#include "llama-context.h" #include "llama-impl.h" #include "llama-io.h" #include "llama-mmap.h" #include "llama-model.h" #include "llama-kv-cache.h" #include #include #include #include #include // // llama_context // llama_context::llama_context( const llama_model & model, llama_context_params params) : model(model) { LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__); t_start_us = model.t_start_us; t_load_us = model.t_load_us; const auto & hparams = model.hparams; cparams.n_seq_max = std::max(1u, params.n_seq_max); cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch; cparams.yarn_ext_factor = params.yarn_ext_factor; cparams.yarn_attn_factor = params.yarn_attn_factor; cparams.yarn_beta_fast = params.yarn_beta_fast; cparams.yarn_beta_slow = params.yarn_beta_slow; cparams.defrag_thold = params.defrag_thold; cparams.embeddings = params.embeddings; cparams.offload_kqv = params.offload_kqv; cparams.flash_attn = params.flash_attn; cparams.no_perf = params.no_perf; cparams.pooling_type = params.pooling_type; cparams.warmup = false; cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base; cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx : hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn : hparams.n_ctx_train; cparams.cb_eval = params.cb_eval; cparams.cb_eval_user_data = params.cb_eval_user_data; auto rope_scaling_type = params.rope_scaling_type; if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) { rope_scaling_type = hparams.rope_scaling_type_train; } if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) { cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none } if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set' cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f; } cparams.yarn_attn_factor *= hparams.rope_attn_factor; if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { cparams.pooling_type = LLAMA_POOLING_TYPE_NONE; } else { cparams.pooling_type = hparams.pooling_type; } } if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) { cparams.causal_attn = hparams.causal_attn; } else { cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL; } // with causal attention, the batch size is limited by the context size cparams.n_batch = cparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext) // ref: https://github.com/ggerganov/llama.cpp/pull/5021 // TODO: this padding is not needed for the cache-less context so we should probably move it to llama_context_kv_self if (cparams.n_batch < GGML_KQ_MASK_PAD) { LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD); cparams.n_batch = GGML_KQ_MASK_PAD; } cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max; LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max); LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n", __func__, n_ctx_per_seq); LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); LLAMA_LOG_INFO("%s: causal_attn = %d\n", __func__, cparams.causal_attn); LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn); LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); if (n_ctx_per_seq < hparams.n_ctx_train) { LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n", __func__, n_ctx_per_seq, hparams.n_ctx_train); } if (n_ctx_per_seq > hparams.n_ctx_train) { LLAMA_LOG_WARN("%s: n_ctx_pre_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n", __func__, n_ctx_per_seq, hparams.n_ctx_train); } logits_all = params.logits_all; if (!hparams.vocab_only) { // GPU backends for (auto * dev : model.devices) { ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (backend == nullptr) { throw std::runtime_error(format("failed to initialize %s backend", ggml_backend_dev_name(dev))); } backends.emplace_back(backend); } // add ACCEL backends (such as BLAS) for (size_t i = 0; i < ggml_backend_dev_count(); ++i) { ggml_backend_dev_t dev = ggml_backend_dev_get(i); if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) { ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); if (backend == nullptr) { throw std::runtime_error(format("failed to initialize %s backend", ggml_backend_dev_name(dev))); } backends.emplace_back(backend); } } // add CPU backend backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr); if (backend_cpu == nullptr) { throw std::runtime_error("failed to initialize CPU backend"); } backends.emplace_back(backend_cpu); // create a list of the set_n_threads functions in the backends for (auto & backend : backends) { ggml_backend_dev_t dev = ggml_backend_get_device(backend.get()); ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr; if (reg) { auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads"); if (ggml_backend_set_n_threads_fn) { set_n_threads_fns.emplace_back(backend.get(), ggml_backend_set_n_threads_fn); } } } llama_set_abort_callback(this, params.abort_callback, params.abort_callback_data); // graph outputs buffer { // resized during inference when a batch uses more outputs if ((uint32_t) output_reserve(params.n_seq_max) < params.n_seq_max) { throw std::runtime_error("failed to reserve initial output buffer"); } LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name (buf_output.get()), ggml_backend_buffer_get_size(buf_output.get()) / 1024.0 / 1024.0); } } // init the memory module // TODO: for now, always create a unified KV cache if (!hparams.vocab_only) { kv_self.reset(static_cast(model.create_memory())); LLAMA_LOG_DEBUG("%s: n_ctx = %u\n", __func__, cparams.n_ctx); cparams.n_ctx = GGML_PAD(cparams.n_ctx, kv_self->get_padding(cparams)); LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx); uint32_t kv_size = cparams.n_ctx; ggml_type type_k = params.type_k; ggml_type type_v = params.type_v; if (llama_model_is_recurrent(&model)) { // Mamba needs at least as many KV cells as there are sequences kept at any time kv_size = std::max((uint32_t) 1, params.n_seq_max); // it's probably best to keep as much precision as possible for the states type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states } GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0); GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0); if (!kv_self->init(model, cparams, type_k, type_v, kv_size, cparams.offload_kqv)) { throw std::runtime_error("failed to initialize self-attention cache"); } { const size_t memory_size_k = kv_self->size_k_bytes(); const size_t memory_size_v = kv_self->size_v_bytes(); LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); } } // init backends if (!hparams.vocab_only) { LLAMA_LOG_DEBUG("%s: enumerating backends\n", __func__); backend_buft.clear(); backend_ptrs.clear(); for (auto & backend : backends) { auto * buft = ggml_backend_get_default_buffer_type(backend.get()); auto backend_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get())); if (backend_type == GGML_BACKEND_DEVICE_TYPE_CPU && !model.devices.empty()) { // use the host buffer of the first device CPU for faster transfer of the intermediate state auto * dev = model.devices[0]; auto * host_buft = ggml_backend_dev_host_buffer_type(dev); if (host_buft) { buft = host_buft; } } backend_buft.push_back(buft); backend_ptrs.push_back(backend.get()); } LLAMA_LOG_DEBUG("%s: backend_ptrs.size() = %zu\n", __func__, backend_ptrs.size()); const size_t max_nodes = this->graph_max_nodes(); LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes); // buffer used to store the computation graph and the tensor meta data buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false)); // TODO: move these checks to ggml_backend_sched // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary bool pipeline_parallel = model.n_devices() > 1 && model.params.n_gpu_layers > (int) model.hparams.n_layer && model.params.split_mode == LLAMA_SPLIT_MODE_LAYER && cparams.offload_kqv && !model.has_tensor_overrides(); // pipeline parallelism requires support for async compute and events in all devices if (pipeline_parallel) { for (auto & backend : backends) { auto dev_type = ggml_backend_dev_type(ggml_backend_get_device(backend.get())); if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU) { // ignore CPU backend continue; } auto * dev = ggml_backend_get_device(backend.get()); ggml_backend_dev_props props; ggml_backend_dev_get_props(dev, &props); if (!props.caps.async || !props.caps.events) { // device does not support async compute or events pipeline_parallel = false; break; } } } sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel)); if (pipeline_parallel) { LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get())); } } // reserve worst-case graph if (!hparams.vocab_only) { const uint32_t n_seqs = 1; // TODO: worst-case number of sequences const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph // restore later // TODO: something cleaner const auto n_outputs_save = n_outputs; LLAMA_LOG_DEBUG("%s: worst-case: n_tokens = %d, n_seqs = %d, n_outputs = %d\n", __func__, n_tokens, n_seqs, n_outputs); int n_splits_pp = -1; int n_nodes_pp = -1; int n_splits_tg = -1; int n_nodes_tg = -1; // simulate full KV cache kv_self->n = kv_self->size; cross.v_embd.clear(); // reserve pp graph first so that buffers are only allocated once { llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; // max number of outputs n_outputs = ubatch_pp.n_tokens; LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs); auto * gf = graph_init(); graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT); if (!ggml_backend_sched_reserve(sched.get(), gf)) { throw std::runtime_error("failed to allocate compute pp buffers"); } n_splits_pp = ggml_backend_sched_get_n_splits(sched.get()); n_nodes_pp = ggml_graph_n_nodes(gf); } // reserve with tg graph to get the number of splits and nodes { llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; n_outputs = ubatch_tg.n_tokens; LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_tg.n_tokens, ubatch_tg.n_seqs); auto * gf = graph_init(); graph_build(ctx_compute.get(), gf, ubatch_tg, LLM_GRAPH_TYPE_DEFAULT); if (!ggml_backend_sched_reserve(sched.get(), gf)) { throw std::runtime_error("failed to allocate compute tg buffers"); } n_splits_tg = ggml_backend_sched_get_n_splits(sched.get()); n_nodes_tg = ggml_graph_n_nodes(gf); } // reserve again with pp graph to avoid ggml-alloc reallocations during inference { llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; n_outputs = ubatch_pp.n_tokens; LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs); auto * gf = graph_init(); graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT); if (!ggml_backend_sched_reserve(sched.get(), gf)) { throw std::runtime_error("failed to allocate compute pp buffers"); } } n_outputs = n_outputs_save; for (size_t i = 0; i < backend_ptrs.size(); ++i) { ggml_backend_t backend = backend_ptrs[i]; ggml_backend_buffer_type_t buft = backend_buft[i]; size_t size = ggml_backend_sched_get_buffer_size(sched.get(), backend); if (size > 1) { LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, ggml_backend_buft_name(buft), size / 1024.0 / 1024.0); } } if (n_nodes_pp == n_nodes_tg) { LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, n_nodes_pp); } else { LLAMA_LOG_INFO("%s: graph nodes = %d (with bs=%d), %d (with bs=1)\n", __func__, n_nodes_pp, n_tokens, n_nodes_tg); } if (n_splits_pp == n_splits_tg) { LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits_pp); } else { LLAMA_LOG_INFO("%s: graph splits = %d (with bs=%d), %d (with bs=1)\n", __func__, n_splits_pp, n_tokens, n_splits_tg); } } } llama_context::~llama_context() = default; void llama_context::synchronize() { ggml_backend_sched_synchronize(sched.get()); // FIXME: if multiple single tokens are evaluated without a synchronization, // the stats will be added to the prompt evaluation stats // this should only happen when using batch size 1 to evaluate a batch // add the evaluation to the stats if (n_queued_tokens == 1) { if (!cparams.no_perf) { t_eval_us += ggml_time_us() - t_compute_start_us; } n_eval++; } else if (n_queued_tokens > 1) { if (!cparams.no_perf) { t_p_eval_us += ggml_time_us() - t_compute_start_us; } n_p_eval += n_queued_tokens; } // get a more accurate load time, upon first eval if (n_queued_tokens > 0 && !has_evaluated_once) { t_load_us = ggml_time_us() - t_start_us; has_evaluated_once = true; } n_queued_tokens = 0; t_compute_start_us = 0; } const llama_model & llama_context::get_model() const { return model; } uint32_t llama_context::n_ctx() const { return cparams.n_ctx; } uint32_t llama_context::n_ctx_per_seq() const { return cparams.n_ctx / cparams.n_seq_max; } uint32_t llama_context::n_batch() const { return cparams.n_batch; } uint32_t llama_context::n_ubatch() const { return cparams.n_ubatch; } uint32_t llama_context::n_seq_max() const { return cparams.n_seq_max; } uint32_t llama_context::n_threads() const { return cparams.n_threads; } uint32_t llama_context::n_threads_batch() const { return cparams.n_threads_batch; } llama_kv_cache * llama_context::get_kv_self() { return kv_self.get(); } const llama_kv_cache * llama_context::get_kv_self() const { return kv_self.get(); } ggml_tensor * llama_context::build_rope_shift( ggml_context * ctx0, ggml_tensor * cur, ggml_tensor * shift, ggml_tensor * factors, float freq_base, float freq_scale, ggml_backend_buffer * bbuf) const { const auto & n_ctx_orig = cparams.n_ctx_orig_yarn; const auto & yarn_ext_factor = cparams.yarn_ext_factor; const auto & yarn_beta_fast = cparams.yarn_beta_fast; const auto & yarn_beta_slow = cparams.yarn_beta_slow; const auto & hparams = model.hparams; const auto & n_rot = hparams.n_rot; const auto & rope_type = hparams.rope_type; // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor; ggml_tensor * tmp; if (ggml_is_quantized(cur->type)) { // dequantize to f32 -> RoPE -> quantize back tmp = ggml_cast(ctx0, cur, GGML_TYPE_F32); if (bbuf) { for (const auto & backend : backends) { // Figure out which backend KV cache belongs to if (ggml_backend_supports_buft(backend.get(), ggml_backend_buffer_get_type(bbuf))) { ggml_backend_sched_set_tensor_backend(sched.get(), tmp, backend.get()); break; } } } tmp = ggml_rope_ext_inplace(ctx0, tmp, shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); tmp = ggml_cpy(ctx0, tmp, cur); } else { // we rotate only the first n_rot dimensions tmp = ggml_rope_ext_inplace(ctx0, cur, shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); } return tmp; } class llm_graph_input_k_shift : public llm_graph_input_i { public: llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {} virtual ~llm_graph_input_k_shift() = default; void set_input(const llama_ubatch * ubatch) override; ggml_tensor * k_shift; // I32 [kv_size] const llama_kv_cache_unified * kv_self; }; void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) { GGML_UNUSED(ubatch); if (k_shift) { assert(ggml_backend_buffer_is_host(k_shift->buffer)); int32_t * data = (int32_t *) k_shift->data; for (uint32_t i = 0; i < kv_self->size; ++i) { data[i] = kv_self->cells[i].delta; } } } llm_graph_result_ptr llama_context::build_kv_self_shift( ggml_context * ctx0, ggml_cgraph * gf) const { auto res = std::make_unique(); const auto & hparams = model.hparams; const auto & n_layer = hparams.n_layer; const auto & n_embd_head_k = hparams.n_embd_head_k; //const auto & n_embd_head_v = hparams.n_embd_head_v; //GGML_ASSERT(kv_self->size == n_ctx); auto inp = std::make_unique(kv_self.get()); inp->k_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_ctx); ggml_set_input(inp->k_shift); for (uint32_t il = 0; il < n_layer; ++il) { const int64_t n_head_kv = hparams.n_head_kv(il); const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); const bool is_swa = hparams.is_swa(il); // note: the swa rope params could become part of the cparams in the future // if we decide to make them configurable, like the non-sliding ones const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base; const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale; ggml_tensor * rope_factors = kv_self->cbs.get_rope_factors(n_ctx_per_seq(), il); ggml_tensor * k = ggml_view_3d(ctx0, kv_self->k_l[il], n_embd_head_k, n_head_kv, kv_self->size, ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k), ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa), 0); ggml_tensor * cur = build_rope_shift(ctx0, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l, kv_self->k_l[il]->buffer); ggml_build_forward_expand(gf, cur); } res->add_input(std::move(inp)); return res; } llm_graph_result_ptr llama_context::build_kv_self_defrag( ggml_context * ctx0, ggml_cgraph * gf) const { auto res = std::make_unique(); const auto & hparams = model.hparams; const auto & ids = kv_self->defrag_info.ids; #if 0 // CPU defrag // // TODO: optimizations are possible: // - multiple threads // - avoid copying to the host memory when already there // // likely not worth the effort, as we have ggml_graph based defrag // const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); const uint32_t kv_size = size; std::vector buf_k; std::vector buf_v; for (uint32_t il = 0; il < n_layer; ++il) { const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size); const size_t v_size_el = ggml_type_size(v_l[il]->type); const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size); buf_k.resize(k_size); buf_v.resize(v_size); ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size()); // batch move [i, i+nm) to [id, id+nm) // note: cells can move only to a lower index for (uint32_t i = 0; i < n_kv; ++i) { const uint32_t id = ids[i]; if (i == id || id == n_kv) { continue; } uint32_t nm = 1; while (i + nm < n_kv && ids[i + nm] == id + nm) { nm++; } // move keys { const int64_t os = i*k_size_row; const int64_t od = id*k_size_row; memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); } // move values (note: they are transposed) { const int64_t os = i; const int64_t od = id; for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); } } i += nm - 1; } ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size()); ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size()); } #else for (uint32_t i = 0; i < ids.size(); ++i) { const uint32_t id = ids[i]; if (i == id || id == ids.size()) { continue; } uint32_t nm = 1; while (i + nm < ids.size() && ids[i + nm] == id + nm) { nm++; } for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self->k_l[il], n_embd_k_gqa, nm, ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa), ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*i)); ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self->k_l[il], n_embd_k_gqa, nm, ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa), ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*id)); ggml_tensor * view_v_src; ggml_tensor * view_v_dst; if (cparams.flash_attn) { // NOTE: the V cache is not transposed when using flash attention view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il], n_embd_v_gqa, nm, ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa), ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*i)); view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il], n_embd_v_gqa, nm, ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa), ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*id)); } else { view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il], nm, n_embd_v_gqa, ggml_row_size(kv_self->v_l[il]->type, kv_self->size), ggml_row_size(kv_self->v_l[il]->type, i)); view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il], nm, n_embd_v_gqa, ggml_row_size(kv_self->v_l[il]->type, kv_self->size), ggml_row_size(kv_self->v_l[il]->type, id)); } ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst)); ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst)); } i += nm - 1; } //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); #endif return res; } void llama_context::kv_self_update() { auto & kv = kv_self; bool need_reserve = false; if (kv->has_shift) { if (!kv->get_can_shift()) { GGML_ABORT("The current context does not support K-shift"); } LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__); // apply K-shift if needed if (model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { ggml_backend_sched_reset(sched.get()); auto * gf = graph_init(); auto res = build_kv_self_shift(ctx_compute.get(), gf); ggml_backend_sched_alloc_graph(sched.get(), gf); res->set_inputs(nullptr); graph_compute(gf, false); need_reserve = true; } { kv->has_shift = false; for (uint32_t i = 0; i < kv->size; ++i) { kv->cells[i].delta = 0; } } } // defragment the KV cache if needed if (kv->do_defrag) { LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__); if (kv->defrag_prepare(graph_max_nodes())) { ggml_backend_sched_reset(sched.get()); auto * gf = graph_init(); auto res = build_kv_self_defrag(ctx_compute.get(), gf); ggml_backend_sched_alloc_graph(sched.get(), gf); res->set_inputs(nullptr); graph_compute(gf, false); need_reserve = true; } kv->do_defrag = false; } // reserve a worst case graph if needed if (need_reserve) { LLAMA_LOG_DEBUG("%s: reserving a worst case graph\n", __func__); // build worst-case graph uint32_t n_seqs = 1; // TODO: worst-case number of sequences uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch); // simulate full KV cache kv_self->n = kv_self->size; llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr}; auto * gf = graph_init(); graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT); // initialize scheduler with the worst-case graph ggml_backend_sched_reset(sched.get()); if (!ggml_backend_sched_reserve(sched.get(), gf)) { LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); } } } enum llama_pooling_type llama_context::pooling_type() const { return cparams.pooling_type; } float * llama_context::get_logits() { // reorder logits for backward compatibility output_reorder(); return logits; } float * llama_context::get_logits_ith(int32_t i) { int32_t j = -1; try { if (logits == nullptr) { throw std::runtime_error("no logits"); } if (i < 0) { j = n_outputs + i; if (j < 0) { throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs)); } } else if ((size_t) i >= output_ids.size()) { throw std::runtime_error(format("out of range [0, %zu)", output_ids.size())); } else { j = output_ids[i]; } if (j < 0) { throw std::runtime_error(format("batch.logits[%d] != true", i)); } if (j >= n_outputs) { // This should not happen throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs)); } return logits + j*model.vocab.n_tokens(); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG GGML_ABORT("fatal error"); #else return nullptr; #endif } } float * llama_context::get_embeddings() { // reorder embeddings for backward compatibility output_reorder(); return embd; } float * llama_context::get_embeddings_ith(int32_t i) { int32_t j = -1; try { if (embd == nullptr) { throw std::runtime_error("no embeddings"); } if (i < 0) { j = n_outputs + i; if (j < 0) { throw std::runtime_error(format("negative index out of range [0, %d)", n_outputs)); } } else if ((size_t) i >= output_ids.size()) { throw std::runtime_error(format("out of range [0, %zu)", output_ids.size())); } else { j = output_ids[i]; } if (j < 0) { throw std::runtime_error(format("batch.logits[%d] != true", i)); } if (j >= n_outputs) { // This should not happen throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs)); } return embd + j*model.hparams.n_embd; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what()); #ifndef NDEBUG GGML_ABORT("fatal error"); #else return nullptr; #endif } } float * llama_context::get_embeddings_seq(llama_seq_id seq_id) { auto it = embd_seq.find(seq_id); if (it == embd_seq.end()) { return nullptr; } return it->second.data(); } void llama_context::attach_threadpool( ggml_threadpool_t threadpool, ggml_threadpool_t threadpool_batch) { LLAMA_LOG_DEBUG("%s: call\n", __func__); this->threadpool = threadpool; this->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool; } void llama_context::detach_threadpool() { LLAMA_LOG_DEBUG("%s: call\n", __func__); this->threadpool = nullptr; this->threadpool_batch = nullptr; } void llama_context::set_n_threads(int32_t n_threads, int32_t n_threads_batch) { LLAMA_LOG_DEBUG("%s: n_threads = %d, n_threads_batch = %d\n", __func__, n_threads, n_threads_batch); cparams.n_threads = n_threads; cparams.n_threads_batch = n_threads_batch; } void llama_context::set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data) { LLAMA_LOG_DEBUG("%s: call\n", __func__); this->abort_callback = abort_callback; this->abort_callback_data = abort_callback_data; for (auto & backend : backends) { auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get())); auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback"); if (set_abort_callback_fn) { set_abort_callback_fn(backend.get(), this->abort_callback, this->abort_callback_data); } } } void llama_context::set_embeddings(bool value) { LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value); cparams.embeddings = value; } void llama_context::set_causal_attn(bool value) { LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value); cparams.causal_attn = value; } void llama_context::set_warmup(bool value) { LLAMA_LOG_DEBUG("%s: value = %d\n", __func__, value); cparams.warmup = value; } void llama_context::set_adapter_lora( llama_adapter_lora * adapter, float scale) { LLAMA_LOG_DEBUG("%s: adapter = %p, scale = %f\n", __func__, (void *) adapter, scale); loras[adapter] = scale; } bool llama_context::rm_adapter_lora( llama_adapter_lora * adapter) { LLAMA_LOG_DEBUG("%s: adapter = %p\n", __func__, (void *) adapter); auto pos = loras.find(adapter); if (pos != loras.end()) { loras.erase(pos); return true; } return false; } void llama_context::clear_adapter_lora() { LLAMA_LOG_DEBUG("%s: call\n", __func__); loras.clear(); } bool llama_context::apply_adapter_cvec( const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) { LLAMA_LOG_DEBUG("%s: il_start = %d, il_end = %d\n", __func__, il_start, il_end); return cvec.apply(model, data, len, n_embd, il_start, il_end); } int llama_context::encode(llama_batch & inp_batch) { if (inp_batch.n_tokens == 0) { LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__); return -1; } // temporary allocate memory for the input batch if needed // TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1); const llama_batch & batch = batch_allocr.batch; const int32_t n_tokens = batch.n_tokens; const auto & hparams = model.hparams; GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT if (batch.token) { for (int32_t i = 0; i < n_tokens; ++i) { if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) { LLAMA_LOG_ERROR("%s: invalid token[%d] = %d\n", __func__, i, batch.token[i]); return -1; } } } // micro-batching is not possible for non-causal encoding, so we process the batch in a single shot GGML_ASSERT(cparams.n_ubatch >= (uint32_t) n_tokens && "encoder requires n_ubatch >= n_tokens"); if (t_compute_start_us == 0) { t_compute_start_us = ggml_time_us(); } n_queued_tokens += n_tokens; const int64_t n_embd = hparams.n_embd; sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true); const llama_ubatch ubatch = sbatch.split_simple(n_tokens); // reserve output buffer if (output_reserve(n_tokens) < n_tokens) { LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens); return -2; }; for (int32_t i = 0; i < n_tokens; ++i) { output_ids[i] = i; } n_outputs = n_tokens; //batch_manager->prepare(ubatch); ggml_backend_sched_reset(sched.get()); ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); const auto causal_attn_org = cparams.causal_attn; // always use non-causal attention for encoder graphs // TODO: this is a tmp solution until we have a proper way to support enc-dec models // ref: https://github.com/ggml-org/llama.cpp/pull/12181#issuecomment-2730451223 cparams.causal_attn = false; auto * gf = graph_init(); auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_ENCODER); ggml_backend_sched_alloc_graph(sched.get(), gf); res->set_inputs(&ubatch); cparams.causal_attn = causal_attn_org; const auto compute_status = graph_compute(gf, n_tokens > 1); switch (compute_status) { case GGML_STATUS_SUCCESS: break; case GGML_STATUS_ABORTED: return 2; case GGML_STATUS_ALLOC_FAILED: return -2; case GGML_STATUS_FAILED: default: return -3; } auto * t_embd = res->get_embd_pooled() ? res->get_embd_pooled() : res->get_embd(); // extract embeddings if (t_embd) { ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd); GGML_ASSERT(backend_embd != nullptr); GGML_ASSERT(embd != nullptr); switch (cparams.pooling_type) { case LLAMA_POOLING_TYPE_NONE: { // extract token embeddings GGML_ASSERT(n_tokens*n_embd <= (int64_t) embd_size); ggml_backend_tensor_get_async(backend_embd, t_embd, embd, 0, n_tokens*n_embd*sizeof(float)); } break; case LLAMA_POOLING_TYPE_MEAN: case LLAMA_POOLING_TYPE_CLS: case LLAMA_POOLING_TYPE_LAST: { // extract sequence embeddings auto & embd_seq_out = embd_seq; embd_seq_out.clear(); GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits for (int32_t i = 0; i < n_tokens; i++) { const llama_seq_id seq_id = ubatch.seq_id[i][0]; if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { continue; } embd_seq_out[seq_id].resize(n_embd); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); } } break; case LLAMA_POOLING_TYPE_RANK: { // TODO: this likely should be the same logic as in llama_decoder_internal, but better to // wait for an encoder model that requires this pooling type in order to test it // https://github.com/ggerganov/llama.cpp/pull/9510 GGML_ABORT("RANK pooling not implemented yet"); } case LLAMA_POOLING_TYPE_UNSPECIFIED: { GGML_ABORT("unknown pooling type"); } } } // Reset state for the next token before backend sync, to allow the CPU activities in the reset to // overlap with device computation. ggml_backend_sched_reset(sched.get()); // TODO: hacky solution if (model.arch == LLM_ARCH_T5 && t_embd) { //cross.t_embd = t_embd; synchronize(); cross.n_embd = t_embd->ne[0]; cross.n_enc = t_embd->ne[1]; cross.v_embd.resize(cross.n_embd*cross.n_enc); memcpy(cross.v_embd.data(), embd, ggml_nbytes(t_embd)); // remember the sequence ids used during the encoding - needed for cross attention later cross.seq_ids_enc.resize(n_tokens); for (int32_t i = 0; i < n_tokens; i++) { cross.seq_ids_enc[i].clear(); for (int s = 0; s < ubatch.n_seq_id[i]; s++) { llama_seq_id seq_id = ubatch.seq_id[i][s]; cross.seq_ids_enc[i].insert(seq_id); } } } return 0; } int llama_context::decode(llama_batch & inp_batch) { if (inp_batch.n_tokens == 0) { LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__); return -1; } // temporary allocate memory for the input batch if needed // TODO: this is incorrect for multiple sequences because pos_max() is the maximum across all sequences llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->pos_max() + 1); const llama_batch & batch = batch_allocr.batch; const auto & vocab = model.vocab; const auto & hparams = model.hparams; const int32_t n_vocab = vocab.n_tokens(); const int64_t n_tokens_all = batch.n_tokens; const int64_t n_embd = hparams.n_embd; llama_kv_cache_guard kv_guard(kv_self.get()); GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT if (batch.token) { for (int64_t i = 0; i < n_tokens_all; ++i) { if (batch.token[i] < 0 || (uint32_t) batch.token[i] >= model.vocab.n_tokens()) { LLAMA_LOG_ERROR("%s: invalid token[%" PRId64 "] = %d\n", __func__, i, batch.token[i]); throw std::runtime_error("invalid token"); } } } GGML_ASSERT(n_tokens_all <= cparams.n_batch); GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens"); if (t_compute_start_us == 0) { t_compute_start_us = ggml_time_us(); } n_queued_tokens += n_tokens_all; // this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE; embd_seq.clear(); int64_t n_outputs_all = 0; // count outputs if (batch.logits && !embd_pooled) { for (uint32_t i = 0; i < n_tokens_all; ++i) { n_outputs_all += batch.logits[i] != 0; } } else if (logits_all || embd_pooled) { n_outputs_all = n_tokens_all; } else { // keep last output only n_outputs_all = 1; } const bool logits_all = n_outputs_all == n_tokens_all; sbatch.from_batch(batch, n_embd, /* simple_split */ !kv_self->recurrent, /* logits_all */ logits_all); // reserve output buffer if (output_reserve(n_outputs_all) < n_outputs_all) { LLAMA_LOG_ERROR("%s: could not reserve space for batch with %" PRId64 " outputs\n", __func__, n_outputs_all); return -2; }; // handle any pending defrags/shifts kv_self_update(); int64_t n_outputs_prev = 0; while (sbatch.n_tokens > 0) { llama_ubatch ubatch = llama_ubatch(); const auto & n_ubatch = cparams.n_ubatch; if (kv_self->recurrent) { if (embd_pooled) { // Pooled embeddings cannot be split across ubatches (yet) ubatch = sbatch.split_seq(cparams.n_ubatch); } else { // recurrent model architectures are easier to implement // with equal-length sequences ubatch = sbatch.split_equal(cparams.n_ubatch); } } else { ubatch = sbatch.split_simple(n_ubatch); } // count the outputs in this u_batch { int32_t n_outputs_new = 0; if (n_outputs_all == n_tokens_all) { n_outputs_new = ubatch.n_tokens; } else { GGML_ASSERT(ubatch.output); for (uint32_t i = 0; i < ubatch.n_tokens; i++) { n_outputs_new += (int32_t) (ubatch.output[i] != 0); } } // needs to happen before the graph is built n_outputs = n_outputs_new; } // find KV slot { if (!kv_self->find_slot(ubatch)) { LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens); return 1; } if (!kv_self->recurrent) { // a heuristic, to avoid attending the full cache if it is not yet utilized // after enough generations, the benefit from this heuristic disappears // if we start defragmenting the cache, the benefit from this will be more important const uint32_t pad = kv_self->get_padding(cparams); kv_self->n = std::min(kv_self->size, std::max(pad, GGML_PAD(kv_self->cell_max(), pad))); } } //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self->n, kv_self->used, kv_self->head); ggml_backend_sched_reset(sched.get()); ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data); auto * gf = graph_init(); auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DECODER); // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); ggml_backend_sched_alloc_graph(sched.get(), gf); res->set_inputs(&ubatch); const auto compute_status = graph_compute(gf, ubatch.n_tokens > 1); if (compute_status != GGML_STATUS_SUCCESS) { switch (compute_status) { case GGML_STATUS_ABORTED: return 2; case GGML_STATUS_ALLOC_FAILED: return -2; case GGML_STATUS_FAILED: default: return -3; } } // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { // ggml_graph_dump_dot(gf, NULL, "llama.dot"); //} auto * t_logits = cparams.embeddings ? nullptr : res->get_logits(); auto * t_embd = cparams.embeddings ? res->get_embd() : nullptr; if (t_embd && res->get_embd_pooled()) { t_embd = res->get_embd_pooled(); } // extract logits if (t_logits && n_outputs > 0) { ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(sched.get(), t_logits); GGML_ASSERT(backend_res != nullptr); GGML_ASSERT(logits != nullptr); float * logits_out = logits + n_outputs_prev*n_vocab; if (n_outputs) { GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all); GGML_ASSERT((n_outputs_prev + n_outputs)*n_vocab <= (int64_t) logits_size); ggml_backend_tensor_get_async(backend_res, t_logits, logits_out, 0, n_outputs*n_vocab*sizeof(float)); } } // extract embeddings if (t_embd && n_outputs > 0) { ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd); GGML_ASSERT(backend_embd != nullptr); switch (cparams.pooling_type) { case LLAMA_POOLING_TYPE_NONE: { // extract token embeddings GGML_ASSERT(embd != nullptr); float * embd_out = embd + n_outputs_prev*n_embd; if (n_outputs) { GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all); GGML_ASSERT((n_outputs_prev + n_outputs)*n_embd <= (int64_t) embd_size); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_outputs*n_embd*sizeof(float)); } } break; case LLAMA_POOLING_TYPE_MEAN: case LLAMA_POOLING_TYPE_CLS: case LLAMA_POOLING_TYPE_LAST: { // extract sequence embeddings (cleared before processing each batch) auto & embd_seq_out = embd_seq; for (uint32_t s = 0; s < ubatch.n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { continue; } embd_seq_out[seq_id].resize(n_embd); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); } } break; case LLAMA_POOLING_TYPE_RANK: { // extract the rerank score - a single float per sequence auto & embd_seq_out = embd_seq; for (uint32_t s = 0; s < ubatch.n_seqs; ++s) { const llama_seq_id seq_id = ubatch.seq_id[s][0]; if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { continue; } embd_seq_out[seq_id].resize(1); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float)); } } break; case LLAMA_POOLING_TYPE_UNSPECIFIED: { GGML_ABORT("unknown pooling type"); } } } n_outputs_prev += n_outputs; } // finalize the batch processing kv_guard.commit(); // set output mappings { bool sorted_output = true; GGML_ASSERT(sbatch.out_ids.size() == (size_t) n_outputs_all); for (int64_t i = 0; i < n_outputs_all; ++i) { int64_t out_id = sbatch.out_ids[i]; output_ids[out_id] = i; if (out_id != i) { sorted_output = false; } } if (sorted_output) { sbatch.out_ids.clear(); } } // set to total number of outputs in the batch, for use in llama_get_logits_ith n_outputs = n_outputs_all; // wait for the computation to finish (automatically done when obtaining the model output) //synchronize(); // decide if we need to defrag the kv cache if (cparams.causal_attn && cparams.defrag_thold > 0.0f) { // - do not defrag small contexts (i.e. < 2048 tokens) // - count the padding towards the number of used tokens const float fragmentation = kv_self->n >= 2048 ? std::max(0.0f, 1.0f - float(kv_self->used + kv_self->get_padding(cparams))/float(kv_self->n)) : 0.0f; // queue defragmentation for next llama_kv_cache_update if (fragmentation > cparams.defrag_thold) { LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation); kv_self->defrag(); } } // Reset state for the next token before backend sync, to allow the CPU activities in the reset to // overlap with device computation. ggml_backend_sched_reset(sched.get()); return 0; } // // output // int32_t llama_context::output_reserve(int32_t n_outputs) { const auto & hparams = model.hparams; const auto & vocab = model.vocab; const int64_t n_outputs_max = std::max(n_outputs, n_seq_max()); const auto n_batch = cparams.n_batch; const auto n_vocab = vocab.n_tokens(); const auto n_embd = hparams.n_embd; // TODO: use a per-batch flag for logits presence instead bool has_logits = !cparams.embeddings; bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); // TODO: hacky enc-dec support if (model.arch == LLM_ARCH_T5) { has_logits = true; has_embd = true; } logits_size = has_logits ? n_vocab*n_outputs_max : 0; embd_size = has_embd ? n_embd*n_outputs_max : 0; if (output_ids.empty()) { // init, never resized afterwards output_ids.resize(n_batch); } const size_t prev_size = buf_output ? ggml_backend_buffer_get_size(buf_output.get()) : 0; const size_t new_size = (logits_size + embd_size) * sizeof(float); // alloc only when more than the current capacity is required // TODO: also consider shrinking the buffer if (!buf_output || prev_size < new_size) { if (buf_output) { #ifndef NDEBUG // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark) LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); #endif buf_output = nullptr; logits = nullptr; embd = nullptr; } auto * buft = ggml_backend_cpu_buffer_type(); // try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory auto * output_dev = model.dev_output(); auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr; if (output_dev_host_buft) { buft = output_dev_host_buft; } buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size)); if (buf_output == nullptr) { LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); return 0; } } float * output_base = (float *) ggml_backend_buffer_get_base(buf_output.get()); logits = has_logits ? output_base : nullptr; embd = has_embd ? output_base + logits_size : nullptr; // set all ids as invalid (negative) std::fill(output_ids.begin(), output_ids.end(), -1); ggml_backend_buffer_clear(buf_output.get(), 0); this->n_outputs = 0; this->n_outputs_max = n_outputs_max; return n_outputs_max; } void llama_context::output_reorder() { auto & out_ids = sbatch.out_ids; if (!out_ids.empty()) { const uint32_t n_vocab = model.vocab.n_tokens(); const uint32_t n_embd = model.hparams.n_embd; GGML_ASSERT((size_t) n_outputs == out_ids.size()); // TODO: is there something more efficient which also minimizes swaps? // selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort) for (int32_t i = 0; i < n_outputs - 1; ++i) { int32_t j_min = i; for (int32_t j = i + 1; j < n_outputs; ++j) { if (out_ids[j] < out_ids[j_min]) { j_min = j; } } if (j_min == i) { continue; } std::swap(out_ids[i], out_ids[j_min]); if (logits_size > 0) { for (uint32_t k = 0; k < n_vocab; k++) { std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]); } } if (embd_size > 0) { for (uint32_t k = 0; k < n_embd; k++) { std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]); } } } std::fill(output_ids.begin(), output_ids.end(), -1); for (int32_t i = 0; i < n_outputs; ++i) { output_ids[out_ids[i]] = i; } out_ids.clear(); } } // // graph // int32_t llama_context::graph_max_nodes() const { return std::max(65536, 5*model.n_tensors()); } ggml_cgraph * llama_context::graph_init() { ggml_init_params params = { /*.mem_size =*/ buf_compute_meta.size(), /*.mem_buffer =*/ buf_compute_meta.data(), /*.no_alloc =*/ true, }; ctx_compute.reset(ggml_init(params)); return ggml_new_graph_custom(ctx_compute.get(), graph_max_nodes(), false); } llm_graph_result_ptr llama_context::graph_build( ggml_context * ctx, ggml_cgraph * gf, const llama_ubatch & ubatch, llm_graph_type gtype) { return model.build_graph( { /*.ctx =*/ ctx, /*.arch =*/ model.arch, /*.hparams =*/ model.hparams, /*.cparams =*/ cparams, /*.ubatch =*/ ubatch, /*.sched =*/ sched.get(), /*.backend_cpu =*/ backend_cpu, /*.cvec =*/ &cvec, /*.loras =*/ &loras, /*.memory =*/ kv_self.get(), /*.cross =*/ &cross, /*.n_outputs =*/ n_outputs, /*.cb =*/ graph_get_cb(), }, gf, gtype); } ggml_status llama_context::graph_compute( ggml_cgraph * gf, bool batched) { int n_threads = batched ? cparams.n_threads_batch : cparams.n_threads; ggml_threadpool_t tp = batched ? threadpool_batch : threadpool; if (backend_cpu != nullptr) { auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend_cpu)); auto * set_threadpool_fn = (decltype(ggml_backend_cpu_set_threadpool) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_set_threadpool"); set_threadpool_fn(backend_cpu, tp); } // set the number of threads for all the backends for (const auto & set_n_threads_fn : set_n_threads_fns) { set_n_threads_fn.second(set_n_threads_fn.first, n_threads); } auto status = ggml_backend_sched_graph_compute_async(sched.get(), gf); if (status != GGML_STATUS_SUCCESS) { LLAMA_LOG_ERROR("%s: ggml_backend_sched_graph_compute_async failed with error %d\n", __func__, status); } // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(sched)); return status; } llm_graph_cb llama_context::graph_get_cb() const { return [&](const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il) { if (il >= 0) { ggml_format_name(cur, "%s-%d", name, il); } else { ggml_set_name(cur, name); } if (!cparams.offload_kqv) { if (strcmp(name, "kqv_merged_cont") == 0) { // all nodes between the KV store and the attention output are run on the CPU ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend_cpu); } } // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends // FIXME: fix in ggml_backend_sched const bool full_offload = model.params.n_gpu_layers > (int) model.hparams.n_layer; if (ubatch.n_tokens < 32 || full_offload) { if (il != -1 && strcmp(name, "norm") == 0) { const auto & dev_layer = model.dev_layer(il); for (const auto & backend : backends) { if (ggml_backend_get_device(backend.get()) == dev_layer) { if (ggml_backend_supports_op(backend.get(), cur)) { ggml_backend_sched_set_tensor_backend(sched.get(), cur, backend.get()); } } } } } }; } // // state save/load // class llama_io_write_dummy : public llama_io_write_i { public: llama_io_write_dummy() = default; void write(const void * /* src */, size_t size) override { size_written += size; } void write_tensor(const ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override { size_written += size; } size_t n_bytes() override { return size_written; } private: size_t size_written = 0; }; class llama_io_write_buffer : public llama_io_write_i { public: llama_io_write_buffer( uint8_t * p, size_t len) : ptr(p), buf_size(len) {} void write(const void * src, size_t size) override { if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } memcpy(ptr, src, size); ptr += size; size_written += size; buf_size -= size; } void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override { if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } ggml_backend_tensor_get(tensor, ptr, offset, size); ptr += size; size_written += size; buf_size -= size; } size_t n_bytes() override { return size_written; } private: uint8_t * ptr; size_t buf_size = 0; size_t size_written = 0; }; class llama_io_read_buffer : public llama_io_read_i { public: llama_io_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {} const uint8_t * read(size_t size) override { const uint8_t * base_ptr = ptr; if (size > buf_size) { throw std::runtime_error("unexpectedly reached end of buffer"); } ptr += size; size_read += size; buf_size -= size; return base_ptr; } void read_to(void * dst, size_t size) override { memcpy(dst, read(size), size); } size_t n_bytes() override { return size_read; } private: const uint8_t * ptr; size_t buf_size = 0; size_t size_read = 0; }; class llama_io_write_file : public llama_io_write_i { public: llama_io_write_file(llama_file * f) : file(f) {} void write(const void * src, size_t size) override { file->write_raw(src, size); size_written += size; } void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) override { temp_buffer.resize(size); ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size); write(temp_buffer.data(), temp_buffer.size()); } size_t n_bytes() override { return size_written; } private: llama_file * file; size_t size_written = 0; std::vector temp_buffer; }; class llama_io_read_file : public llama_io_read_i { public: llama_io_read_file(llama_file * f) : file(f) {} void read_to(void * dst, size_t size) override { file->read_raw(dst, size); size_read += size; } const uint8_t * read(size_t size) override { temp_buffer.resize(size); read_to(temp_buffer.data(), size); return temp_buffer.data(); } size_t n_bytes() override { return size_read; } private: llama_file * file; size_t size_read = 0; std::vector temp_buffer; }; size_t llama_context::state_get_size() { llama_io_write_dummy io; try { return state_write_data(io); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_get_data(uint8_t * dst, size_t size) { llama_io_write_buffer io(dst, size); try { return state_write_data(io); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_set_data(const uint8_t * src, size_t size) { llama_io_read_buffer io(src, size); try { return state_read_data(io); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_seq_get_size(llama_seq_id seq_id) { llama_io_write_dummy io; try { return state_seq_write_data(io, seq_id); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size) { llama_io_write_buffer io(dst, size); try { return state_seq_write_data(io, seq_id); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what()); return 0; } } size_t llama_context::state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size) { llama_io_read_buffer io(src, size); try { return state_seq_read_data(io, seq_id); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what()); return 0; } } bool llama_context::state_load_file(const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(filepath, "rb"); // sanity checks { const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); return false; } } // load the prompt { const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return false; } file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); *n_token_count_out = n_token_count; } // restore the context state { const size_t n_state_size_cur = file.size() - file.tell(); llama_io_read_file io( &file); const size_t n_read = state_read_data(io); if (n_read != n_state_size_cur) { LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read); return false; } } return true; } bool llama_context::state_save_file(const char * filepath, const llama_token * tokens, size_t n_token_count) { llama_file file(filepath, "wb"); file.write_u32(LLAMA_SESSION_MAGIC); file.write_u32(LLAMA_SESSION_VERSION); // save the prompt file.write_u32((uint32_t) n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving llama_io_write_file io(&file); state_write_data(io); return true; } size_t llama_context::state_seq_load_file(llama_seq_id seq_id, const char * filepath, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { llama_file file(filepath, "rb"); // version checks { const uint32_t magic = file.read_u32(); const uint32_t version = file.read_u32(); if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) { LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version); return 0; } } // load the prompt { const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return 0; } file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); *n_token_count_out = n_token_count; } // restore the context state { const size_t state_size = file.size() - file.tell(); llama_io_read_file io(&file); const size_t nread = state_seq_read_data(io, seq_id); if (!nread) { LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__); return 0; } GGML_ASSERT(nread <= state_size); GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell()); } return file.tell(); } size_t llama_context::state_seq_save_file(llama_seq_id seq_id, const char * filepath, const llama_token * tokens, size_t n_token_count) { llama_file file(filepath, "wb"); file.write_u32(LLAMA_STATE_SEQ_MAGIC); file.write_u32(LLAMA_STATE_SEQ_VERSION); // save the prompt file.write_u32((uint32_t) n_token_count); file.write_raw(tokens, sizeof(llama_token) * n_token_count); // save the context state using stream saving llama_io_write_file io(&file); state_seq_write_data(io, seq_id); const size_t res = file.tell(); GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + io.n_bytes()); return res; } size_t llama_context::state_write_data(llama_io_write_i & io) { LLAMA_LOG_DEBUG("%s: writing state\n", __func__); // write model info { LLAMA_LOG_DEBUG("%s: - writing model info\n", __func__); const std::string arch_str = llm_arch_name(model.arch); io.write_string(arch_str); // TODO: add more model-specific info which should prevent loading the session file if not identical } // write output ids { LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__); output_reorder(); const auto n_outputs = this->n_outputs; const auto & output_ids = this->output_ids; std::vector w_output_pos; GGML_ASSERT(n_outputs <= n_outputs_max); w_output_pos.resize(n_outputs); // build a more compact representation of the output ids for (size_t i = 0; i < n_batch(); ++i) { // map an output id to a position in the batch int32_t pos = output_ids[i]; if (pos >= 0) { GGML_ASSERT(pos < n_outputs); w_output_pos[pos] = i; } } io.write(&n_outputs, sizeof(n_outputs)); if (n_outputs) { io.write(w_output_pos.data(), n_outputs * sizeof(int32_t)); } } // write logits { LLAMA_LOG_DEBUG("%s: - writing logits\n", __func__); const uint64_t logits_size = std::min((uint64_t) this->logits_size, (uint64_t) n_outputs * model.vocab.n_tokens()); io.write(&logits_size, sizeof(logits_size)); if (logits_size) { io.write(logits, logits_size * sizeof(float)); } } // write embeddings { LLAMA_LOG_DEBUG("%s: - writing embeddings\n", __func__); const uint64_t embd_size = std::min((uint64_t) this->embd_size, (uint64_t) n_outputs * model.hparams.n_embd); io.write(&embd_size, sizeof(embd_size)); if (embd_size) { io.write(embd, embd_size * sizeof(float)); } } LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__); kv_self->state_write(io); return io.n_bytes(); } size_t llama_context::state_read_data(llama_io_read_i & io) { LLAMA_LOG_DEBUG("%s: reading state\n", __func__); // read model info { LLAMA_LOG_DEBUG("%s: - reading model info\n", __func__); const std::string cur_arch_str = llm_arch_name(model.arch); std::string arch_str; io.read_string(arch_str); if (cur_arch_str != arch_str) { throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str())); } // TODO: add more info which needs to be identical but which is not verified otherwise } // read output ids { LLAMA_LOG_DEBUG("%s: - reading output ids\n", __func__); auto n_outputs = this->n_outputs; io.read_to(&n_outputs, sizeof(n_outputs)); if (n_outputs > output_reserve(n_outputs)) { throw std::runtime_error("could not reserve outputs"); } std::vector output_pos; if (n_outputs) { output_pos.resize(n_outputs); io.read_to(output_pos.data(), n_outputs * sizeof(int32_t)); for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) { int32_t id = output_pos[i]; if ((uint32_t) id >= n_batch()) { throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, n_batch())); } this->output_ids[id] = i; } this->n_outputs = n_outputs; } } // read logits { LLAMA_LOG_DEBUG("%s: - reading logits\n", __func__); uint64_t logits_size; io.read_to(&logits_size, sizeof(logits_size)); if (this->logits_size < logits_size) { throw std::runtime_error("logits buffer too small"); } if (logits_size) { io.read_to(this->logits, logits_size * sizeof(float)); } } // read embeddings { LLAMA_LOG_DEBUG("%s: - reading embeddings\n", __func__); uint64_t embd_size; io.read_to(&embd_size, sizeof(embd_size)); if (this->embd_size < embd_size) { throw std::runtime_error("embeddings buffer too small"); } if (embd_size) { io.read_to(this->embd, embd_size * sizeof(float)); } } LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__); kv_self->state_read(io); return io.n_bytes(); } size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) { GGML_UNUSED(seq_id); kv_self->state_write(io, seq_id); return io.n_bytes(); } size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) { GGML_UNUSED(seq_id); kv_self->state_read(io, seq_id); return io.n_bytes(); } // // perf // llama_perf_context_data llama_context::perf_get_data() const { llama_perf_context_data data = {}; data.t_start_ms = 1e-3 * t_start_us; data.t_load_ms = 1e-3 * t_load_us; data.t_p_eval_ms = 1e-3 * t_p_eval_us; data.t_eval_ms = 1e-3 * t_eval_us; data.n_p_eval = std::max(1, n_p_eval); data.n_eval = std::max(1, n_eval); return data; } void llama_context::perf_reset() { t_start_us = ggml_time_us(); t_eval_us = n_eval = 0; t_p_eval_us = n_p_eval = 0; } // // interface implementation // llama_context_params llama_context_default_params() { llama_context_params result = { /*.n_ctx =*/ 512, /*.n_batch =*/ 2048, /*.n_ubatch =*/ 512, /*.n_seq_max =*/ 1, /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED, /*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED, /*.rope_freq_base =*/ 0.0f, /*.rope_freq_scale =*/ 0.0f, /*.yarn_ext_factor =*/ -1.0f, /*.yarn_attn_factor =*/ 1.0f, /*.yarn_beta_fast =*/ 32.0f, /*.yarn_beta_slow =*/ 1.0f, /*.yarn_orig_ctx =*/ 0, /*.defrag_thold =*/ -1.0f, /*.cb_eval =*/ nullptr, /*.cb_eval_user_data =*/ nullptr, /*.type_k =*/ GGML_TYPE_F16, /*.type_v =*/ GGML_TYPE_F16, /*.logits_all =*/ false, /*.embeddings =*/ false, /*.offload_kqv =*/ true, /*.flash_attn =*/ false, /*.no_perf =*/ true, /*.abort_callback =*/ nullptr, /*.abort_callback_data =*/ nullptr, }; return result; } llama_context * llama_init_from_model( llama_model * model, llama_context_params params) { if (!model) { LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__); return nullptr; } if (params.n_batch == 0 && params.n_ubatch == 0) { LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__); return nullptr; } if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) { LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__); return nullptr; } if (params.flash_attn && model->arch == LLM_ARCH_GROK) { LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__); params.flash_attn = false; } if (ggml_is_quantized(params.type_v) && !params.flash_attn) { LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__); return nullptr; } try { auto * ctx = new llama_context(*model, params); return ctx; } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to initialize the context: %s\n", __func__, err.what()); } return nullptr; } // deprecated llama_context * llama_new_context_with_model( llama_model * model, llama_context_params params) { return llama_init_from_model(model, params); } void llama_free(llama_context * ctx) { delete ctx; } uint32_t llama_n_ctx(const llama_context * ctx) { return ctx->n_ctx(); } uint32_t llama_n_batch(const llama_context * ctx) { return ctx->n_batch(); } uint32_t llama_n_ubatch(const llama_context * ctx) { return ctx->n_ubatch(); } uint32_t llama_n_seq_max(const llama_context * ctx) { return ctx->n_seq_max(); } const llama_model * llama_get_model(const llama_context * ctx) { return &ctx->get_model(); } llama_kv_cache * llama_get_kv_self(llama_context * ctx) { return ctx->get_kv_self(); } void llama_kv_self_update(llama_context * ctx) { ctx->kv_self_update(); } enum llama_pooling_type llama_pooling_type(const llama_context * ctx) { return ctx->pooling_type(); } void llama_attach_threadpool( llama_context * ctx, ggml_threadpool_t threadpool, ggml_threadpool_t threadpool_batch) { ctx->attach_threadpool(threadpool, threadpool_batch); } void llama_detach_threadpool(llama_context * ctx) { ctx->detach_threadpool(); } void llama_set_n_threads(llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) { ctx->set_n_threads(n_threads, n_threads_batch); } int32_t llama_n_threads(llama_context * ctx) { return ctx->n_threads(); } int32_t llama_n_threads_batch(llama_context * ctx) { return ctx->n_threads_batch(); } void llama_set_abort_callback(llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { ctx->set_abort_callback(abort_callback, abort_callback_data); } void llama_set_embeddings(llama_context * ctx, bool embeddings) { ctx->set_embeddings(embeddings); } void llama_set_causal_attn(llama_context * ctx, bool causal_attn) { ctx->set_causal_attn(causal_attn); } void llama_set_warmup(llama_context * ctx, bool warmup) { ctx->set_warmup(warmup); } void llama_synchronize(llama_context * ctx) { ctx->synchronize(); } float * llama_get_logits(llama_context * ctx) { ctx->synchronize(); return ctx->get_logits(); } float * llama_get_logits_ith(llama_context * ctx, int32_t i) { ctx->synchronize(); return ctx->get_logits_ith(i); } float * llama_get_embeddings(llama_context * ctx) { ctx->synchronize(); return ctx->get_embeddings(); } float * llama_get_embeddings_ith(llama_context * ctx, int32_t i) { ctx->synchronize(); return ctx->get_embeddings_ith(i); } float * llama_get_embeddings_seq(llama_context * ctx, llama_seq_id seq_id) { ctx->synchronize(); return ctx->get_embeddings_seq(seq_id); } // llama adapter API int32_t llama_set_adapter_lora( llama_context * ctx, llama_adapter_lora * adapter, float scale) { ctx->set_adapter_lora(adapter, scale); return 0; } int32_t llama_rm_adapter_lora( llama_context * ctx, llama_adapter_lora * adapter) { bool res = ctx->rm_adapter_lora(adapter); return res ? 0 : -1; } void llama_clear_adapter_lora(llama_context * ctx) { ctx->clear_adapter_lora(); } int32_t llama_apply_adapter_cvec( llama_context * ctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) { bool res = ctx->apply_adapter_cvec(data, len, n_embd, il_start, il_end); return res ? 0 : -1; } // // kv cache view // llama_kv_cache_view llama_kv_cache_view_init(const llama_context * ctx, int32_t n_seq_max) { const auto * kv = ctx->get_kv_self(); if (kv == nullptr) { LLAMA_LOG_WARN("%s: the context does not have a KV cache\n", __func__); return {}; } return llama_kv_cache_view_init(*kv, n_seq_max); } void llama_kv_cache_view_update(const llama_context * ctx, llama_kv_cache_view * view) { const auto * kv = ctx->get_kv_self(); if (kv == nullptr) { LLAMA_LOG_WARN("%s: the context does not have a KV cache\n", __func__); return; } llama_kv_cache_view_update(view, kv); } // // kv cache // // deprecated int32_t llama_get_kv_cache_token_count(const llama_context * ctx) { return llama_kv_self_n_tokens(ctx); } int32_t llama_kv_self_n_tokens(const llama_context * ctx) { const auto * kv = ctx->get_kv_self(); if (!kv) { return 0; } return kv->get_n_tokens(); } // deprecated int32_t llama_get_kv_cache_used_cells(const llama_context * ctx) { return llama_kv_self_used_cells(ctx); } int32_t llama_kv_self_used_cells(const llama_context * ctx) { const auto * kv = ctx->get_kv_self(); if (!kv) { return 0; } return kv->get_used_cells(); } // deprecated void llama_kv_cache_clear(llama_context * ctx) { llama_kv_self_clear(ctx); } void llama_kv_self_clear(llama_context * ctx) { auto * kv = ctx->get_kv_self(); if (!kv) { return; } kv->clear(); } // deprecated bool llama_kv_cache_seq_rm( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { return llama_kv_self_seq_rm(ctx, seq_id, p0, p1); } bool llama_kv_self_seq_rm( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { auto * kv = ctx->get_kv_self(); if (!kv) { return true; } return kv->seq_rm(seq_id, p0, p1); } // deprecated void llama_kv_cache_seq_cp( llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { return llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1); } void llama_kv_self_seq_cp( llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { auto * kv = ctx->get_kv_self(); if (!kv) { return; } return kv->seq_cp(seq_id_src, seq_id_dst, p0, p1); } // deprecated void llama_kv_cache_seq_keep( llama_context * ctx, llama_seq_id seq_id) { return llama_kv_self_seq_keep(ctx, seq_id); } void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) { auto * kv = ctx->get_kv_self(); if (!kv) { return; } return kv->seq_keep(seq_id); } // deprecated void llama_kv_cache_seq_add( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { return llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta); } void llama_kv_self_seq_add( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { auto * kv = ctx->get_kv_self(); if (!kv) { return; } return kv->seq_add(seq_id, p0, p1, delta); } // deprecated void llama_kv_cache_seq_div( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { return llama_kv_self_seq_div(ctx, seq_id, p0, p1, d); } void llama_kv_self_seq_div( llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { auto * kv = ctx->get_kv_self(); if (!kv) { return; } return kv->seq_div(seq_id, p0, p1, d); } // deprecated llama_pos llama_kv_cache_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) { return llama_kv_self_seq_pos_max(ctx, seq_id); } llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) { const auto * kv = ctx->get_kv_self(); if (!kv) { return 0; } return kv->seq_pos_max(seq_id); } // deprecated void llama_kv_cache_defrag(llama_context * ctx) { return llama_kv_self_defrag(ctx); } void llama_kv_self_defrag(llama_context * ctx) { auto * kv = ctx->get_kv_self(); if (!kv) { return; } return kv->defrag(); } // deprecated bool llama_kv_cache_can_shift(const llama_context * ctx) { return llama_kv_self_can_shift(ctx); } bool llama_kv_self_can_shift(const llama_context * ctx) { const auto * kv = ctx->get_kv_self(); if (!kv) { return false; } return kv->get_can_shift(); } // deprecated void llama_kv_cache_update(llama_context * ctx) { llama_kv_self_update(ctx); } // llama state API // deprecated size_t llama_get_state_size(llama_context * ctx) { return llama_state_get_size(ctx); } // deprecated size_t llama_copy_state_data(llama_context * ctx, uint8_t * dst) { return llama_state_get_data(ctx, dst, -1); } // deprecated size_t llama_set_state_data(llama_context * ctx, const uint8_t * src) { return llama_state_set_data(ctx, src, -1); } // deprecated bool llama_load_session_file(llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); } // deprecated bool llama_save_session_file(llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { return llama_state_save_file(ctx, path_session, tokens, n_token_count); } // Returns the *actual* size of the state. // Intended to be used when saving to state to a buffer. size_t llama_state_get_size(llama_context * ctx) { return ctx->state_get_size(); } size_t llama_state_get_data(llama_context * ctx, uint8_t * dst, size_t size) { ctx->synchronize(); return ctx->state_get_data(dst, size); } // Sets the state reading from the specified source address size_t llama_state_set_data(llama_context * ctx, const uint8_t * src, size_t size) { ctx->synchronize(); return ctx->state_set_data(src, size); } bool llama_state_load_file(llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { ctx->synchronize(); try { return ctx->state_load_file(path_session, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what()); return false; } } bool llama_state_save_file(llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { ctx->synchronize(); try { return ctx->state_save_file(path_session, tokens, n_token_count); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what()); return false; } } size_t llama_state_seq_get_size(llama_context * ctx, llama_seq_id seq_id) { return ctx->state_seq_get_size(seq_id); } size_t llama_state_seq_get_data(llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) { ctx->synchronize(); return ctx->state_seq_get_data(seq_id, dst, size); } size_t llama_state_seq_set_data(llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id seq_id) { ctx->synchronize(); return ctx->state_seq_set_data(seq_id, src, size); } size_t llama_state_seq_save_file(llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { ctx->synchronize(); try { return ctx->state_seq_save_file(seq_id, filepath, tokens, n_token_count); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what()); return 0; } } size_t llama_state_seq_load_file(llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { ctx->synchronize(); try { return ctx->state_seq_load_file(dest_seq_id, filepath, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what()); return 0; } } /// int32_t llama_encode( llama_context * ctx, llama_batch batch) { const int ret = ctx->encode(batch); if (ret != 0) { LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret); } return ret; } int32_t llama_decode( llama_context * ctx, llama_batch batch) { const int ret = ctx->decode(batch); if (ret != 0) { LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); } return ret; } // // perf // llama_perf_context_data llama_perf_context(const llama_context * ctx) { llama_perf_context_data data = {}; if (ctx == nullptr) { return data; } data = ctx->perf_get_data(); return data; } void llama_perf_context_print(const llama_context * ctx) { const auto data = llama_perf_context(ctx); const double t_end_ms = 1e-3 * ggml_time_us(); LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, data.t_load_ms); LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", __func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval); LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval); LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval)); } void llama_perf_context_reset(llama_context * ctx) { ctx->perf_reset(); }