#pragma once #include "llama.h" #include "llama-io.h" #include "llama-graph.h" #include "llama-memory.h" #include "ggml-cpp.h" #include #include struct llama_cparams; struct llama_hparams; struct llama_ubatch; struct llama_sbatch; struct llama_model; struct llama_context; struct llama_kv_cache : public llama_memory_i { virtual ~llama_kv_cache() = default; // call if batch processing fails - restores the cache state virtual void restore() = 0; // call after successful batch processing - clears any pending state virtual void commit() = 0; // process any pending defrag/shift/etc. operations // optionally call once before processing a new batch virtual bool update(llama_context & lctx) = 0; // schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing virtual void defrag_sched(float thold) = 0; // simulate full cache, used for allocating worst-case compute buffers virtual void set_full() = 0; // // batch processing // virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0; // different KV caches require different batch splitting strategies virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0; // find an empty slot of size "n_tokens" in the cache virtual bool find_slot(const llama_ubatch & batch) = 0; // getters virtual int32_t get_n_tokens() const = 0; virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache virtual llama_pos get_pos_max() const = 0; virtual bool get_can_shift() const = 0; bool get_can_edit() const override { return get_can_shift(); } // // state write/read // virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0; virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0; }; // // llama_kv_cache_guard // struct llama_kv_cache_guard { llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {} ~llama_kv_cache_guard() { kv->restore(); } void commit() { kv->commit(); } private: llama_kv_cache * kv; }; // // llama_kv_cache_unified // // TODO: add notion of max sequences class llama_kv_cache_unified : public llama_kv_cache { public: struct kv_cell { llama_pos pos = -1; llama_pos delta = 0; std::set seq_id; bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } bool is_empty() const { return seq_id.empty(); } bool is_same_seq(const kv_cell & other) const { return seq_id == other.seq_id; } }; static uint32_t get_padding(const llama_cparams & cparams); llama_kv_cache_unified( const llama_model & model, ggml_type type_k, ggml_type type_v, bool v_trans, bool offload, uint32_t kv_size, uint32_t padding); ~llama_kv_cache_unified() = default; // // llama_memory_i // void clear() override; bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; void seq_keep(llama_seq_id seq_id) override; void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override; void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; llama_pos seq_pos_max(llama_seq_id seq_id) const override; // // llama_kv_cache // void restore() override; void commit() override; bool update(llama_context & ctx) override; void defrag_sched(float thold) override; void set_full() override; llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override; llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override; // updates the cache head // Note: On success, it's important that cache.head points // to the first cell of the slot. bool find_slot(const llama_ubatch & batch) override; int32_t get_n_tokens() const override; int32_t get_used_cells() const override; // TODO: better data structures to reduce the cost of this operation llama_pos get_pos_max() const override; bool get_can_shift() const override; // state write/load void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_impl also uses it, so it // cannot be freely changed after a slot has been allocated. uint32_t head = 0; uint32_t size = 0; uint32_t used = 0; // used cells (i.e. at least one seq_id) // computed before each graph build uint32_t n = 0; std::vector cells; std::vector k_l; // per layer std::vector v_l; private: const llama_model & model; const llama_hparams & hparams; bool has_shift = false; bool do_defrag = false; bool v_trans = true; // the value tensor is transposed bool can_shift = false; // required padding uint32_t padding = 1; ggml_type type_k = GGML_TYPE_F16; ggml_type type_v = GGML_TYPE_F16; std::vector ctxs; std::vector bufs; // defrag struct { std::vector ids; } defrag_info; // return true if cells have been moved bool defrag_prepare(int32_t n_max_nodes); // commit/restore cache struct slot_range { uint32_t c0 = 0; // note: these are cell indices, not sequence positions uint32_t c1 = 0; }; // pending cell updates that are not yet committed struct { std::vector ranges; } pending; // find how many cells are currently in use uint32_t cell_max() const; size_t total_size() const; size_t size_k_bytes() const; size_t size_v_bytes() const; ggml_tensor * build_rope_shift( const llama_cparams & cparams, ggml_context * ctx, ggml_tensor * cur, ggml_tensor * shift, ggml_tensor * factors, float freq_base, float freq_scale) const; llm_graph_result_ptr build_graph_shift( const llama_cparams & cparams, ggml_context * ctx, ggml_cgraph * gf) const; llm_graph_result_ptr build_graph_defrag( const llama_cparams & cparams, ggml_context * ctx, ggml_cgraph * gf) const; void state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) const; void state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const; bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); bool state_read_data(llama_io_read_i & io, uint32_t cell_count); }; // // llama_kv_cache_recurrent // class llama_kv_cache_recurrent : public llama_kv_cache { public: struct kv_cell { llama_pos pos = -1; int32_t src = -1; // used to copy states int32_t tail = -1; std::set seq_id; bool has_seq_id(const llama_seq_id & id) const { return seq_id.find(id) != seq_id.end(); } bool is_empty() const { return seq_id.empty(); } bool is_same_seq(const kv_cell & other) const { return seq_id == other.seq_id; } }; llama_kv_cache_recurrent( const llama_model & model, ggml_type type_k, ggml_type type_v, bool offload, uint32_t kv_size); ~llama_kv_cache_recurrent() = default; // // llama_memory_i // void clear() override; bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; void seq_keep(llama_seq_id seq_id) override; void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override; void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; llama_pos seq_pos_max(llama_seq_id seq_id) const override; // // llama_kv_cache // void restore() override; void commit() override; bool update(llama_context & lctx) override; void defrag_sched(float thold) override; void set_full() override; llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override; llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override; bool find_slot(const llama_ubatch & batch) override; int32_t get_n_tokens() const override; int32_t get_used_cells() const override; // TODO: better data structures to reduce the cost of this operation llama_pos get_pos_max() const override; bool get_can_shift() const override; // TODO: temporary methods - they are not really const as they do const_cast<>, fix this int32_t s_copy(int i) const; float s_mask(int i) const; // state write/load void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override; void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override; // Note: The value of head isn't only used to optimize searching // for a free KV slot. llama_decode_impl also uses it, so it // cannot be freely changed after a slot has been allocated. uint32_t head = 0; uint32_t size = 0; uint32_t used = 0; // used cells (i.e. at least one seq_id) // computed before each graph build uint32_t n = 0; std::vector cells; std::vector k_l; // per layer std::vector v_l; private: //const llama_model & model; const llama_hparams & hparams; // commit/restore cache // TODO: rework for recurrent cache struct slot_range { uint32_t c0 = 0; // note: these are cell indices, not sequence positions uint32_t c1 = 0; }; // pending cell updates that are not yet committed struct { std::vector ranges; } pending; ggml_type type_k = GGML_TYPE_F16; ggml_type type_v = GGML_TYPE_F16; std::vector ctxs; std::vector bufs; // find how many cells are currently in use uint32_t cell_max() const; size_t total_size() const; size_t size_k_bytes() const; size_t size_v_bytes() const; void state_write_meta(llama_io_write_i & io, const std::vector> & cell_ranges, llama_seq_id seq_id = -1) const; void state_write_data(llama_io_write_i & io, const std::vector> & cell_ranges) const; bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1); bool state_read_data(llama_io_read_i & io, uint32_t cell_count); }; // // kv cache view // llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max); void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv);