#define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows #define _USE_MATH_DEFINES // For M_PI on MSVC #include "ggml-backend-impl.h" #include "ggml-backend.h" #include "ggml-cpu-traits.h" #include "ggml-cpu-impl.h" #include "ggml-cpu.h" #include "ggml-impl.h" #include "ggml-cpu-quants.h" #include "ggml-threading.h" #include "unary-ops.h" #include "binary-ops.h" #include "vec.h" #include "ops.h" #include "ggml.h" #if defined(_MSC_VER) || defined(__MINGW32__) #include // using malloc.h with MSC/MINGW #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__gnu_linux__) #include #endif #ifdef GGML_USE_OPENMP #include #endif #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8) #undef GGML_USE_LLAMAFILE #endif #ifdef GGML_USE_LLAMAFILE #include "llamafile/sgemm.h" #endif #if defined(_MSC_VER) // disable "possible loss of data" to avoid hundreds of casts // we should just be careful :) #pragma warning(disable: 4244 4267) // disable POSIX deprecation warnings // these functions are never going away, anyway #pragma warning(disable: 4996) // unreachable code because of multiple instances of code after GGML_ABORT #pragma warning(disable: 4702) #endif // Note: once we move threading into a separate C++ file // will use std::hardware_destructive_interference_size instead of hardcoding it here // and we'll use C++ attribute syntax. #define GGML_CACHE_LINE 64 #if defined(__clang__) || defined(__GNUC__) #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE))) #endif #if defined(__has_feature) #if __has_feature(thread_sanitizer) #define GGML_TSAN_ENABLED 1 #endif #else // __has_feature #if defined(__SANITIZE_THREAD__) #define GGML_TSAN_ENABLED 1 #endif #endif // __has_feature #define UNUSED GGML_UNUSED #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0) #if defined(__ARM_ARCH) struct ggml_arm_arch_features_type { int has_neon; int has_dotprod; int has_i8mm; int has_sve; int sve_cnt; int has_sme; } ggml_arm_arch_features = {-1, -1, -1, -1, 0, -1}; #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #if defined(_MSC_VER) && !defined(__clang__) #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE)) typedef volatile LONG atomic_int; typedef atomic_int atomic_bool; typedef atomic_int atomic_flag; #define ATOMIC_FLAG_INIT 0 typedef enum { memory_order_relaxed, memory_order_consume, memory_order_acquire, memory_order_release, memory_order_acq_rel, memory_order_seq_cst } memory_order; static void atomic_store(atomic_int * ptr, LONG val) { InterlockedExchange(ptr, val); } static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) { // TODO: add support for explicit memory order InterlockedExchange(ptr, val); } static LONG atomic_load(atomic_int * ptr) { return InterlockedCompareExchange(ptr, 0, 0); } static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) { // TODO: add support for explicit memory order return InterlockedCompareExchange(ptr, 0, 0); } static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) { return InterlockedExchangeAdd(ptr, inc); } static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) { // TODO: add support for explicit memory order return InterlockedExchangeAdd(ptr, inc); } static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) { return InterlockedExchange(ptr, 1); } static void atomic_flag_clear(atomic_flag * ptr) { InterlockedExchange(ptr, 0); } static void atomic_thread_fence(memory_order mo) { MemoryBarrier(); } #else // clang #include #endif typedef HANDLE pthread_t; typedef DWORD thread_ret_t; static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) { (void) unused; HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL); if (handle == NULL) { return EAGAIN; } *out = handle; return 0; } static int pthread_join(pthread_t thread, void * unused) { (void) unused; int ret = (int) WaitForSingleObject(thread, INFINITE); CloseHandle(thread); return ret; } static int sched_yield (void) { Sleep (0); return 0; } #else #include #include #include #if defined(__FreeBSD__) #include #endif typedef void * thread_ret_t; #include #include #include #endif typedef pthread_t ggml_thread_t; #if defined(__APPLE__) #include #include #include #endif static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = { [GGML_TYPE_F32] = { .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32, .vec_dot_type = GGML_TYPE_F32, .nrows = 1, }, [GGML_TYPE_F16] = { .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row, .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16, .vec_dot_type = GGML_TYPE_F16, .nrows = 1, }, [GGML_TYPE_Q4_0] = { .from_float = quantize_row_q4_0, .vec_dot = ggml_vec_dot_q4_0_q8_0, .vec_dot_type = GGML_TYPE_Q8_0, #if defined (__ARM_FEATURE_MATMUL_INT8) .nrows = 2, #else .nrows = 1, #endif }, [GGML_TYPE_Q4_1] = { .from_float = quantize_row_q4_1, .vec_dot = ggml_vec_dot_q4_1_q8_1, .vec_dot_type = GGML_TYPE_Q8_1, #if defined (__ARM_FEATURE_MATMUL_INT8) .nrows = 2, #else .nrows = 1, #endif }, [GGML_TYPE_Q5_0] = { .from_float = quantize_row_q5_0, .vec_dot = ggml_vec_dot_q5_0_q8_0, .vec_dot_type = GGML_TYPE_Q8_0, .nrows = 1, }, [GGML_TYPE_Q5_1] = { .from_float = quantize_row_q5_1, .vec_dot = ggml_vec_dot_q5_1_q8_1, .vec_dot_type = GGML_TYPE_Q8_1, .nrows = 1, }, [GGML_TYPE_Q8_0] = { .from_float = quantize_row_q8_0, .vec_dot = ggml_vec_dot_q8_0_q8_0, .vec_dot_type = GGML_TYPE_Q8_0, #if defined (__ARM_FEATURE_MATMUL_INT8) .nrows = 2, #else .nrows = 1, #endif }, [GGML_TYPE_Q8_1] = { .from_float = quantize_row_q8_1, .vec_dot_type = GGML_TYPE_Q8_1, .nrows = 1, }, [GGML_TYPE_Q2_K] = { .from_float = quantize_row_q2_K, .vec_dot = ggml_vec_dot_q2_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_Q3_K] = { .from_float = quantize_row_q3_K, .vec_dot = ggml_vec_dot_q3_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_Q4_K] = { .from_float = quantize_row_q4_K, .vec_dot = ggml_vec_dot_q4_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_Q5_K] = { .from_float = quantize_row_q5_K, .vec_dot = ggml_vec_dot_q5_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_Q6_K] = { .from_float = quantize_row_q6_K, .vec_dot = ggml_vec_dot_q6_K_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_IQ2_XXS] = { .from_float = NULL, .vec_dot = ggml_vec_dot_iq2_xxs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_IQ2_XS] = { .from_float = NULL, .vec_dot = ggml_vec_dot_iq2_xs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_IQ3_XXS] = { // NOTE: from_float for iq3 and iq2_s was removed because these quants require initialization in ggml_quantize_init //.from_float = quantize_row_iq3_xxs, .vec_dot = ggml_vec_dot_iq3_xxs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_IQ3_S] = { //.from_float = quantize_row_iq3_s, .vec_dot = ggml_vec_dot_iq3_s_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_IQ2_S] = { //.from_float = quantize_row_iq2_s, .vec_dot = ggml_vec_dot_iq2_s_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_IQ1_S] = { .from_float = NULL, .vec_dot = ggml_vec_dot_iq1_s_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_IQ1_M] = { .from_float = NULL, .vec_dot = ggml_vec_dot_iq1_m_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_IQ4_NL] = { .from_float = quantize_row_iq4_nl, .vec_dot = ggml_vec_dot_iq4_nl_q8_0, .vec_dot_type = GGML_TYPE_Q8_0, .nrows = 1, }, [GGML_TYPE_IQ4_XS] = { .from_float = quantize_row_iq4_xs, .vec_dot = ggml_vec_dot_iq4_xs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_Q8_K] = { .from_float = quantize_row_q8_K, }, [GGML_TYPE_BF16] = { .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row, .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16, .vec_dot_type = GGML_TYPE_BF16, .nrows = 1, }, [GGML_TYPE_TQ1_0] = { .from_float = quantize_row_tq1_0, .vec_dot = ggml_vec_dot_tq1_0_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, [GGML_TYPE_TQ2_0] = { .from_float = quantize_row_tq2_0, .vec_dot = ggml_vec_dot_tq2_0_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, .nrows = 1, }, }; const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) { return &type_traits_cpu[type]; } // // Threading defs // typedef pthread_t ggml_thread_t; #if defined(_WIN32) typedef CONDITION_VARIABLE ggml_cond_t; typedef SRWLOCK ggml_mutex_t; #define ggml_mutex_init(m) InitializeSRWLock(m) #define ggml_mutex_destroy(m) #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m) #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m) #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m) #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m) #define ggml_cond_init(c) InitializeConditionVariable(c) #define ggml_cond_destroy(c) #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED) #define ggml_cond_broadcast(c) WakeAllConditionVariable(c) #define ggml_thread_create pthread_create #define ggml_thread_join pthread_join #else typedef pthread_cond_t ggml_cond_t; typedef pthread_mutex_t ggml_mutex_t; #define ggml_mutex_init(m) pthread_mutex_init(m, NULL) #define ggml_mutex_destroy(m) pthread_mutex_destroy(m) #define ggml_mutex_lock(m) pthread_mutex_lock(m) #define ggml_mutex_unlock(m) pthread_mutex_unlock(m) #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m) #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m) #define ggml_lock_init(x) UNUSED(x) #define ggml_lock_destroy(x) UNUSED(x) #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64)) #define ggml_lock_lock(x) _mm_pause() #else #define ggml_lock_lock(x) UNUSED(x) #endif #define ggml_lock_unlock(x) UNUSED(x) #define GGML_LOCK_INITIALIZER 0 #define ggml_cond_init(c) pthread_cond_init(c, NULL) #define ggml_cond_destroy(c) pthread_cond_destroy(c) #define ggml_cond_wait(c, m) pthread_cond_wait(c, m) #define ggml_cond_broadcast(c) pthread_cond_broadcast(c) #define ggml_thread_create pthread_create #define ggml_thread_join pthread_join #endif // Threadpool def struct ggml_threadpool { ggml_mutex_t mutex; // mutex for cond.var ggml_cond_t cond; // cond.var for waiting for new work struct ggml_cgraph * cgraph; struct ggml_cplan * cplan; // synchronization primitives atomic_int n_graph; // incremented when there is work to be done (i.e each graph) atomic_int GGML_CACHE_ALIGN n_barrier; atomic_int GGML_CACHE_ALIGN n_barrier_passed; atomic_int GGML_CACHE_ALIGN current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads. // these are atomic as an annotation for thread-sanitizer atomic_bool stop; // Used for stopping the threadpool altogether atomic_bool pause; // Used for pausing the threadpool or individual threads atomic_int abort; // Used for aborting processing of a graph struct ggml_compute_state * workers; // per thread state int n_threads_max; // number of threads in the pool atomic_int n_threads_cur; // number of threads used in the current graph int32_t prio; // Scheduling priority uint32_t poll; // Polling level (0 - no polling) enum ggml_status ec; }; // Per-thread state struct ggml_compute_state { #ifndef GGML_USE_OPENMP ggml_thread_t thrd; bool cpumask[GGML_MAX_N_THREADS]; int last_graph; bool pending; #endif struct ggml_threadpool * threadpool; int ith; }; // Helpers for polling loops #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) ) static inline void ggml_thread_cpu_relax(void) { __asm__ volatile("yield" ::: "memory"); } #elif defined(__x86_64__) static inline void ggml_thread_cpu_relax(void) { _mm_pause(); } #else static inline void ggml_thread_cpu_relax(void) {;} #endif // // NUMA support // #define GGML_NUMA_MAX_NODES 8 #define GGML_NUMA_MAX_CPUS 512 struct ggml_numa_node { uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node uint32_t n_cpus; }; struct ggml_numa_nodes { enum ggml_numa_strategy numa_strategy; struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES]; uint32_t n_nodes; uint32_t total_cpus; // hardware threads on system uint32_t current_node; // node on which main process is execting #if defined(__gnu_linux__) cpu_set_t cpuset; // cpuset from numactl #else uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype #endif }; // // ggml state // struct ggml_state { struct ggml_numa_nodes numa; }; static struct ggml_state g_state = {0}; void ggml_barrier(struct ggml_threadpool * tp) { int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed); if (n_threads == 1) { return; } #ifdef GGML_USE_OPENMP #pragma omp barrier #else int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed); // enter barrier (full seq-cst fence) int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst); if (n_barrier == (n_threads - 1)) { // last thread atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed); // exit barrier (fill seq-cst fence) atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst); return; } // wait for other threads while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) { ggml_thread_cpu_relax(); } // exit barrier (full seq-cst fence) // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead #ifdef GGML_TSAN_ENABLED atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst); #else atomic_thread_fence(memory_order_seq_cst); #endif #endif } #if defined(__gnu_linux__) static cpu_set_t ggml_get_numa_affinity(void) { cpu_set_t cpuset; pthread_t thread; thread = pthread_self(); CPU_ZERO(&cpuset); pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset); return cpuset; } #else static uint32_t ggml_get_numa_affinity(void) { return 0; // no NUMA support } #endif void ggml_numa_init(enum ggml_numa_strategy numa_flag) { if (g_state.numa.n_nodes > 0) { fprintf(stderr, "ggml_numa_init: NUMA already initialized\n"); return; } #if defined(__gnu_linux__) struct stat st; char path[256]; int rv; // set numa scheme g_state.numa.numa_strategy = numa_flag; GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy); g_state.numa.cpuset = ggml_get_numa_affinity(); // enumerate nodes while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) { rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes); GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); if (stat(path, &st) != 0) { break; } ++g_state.numa.n_nodes; } // enumerate CPUs while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) { rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus); GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); if (stat(path, &st) != 0) { break; } ++g_state.numa.total_cpus; } GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus); // figure out which node we're on uint current_cpu; int getcpu_ret = 0; #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 33) || defined(__COSMOPOLITAN__) getcpu_ret = getcpu(¤t_cpu, &g_state.numa.current_node); #else // old glibc doesn't have a wrapper for this call. Fall back on direct syscall # if !defined(SYS_getcpu) && defined(SYS_get_cpu) # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name # endif getcpu_ret = syscall(SYS_getcpu, ¤t_cpu, &g_state.numa.current_node); #endif if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) { g_state.numa.n_nodes = 0; return; } GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu); for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) { struct ggml_numa_node * node = &g_state.numa.nodes[n]; GGML_PRINT_DEBUG("CPUs on node %u:", n); node->n_cpus = 0; for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) { rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c); GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); if (stat(path, &st) == 0) { node->cpus[node->n_cpus++] = c; GGML_PRINT_DEBUG(" %u", c); } } GGML_PRINT_DEBUG("\n"); } if (ggml_is_numa()) { FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r"); if (fptr != NULL) { char buf[42]; if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) { GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n"); } fclose(fptr); } } #else UNUSED(numa_flag); // TODO #endif } bool ggml_is_numa(void) { return g_state.numa.n_nodes > 1; } #if defined(__ARM_ARCH) #if defined(__linux__) && defined(__aarch64__) #include #elif defined(__APPLE__) #include #endif #if !defined(HWCAP2_I8MM) #define HWCAP2_I8MM (1 << 13) #endif #if !defined(HWCAP2_SME) #define HWCAP2_SME (1 << 23) #endif static void ggml_init_arm_arch_features(void) { #if defined(__linux__) && defined(__aarch64__) uint32_t hwcap = getauxval(AT_HWCAP); uint32_t hwcap2 = getauxval(AT_HWCAP2); ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD); ggml_arm_arch_features.has_dotprod = !!(hwcap & HWCAP_ASIMDDP); ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM); ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE); ggml_arm_arch_features.has_sme = !!(hwcap2 & HWCAP2_SME); #if defined(__ARM_FEATURE_SVE) ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL); #endif #elif defined(__APPLE__) int oldp = 0; size_t size = sizeof(oldp); if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) { oldp = 0; } ggml_arm_arch_features.has_neon = oldp; if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) { oldp = 0; } ggml_arm_arch_features.has_dotprod = oldp; if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) { oldp = 0; } ggml_arm_arch_features.has_i8mm = oldp; if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) != 0) { oldp = 0; } ggml_arm_arch_features.has_sme = oldp; ggml_arm_arch_features.has_sve = 0; ggml_arm_arch_features.sve_cnt = 0; #else // Run-time CPU feature detection not implemented for this platform, fallback to compile time #if defined(__ARM_NEON) ggml_arm_arch_features.has_neon = 1; #else ggml_arm_arch_features.has_neon = 0; #endif #if defined(__ARM_FEATURE_MATMUL_INT8) ggml_arm_arch_features.has_i8mm = 1; #else ggml_arm_arch_features.has_i8mm = 0; #endif #if defined(__ARM_FEATURE_SVE) ggml_arm_arch_features.has_sve = 1; ggml_arm_arch_features.sve_cnt = 16; #else ggml_arm_arch_features.has_sve = 0; ggml_arm_arch_features.sve_cnt = 0; #endif #if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_SME2) ggml_arm_arch_features.has_sme = 1; #else ggml_arm_arch_features.has_sme = 0; #endif #endif } #endif struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) { GGML_ASSERT(!ggml_get_no_alloc(ctx)); struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1); ggml_set_i32(result, value); return result; } struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) { GGML_ASSERT(!ggml_get_no_alloc(ctx)); struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); ggml_set_f32(result, value); return result; } struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { const int n = ggml_nrows(tensor); const int nc = tensor->ne[0]; const size_t n1 = tensor->nb[1]; char * const data = tensor->data; switch (tensor->type) { case GGML_TYPE_I8: { assert(tensor->nb[0] == sizeof(int8_t)); for (int i = 0; i < n; i++) { ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); } } break; case GGML_TYPE_I16: { assert(tensor->nb[0] == sizeof(int16_t)); for (int i = 0; i < n; i++) { ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); } } break; case GGML_TYPE_I32: { assert(tensor->nb[0] == sizeof(int32_t)); for (int i = 0; i < n; i++) { ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); } } break; case GGML_TYPE_F16: { assert(tensor->nb[0] == sizeof(ggml_fp16_t)); for (int i = 0; i < n; i++) { ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value)); } } break; case GGML_TYPE_BF16: { assert(tensor->nb[0] == sizeof(ggml_fp16_t)); for (int i = 0; i < n; i++) { ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value)); } } break; case GGML_TYPE_F32: { assert(tensor->nb[0] == sizeof(float)); for (int i = 0; i < n; i++) { ggml_vec_set_f32(nc, (float *)(data + i*n1), value); } } break; default: { GGML_ABORT("fatal error"); } } return tensor; } struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { const int n = ggml_nrows(tensor); const int nc = tensor->ne[0]; const size_t n1 = tensor->nb[1]; char * const data = tensor->data; switch (tensor->type) { case GGML_TYPE_I8: { assert(tensor->nb[0] == sizeof(int8_t)); for (int i = 0; i < n; i++) { ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); } } break; case GGML_TYPE_I16: { assert(tensor->nb[0] == sizeof(int16_t)); for (int i = 0; i < n; i++) { ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); } } break; case GGML_TYPE_I32: { assert(tensor->nb[0] == sizeof(int32_t)); for (int i = 0; i < n; i++) { ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); } } break; case GGML_TYPE_F16: { assert(tensor->nb[0] == sizeof(ggml_fp16_t)); for (int i = 0; i < n; i++) { ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value)); } } break; case GGML_TYPE_BF16: { assert(tensor->nb[0] == sizeof(ggml_bf16_t)); for (int i = 0; i < n; i++) { ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value)); } } break; case GGML_TYPE_F32: { assert(tensor->nb[0] == sizeof(float)); for (int i = 0; i < n; i++) { ggml_vec_set_f32(nc, (float *)(data + i*n1), value); } } break; default: { GGML_ABORT("fatal error"); } } return tensor; } int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { if (!ggml_is_contiguous(tensor)) { int64_t id[4] = { 0, 0, 0, 0 }; ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]); } switch (tensor->type) { case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); return ((int8_t *)(tensor->data))[i]; } case GGML_TYPE_I16: { GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); return ((int16_t *)(tensor->data))[i]; } case GGML_TYPE_I32: { GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); return ((int32_t *)(tensor->data))[i]; } case GGML_TYPE_F16: { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); } case GGML_TYPE_BF16: { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]); } case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); return ((float *)(tensor->data))[i]; } default: { GGML_ABORT("fatal error"); } } } void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { if (!ggml_is_contiguous(tensor)) { int64_t id[4] = { 0, 0, 0, 0 }; ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value); return; } switch (tensor->type) { case GGML_TYPE_I8: { GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); ((int8_t *)(tensor->data))[i] = value; } break; case GGML_TYPE_I16: { GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); ((int16_t *)(tensor->data))[i] = value; } break; case GGML_TYPE_I32: { GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); ((int32_t *)(tensor->data))[i] = value; } break; case GGML_TYPE_F16: { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value); } break; case GGML_TYPE_BF16: { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t)); ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value); } break; case GGML_TYPE_F32: { GGML_ASSERT(tensor->nb[0] == sizeof(float)); ((float *)(tensor->data))[i] = value; } break; default: { GGML_ABORT("fatal error"); } } } int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; switch (tensor->type) { case GGML_TYPE_I8: return ((int8_t *) data)[0]; case GGML_TYPE_I16: return ((int16_t *) data)[0]; case GGML_TYPE_I32: return ((int32_t *) data)[0]; case GGML_TYPE_F16: return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); case GGML_TYPE_BF16: return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]); case GGML_TYPE_F32: return ((float *) data)[0]; default: GGML_ABORT("fatal error"); } } void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) { void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; switch (tensor->type) { case GGML_TYPE_I8: { ((int8_t *)(data))[0] = value; } break; case GGML_TYPE_I16: { ((int16_t *)(data))[0] = value; } break; case GGML_TYPE_I32: { ((int32_t *)(data))[0] = value; } break; case GGML_TYPE_F16: { ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); } break; case GGML_TYPE_BF16: { ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value); } break; case GGML_TYPE_F32: { ((float *)(data))[0] = value; } break; default: { GGML_ABORT("fatal error"); } } } float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { if (!ggml_is_contiguous(tensor)) { int64_t id[4] = { 0, 0, 0, 0 }; ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]); } switch (tensor->type) { case GGML_TYPE_I8: { return ((int8_t *)(tensor->data))[i]; } case GGML_TYPE_I16: { return ((int16_t *)(tensor->data))[i]; } case GGML_TYPE_I32: { return ((int32_t *)(tensor->data))[i]; } case GGML_TYPE_F16: { return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); } case GGML_TYPE_BF16: { return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]); } case GGML_TYPE_F32: { return ((float *)(tensor->data))[i]; } default: { GGML_ABORT("fatal error"); } } } void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { if (!ggml_is_contiguous(tensor)) { int64_t id[4] = { 0, 0, 0, 0 }; ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value); return; } switch (tensor->type) { case GGML_TYPE_I8: { ((int8_t *)(tensor->data))[i] = value; } break; case GGML_TYPE_I16: { ((int16_t *)(tensor->data))[i] = value; } break; case GGML_TYPE_I32: { ((int32_t *)(tensor->data))[i] = value; } break; case GGML_TYPE_F16: { ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value); } break; case GGML_TYPE_BF16: { ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value); } break; case GGML_TYPE_F32: { ((float *)(tensor->data))[i] = value; } break; default: { GGML_ABORT("fatal error"); } } } float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; switch (tensor->type) { case GGML_TYPE_I8: return ((int8_t *) data)[0]; case GGML_TYPE_I16: return ((int16_t *) data)[0]; case GGML_TYPE_I32: return ((int32_t *) data)[0]; case GGML_TYPE_F16: return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); case GGML_TYPE_BF16: return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]); case GGML_TYPE_F32: return ((float *) data)[0]; default: GGML_ABORT("fatal error"); } } void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) { void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; switch (tensor->type) { case GGML_TYPE_I8: { ((int8_t *)(data))[0] = value; } break; case GGML_TYPE_I16: { ((int16_t *)(data))[0] = value; } break; case GGML_TYPE_I32: { ((int32_t *)(data))[0] = value; } break; case GGML_TYPE_F16: { ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); } break; case GGML_TYPE_BF16: { ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value); } break; case GGML_TYPE_F32: { ((float *)(data))[0] = value; } break; default: { GGML_ABORT("fatal error"); } } } //////////////////////////////////////////////////////////////////////////////// // ggml_compute_forward_mul_mat static void ggml_compute_forward_mul_mat_one_chunk( const struct ggml_compute_params * params, struct ggml_tensor * dst, const enum ggml_type type, const int64_t num_rows_per_vec_dot, const int64_t ir0_start, const int64_t ir0_end, const int64_t ir1_start, const int64_t ir1_end) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const bool src1_cont = ggml_is_contiguous(src1); ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot; enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type; // broadcast factors const int64_t r2 = ne12 / ne02; const int64_t r3 = ne13 / ne03; //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end); // threads with no work simply yield (not sure if it helps) if (ir0_start >= ir0_end || ir1_start >= ir1_end) { return; } const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; const size_t row_size = ggml_row_size(vec_dot_type, ne10); assert(ne12 % ne02 == 0); assert(ne13 % ne03 == 0); // block-tiling attempt const int64_t blck_0 = 16; const int64_t blck_1 = 16; const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11; // attempt to reduce false-sharing (does not seem to make a difference) // 16 * 2, accounting for mmla kernels float tmp[32]; for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) { for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) { for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) { const int64_t i13 = (ir1 / (ne12 * ne1)); const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1; const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1); // broadcast src0 into src1 const int64_t i03 = i13 / r3; const int64_t i02 = i12 / r2; const int64_t i1 = i11; const int64_t i2 = i12; const int64_t i3 = i13; const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03); // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using // the original src1 data pointer, so we should index using the indices directly // TODO: this is a bit of a hack, we should probably have a better way to handle this const char * src1_col = (const char*)wdata + (src1_cont || src1->type != vec_dot_type ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size : (i11 * nb11 + i12 * nb12 + i13 * nb13)); float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3)); //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) { // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col); //} for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) { vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot); } for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) { memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float)); } } } } } static void ggml_compute_forward_mul_mat( const struct ggml_compute_params * params, struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; enum ggml_type const vec_dot_type = type_traits_cpu[src0->type].vec_dot_type; ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float; int64_t const vec_dot_num_rows = type_traits_cpu[src0->type].nrows; GGML_ASSERT(ne0 == ne01); GGML_ASSERT(ne1 == ne11); GGML_ASSERT(ne2 == ne12); GGML_ASSERT(ne3 == ne13); // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(src0->type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); // nb01 >= nb00 - src0 is not transposed // compute by src0 rows // TODO: extract to "extra_op" #if GGML_USE_LLAMAFILE // broadcast factors const int64_t r2 = ne12 / ne02; const int64_t r3 = ne13 / ne03; const bool src1_cont = ggml_is_contiguous(src1); if (src1_cont) { for (int64_t i13 = 0; i13 < ne13; i13++) for (int64_t i12 = 0; i12 < ne12; i12++) if (!llamafile_sgemm(params, ne01, ne11, ne00/ggml_blck_size(src0->type), (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type), (const char *)src1->data + i12*nb12 + i13*nb13, nb11/ggml_type_size(src1->type), (char *)dst->data + i12*nb2 + i13*nb3, nb1/ggml_type_size(dst->type), src0->type, src1->type, dst->type)) goto UseGgmlGemm1; return; } UseGgmlGemm1:; #endif if (src1->type != vec_dot_type) { char * wdata = params->wdata; const size_t nbw0 = ggml_type_size(vec_dot_type); const size_t nbw1 = ggml_row_size(vec_dot_type, ne10); const size_t nbw2 = nbw1*ne11; const size_t nbw3 = nbw2*ne12; assert(params->wsize >= ne13*nbw3); GGML_ASSERT(src1->type == GGML_TYPE_F32); #if 0 for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = ith; i11 < ne11; i11 += nth) { from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1), ne10); } } } #else for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = 0; i11 < ne11; ++i11) { size_t bs = ggml_blck_size(vec_dot_type); int64_t ne10_block_start = (ith * ne10/bs) / nth; int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth; from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10), (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0), (ne10_block_end - ne10_block_start) * bs); } } } #endif } if (ith == 0) { // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. atomic_store_explicit(¶ms->threadpool->current_chunk, nth, memory_order_relaxed); } ggml_barrier(params->threadpool); #if GGML_USE_LLAMAFILE if (src1->type != vec_dot_type) { const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; const size_t row_size = ggml_row_size(vec_dot_type, ne10); for (int64_t i13 = 0; i13 < ne13; i13++) for (int64_t i12 = 0; i12 < ne12; i12++) if (!llamafile_sgemm(params, ne01, ne11, ne00/ggml_blck_size(src0->type), (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, nb01/ggml_type_size(src0->type), (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size, row_size/ggml_type_size(vec_dot_type), (char *)dst->data + i12*nb2 + i13*nb3, nb1/ggml_type_size(dst->type), src0->type, vec_dot_type, dst->type)) goto UseGgmlGemm2; return; } UseGgmlGemm2:; #endif // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers) const int64_t nr0 = ne0; // This is the size of the rest of the dimensions of the result const int64_t nr1 = ne1 * ne2 * ne3; // Now select a reasonable chunk size. int chunk_size = 16; // We need to step up the size if it's small if (nr0 == 1 || nr1 == 1) { chunk_size = 64; } // distribute the work across the inner or outer loop based on which one is larger // The number of chunks in the 0/1 dim. // CEIL(nr0/chunk_size) int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size; int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size; // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggml-org/llama.cpp/pull/6915 // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) { // distribute the thread work across the inner or outer loop based on which one is larger nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows } // The number of elements in each chunk const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0; const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1; // The first chunk comes from our thread_id, the rest will get auto-assigned. int current_chunk = ith; while (current_chunk < nchunk0 * nchunk1) { const int64_t ith0 = current_chunk % nchunk0; const int64_t ith1 = current_chunk / nchunk0; const int64_t ir0_start = dr0 * ith0; const int64_t ir0_end = MIN(ir0_start + dr0, nr0); const int64_t ir1_start = dr1 * ith1; const int64_t ir1_end = MIN(ir1_start + dr1, nr1); // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols int64_t num_rows_per_vec_dot = vec_dot_num_rows; // these checks are needed to avoid crossing dim1 boundaries // can be optimized, but the logic would become more complicated, so keeping it like this for simplicity if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) { num_rows_per_vec_dot = 1; } ggml_compute_forward_mul_mat_one_chunk(params, dst, src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end); if (nth >= nchunk0 * nchunk1) { break; } current_chunk = atomic_fetch_add_explicit(¶ms->threadpool->current_chunk, 1, memory_order_relaxed); } } // ggml_compute_forward_mul_mat_id #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ids->ne[0]*ids->ne[1] + (i1)] struct mmid_row_mapping { int32_t i1; int32_t i2; }; static void ggml_compute_forward_mul_mat_id_one_chunk( struct ggml_tensor * dst, const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * ids, const int64_t cur_a, const int64_t ir0_start, const int64_t ir0_end, const int64_t ir1_start, const int64_t ir1_end, const char * src0_cur, const struct mmid_row_mapping * matrix_rows, const size_t row_size, const bool src1_cont, const void * wdata) { GGML_TENSOR_BINARY_OP_LOCALS const enum ggml_type type = src0->type; ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot; enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type; const int64_t blck_0 = 16; const int64_t blck_1 = 16; float tmp[16]; for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) { for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) { for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ++ir1) { const int64_t _i12 = ir1; // logical row index for this expert struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12); const int id = row_mapping.i1; // selected expert index const int64_t i11 = id % ne11; const int64_t i12 = row_mapping.i2; // row index in src1 const int64_t i1 = id; // selected expert index const int64_t i2 = i12; // row // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using // the original src1 data pointer, so we should index using the indices directly // TODO: this is a bit of a hack, we should probably have a better way to handle this const char * src1_col = (const char *) wdata + (src1_cont || src1->type != vec_dot_type ? (i11 + i12*ne11)*row_size : (i11*nb11 + i12*nb12)); float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2)); for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) { vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1); } memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir0_end) - iir0)*sizeof(float)); } } } } static void * incr_ptr_aligned(void ** p, size_t size, size_t align) { void * ptr = *p; ptr = (void *) GGML_PAD((uintptr_t) ptr, align); *p = (void *) ((char *) ptr + size); return ptr; } static void ggml_compute_forward_mul_mat_id( const struct ggml_compute_params * params, struct ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; const struct ggml_tensor * ids = dst->src[2]; GGML_TENSOR_BINARY_OP_LOCALS const int ith = params->ith; const int nth = params->nth; const enum ggml_type type = src0->type; const bool src1_cont = ggml_is_contiguous(src1); enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type; ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float; // we don't support permuted src0 or src1 GGML_ASSERT(nb00 == ggml_type_size(type)); GGML_ASSERT(nb10 == ggml_type_size(src1->type)); // dst cannot be transposed or permuted GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb0 <= nb1); GGML_ASSERT(nb1 <= nb2); GGML_ASSERT(nb2 <= nb3); // row groups const int n_ids = ids->ne[0]; // n_expert_used const int n_as = ne02; // n_expert void * wdata_cur = params->wdata; if (src1->type != vec_dot_type) { incr_ptr_aligned(&wdata_cur, ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t)); } int64_t * matrix_row_counts = // [n_as] incr_ptr_aligned(&wdata_cur, n_as*sizeof(int64_t), sizeof(int64_t)); struct mmid_row_mapping * matrix_rows = // [n_as][ids->ne[0]*ids->ne[1]] incr_ptr_aligned(&wdata_cur, n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping), sizeof(int64_t)); char (*atomic_current_chunk)[CACHE_LINE_SIZE] = // [n_as] incr_ptr_aligned(&wdata_cur, CACHE_LINE_SIZE * n_as, CACHE_LINE_SIZE); GGML_ASSERT(params->wsize >= (size_t)((char *) wdata_cur - (char *) params->wdata)); if (src1->type != vec_dot_type) { char * wdata = params->wdata; const size_t nbw0 = ggml_type_size(vec_dot_type); const size_t nbw1 = ggml_row_size(vec_dot_type, ne10); const size_t nbw2 = nbw1*ne11; const size_t nbw3 = nbw2*ne12; assert(params->wsize >= ne13*nbw3); GGML_ASSERT(src1->type == GGML_TYPE_F32); #if 0 for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = ith; i12 < ne12; i12 += nth) { for (int64_t i11 = 0; i11 < ne11; ++i11) { from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1), ne10); } } } #else for (int64_t i13 = 0; i13 < ne13; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = 0; i11 < ne11; ++i11) { size_t bs = ggml_blck_size(vec_dot_type); int64_t ne10_block_start = (ith * ne10/bs) / nth; int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth; from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10), (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0), (ne10_block_end - ne10_block_start) * bs); } } } #endif } if (ith == 0) { // initialize matrix_row_counts memset(matrix_row_counts, 0, n_as*sizeof(int64_t)); // group rows by src0 matrix for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) { for (int id = 0; id < n_ids; ++id) { const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]); assert(i02 >= 0 && i02 < n_as); MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1}; matrix_row_counts[i02] += 1; } } } // reset current_chunk for (int cur_a = ith; cur_a < n_as; cur_a += nth) { atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a); *current_chunk_ctr = nth; } ggml_barrier(params->threadpool); for (int cur_a = 0; cur_a < n_as; ++cur_a) { const int64_t cne1 = matrix_row_counts[cur_a]; if (cne1 == 0) { continue; } const char * src0_cur = (const char *) src0->data + cur_a * nb02; const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; const size_t row_size = ggml_row_size(vec_dot_type, ne10); const int64_t nr0 = ne01; const int64_t nr1 = cne1; int chunk_size = 16; if (nr0 == 1 || nr1 == 1) { chunk_size = 64; } #if defined(__aarch64__) // disable for ARM const bool disable_chunking = true; #else // disable for NUMA const bool disable_chunking = ggml_is_numa(); #endif // defined(__aarch64__) int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size; int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size; if (nchunk0 * nchunk1 < nth * 4 || disable_chunking) { nchunk0 = nr0 > nr1 ? nth : 1; nchunk1 = nr0 > nr1 ? 1 : nth; } const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0; const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1; int current_chunk = ith; atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a); while (current_chunk < nchunk0 * nchunk1) { const int64_t ith0 = current_chunk % nchunk0; const int64_t ith1 = current_chunk / nchunk0; const int64_t ir0_start = dr0 * ith0; const int64_t ir0_end = MIN(ir0_start + dr0, nr0); const int64_t ir1_start = dr1 * ith1; const int64_t ir1_end = MIN(ir1_start + dr1, nr1); ggml_compute_forward_mul_mat_id_one_chunk( dst, src0, src1, ids, cur_a, ir0_start, ir0_end, ir1_start, ir1_end, src0_cur, matrix_rows, row_size, src1_cont, wdata ); if (nth >= nchunk0 * nchunk1) { break; } current_chunk = atomic_fetch_add_explicit(current_chunk_ctr, 1, memory_order_relaxed); } } } ///////////////////////////////// static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { GGML_ASSERT(params); if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) { return; } // extra_buffer op? if (ggml_cpu_extra_compute_forward(params, tensor)) { return; } switch (tensor->op) { case GGML_OP_DUP: { ggml_compute_forward_dup(params, tensor); } break; case GGML_OP_ADD: { ggml_compute_forward_add(params, tensor); } break; case GGML_OP_ADD1: { ggml_compute_forward_add1(params, tensor); } break; case GGML_OP_ACC: { ggml_compute_forward_acc(params, tensor); } break; case GGML_OP_SUB: { ggml_compute_forward_sub(params, tensor); } break; case GGML_OP_MUL: { ggml_compute_forward_mul(params, tensor); } break; case GGML_OP_DIV: { ggml_compute_forward_div(params, tensor); } break; case GGML_OP_SQR: { ggml_compute_forward_sqr(params, tensor); } break; case GGML_OP_SQRT: { ggml_compute_forward_sqrt(params, tensor); } break; case GGML_OP_LOG: { ggml_compute_forward_log(params, tensor); } break; case GGML_OP_SIN: { ggml_compute_forward_sin(params, tensor); } break; case GGML_OP_COS: { ggml_compute_forward_cos(params, tensor); } break; case GGML_OP_SUM: { ggml_compute_forward_sum(params, tensor); } break; case GGML_OP_SUM_ROWS: { ggml_compute_forward_sum_rows(params, tensor); } break; case GGML_OP_MEAN: { ggml_compute_forward_mean(params, tensor); } break; case GGML_OP_ARGMAX: { ggml_compute_forward_argmax(params, tensor); } break; case GGML_OP_COUNT_EQUAL: { ggml_compute_forward_count_equal(params, tensor); } break; case GGML_OP_REPEAT: { ggml_compute_forward_repeat(params, tensor); } break; case GGML_OP_REPEAT_BACK: { ggml_compute_forward_repeat_back(params, tensor); } break; case GGML_OP_CONCAT: { ggml_compute_forward_concat(params, tensor); } break; case GGML_OP_SILU_BACK: { ggml_compute_forward_silu_back(params, tensor); } break; case GGML_OP_NORM: { ggml_compute_forward_norm(params, tensor); } break; case GGML_OP_RMS_NORM: { ggml_compute_forward_rms_norm(params, tensor); } break; case GGML_OP_RMS_NORM_BACK: { ggml_compute_forward_rms_norm_back(params, tensor); } break; case GGML_OP_GROUP_NORM: { ggml_compute_forward_group_norm(params, tensor); } break; case GGML_OP_L2_NORM: { ggml_compute_forward_l2_norm(params, tensor); } break; case GGML_OP_MUL_MAT: { ggml_compute_forward_mul_mat(params, tensor); } break; case GGML_OP_MUL_MAT_ID: { ggml_compute_forward_mul_mat_id(params, tensor); } break; case GGML_OP_OUT_PROD: { ggml_compute_forward_out_prod(params, tensor); } break; case GGML_OP_SCALE: { ggml_compute_forward_scale(params, tensor); } break; case GGML_OP_SET: { ggml_compute_forward_set(params, tensor); } break; case GGML_OP_CPY: { ggml_compute_forward_cpy(params, tensor); } break; case GGML_OP_CONT: { ggml_compute_forward_cont(params, tensor); } break; case GGML_OP_RESHAPE: { ggml_compute_forward_reshape(params, tensor); } break; case GGML_OP_VIEW: { ggml_compute_forward_view(params, tensor); } break; case GGML_OP_PERMUTE: { ggml_compute_forward_permute(params, tensor); } break; case GGML_OP_TRANSPOSE: { ggml_compute_forward_transpose(params, tensor); } break; case GGML_OP_GET_ROWS: { ggml_compute_forward_get_rows(params, tensor); } break; case GGML_OP_GET_ROWS_BACK: { ggml_compute_forward_get_rows_back(params, tensor); } break; case GGML_OP_DIAG: { ggml_compute_forward_diag(params, tensor); } break; case GGML_OP_DIAG_MASK_INF: { ggml_compute_forward_diag_mask_inf(params, tensor); } break; case GGML_OP_DIAG_MASK_ZERO: { ggml_compute_forward_diag_mask_zero(params, tensor); } break; case GGML_OP_SOFT_MAX: { ggml_compute_forward_soft_max(params, tensor); } break; case GGML_OP_SOFT_MAX_BACK: { ggml_compute_forward_soft_max_ext_back(params, tensor); } break; case GGML_OP_ROPE: { ggml_compute_forward_rope(params, tensor); } break; case GGML_OP_ROPE_BACK: { ggml_compute_forward_rope_back(params, tensor); } break; case GGML_OP_CLAMP: { ggml_compute_forward_clamp(params, tensor); } break; case GGML_OP_CONV_TRANSPOSE_1D: { ggml_compute_forward_conv_transpose_1d(params, tensor); } break; case GGML_OP_IM2COL: { ggml_compute_forward_im2col(params, tensor); } break; case GGML_OP_IM2COL_BACK: { ggml_compute_forward_im2col_back_f32(params, tensor); } break; case GGML_OP_CONV_2D_DW: { ggml_compute_forward_conv_2d_dw(params, tensor); } break; case GGML_OP_CONV_TRANSPOSE_2D: { ggml_compute_forward_conv_transpose_2d(params, tensor); } break; case GGML_OP_POOL_1D: { ggml_compute_forward_pool_1d(params, tensor); } break; case GGML_OP_POOL_2D: { ggml_compute_forward_pool_2d(params, tensor); } break; case GGML_OP_POOL_2D_BACK: { ggml_compute_forward_pool_2d_back(params, tensor); } break; case GGML_OP_UPSCALE: { ggml_compute_forward_upscale(params, tensor); } break; case GGML_OP_PAD: { ggml_compute_forward_pad(params, tensor); } break; case GGML_OP_PAD_REFLECT_1D: { ggml_compute_forward_pad_reflect_1d(params, tensor); } break; case GGML_OP_ARANGE: { ggml_compute_forward_arange(params, tensor); } break; case GGML_OP_TIMESTEP_EMBEDDING: { ggml_compute_forward_timestep_embedding(params, tensor); } break; case GGML_OP_ARGSORT: { ggml_compute_forward_argsort(params, tensor); } break; case GGML_OP_LEAKY_RELU: { ggml_compute_forward_leaky_relu(params, tensor); } break; case GGML_OP_FLASH_ATTN_EXT: { ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor); } break; case GGML_OP_FLASH_ATTN_BACK: { int32_t t = ggml_get_op_params_i32(tensor, 0); GGML_ASSERT(t == 0 || t == 1); bool masked = t != 0; ggml_compute_forward_flash_attn_back(params, masked, tensor); } break; case GGML_OP_SSM_CONV: { ggml_compute_forward_ssm_conv(params, tensor); } break; case GGML_OP_SSM_SCAN: { ggml_compute_forward_ssm_scan(params, tensor); } break; case GGML_OP_WIN_PART: { ggml_compute_forward_win_part(params, tensor); } break; case GGML_OP_WIN_UNPART: { ggml_compute_forward_win_unpart(params, tensor); } break; case GGML_OP_UNARY: { ggml_compute_forward_unary(params, tensor); } break; case GGML_OP_GET_REL_POS: { ggml_compute_forward_get_rel_pos(params, tensor); } break; case GGML_OP_ADD_REL_POS: { ggml_compute_forward_add_rel_pos(params, tensor); } break; case GGML_OP_RWKV_WKV6: { ggml_compute_forward_rwkv_wkv6(params, tensor); } break; case GGML_OP_GATED_LINEAR_ATTN: { ggml_compute_forward_gla(params, tensor); } break; case GGML_OP_RWKV_WKV7: { ggml_compute_forward_rwkv_wkv7(params, tensor); } break; case GGML_OP_MAP_CUSTOM1: { ggml_compute_forward_map_custom1(params, tensor); } break; case GGML_OP_MAP_CUSTOM2: { ggml_compute_forward_map_custom2(params, tensor); } break; case GGML_OP_MAP_CUSTOM3: { ggml_compute_forward_map_custom3(params, tensor); } break; case GGML_OP_CUSTOM: { ggml_compute_forward_custom(params, tensor); } break; case GGML_OP_CROSS_ENTROPY_LOSS: { ggml_compute_forward_cross_entropy_loss(params, tensor); } break; case GGML_OP_CROSS_ENTROPY_LOSS_BACK: { ggml_compute_forward_cross_entropy_loss_back(params, tensor); } break; case GGML_OP_OPT_STEP_ADAMW: { ggml_compute_forward_opt_step_adamw(params, tensor); } break; case GGML_OP_NONE: { // nop } break; case GGML_OP_COUNT: { GGML_ABORT("fatal error"); } } } // Android's libc implementation "bionic" does not support setting affinity #if defined(__gnu_linux__) static void set_numa_thread_affinity(int thread_n) { if (!ggml_is_numa()) { return; } int node_num; int rv; size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); switch(g_state.numa.numa_strategy) { case GGML_NUMA_STRATEGY_DISTRIBUTE: // run thread on node_num thread_n / (threads per node) node_num = thread_n % g_state.numa.n_nodes; break; case GGML_NUMA_STRATEGY_ISOLATE: // run thread on current_node node_num = g_state.numa.current_node; break; case GGML_NUMA_STRATEGY_NUMACTL: // use the cpuset that numactl gave us rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset); if (rv) { fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv)); } return; default: return; } struct ggml_numa_node * node = &g_state.numa.nodes[node_num]; cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); CPU_ZERO_S(setsize, cpus); for (size_t i = 0; i < node->n_cpus; ++i) { CPU_SET_S(node->cpus[i], setsize, cpus); } rv = pthread_setaffinity_np(pthread_self(), setsize, cpus); if (rv) { fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv)); } CPU_FREE(cpus); } static void clear_numa_thread_affinity(void) { if (!ggml_is_numa()) { return; } size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); CPU_ZERO_S(setsize, cpus); for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) { CPU_SET_S(i, setsize, cpus); } int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus); if (rv) { fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv)); } CPU_FREE(cpus); } #else // TODO: Windows etc. // (the linux implementation may also work on BSD, someone should test) static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); } static void clear_numa_thread_affinity(void) {} #endif static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { int n_tasks = 0; if (ggml_is_empty(node)) { // no need to multi-thread a no-op n_tasks = 1; return n_tasks; } switch (node->op) { case GGML_OP_CPY: case GGML_OP_DUP: case GGML_OP_CONT: case GGML_OP_ADD: case GGML_OP_ADD1: case GGML_OP_ACC: { n_tasks = n_threads; } break; case GGML_OP_SUB: case GGML_OP_SQR: case GGML_OP_SQRT: case GGML_OP_LOG: case GGML_OP_SIN: case GGML_OP_COS: case GGML_OP_SUM: case GGML_OP_SUM_ROWS: case GGML_OP_MEAN: case GGML_OP_ARGMAX: { n_tasks = 1; } break; case GGML_OP_COUNT_EQUAL: { n_tasks = n_threads; } break; case GGML_OP_REPEAT: case GGML_OP_REPEAT_BACK: case GGML_OP_LEAKY_RELU: { n_tasks = 1; } break; case GGML_OP_UNARY: switch (ggml_get_unary_op(node)) { case GGML_UNARY_OP_ABS: case GGML_UNARY_OP_SGN: case GGML_UNARY_OP_NEG: case GGML_UNARY_OP_STEP: case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_SIGMOID: case GGML_UNARY_OP_HARDSWISH: case GGML_UNARY_OP_HARDSIGMOID: case GGML_UNARY_OP_EXP: { n_tasks = 1; } break; case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_SILU: { n_tasks = n_threads; } break; default: GGML_ABORT("fatal error"); } break; case GGML_OP_SILU_BACK: case GGML_OP_MUL: case GGML_OP_DIV: case GGML_OP_NORM: case GGML_OP_RMS_NORM: case GGML_OP_RMS_NORM_BACK: case GGML_OP_L2_NORM: case GGML_OP_GROUP_NORM: case GGML_OP_CONCAT: case GGML_OP_MUL_MAT: case GGML_OP_MUL_MAT_ID: case GGML_OP_OUT_PROD: { n_tasks = n_threads; } break; case GGML_OP_GET_ROWS: { // FIXME: get_rows can use additional threads, but the cost of launching additional threads // decreases performance with GPU offloading //n_tasks = n_threads; n_tasks = 1; } break; case GGML_OP_SCALE: case GGML_OP_SET: case GGML_OP_RESHAPE: case GGML_OP_VIEW: case GGML_OP_PERMUTE: case GGML_OP_TRANSPOSE: case GGML_OP_GET_ROWS_BACK: case GGML_OP_DIAG: { n_tasks = 1; } break; case GGML_OP_DIAG_MASK_ZERO: case GGML_OP_DIAG_MASK_INF: case GGML_OP_SOFT_MAX_BACK: case GGML_OP_ROPE: case GGML_OP_ROPE_BACK: case GGML_OP_ADD_REL_POS: { n_tasks = n_threads; } break; case GGML_OP_CLAMP: { n_tasks = 1; //TODO } break; case GGML_OP_SOFT_MAX: { n_tasks = MIN(n_threads, ggml_nrows(node->src[0])); } break; case GGML_OP_IM2COL: case GGML_OP_IM2COL_BACK: case GGML_OP_CONV_2D_DW: case GGML_OP_CONV_TRANSPOSE_1D: case GGML_OP_CONV_TRANSPOSE_2D: { n_tasks = n_threads; } break; case GGML_OP_POOL_1D: case GGML_OP_POOL_2D: case GGML_OP_POOL_2D_BACK: { n_tasks = 1; } break; case GGML_OP_UPSCALE: case GGML_OP_PAD: case GGML_OP_PAD_REFLECT_1D: case GGML_OP_ARANGE: case GGML_OP_TIMESTEP_EMBEDDING: case GGML_OP_ARGSORT: case GGML_OP_FLASH_ATTN_EXT: case GGML_OP_FLASH_ATTN_BACK: case GGML_OP_SSM_CONV: case GGML_OP_SSM_SCAN: case GGML_OP_RWKV_WKV6: case GGML_OP_GATED_LINEAR_ATTN: case GGML_OP_RWKV_WKV7: { n_tasks = n_threads; } break; case GGML_OP_WIN_PART: case GGML_OP_WIN_UNPART: case GGML_OP_GET_REL_POS: { n_tasks = 1; } break; case GGML_OP_MAP_CUSTOM1: { struct ggml_map_custom1_op_params p; memcpy(&p, node->op_params, sizeof(p)); if (p.n_tasks == GGML_N_TASKS_MAX) { n_tasks = n_threads; } else { n_tasks = MIN(p.n_tasks, n_threads); } } break; case GGML_OP_MAP_CUSTOM2: { struct ggml_map_custom2_op_params p; memcpy(&p, node->op_params, sizeof(p)); if (p.n_tasks == GGML_N_TASKS_MAX) { n_tasks = n_threads; } else { n_tasks = MIN(p.n_tasks, n_threads); } } break; case GGML_OP_MAP_CUSTOM3: { struct ggml_map_custom3_op_params p; memcpy(&p, node->op_params, sizeof(p)); if (p.n_tasks == GGML_N_TASKS_MAX) { n_tasks = n_threads; } else { n_tasks = MIN(p.n_tasks, n_threads); } } break; case GGML_OP_CUSTOM: { struct ggml_custom_op_params p; memcpy(&p, node->op_params, sizeof(p)); if (p.n_tasks == GGML_N_TASKS_MAX) { n_tasks = n_threads; } else { n_tasks = MIN(p.n_tasks, n_threads); } } break; case GGML_OP_CROSS_ENTROPY_LOSS: case GGML_OP_CROSS_ENTROPY_LOSS_BACK: case GGML_OP_OPT_STEP_ADAMW: { n_tasks = n_threads; } break; case GGML_OP_NONE: { n_tasks = 1; } break; case GGML_OP_COUNT: { GGML_ABORT("fatal error"); } default: { fprintf(stderr, "%s: op not implemented: ", __func__); if (node->op < GGML_OP_COUNT) { fprintf(stderr, "%s\n", ggml_op_name(node->op)); } else { fprintf(stderr, "%d\n", node->op); } GGML_ABORT("fatal error"); } } assert(n_tasks > 0); return n_tasks; } static thread_ret_t ggml_graph_compute_secondary_thread(void* data); #if defined(_WIN32) #include "windows.h" // TODO: support > 64 CPUs static bool ggml_thread_apply_affinity(bool * mask) { HANDLE h = GetCurrentThread(); uint64_t bitmask = 0ULL; assert(GGML_MAX_N_THREADS >= 64); for (int32_t i = 0; i < 8; i++) { int32_t idx = i * 8; uint8_t val = 0; val |= mask[idx + 0] << 0; val |= mask[idx + 1] << 1; val |= mask[idx + 2] << 2; val |= mask[idx + 3] << 3; val |= mask[idx + 4] << 4; val |= mask[idx + 5] << 5; val |= mask[idx + 6] << 6; val |= mask[idx + 7] << 7; bitmask |= (uint64_t)val << idx; } for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) { if (mask[i]) { fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n"); break; } } DWORD_PTR m = (DWORD_PTR)bitmask; m = SetThreadAffinityMask(h, m); return m != 0; } static bool ggml_thread_apply_priority(int32_t prio) { // Note that on Windows the Process Priority Class must be updated in order to set Thread priority. // This is up to the applications. DWORD p = THREAD_PRIORITY_NORMAL; switch (prio) { case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break; case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break; case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break; case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break; } if (prio == GGML_SCHED_PRIO_NORMAL) { // Keep inherited policy/priority return true; } if (!SetThreadPriority(GetCurrentThread(), p)) { fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError()); return false; } return true; } #elif defined(__APPLE__) #include #include static bool ggml_thread_apply_affinity(const bool * mask) { // Not supported on Apple platforms UNUSED(mask); return true; } static bool ggml_thread_apply_priority(int32_t prio) { struct sched_param p; int32_t policy = SCHED_OTHER; switch (prio) { case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break; } if (prio == GGML_SCHED_PRIO_NORMAL) { // Keep inherited policy/priority return true; } int32_t err = pthread_setschedparam(pthread_self(), policy, &p); if (err != 0) { fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err); return false; } return true; } #elif defined(__gnu_linux__) // TODO: this may not work on BSD, to be verified static bool ggml_thread_apply_affinity(const bool * mask) { cpu_set_t cpuset; int err; CPU_ZERO(&cpuset); for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) { if (mask[i]) { GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i); CPU_SET(i, &cpuset); } } #ifdef __ANDROID__ err = sched_setaffinity(0, sizeof(cpuset), &cpuset); if (err < 0) { err = errno; } #else err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset); #endif if (err != 0) { fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err); return false; } return true; } static bool ggml_thread_apply_priority(int32_t prio) { struct sched_param p; int32_t policy = SCHED_OTHER; switch (prio) { case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break; case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break; case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break; case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break; } if (prio == GGML_SCHED_PRIO_NORMAL) { // Keep inherited policy/priority return true; } int32_t err = pthread_setschedparam(pthread_self(), policy, &p); if (err != 0) { fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err); return false; } return true; } #else // unsupported platforms static bool ggml_thread_apply_affinity(const bool * mask) { UNUSED(mask); return true; } static bool ggml_thread_apply_priority(int32_t prio) { UNUSED(prio); return true; } #endif static bool ggml_thread_cpumask_is_valid(const bool * mask) { for (int i = 0; i < GGML_MAX_N_THREADS; i++) { if (mask[i]) { return true; } } return false; } static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) { if (!strict) { memcpy(local_mask, global_mask, GGML_MAX_N_THREADS); return; } else { memset(local_mask, 0, GGML_MAX_N_THREADS); int32_t base_idx = *iter; for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) { int32_t idx = base_idx + i; if (idx >= GGML_MAX_N_THREADS) { // Just a cheaper modulo idx -= GGML_MAX_N_THREADS; } if (global_mask[idx]) { local_mask[idx] = 1; *iter = idx + 1; return; } } } } void ggml_threadpool_free(struct ggml_threadpool* threadpool) { if (!threadpool) return; const int n_threads = threadpool->n_threads_max; #ifndef GGML_USE_OPENMP struct ggml_compute_state* workers = threadpool->workers; ggml_mutex_lock(&threadpool->mutex); threadpool->stop = true; threadpool->pause = false; ggml_cond_broadcast(&threadpool->cond); ggml_mutex_unlock(&threadpool->mutex); for (int j = 1; j < n_threads; j++) { int32_t rc = ggml_thread_join(workers[j].thrd, NULL); GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED); UNUSED(rc); } ggml_mutex_destroy(&threadpool->mutex); ggml_cond_destroy(&threadpool->cond); #endif // GGML_USE_OPENMP const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads; ggml_aligned_free(threadpool->workers, workers_size); ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool)); } #ifndef GGML_USE_OPENMP // pause/resume must be called under mutex static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) { GGML_PRINT_DEBUG("Pausing threadpool\n"); threadpool->pause = true; ggml_cond_broadcast(&threadpool->cond); } static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) { GGML_PRINT_DEBUG("Resuming threadpool\n"); threadpool->pause = false; ggml_cond_broadcast(&threadpool->cond); } #endif void ggml_threadpool_pause(struct ggml_threadpool * threadpool) { #ifndef GGML_USE_OPENMP ggml_mutex_lock(&threadpool->mutex); if (!threadpool->pause) { ggml_threadpool_pause_locked(threadpool); } ggml_mutex_unlock(&threadpool->mutex); #else UNUSED(threadpool); #endif } void ggml_threadpool_resume(struct ggml_threadpool * threadpool) { #ifndef GGML_USE_OPENMP ggml_mutex_lock(&threadpool->mutex); if (threadpool->pause) { ggml_threadpool_resume_locked(threadpool); } ggml_mutex_unlock(&threadpool->mutex); #else UNUSED(threadpool); #endif } struct ggml_cplan ggml_graph_plan( const struct ggml_cgraph * cgraph, int n_threads, struct ggml_threadpool * threadpool) { if (threadpool == NULL) { //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads); } if (n_threads <= 0) { n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS; } size_t work_size = 0; struct ggml_cplan cplan; memset(&cplan, 0, sizeof(struct ggml_cplan)); int max_tasks = 1; // thread scheduling for the different operations + work buffer size estimation for (int i = 0; i < cgraph->n_nodes; i++) { struct ggml_tensor * node = cgraph->nodes[i]; const int n_tasks = ggml_get_n_tasks(node, n_threads); max_tasks = MAX(max_tasks, n_tasks); size_t cur = 0; if (!ggml_cpu_extra_work_size(n_threads, node, &cur)) { switch (node->op) { case GGML_OP_CPY: case GGML_OP_DUP: { if (ggml_is_quantized(node->type) || // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32 (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) || (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) { cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; } } break; case GGML_OP_ADD: case GGML_OP_ADD1: { if (ggml_is_quantized(node->src[0]->type)) { cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; } } break; case GGML_OP_ACC: { if (ggml_is_quantized(node->src[0]->type)) { cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks; } } break; case GGML_OP_COUNT_EQUAL: { cur = ggml_type_size(node->type)*n_tasks; } break; case GGML_OP_MUL_MAT: { const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type; if (node->src[1]->type != vec_dot_type) { cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1])); } } break; case GGML_OP_MUL_MAT_ID: { cur = 0; const struct ggml_tensor * src0 = node->src[0]; const struct ggml_tensor * src1 = node->src[1]; const struct ggml_tensor * ids = node->src[2]; const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type; const int n_as = src0->ne[2]; // src1 if (src1->type != vec_dot_type) { cur += ggml_row_size(vec_dot_type, ggml_nelements(src1)) + sizeof(int64_t); } // matrix_row_counts cur += n_as * sizeof(int64_t) + sizeof(int64_t); // matrix_rows cur += n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping) + sizeof(int64_t); // atomic_current_chunk cur += CACHE_LINE_SIZE*n_as + CACHE_LINE_SIZE; } break; case GGML_OP_OUT_PROD: { if (ggml_is_quantized(node->src[0]->type)) { cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; } } break; case GGML_OP_SOFT_MAX: case GGML_OP_ROPE: case GGML_OP_ROPE_BACK: { cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; } break; case GGML_OP_CONV_TRANSPOSE_1D: { GGML_ASSERT(node->src[0]->ne[3] == 1); GGML_ASSERT(node->src[1]->ne[2] == 1); GGML_ASSERT(node->src[1]->ne[3] == 1); const int64_t ne00 = node->src[0]->ne[0]; // K const int64_t ne01 = node->src[0]->ne[1]; // Cout const int64_t ne02 = node->src[0]->ne[2]; // Cin const int64_t ne10 = node->src[1]->ne[0]; // L const int64_t ne11 = node->src[1]->ne[1]; // Cin if ((node->src[0]->type == GGML_TYPE_F16 || node->src[0]->type == GGML_TYPE_BF16) && node->src[1]->type == GGML_TYPE_F32) { cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02; cur += sizeof(ggml_fp16_t)*ne10*ne11; } else if (node->src[0]->type == GGML_TYPE_F32 && node->src[1]->type == GGML_TYPE_F32) { cur += sizeof(float)*ne00*ne01*ne02; cur += sizeof(float)*ne10*ne11; } else { GGML_ABORT("fatal error"); } } break; case GGML_OP_CONV_TRANSPOSE_2D: { const int64_t ne00 = node->src[0]->ne[0]; // W const int64_t ne01 = node->src[0]->ne[1]; // H const int64_t ne02 = node->src[0]->ne[2]; // Channels Out const int64_t ne03 = node->src[0]->ne[3]; // Channels In const int64_t ne10 = node->src[1]->ne[0]; // W const int64_t ne11 = node->src[1]->ne[1]; // H const int64_t ne12 = node->src[1]->ne[2]; // Channels In cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03; cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12; } break; case GGML_OP_FLASH_ATTN_EXT: { const int64_t ne10 = node->src[1]->ne[0]; // DK const int64_t ne20 = node->src[2]->ne[0]; // DV cur = sizeof(float)*(1*ne10 + 2*ne20)*n_tasks; // 1x head size K + 2x head size V (per thread) } break; case GGML_OP_FLASH_ATTN_BACK: { const int64_t D = node->src[0]->ne[0]; const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL); const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back if (node->src[1]->type == GGML_TYPE_F32) { cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 } else if (node->src[1]->type == GGML_TYPE_F16) { cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 } else if (node->src[1]->type == GGML_TYPE_BF16) { cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 } } break; case GGML_OP_CROSS_ENTROPY_LOSS: { cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks); } break; case GGML_OP_COUNT: { GGML_ABORT("fatal error"); } default: break; } } work_size = MAX(work_size, cur); } if (work_size > 0) { work_size += CACHE_LINE_SIZE*(n_threads); } cplan.threadpool = threadpool; cplan.n_threads = MIN(max_tasks, n_threads); cplan.work_size = work_size; cplan.work_data = NULL; return cplan; } static thread_ret_t ggml_graph_compute_thread(void * data) { struct ggml_compute_state * state = (struct ggml_compute_state *) data; struct ggml_threadpool * tp = state->threadpool; const struct ggml_cgraph * cgraph = tp->cgraph; const struct ggml_cplan * cplan = tp->cplan; set_numa_thread_affinity(state->ith); struct ggml_compute_params params = { /*.ith =*/ state->ith, /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed), /*.wsize =*/ cplan->work_size, /*.wdata =*/ cplan->work_data, /*.threadpool=*/ tp, }; for (int node_n = 0; node_n < cgraph->n_nodes && atomic_load_explicit(&tp->abort, memory_order_relaxed) != node_n; node_n++) { struct ggml_tensor * node = cgraph->nodes[node_n]; ggml_compute_forward(¶ms, node); if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) { atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed); tp->ec = GGML_STATUS_ABORTED; } if (node_n + 1 < cgraph->n_nodes) { ggml_barrier(state->threadpool); } } ggml_barrier(state->threadpool); return 0; } #ifndef GGML_USE_OPENMP // check if thread is active static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) { struct ggml_threadpool * threadpool = state->threadpool; int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed); return (state->ith < n_threads); } // check if thread is ready to proceed (exit from polling or sleeping) static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) { struct ggml_threadpool * threadpool = state->threadpool; if (state->pending || threadpool->stop || threadpool->pause) { return true; } // check for new graph/work int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed); if (new_graph != state->last_graph) { state->pending = ggml_graph_compute_thread_active(state); state->last_graph = new_graph; } return state->pending; } // sync thread state after polling static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) { // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead #ifdef GGML_TSAN_ENABLED atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst); #else atomic_thread_fence(memory_order_seq_cst); #endif UNUSED(state); } static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) { struct ggml_threadpool * threadpool = state->threadpool; // Skip polling for unused threads if (!ggml_graph_compute_thread_active(state)) { return state->pending; } // This seems to make 0 ... 100 a decent range for polling level across modern processors. // Perhaps, we can adjust it dynamically based on load and things. const uint64_t n_rounds = 1024UL * 128 * threadpool->poll; for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) { // No new work. Keep polling. ggml_thread_cpu_relax(); } return state->pending; } static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) { struct ggml_threadpool * threadpool = state->threadpool; if (ggml_graph_compute_poll_for_work(state)) { ggml_graph_compute_thread_sync(state); return state->pending; } ggml_mutex_lock_shared(&threadpool->mutex); while (!ggml_graph_compute_thread_ready(state)) { // No new work. Wait for the signal. GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith); ggml_cond_wait(&threadpool->cond, &threadpool->mutex); } ggml_mutex_unlock_shared(&threadpool->mutex); return state->pending; } static thread_ret_t ggml_graph_compute_secondary_thread(void* data) { struct ggml_compute_state * state = (struct ggml_compute_state *) data; struct ggml_threadpool * threadpool = state->threadpool; ggml_thread_apply_priority(threadpool->prio); if (ggml_thread_cpumask_is_valid(state->cpumask)) { ggml_thread_apply_affinity(state->cpumask); } while (true) { // Check if we need to sleep while (threadpool->pause) { GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith); ggml_mutex_lock_shared(&threadpool->mutex); if (threadpool->pause) { ggml_cond_wait(&threadpool->cond, &threadpool->mutex); } GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith); ggml_mutex_unlock_shared(&threadpool->mutex); } // This needs to be checked for after the cond_wait if (threadpool->stop) break; // Check if there is new work // The main thread is the only one that can dispatch new work ggml_graph_compute_check_for_work(state); if (state->pending) { state->pending = false; ggml_graph_compute_thread(state); } } return (thread_ret_t) 0; } // Start processing new graph static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads) { // Always take the mutex here because the worker threads are doing hybrid poll/wait ggml_mutex_lock(&threadpool->mutex); GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads); // Update the number of active threads atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed); // Indicate the graph is ready to be processed // We need the full seq-cst fence here because of the polling threads (used in thread_sync) atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst); if (threadpool->pause) { // Update main thread prio and affinity to match the threadpool settings ggml_thread_apply_priority(threadpool->prio); if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) { ggml_thread_apply_affinity(threadpool->workers[0].cpumask); } // resume does cond broadcast ggml_threadpool_resume_locked(threadpool); } else { ggml_cond_broadcast(&threadpool->cond); } ggml_mutex_unlock(&threadpool->mutex); } #endif // GGML_USE_OPENMP static struct ggml_threadpool * ggml_threadpool_new_impl( struct ggml_threadpool_params * tpp, struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { struct ggml_threadpool * threadpool = ggml_aligned_malloc(sizeof(struct ggml_threadpool)); { threadpool->cgraph = cgraph; threadpool->cplan = cplan; threadpool->n_graph = 0; threadpool->n_barrier = 0; threadpool->n_barrier_passed = 0; threadpool->current_chunk = 0; threadpool->stop = false; threadpool->pause = tpp->paused; threadpool->abort = -1; threadpool->workers = NULL; threadpool->n_threads_max = tpp->n_threads; threadpool->n_threads_cur = tpp->n_threads; threadpool->poll = tpp->poll; threadpool->prio = tpp->prio; threadpool->ec = GGML_STATUS_SUCCESS; } // Allocate and init workers state const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads; struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size); memset(workers, 0, workers_size); for (int j = 0; j < tpp->n_threads; j++) { workers[j].threadpool = threadpool; workers[j].ith = j; } threadpool->workers = workers; #ifndef GGML_USE_OPENMP ggml_mutex_init(&threadpool->mutex); ggml_cond_init(&threadpool->cond); // Spin the threads for all workers, and update CPU placements. // Place the main thread last (towards the higher numbered CPU cores). int32_t cpumask_iter = 0; for (int j = 1; j < tpp->n_threads; j++) { ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter); int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]); GGML_ASSERT(rc == 0); } ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter); if (!threadpool->pause) { // Update main thread prio and affinity at the start, otherwise we'll do it in resume ggml_thread_apply_priority(threadpool->prio); if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) { ggml_thread_apply_affinity(threadpool->workers[0].cpumask); } } #endif // GGML_USE_OPENMP return threadpool; } struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) { return ggml_threadpool_new_impl(tpp, NULL, NULL); } enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { ggml_cpu_init(); GGML_ASSERT(cplan); GGML_ASSERT(cplan->n_threads > 0); GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL); int n_threads = cplan->n_threads; struct ggml_threadpool * threadpool = cplan->threadpool; bool disposable_threadpool = false; if (threadpool == NULL) { //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads); disposable_threadpool = true; struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads); threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan); } else { // Reset some of the parameters that need resetting // No worker threads should be accessing the parameters below at this stage threadpool->cgraph = cgraph; threadpool->cplan = cplan; threadpool->current_chunk = 0; threadpool->abort = -1; threadpool->ec = GGML_STATUS_SUCCESS; } #ifdef GGML_USE_OPENMP if (n_threads > 1) { #pragma omp parallel num_threads(n_threads) { #pragma omp single { // update the number of threads from the actual number of threads that we got from OpenMP n_threads = omp_get_num_threads(); atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed); } ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]); } } else { atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed); ggml_graph_compute_thread(&threadpool->workers[0]); } #else if (n_threads > threadpool->n_threads_max) { GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max); n_threads = threadpool->n_threads_max; } // Kick all threads to start the new graph ggml_graph_compute_kickoff(threadpool, n_threads); // This is a work thread too ggml_graph_compute_thread(&threadpool->workers[0]); #endif // don't leave affinity set on the main thread clear_numa_thread_affinity(); enum ggml_status ret = threadpool->ec; if (disposable_threadpool) { ggml_threadpool_free(threadpool); } return ret; } enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) { struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL); cplan.work_data = (uint8_t *)ggml_new_buffer(ctx, cplan.work_size); return ggml_graph_compute(cgraph, &cplan); } int ggml_cpu_has_avx(void) { #if defined(__AVX__) return 1; #else return 0; #endif } int ggml_cpu_has_avx_vnni(void) { #if defined(__AVXVNNI__) return 1; #else return 0; #endif } int ggml_cpu_has_avx2(void) { #if defined(__AVX2__) return 1; #else return 0; #endif } int ggml_cpu_has_avx512(void) { #if defined(__AVX512F__) return 1; #else return 0; #endif } int ggml_cpu_has_avx512_vbmi(void) { #if defined(__AVX512VBMI__) return 1; #else return 0; #endif } int ggml_cpu_has_avx512_vnni(void) { #if defined(__AVX512VNNI__) return 1; #else return 0; #endif } int ggml_cpu_has_avx512_bf16(void) { #if defined(__AVX512BF16__) return 1; #else return 0; #endif } int ggml_cpu_has_amx_int8(void) { #if defined(__AMX_INT8__) return 1; #else return 0; #endif } int ggml_cpu_has_bmi2(void) { #if defined(__BMI2__) return 1; #else return 0; #endif } int ggml_cpu_has_fma(void) { #if defined(__FMA__) return 1; #else return 0; #endif } int ggml_cpu_has_arm_fma(void) { #if defined(__ARM_FEATURE_FMA) return 1; #else return 0; #endif } int ggml_cpu_has_riscv_v(void) { #if defined(__riscv_v_intrinsic) return 1; #else return 0; #endif } int ggml_cpu_has_f16c(void) { #if defined(__F16C__) return 1; #else return 0; #endif } int ggml_cpu_has_fp16_va(void) { #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) return 1; #else return 0; #endif } int ggml_cpu_has_wasm_simd(void) { #if defined(__wasm_simd128__) return 1; #else return 0; #endif } int ggml_cpu_has_llamafile(void) { #if defined(GGML_USE_LLAMAFILE) return 1; #else return 0; #endif } int ggml_cpu_has_sse3(void) { #if defined(__SSE3__) return 1; #else return 0; #endif } int ggml_cpu_has_ssse3(void) { #if defined(__SSSE3__) return 1; #else return 0; #endif } int ggml_cpu_has_vsx(void) { #if defined(__POWER9_VECTOR__) return 1; #else return 0; #endif } int ggml_cpu_has_vxe(void) { #if defined(__VXE__) || defined(__VXE2__) return 1; #else return 0; #endif } int ggml_cpu_has_neon(void) { #if defined(__ARM_ARCH) && defined(__ARM_NEON) return ggml_arm_arch_features.has_neon; #else return 0; #endif } int ggml_cpu_has_dotprod(void) { #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD) return ggml_arm_arch_features.has_dotprod; #else return 0; #endif } int ggml_cpu_has_sve(void) { #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE) return ggml_arm_arch_features.has_sve; #else return 0; #endif } int ggml_cpu_has_matmul_int8(void) { #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_MATMUL_INT8) return ggml_arm_arch_features.has_i8mm; #else return 0; #endif } int ggml_cpu_get_sve_cnt(void) { #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE) return ggml_arm_arch_features.sve_cnt; #else return 0; #endif } int ggml_cpu_has_sme(void) { #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SME) return ggml_arm_arch_features.has_sme; #else return 0; #endif } void ggml_cpu_init(void) { // needed to initialize f16 tables { struct ggml_init_params params = { 0, NULL, false }; struct ggml_context * ctx = ggml_init(params); ggml_free(ctx); } ggml_critical_section_start(); static bool is_first_call = true; if (is_first_call) { // initialize GELU, Quick GELU, SILU and EXP F32 tables { const uint64_t t_start = ggml_time_us(); UNUSED(t_start); for (int i = 0; i < (1 << 16); ++i) { union { uint16_t u16; ggml_fp16_t fp16; } u = {i}; float f = GGML_FP16_TO_FP32(u.fp16); ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f)); ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f)); } const uint64_t t_end = ggml_time_us(); UNUSED(t_end); GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0); } #if defined(__ARM_ARCH) ggml_init_arm_arch_features(); #endif is_first_call = false; } ggml_critical_section_end(); }