); if (cells.get_has_shift()) { if (!get_can_shift()) { GGML_ABORT("The current KV cache / model configuration does not support K-shift"); } LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__); // apply K-shift if needed if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { ggml_backend_sched_reset(sched); auto * gf = lctx.graph_init(); auto res = build_graph_shift(lctx.get_cparams(), lctx.get_ctx_compute(), gf); if (!res) { LLAMA_LOG_ERROR("%s: failed to build graph for K-shift\n", __func__); return updated; } if (!ggml_backend_sched_alloc_graph(sched, gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__); return updated; } res->set_inputs(nullptr); if (lctx.graph_compute(gf, false) != GGML_STATUS_SUCCESS) { LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__); return updated; } updated = true; } cells.reset_shift(); } if (do_defrag) { LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__); if (defrag_prepare(lctx.graph_max_nodes())) { ggml_backend_sched_reset(sched); auto * gf = lctx.graph_init(); auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf); if (!res) { LLAMA_LOG_ERROR("%s: failed to build graph for defrag\n", __func__); return updated; } if (!ggml_backend_sched_alloc_graph(sched, gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__); return updated; } res->set_inputs(nullptr); if (lctx.graph_compute(gf, false) != GGML_STATUS_SUCCESS) { LLAMA_LOG_ERROR("%s: failed to compute defrag\n", __func__); return updated; } updated = true; } do_defrag = false; } return updated; } void llama_kv_cache_unified::defrag_sched(float thold) { const auto n_kv = cells.used_max_p1(); // - do not defrag small contexts (i.e. < 2048 tokens) // - count the padding towards the number of used tokens const float fragmentation = n_kv >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n_kv)) : 0.0f; // queue defragmentation for next llama_kv_cache_update if (fragmentation > thold) { LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation); do_defrag = true; } } int32_t llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch) const { const uint32_t n_tokens = ubatch.n_tokens; uint32_t head_cur = this->head; // if we have enough unused cells before the current head -> // better to start searching from the beginning of the cache, hoping to fill it if (head_cur > cells.get_used() + 2*ubatch.n_tokens) { head_cur = 0; } // otherwise, one cell per token. if (n_tokens > cells.size()) { LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size()); return -1; } //#define FIND_SLOT_DEBUG 1 #if FIND_SLOT_DEBUG LLAMA_LOG_WARN("begin: n = %5d, used = %5d, head = %5d, n_swa = %5d\n", cells.used_max_p1(), cells.get_used(), head, n_swa); // for debugging { std::string ss; if (n_swa > 0) { for (uint32_t i = 0; i < cells.size(); ++i) { if (cells.is_empty(i)) { ss += '.'; } else { ss += std::to_string(cells.seq_get(i)); } if (i%256 == 255) { ss += '\n'; } } } LLAMA_LOG_WARN("\n%s\n", ss.c_str()); } for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { if (cells.seq_pos_min(s) < 0) { continue; } LLAMA_LOG_WARN("kv_cells: n_swa = %4d, min[%d] = %5d, max[%d] = %5d\n", n_swa, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s)); } #endif uint32_t n_tested = 0; while (true) { if (head_cur + n_tokens > cells.size()) { n_tested += cells.size() - head_cur; head_cur = 0; continue; } // keep track of what the minimum sequence positions would be if we accept the ubatch llama_seq_id seq_pos_min[LLAMA_MAX_PARALLEL_SEQUENCES]; for (int s = 0; s < LLAMA_MAX_PARALLEL_SEQUENCES; ++s) { seq_pos_min[s] = cells.seq_pos_min(s); } bool found = true; for (uint32_t i = 0; i < n_tokens; i++) { const llama_pos pos = ubatch.pos[i]; const llama_seq_id seq_id = ubatch.seq_id[i][0]; // can we use this cell? either: // - the cell is empty // - the cell is occupied only by one sequence: // - mask causally, if the sequence is the same as the one we are inserting // - mask SWA, using current max pos for that sequence in the cache // always insert in the cell with minimum pos bool can_use = cells.is_empty(head_cur + i); if (!can_use && cells.seq_count(head_cur + i) == 1) { const llama_pos pos_cell = cells.pos_get(head_cur + i); // causal mask if (cells.seq_has(head_cur + i, seq_id)) { can_use = pos_cell >= pos; } if (!can_use) { const llama_seq_id seq_id_cell = cells.seq_get(head_cur + i); // SWA mask // note: we insert only in the cell with minimum pos in order to preserve the invariant that // all positions between [pos_min, pos_max] for each sequence will be present in the cache // ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092 if (pos_cell == seq_pos_min[seq_id_cell] && is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) { seq_pos_min[seq_id_cell]++; can_use = true; } } } if (!can_use) { found = false; head_cur += i + 1; n_tested += i + 1; break; } } if (found) { break; } if (n_tested >= cells.size()) { //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); return -1; } } return head_cur; } void llama_kv_cache_unified::apply_ubatch(uint32_t head_cur, const llama_ubatch & ubatch) { for (uint32_t i = 0; i < ubatch.n_tokens; ++i) { if (!cells.is_empty(head_cur + i)) { cells.rm(head_cur + i); } cells.pos_set(head_cur + i, ubatch.pos[i]); for (int32_t j = 0; j < ubatch.n_seq_id[i]; j++) { cells.seq_add(head_cur + i, ubatch.seq_id[i][j]); } } // move the head at the end of the slot head = head_cur + ubatch.n_tokens; } bool llama_kv_cache_unified::get_can_shift() const { return true; } uint32_t llama_kv_cache_unified::get_size() const { return cells.size(); } uint32_t llama_kv_cache_unified::get_n_kv() const { return std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))); } ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv) const { const int32_t ikv = map_layer_ids.at(il); auto * k = layers[ikv].k; return ggml_view_3d(ctx, k, hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, ggml_row_size(k->type, hparams.n_embd_head_k), ggml_row_size(k->type, hparams.n_embd_k_gqa(il)), 0); } ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const { const int32_t ikv = map_layer_ids.at(il); auto * v = layers[ikv].v; if (!v_trans) { // note: v->nb[1] <= v->nb[2] return ggml_view_3d(ctx, v, hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1] ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2] 0); } // note: v->nb[1] > v->nb[2] return ggml_view_3d(ctx, v, n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1] ggml_row_size(v->type, v->ne[1]), // v->nb[2] 0); } ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const { const int32_t ikv = map_layer_ids.at(il); auto * k = layers[ikv].k; const int64_t n_tokens = k_cur->ne[2]; ggml_tensor * k_view = ggml_view_1d(ctx, k, n_tokens*hparams.n_embd_k_gqa(il), ggml_row_size(k->type, hparams.n_embd_k_gqa(il))*head_cur); return ggml_cpy(ctx, k_cur, k_view); } ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const { const int32_t ikv = map_layer_ids.at(il); auto * v = layers[ikv].v; const int64_t n_tokens = v_cur->ne[2]; v_cur = ggml_reshape_2d(ctx, v_cur, hparams.n_embd_v_gqa(il), n_tokens); ggml_tensor * v_view = nullptr; if (!v_trans) { v_view = ggml_view_1d(ctx, v, n_tokens*hparams.n_embd_v_gqa(il), ggml_row_size(v->type, hparams.n_embd_v_gqa(il))*head_cur); } else { // note: the V cache is transposed when not using flash attention v_view = ggml_view_2d(ctx, v, n_tokens, hparams.n_embd_v_gqa(il), (v->ne[1])*ggml_element_size(v), (head_cur)*ggml_element_size(v)); v_cur = ggml_transpose(ctx, v_cur); } return ggml_cpy(ctx, v_cur, v_view); } void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { const int64_t n_tokens = ubatch->n_tokens; const int64_t n_seq_tokens = ubatch->n_seq_tokens; const int64_t n_seqs = ubatch->n_seqs; GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); float * data = (float *) dst->data; const auto n_kv = dst->ne[0]; // Use only the previous KV cells of the correct sequence for each token of the ubatch. // It's assumed that if a token in the batch has multiple sequences, they are equivalent. // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch: // Causal mask: // xxx------- // xxxx------ // xxxxx----- // Non-causal mask: // xxxxx----- // xxxxx----- // xxxxx----- // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615 for (int h = 0; h < 1; ++h) { for (int s = 0; s < n_seqs; ++s) { const llama_seq_id seq_id = ubatch->seq_id[s][0]; for (int j = 0; j < n_seq_tokens; ++j) { const llama_pos p1 = ubatch->pos[s*n_seq_tokens + j]; for (uint32_t i = 0; i < n_kv; ++i) { float f = 0.0f; bool masked = false; if (cells.is_empty(i)) { masked = true; } else { const llama_pos p0 = cells.pos_get(i); // mask the token if not the same sequence masked = masked || (!cells.seq_has(i, seq_id)); // mask future tokens masked = masked || (causal_attn && p0 > p1); // apply SWA if any masked = masked || (is_masked_swa(p0, p1)); if (!masked && hparams.use_alibi) { f = -std::abs(p0 - p1); } } if (masked) { f = -INFINITY; } data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f; } } } // mask padded tokens if (data) { for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { for (uint32_t j = 0; j < n_kv; ++j) { data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; } } } } } void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const { GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); int32_t * data = (int32_t *) dst->data; for (uint32_t i = 0; i < cells.size(); ++i) { data[i] = cells.is_empty(i) ? 0 : cells.get_shift(i); } } void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { const int64_t n_tokens = ubatch->n_tokens; GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing int32_t * data = (int32_t *) dst->data; const int32_t n_kv = dst->ne[0]; for (int h = 0; h < 1; ++h) { for (int j = 0; j < n_tokens; ++j) { for (int i = 0; i < n_kv; ++i) { // the position when the cells is empty is irrelevant - it will be masked out later in the attention const llama_pos p0 = cells.is_empty(i) ? -1 : cells.pos_get(i); data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(p0, ubatch->pos[j], hparams.n_rel_attn_bkts, false); } } } } size_t llama_kv_cache_unified::total_size() const { size_t size = 0; for (const auto & buf : bufs) { size += ggml_backend_buffer_get_size(buf.get()); } return size; } size_t llama_kv_cache_unified::size_k_bytes() const { size_t size_k_bytes = 0; for (const auto & layer : layers) { size_k_bytes += ggml_nbytes(layer.k); } return size_k_bytes; } size_t llama_kv_cache_unified::size_v_bytes() const { size_t size_v_bytes = 0; for (const auto & layer : layers) { size_v_bytes += ggml_nbytes(layer.v); } return size_v_bytes; } ggml_tensor * llama_kv_cache_unified::build_rope_shift( const llama_cparams & cparams, ggml_context * ctx, ggml_tensor * cur, ggml_tensor * shift, ggml_tensor * factors, float freq_base, float freq_scale) const { const auto & n_ctx_orig = cparams.n_ctx_orig_yarn; const auto & yarn_ext_factor = cparams.yarn_ext_factor; const auto & yarn_beta_fast = cparams.yarn_beta_fast; const auto & yarn_beta_slow = cparams.yarn_beta_slow; const auto & n_rot = hparams.n_rot; const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE // @ngxson : this is a workaround // for M-RoPE, we want to rotate the whole vector when doing KV shift // a normal RoPE should work, we just need to use the correct ordering // ref: https://github.com/ggml-org/llama.cpp/pull/13870 ? LLAMA_ROPE_TYPE_NEOX : hparams.rope_type; // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor; ggml_tensor * tmp; if (ggml_is_quantized(cur->type)) { // dequantize to f32 -> RoPE -> quantize back tmp = ggml_cast(ctx, cur, GGML_TYPE_F32); tmp = ggml_rope_ext(ctx, tmp, shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); tmp = ggml_cpy(ctx, tmp, cur); } else { // we rotate only the first n_rot dimensions tmp = ggml_rope_ext_inplace(ctx, cur, shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); } return tmp; } class llm_graph_input_k_shift : public llm_graph_input_i { public: llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {} virtual ~llm_graph_input_k_shift() = default; void set_input(const llama_ubatch * ubatch) override; ggml_tensor * k_shift; // I32 [kv_size] const llama_kv_cache_unified * kv_self; }; void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) { GGML_UNUSED(ubatch); if (k_shift) { kv_self->set_input_k_shift(k_shift); } } llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift( const llama_cparams & cparams, ggml_context * ctx, ggml_cgraph * gf) const { auto res = std::make_unique(); const auto & n_embd_head_k = hparams.n_embd_head_k; //const auto & n_embd_head_v = hparams.n_embd_head_v; //GGML_ASSERT(kv_self->size == n_ctx); auto inp = std::make_unique(this); inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cparams.n_ctx); ggml_set_input(inp->k_shift); for (const auto & layer : layers) { const uint32_t il = layer.il; const int64_t n_head_kv = hparams.n_head_kv(il); const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); const float freq_base_l = model.get_rope_freq_base (cparams, il); const float freq_scale_l = model.get_rope_freq_scale(cparams, il); ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); ggml_tensor * k = ggml_view_3d(ctx, layer.k, n_embd_head_k, n_head_kv, cells.size(), ggml_row_size(layer.k->type, n_embd_head_k), ggml_row_size(layer.k->type, n_embd_k_gqa), 0); ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l); ggml_build_forward_expand(gf, cur); } res->add_input(std::move(inp)); return res; } llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag( const llama_cparams & cparams, ggml_context * ctx, ggml_cgraph * gf) const { auto res = std::make_unique(); const auto & ids = defrag_info.ids; #if 0 // CPU defrag // // TODO: optimizations are possible: // - multiple threads // - avoid copying to the host memory when already there // // likely not worth the effort, as we have ggml_graph based defrag // const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const uint32_t kv_size = size; std::vector buf_k; std::vector buf_v; for (uint32_t il = 0; il < n_layer; ++il) { const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size); const size_t v_size_el = ggml_type_size(v_l[il]->type); const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size); buf_k.resize(k_size); buf_v.resize(v_size); ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size()); // batch move [i, i+nm) to [id, id+nm) // note: cells can move only to a lower index for (uint32_t i = 0; i < n_kv; ++i) { const uint32_t id = ids[i]; if (i == id || id == n_kv) { continue; } uint32_t nm = 1; while (i + nm < n_kv && ids[i + nm] == id + nm) { nm++; } // move keys { const int64_t os = i*k_size_row; const int64_t od = id*k_size_row; memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); } // move values (note: they are transposed) { const int64_t os = i; const int64_t od = id; for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); } } i += nm - 1; } ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size()); } #else for (uint32_t i = 0; i < ids.size(); ++i) { const uint32_t id = ids[i]; if (i == id || id == ids.size()) { continue; } uint32_t nm = 1; while (i + nm < ids.size() && ids[i + nm] == id + nm) { nm++; } for (const auto & layer : layers) { const uint32_t il = layer.il; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k, n_embd_k_gqa, nm, ggml_row_size(layer.k->type, n_embd_k_gqa), ggml_row_size(layer.k->type, n_embd_k_gqa*i)); ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k, n_embd_k_gqa, nm, ggml_row_size(layer.k->type, n_embd_k_gqa), ggml_row_size(layer.k->type, n_embd_k_gqa*id)); ggml_tensor * view_v_src; ggml_tensor * view_v_dst; if (cparams.flash_attn) { // NOTE: the V cache is not transposed when using flash attention view_v_src = ggml_view_2d(ctx, layer.v, n_embd_v_gqa, nm, ggml_row_size(layer.v->type, n_embd_v_gqa), ggml_row_size(layer.v->type, n_embd_v_gqa*i)); view_v_dst = ggml_view_2d(ctx, layer.v, n_embd_v_gqa, nm, ggml_row_size(layer.v->type, n_embd_v_gqa), ggml_row_size(layer.v->type, n_embd_v_gqa*id)); } else { view_v_src = ggml_view_2d(ctx, layer.v, nm, n_embd_v_gqa, ggml_row_size(layer.v->type, cells.size()), ggml_row_size(layer.v->type, i)); view_v_dst = ggml_view_2d(ctx, layer.v, nm, n_embd_v_gqa, ggml_row_size(layer.v->type, cells.size()), ggml_row_size(layer.v->type, id)); } ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst)); ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst)); } i += nm - 1; } //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); #endif return res; } bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) { const uint32_t n_layer = layers.size(); const uint32_t n_kv = cells.used_max_p1(); const uint32_t n_used = cells.get_used(); assert(n_used <= n_kv); //const int64_t t_start = ggml_time_us(); // number of cells moved uint32_t n_moves = 0; // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag) // - source view, destination view, copy operation // - x2 for keys and values //const uint32_t max_moves = max_nodes()/(6*n_layer); // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer); // determine which KV cells to move where // // cell i moves to ids[i] // // if ids[i] == i || ids[i] == n_kv, then cell i is not moved // auto & ids = defrag_info.ids; ids.clear(); ids.resize(n_kv, n_kv); for (uint32_t i0 = 0; i0 < n_used; ++i0) { if (!cells.is_empty(i0)) { ids[i0] = i0; continue; } // found a hole - fill it with data from the end of the cache uint32_t nh = 1; // determine the size of the hole while (i0 + nh < n_used && cells.is_empty(i0 + nh)) { nh++; } uint32_t nf = 0; uint32_t is = n_kv - 1; // starting from the end, find nh non-empty cells for (; is > i0; --is) { if (cells.is_empty(is) || ids[is] != n_kv) { continue; } // non-empty cell which is not yet moved nf++; if (nf == nh) { break; } } // this can only happen if `n_used` is not accurate, which would be a bug GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); nf = 0; uint32_t i1 = is; // are we moving a continuous block of memory? bool cont = false; // should we stop searching for the next move? bool stop = false; // go back and move the nf cells to the hole for (; i1 < n_kv; ++i1) { if (cells.is_empty(i1) || ids[i1] != n_kv) { if (n_moves == max_moves) { stop = true; break; } cont = false; continue; } // this cell goes to (i0 + nf) ids[i1] = i0 + nf; // move the cell meta data cells.mv(i1, i0 + nf); head = n_used; if (!cont) { n_moves++; cont = true; } nf++; if (nf == nh) { break; } } if (stop || n_moves == max_moves) { break; } //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); i0 += nh - 1; } if (n_moves == 0) { return false; } LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves); LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer); return true; } bool llama_kv_cache_unified::is_masked_swa(llama_pos p0, llama_pos p1) const { assert(p0 >= 0 && p1 >= 0); switch (swa_type) { case LLAMA_SWA_TYPE_NONE: { } break; case LLAMA_SWA_TYPE_STANDARD: { if (p1 - p0 >= (int32_t) n_swa) { return true; } } break; case LLAMA_SWA_TYPE_CHUNKED: { const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa; if (p0 < pos_chunk_start) { return true; } } break; } return false; } void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { std::vector> cell_ranges; // ranges, from inclusive, to exclusive uint32_t cell_count = 0; // Count the number of cells with the specified seq_id // Find all the ranges of cells with this seq id (or all, when -1) uint32_t cell_range_begin = cells.size(); for (uint32_t i = 0; i < cells.size(); ++i) { if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) { ++cell_count; if (cell_range_begin == cells.size()) { cell_range_begin = i; } } else { if (cell_range_begin != cells.size()) { cell_ranges.emplace_back(cell_range_begin, i); cell_range_begin = cells.size(); } } } if (cell_range_begin != cells.size()) { cell_ranges.emplace_back(cell_range_begin, cells.size()); } // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count uint32_t cell_count_check = 0; for (const auto & range : cell_ranges) { cell_count_check += range.second - range.first; } GGML_ASSERT(cell_count == cell_count_check); io.write(&cell_count, sizeof(cell_count)); state_write_meta(io, cell_ranges, seq_id); state_write_data(io, cell_ranges); } void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) { uint32_t cell_count; io.read_to(&cell_count, sizeof(cell_count)); bool res = true; res = res && state_read_meta(io, cell_count, seq_id); res = res && state_read_data(io, cell_count); if (!res) { if (seq_id == -1) { clear(); } else { seq_rm(seq_id, -1, -1); } throw std::runtime_error("failed to restore kv cache"); } } void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id) const { for (const auto & range : cell_ranges) { for (uint32_t i = range.first; i < range.second; ++i) { std::vector seq_ids; for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) { if (cur == seq_id || seq_id == -1) { if (cells.seq_has(i, cur)) { seq_ids.push_back(cur); } } } const llama_pos pos = cells.pos_get(i); const uint32_t n_seq_id = seq_ids.size(); io.write(&pos, sizeof(pos)); io.write(&n_seq_id, sizeof(n_seq_id)); for (const auto & seq_id : seq_ids) { io.write(&seq_id, sizeof(seq_id)); } } } } void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const { const uint32_t v_trans = this->v_trans ? 1 : 0; const uint32_t n_layer = layers.size(); io.write(&v_trans, sizeof(v_trans)); io.write(&n_layer, sizeof(n_layer)); std::vector tmp_buf; // Iterate and write all the keys first, each row is a cell // Get whole range at a time for (const auto & layer : layers) { const uint32_t il = layer.il; const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Write key type const int32_t k_type_i = (int32_t)layer.k->type; io.write(&k_type_i, sizeof(k_type_i)); // Write row size of key const uint64_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa); io.write(&k_size_row, sizeof(k_size_row)); // Read each range of cells of k_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * k_size_row; io.write_tensor(layer.k, range.first * k_size_row, buf_size); } } if (!v_trans) { for (const auto & layer : layers) { const uint32_t il = layer.il; const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Write value type const int32_t v_type_i = (int32_t)layer.v->type; io.write(&v_type_i, sizeof(v_type_i)); // Write row size of value const uint64_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa); io.write(&v_size_row, sizeof(v_size_row)); // Read each range of cells of v_size length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t buf_size = range_size * v_size_row; io.write_tensor(layer.v, range.first * v_size_row, buf_size); } } } else { // When v is transposed, we also need the element size and get the element ranges from each row const uint32_t kv_size = cells.size(); for (const auto & layer : layers) { const uint32_t il = layer.il; const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Write value type const int32_t v_type_i = (int32_t)layer.v->type; io.write(&v_type_i, sizeof(v_type_i)); // Write element size const uint32_t v_size_el = ggml_type_size(layer.v->type); io.write(&v_size_el, sizeof(v_size_el)); // Write GQA embedding size io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); // For each row, we get the element values of each cell for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { // Read each range of cells of v_size_el length each into tmp_buf and write out for (const auto & range : cell_ranges) { const size_t range_size = range.second - range.first; const size_t src_offset = (range.first + j * kv_size) * v_size_el; const size_t buf_size = range_size * v_size_el; io.write_tensor(layer.v, src_offset, buf_size); } } } } } bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { if (dest_seq_id != -1) { // single sequence seq_rm(dest_seq_id, -1, -1); llama_sbatch sbatch; llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false); batch.n_tokens = cell_count; for (uint32_t i = 0; i < cell_count; ++i) { llama_pos pos; uint32_t n_seq_id; io.read_to(&pos, sizeof(pos)); io.read_to(&n_seq_id, sizeof(n_seq_id)); if (n_seq_id != 1) { LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); return false; } // read the sequence id, but directly discard it - we will use dest_seq_id instead { llama_seq_id seq_id; io.read_to(&seq_id, sizeof(seq_id)); } batch.pos[i] = pos; batch.n_seq_id[i] = n_seq_id; batch.seq_id[i] = &dest_seq_id; } const auto head_cur = find_slot(batch); if (head_cur < 0) { LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); return false; } apply_ubatch(head_cur, batch); // keep the head at the old position because we will read the KV data into it in state_read_data() head = head_cur; // DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values) // Assume that this is one contiguous block of cells GGML_ASSERT(head_cur + cell_count <= cells.size()); GGML_ASSERT(cells.pos_get(head_cur) == batch.pos[0]); GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == batch.pos[cell_count - 1]); GGML_ASSERT(cells.seq_has(head_cur, dest_seq_id)); GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id)); } else { // whole KV cache restore if (cell_count > cells.size()) { LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); return false; } clear(); for (uint32_t i = 0; i < cell_count; ++i) { llama_pos pos; uint32_t n_seq_id; io.read_to(&pos, sizeof(pos)); io.read_to(&n_seq_id, sizeof(n_seq_id)); cells.pos_set(i, pos); for (uint32_t j = 0; j < n_seq_id; ++j) { llama_seq_id seq_id; io.read_to(&seq_id, sizeof(seq_id)); if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) { LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max); return false; } cells.seq_add(i, seq_id); } } head = 0; } return true; } bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) { uint32_t v_trans; uint32_t n_layer; io.read_to(&v_trans, sizeof(v_trans)); io.read_to(&n_layer, sizeof(n_layer)); if (n_layer != layers.size()) { LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size()); return false; } if (cell_count > cells.size()) { LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size()); return false; } if (this->v_trans != (bool) v_trans) { LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); return false; } // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block for (const auto & layer : layers) { const uint32_t il = layer.il; const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); // Read type of key int32_t k_type_i_ref; io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); const int32_t k_type_i = (int32_t) layer.k->type; if (k_type_i != k_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); return false; } // Read row size of key uint64_t k_size_row_ref; io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); const size_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa); if (k_size_row != k_size_row_ref) { LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); return false; } if (cell_count) { // Read and set the keys for the whole cell range ggml_backend_tensor_set(layer.k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); } } if (!this->v_trans) { for (const auto & layer : layers) { const uint32_t il = layer.il; const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Read type of value int32_t v_type_i_ref; io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); const int32_t v_type_i = (int32_t)layer.v->type; if (v_type_i != v_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); return false; } // Read row size of value uint64_t v_size_row_ref; io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); const size_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa); if (v_size_row != v_size_row_ref) { LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); return false; } if (cell_count) { // Read and set the values for the whole cell range ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); } } } else { // For each layer, read the values for each cell (transposed) for (const auto & layer : layers) { const uint32_t il = layer.il; const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); // Read type of value int32_t v_type_i_ref; io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); const int32_t v_type_i = (int32_t)layer.v->type; if (v_type_i != v_type_i_ref) { LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); return false; } // Read element size of value uint32_t v_size_el_ref; io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); const size_t v_size_el = ggml_type_size(layer.v->type); if (v_size_el != v_size_el_ref) { LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); return false; } // Read GQA embedding size uint32_t n_embd_v_gqa_ref; io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); if (n_embd_v_gqa != n_embd_v_gqa_ref) { LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); return false; } if (cell_count) { // For each row in the transposed matrix, read the values for the whole cell range for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { const size_t dst_offset = (head + j * cells.size()) * v_size_el; ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); } } } } return true; } // // llama_kv_cache_unified_state // llama_kv_cache_unified_state::llama_kv_cache_unified_state(llama_memory_status status) : status(status) {} llama_kv_cache_unified_state::llama_kv_cache_unified_state( llama_memory_status status, llama_kv_cache_unified * kv) : status(status), kv(kv) { n_kv = kv->get_size(); head = 0; } llama_kv_cache_unified_state::llama_kv_cache_unified_state( llama_memory_status status, llama_kv_cache_unified * kv, llama_sbatch sbatch, std::vector heads, std::vector ubatches) : status(status), kv(kv), sbatch(std::move(sbatch)), heads(std::move(heads)), ubatches(std::move(ubatches)) { } llama_kv_cache_unified_state::~llama_kv_cache_unified_state() = default; bool llama_kv_cache_unified_state::next() { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); if (++i_next >= ubatches.size()) { return false; } return true; } bool llama_kv_cache_unified_state::apply() { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); kv->apply_ubatch(heads[i_next], ubatches[i_next]); n_kv = kv->get_n_kv(); head = heads[i_next]; return true; } std::vector & llama_kv_cache_unified_state::out_ids() { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); return sbatch.out_ids; } llama_memory_status llama_kv_cache_unified_state::get_status() const { return status; } const llama_ubatch & llama_kv_cache_unified_state::get_ubatch() const { assert(status == LLAMA_MEMORY_STATUS_SUCCESS); return ubatches[i_next]; } uint32_t llama_kv_cache_unified_state::get_n_kv() const { return n_kv; } ggml_tensor * llama_kv_cache_unified_state::get_k(ggml_context * ctx, int32_t il) const { return kv->get_k(ctx, il, n_kv); } ggml_tensor * llama_kv_cache_unified_state::get_v(ggml_context * ctx, int32_t il) const { return kv->get_v(ctx, il, n_kv); } ggml_tensor * llama_kv_cache_unified_state::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const { return kv->cpy_k(ctx, k_cur, il, head); } ggml_tensor * llama_kv_cache_unified_state::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const { return kv->cpy_v(ctx, v_cur, il, head); } void llama_kv_cache_unified_state::set_input_k_shift(ggml_tensor * dst) const { kv->set_input_k_shift(dst); } void llama_kv_cache_unified_state::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { kv->set_input_kq_mask(dst, ubatch, causal_attn); } void llama_kv_cache_unified_state::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { kv->set_input_pos_bucket(dst, ubatch); } uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) { // the FA kernels require padding to avoid extra runtime boundary checks return cparams.flash_attn ? 256u : 32u; }