Daniel Bevenius 73a8c5fb94
whisper : remove whisper_load_backends function (#3196)
* whisper : remove whisper_load_backends function

This commit removes the `whisper_load_backends` function, which was used
to load all GGML backends.

The motivation for this change push the responsibility of loading
backends to user applications to give them more control over which
backends to load and when. See the references below for more context.

Resolves: https://github.com/ggml-org/whisper.cpp/issues/3182
Refs: https://github.com/ggml-org/whisper.cpp/pull/3042#issuecomment-2801778733
Refs: https://github.com/ggml-org/whisper.cpp/pull/3042#issuecomment-2801928990

* ruby : add check for rwc is NULL

This commit adds a check to ensure that the `rwc` pointer is not NULL
before attempting to mark its members in the garbage collector.

The motivation for this is an attempt to see if this fixed the CI build
as I'm not able to reproduce the issue locally.

Refs: https://github.com/ggml-org/whisper.cpp/actions/runs/15299612277/job/43036694928?pr=3196
2025-05-29 08:03:17 +02:00
..

whisper.cpp/examples/server

Simple http server. WAV Files are passed to the inference model via http requests.

https://github.com/ggerganov/whisper.cpp/assets/1991296/e983ee53-8741-4eb5-9048-afe5e4594b8f

Usage

./build/bin/whisper-server -h

usage: ./build/bin/whisper-server [options]

options:
  -h,        --help              [default] show this help message and exit
  -t N,      --threads N         [4      ] number of threads to use during computation
  -p N,      --processors N      [1      ] number of processors to use during computation
  -ot N,     --offset-t N        [0      ] time offset in milliseconds
  -on N,     --offset-n N        [0      ] segment index offset
  -d  N,     --duration N        [0      ] duration of audio to process in milliseconds
  -mc N,     --max-context N     [-1     ] maximum number of text context tokens to store
  -ml N,     --max-len N         [0      ] maximum segment length in characters
  -sow,      --split-on-word     [false  ] split on word rather than on token
  -bo N,     --best-of N         [2      ] number of best candidates to keep
  -bs N,     --beam-size N       [-1     ] beam size for beam search
  -wt N,     --word-thold N      [0.01   ] word timestamp probability threshold
  -et N,     --entropy-thold N   [2.40   ] entropy threshold for decoder fail
  -lpt N,    --logprob-thold N   [-1.00  ] log probability threshold for decoder fail
  -debug,    --debug-mode        [false  ] enable debug mode (eg. dump log_mel)
  -tr,       --translate         [false  ] translate from source language to english
  -di,       --diarize           [false  ] stereo audio diarization
  -tdrz,     --tinydiarize       [false  ] enable tinydiarize (requires a tdrz model)
  -nf,       --no-fallback       [false  ] do not use temperature fallback while decoding
  -ps,       --print-special     [false  ] print special tokens
  -pc,       --print-colors      [false  ] print colors
  -pr,       --print-realtime    [false  ] print output in realtime
  -pp,       --print-progress    [false  ] print progress
  -nt,       --no-timestamps     [false  ] do not print timestamps
  -l LANG,   --language LANG     [en     ] spoken language ('auto' for auto-detect)
  -dl,       --detect-language   [false  ] exit after automatically detecting language
             --prompt PROMPT     [       ] initial prompt
  -m FNAME,  --model FNAME       [models/ggml-base.en.bin] model path
  -oved D,   --ov-e-device DNAME [CPU    ] the OpenVINO device used for encode inference
  --host HOST,                   [127.0.0.1] Hostname/ip-adress for the server
  --port PORT,                   [8080   ] Port number for the server
  --convert,                     [false  ] Convert audio to WAV, requires ffmpeg on the server

Warning

Do not run the server example with administrative privileges and ensure it's operated in a sandbox environment, especially since it involves risky operations like accepting user file uploads and using ffmpeg for format conversions. Always validate and sanitize inputs to guard against potential security threats.

request examples

/inference

curl 127.0.0.1:8080/inference \
-H "Content-Type: multipart/form-data" \
-F file="@<file-path>" \
-F temperature="0.0" \
-F temperature_inc="0.2" \
-F response_format="json"

/load

curl 127.0.0.1:8080/load \
-H "Content-Type: multipart/form-data" \
-F model="<path-to-model-file>"

Load testing with k6

Note: Install k6 before running the benchmark script.

You can benchmark the Whisper server using the provided bench.js script with k6. This script sends concurrent multipart requests to the /inference endpoint and is fully configurable via environment variables.

Example usage:

k6 run bench.js \
  --env FILE_PATH=/absolute/path/to/samples/jfk.wav \
  --env BASE_URL=http://127.0.0.1:8080 \
  --env ENDPOINT=/inference \
  --env CONCURRENCY=4 \
  --env TEMPERATURE=0.0 \
  --env TEMPERATURE_INC=0.2 \
  --env RESPONSE_FORMAT=json

Environment variables:

  • FILE_PATH: Path to the audio file to send (must be absolute or relative to the k6 working directory)
  • BASE_URL: Server base URL (default: http://127.0.0.1:8080)
  • ENDPOINT: API endpoint (default: /inference)
  • CONCURRENCY: Number of concurrent requests (default: 4)
  • TEMPERATURE: Decoding temperature (default: 0.0)
  • TEMPERATURE_INC: Temperature increment (default: 0.2)
  • RESPONSE_FORMAT: Response format (default: json)

Note:

  • The server must be running and accessible at the specified BASE_URL and ENDPOINT.
  • The script is located in the same directory as this README: bench.js.