mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-04-26 12:18:44 +02:00
21883 lines
912 KiB
C++
21883 lines
912 KiB
C++
#include "llama-impl.h"
|
||
#include "llama-vocab.h"
|
||
#include "llama-sampling.h"
|
||
|
||
#include "unicode.h"
|
||
|
||
#include "ggml.h"
|
||
#include "ggml-alloc.h"
|
||
#include "ggml-backend.h"
|
||
|
||
#ifdef GGML_USE_RPC
|
||
# include "ggml-rpc.h"
|
||
#endif
|
||
|
||
#if defined(GGML_USE_VULKAN)
|
||
# include "ggml-vulkan.h"
|
||
#elif defined(GGML_USE_SYCL)
|
||
# include "ggml-sycl.h"
|
||
#elif defined(GGML_USE_KOMPUTE)
|
||
# include "ggml-kompute.h"
|
||
#elif defined(GGML_USE_CANN)
|
||
# include "ggml-cann.h"
|
||
#endif
|
||
|
||
#ifdef GGML_USE_BLAS
|
||
# include "ggml-blas.h"
|
||
#endif
|
||
|
||
#ifdef GGML_USE_METAL
|
||
# include "ggml-metal.h"
|
||
#endif
|
||
|
||
// TODO: replace with ggml API call
|
||
#define QK_K 256
|
||
|
||
#ifdef __has_include
|
||
#if __has_include(<unistd.h>)
|
||
#include <unistd.h>
|
||
#if defined(_POSIX_MAPPED_FILES)
|
||
#include <sys/mman.h>
|
||
#include <fcntl.h>
|
||
#endif
|
||
#if defined(_POSIX_MEMLOCK_RANGE)
|
||
#include <sys/resource.h>
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
#if defined(_WIN32)
|
||
#define WIN32_LEAN_AND_MEAN
|
||
#ifndef NOMINMAX
|
||
#define NOMINMAX
|
||
#endif
|
||
#include <windows.h>
|
||
#ifndef PATH_MAX
|
||
#define PATH_MAX MAX_PATH
|
||
#endif
|
||
#include <io.h>
|
||
#endif
|
||
|
||
#if __cplusplus >= 202000L
|
||
#define LU8(x) (const char*)(u8##x)
|
||
#else
|
||
#define LU8(x) u8##x
|
||
#endif
|
||
|
||
#include <algorithm>
|
||
#include <array>
|
||
#include <cassert>
|
||
#include <cctype>
|
||
#include <cfloat>
|
||
#include <cinttypes>
|
||
#include <climits>
|
||
#include <cmath>
|
||
#include <cstdarg>
|
||
#include <cstddef>
|
||
#include <cstdint>
|
||
#include <cstdio>
|
||
#include <cstring>
|
||
#include <ctime>
|
||
#include <fstream>
|
||
#include <functional>
|
||
#include <future>
|
||
#include <initializer_list>
|
||
#include <locale>
|
||
#include <map>
|
||
#include <memory>
|
||
#include <mutex>
|
||
#include <numeric>
|
||
#include <set>
|
||
#include <sstream>
|
||
#include <thread>
|
||
#include <type_traits>
|
||
#include <unordered_map>
|
||
|
||
#if defined(_MSC_VER)
|
||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||
#endif
|
||
|
||
// bump if necessary
|
||
#define LLAMA_MAX_LAYERS 512
|
||
#define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
|
||
|
||
//
|
||
// helpers
|
||
//
|
||
|
||
// trim whitespace from the beginning and end of a string
|
||
static std::string trim(const std::string & str) {
|
||
size_t start = 0;
|
||
size_t end = str.size();
|
||
while (start < end && isspace(str[start])) {
|
||
start += 1;
|
||
}
|
||
while (end > start && isspace(str[end - 1])) {
|
||
end -= 1;
|
||
}
|
||
return str.substr(start, end - start);
|
||
}
|
||
|
||
static bool is_float_close(float a, float b, float abs_tol) {
|
||
// Check for non-negative tolerance
|
||
if (abs_tol < 0.0) {
|
||
throw std::invalid_argument("Tolerance must be non-negative");
|
||
}
|
||
|
||
// Exact equality check
|
||
if (a == b) {
|
||
return true;
|
||
}
|
||
|
||
// Check for infinities
|
||
if (std::isinf(a) || std::isinf(b)) {
|
||
return false;
|
||
}
|
||
|
||
// Regular comparison using the provided absolute tolerance
|
||
return std::fabs(b - a) <= abs_tol;
|
||
}
|
||
|
||
static void zeros(std::ofstream & file, size_t n) {
|
||
char zero = 0;
|
||
for (size_t i = 0; i < n; ++i) {
|
||
file.write(&zero, 1);
|
||
}
|
||
}
|
||
|
||
LLAMA_ATTRIBUTE_FORMAT(1, 2)
|
||
static std::string format(const char * fmt, ...) {
|
||
va_list ap;
|
||
va_list ap2;
|
||
va_start(ap, fmt);
|
||
va_copy(ap2, ap);
|
||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
|
||
std::vector<char> buf(size + 1);
|
||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||
GGML_ASSERT(size2 == size);
|
||
va_end(ap2);
|
||
va_end(ap);
|
||
return std::string(buf.data(), size);
|
||
}
|
||
|
||
//
|
||
// gguf constants (sync with gguf.py)
|
||
//
|
||
|
||
enum llm_arch {
|
||
LLM_ARCH_LLAMA,
|
||
LLM_ARCH_FALCON,
|
||
LLM_ARCH_BAICHUAN,
|
||
LLM_ARCH_GROK,
|
||
LLM_ARCH_GPT2,
|
||
LLM_ARCH_GPTJ,
|
||
LLM_ARCH_GPTNEOX,
|
||
LLM_ARCH_MPT,
|
||
LLM_ARCH_STARCODER,
|
||
LLM_ARCH_REFACT,
|
||
LLM_ARCH_BERT,
|
||
LLM_ARCH_NOMIC_BERT,
|
||
LLM_ARCH_JINA_BERT_V2,
|
||
LLM_ARCH_BLOOM,
|
||
LLM_ARCH_STABLELM,
|
||
LLM_ARCH_QWEN,
|
||
LLM_ARCH_QWEN2,
|
||
LLM_ARCH_QWEN2MOE,
|
||
LLM_ARCH_PHI2,
|
||
LLM_ARCH_PHI3,
|
||
LLM_ARCH_PLAMO,
|
||
LLM_ARCH_CODESHELL,
|
||
LLM_ARCH_ORION,
|
||
LLM_ARCH_INTERNLM2,
|
||
LLM_ARCH_MINICPM,
|
||
LLM_ARCH_MINICPM3,
|
||
LLM_ARCH_GEMMA,
|
||
LLM_ARCH_GEMMA2,
|
||
LLM_ARCH_STARCODER2,
|
||
LLM_ARCH_MAMBA,
|
||
LLM_ARCH_XVERSE,
|
||
LLM_ARCH_COMMAND_R,
|
||
LLM_ARCH_DBRX,
|
||
LLM_ARCH_OLMO,
|
||
LLM_ARCH_OLMOE,
|
||
LLM_ARCH_OPENELM,
|
||
LLM_ARCH_ARCTIC,
|
||
LLM_ARCH_DEEPSEEK2,
|
||
LLM_ARCH_CHATGLM,
|
||
LLM_ARCH_BITNET,
|
||
LLM_ARCH_T5,
|
||
LLM_ARCH_T5ENCODER,
|
||
LLM_ARCH_JAIS,
|
||
LLM_ARCH_NEMOTRON,
|
||
LLM_ARCH_EXAONE,
|
||
LLM_ARCH_RWKV6,
|
||
LLM_ARCH_GRANITE,
|
||
LLM_ARCH_GRANITE_MOE,
|
||
LLM_ARCH_CHAMELEON,
|
||
LLM_ARCH_UNKNOWN,
|
||
};
|
||
|
||
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||
{ LLM_ARCH_LLAMA, "llama" },
|
||
{ LLM_ARCH_FALCON, "falcon" },
|
||
{ LLM_ARCH_GROK, "grok" },
|
||
{ LLM_ARCH_GPT2, "gpt2" },
|
||
{ LLM_ARCH_GPTJ, "gptj" },
|
||
{ LLM_ARCH_GPTNEOX, "gptneox" },
|
||
{ LLM_ARCH_MPT, "mpt" },
|
||
{ LLM_ARCH_BAICHUAN, "baichuan" },
|
||
{ LLM_ARCH_STARCODER, "starcoder" },
|
||
{ LLM_ARCH_REFACT, "refact" },
|
||
{ LLM_ARCH_BERT, "bert" },
|
||
{ LLM_ARCH_NOMIC_BERT, "nomic-bert" },
|
||
{ LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
|
||
{ LLM_ARCH_BLOOM, "bloom" },
|
||
{ LLM_ARCH_STABLELM, "stablelm" },
|
||
{ LLM_ARCH_QWEN, "qwen" },
|
||
{ LLM_ARCH_QWEN2, "qwen2" },
|
||
{ LLM_ARCH_QWEN2MOE, "qwen2moe" },
|
||
{ LLM_ARCH_PHI2, "phi2" },
|
||
{ LLM_ARCH_PHI3, "phi3" },
|
||
{ LLM_ARCH_PLAMO, "plamo" },
|
||
{ LLM_ARCH_CODESHELL, "codeshell" },
|
||
{ LLM_ARCH_ORION, "orion" },
|
||
{ LLM_ARCH_INTERNLM2, "internlm2" },
|
||
{ LLM_ARCH_MINICPM, "minicpm" },
|
||
{ LLM_ARCH_MINICPM3, "minicpm3" },
|
||
{ LLM_ARCH_GEMMA, "gemma" },
|
||
{ LLM_ARCH_GEMMA2, "gemma2" },
|
||
{ LLM_ARCH_STARCODER2, "starcoder2" },
|
||
{ LLM_ARCH_MAMBA, "mamba" },
|
||
{ LLM_ARCH_XVERSE, "xverse" },
|
||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||
{ LLM_ARCH_DBRX, "dbrx" },
|
||
{ LLM_ARCH_OLMO, "olmo" },
|
||
{ LLM_ARCH_OLMOE, "olmoe" },
|
||
{ LLM_ARCH_OPENELM, "openelm" },
|
||
{ LLM_ARCH_ARCTIC, "arctic" },
|
||
{ LLM_ARCH_DEEPSEEK2, "deepseek2" },
|
||
{ LLM_ARCH_CHATGLM, "chatglm" },
|
||
{ LLM_ARCH_BITNET, "bitnet" },
|
||
{ LLM_ARCH_T5, "t5" },
|
||
{ LLM_ARCH_T5ENCODER, "t5encoder" },
|
||
{ LLM_ARCH_JAIS, "jais" },
|
||
{ LLM_ARCH_NEMOTRON, "nemotron" },
|
||
{ LLM_ARCH_EXAONE, "exaone" },
|
||
{ LLM_ARCH_RWKV6, "rwkv6" },
|
||
{ LLM_ARCH_GRANITE, "granite" },
|
||
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
||
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||
};
|
||
|
||
enum llm_kv {
|
||
LLM_KV_GENERAL_TYPE,
|
||
LLM_KV_GENERAL_ARCHITECTURE,
|
||
LLM_KV_GENERAL_QUANTIZATION_VERSION,
|
||
LLM_KV_GENERAL_ALIGNMENT,
|
||
LLM_KV_GENERAL_NAME,
|
||
LLM_KV_GENERAL_AUTHOR,
|
||
LLM_KV_GENERAL_VERSION,
|
||
LLM_KV_GENERAL_URL,
|
||
LLM_KV_GENERAL_DESCRIPTION,
|
||
LLM_KV_GENERAL_LICENSE,
|
||
LLM_KV_GENERAL_SOURCE_URL,
|
||
LLM_KV_GENERAL_SOURCE_HF_REPO,
|
||
|
||
LLM_KV_VOCAB_SIZE,
|
||
LLM_KV_CONTEXT_LENGTH,
|
||
LLM_KV_EMBEDDING_LENGTH,
|
||
LLM_KV_BLOCK_COUNT,
|
||
LLM_KV_LEADING_DENSE_BLOCK_COUNT,
|
||
LLM_KV_FEED_FORWARD_LENGTH,
|
||
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
|
||
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
|
||
LLM_KV_USE_PARALLEL_RESIDUAL,
|
||
LLM_KV_TENSOR_DATA_LAYOUT,
|
||
LLM_KV_EXPERT_COUNT,
|
||
LLM_KV_EXPERT_USED_COUNT,
|
||
LLM_KV_EXPERT_SHARED_COUNT,
|
||
LLM_KV_EXPERT_WEIGHTS_SCALE,
|
||
LLM_KV_POOLING_TYPE,
|
||
LLM_KV_LOGIT_SCALE,
|
||
LLM_KV_DECODER_START_TOKEN_ID,
|
||
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
|
||
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
|
||
LLM_KV_SWIN_NORM,
|
||
LLM_KV_RESCALE_EVERY_N_LAYERS,
|
||
LLM_KV_TIME_MIX_EXTRA_DIM,
|
||
LLM_KV_TIME_DECAY_EXTRA_DIM,
|
||
LLM_KV_RESIDUAL_SCALE,
|
||
LLM_KV_EMBEDDING_SCALE,
|
||
|
||
LLM_KV_ATTENTION_HEAD_COUNT,
|
||
LLM_KV_ATTENTION_HEAD_COUNT_KV,
|
||
LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
|
||
LLM_KV_ATTENTION_CLAMP_KQV,
|
||
LLM_KV_ATTENTION_KEY_LENGTH,
|
||
LLM_KV_ATTENTION_VALUE_LENGTH,
|
||
LLM_KV_ATTENTION_LAYERNORM_EPS,
|
||
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
|
||
LLM_KV_ATTENTION_CAUSAL,
|
||
LLM_KV_ATTENTION_Q_LORA_RANK,
|
||
LLM_KV_ATTENTION_KV_LORA_RANK,
|
||
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
|
||
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
||
LLM_KV_ATTENTION_SCALE,
|
||
|
||
LLM_KV_ROPE_DIMENSION_COUNT,
|
||
LLM_KV_ROPE_FREQ_BASE,
|
||
LLM_KV_ROPE_SCALE_LINEAR,
|
||
LLM_KV_ROPE_SCALING_TYPE,
|
||
LLM_KV_ROPE_SCALING_FACTOR,
|
||
LLM_KV_ROPE_SCALING_ATTN_FACTOR,
|
||
LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
|
||
LLM_KV_ROPE_SCALING_FINETUNED,
|
||
LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
|
||
|
||
LLM_KV_SPLIT_NO,
|
||
LLM_KV_SPLIT_COUNT,
|
||
LLM_KV_SPLIT_TENSORS_COUNT,
|
||
|
||
LLM_KV_SSM_INNER_SIZE,
|
||
LLM_KV_SSM_CONV_KERNEL,
|
||
LLM_KV_SSM_STATE_SIZE,
|
||
LLM_KV_SSM_TIME_STEP_RANK,
|
||
LLM_KV_SSM_DT_B_C_RMS,
|
||
|
||
LLM_KV_WKV_HEAD_SIZE,
|
||
|
||
LLM_KV_TOKENIZER_MODEL,
|
||
LLM_KV_TOKENIZER_PRE,
|
||
LLM_KV_TOKENIZER_LIST,
|
||
LLM_KV_TOKENIZER_TOKEN_TYPE,
|
||
LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
|
||
LLM_KV_TOKENIZER_SCORES,
|
||
LLM_KV_TOKENIZER_MERGES,
|
||
LLM_KV_TOKENIZER_BOS_ID,
|
||
LLM_KV_TOKENIZER_EOS_ID,
|
||
LLM_KV_TOKENIZER_UNK_ID,
|
||
LLM_KV_TOKENIZER_SEP_ID,
|
||
LLM_KV_TOKENIZER_PAD_ID,
|
||
LLM_KV_TOKENIZER_CLS_ID,
|
||
LLM_KV_TOKENIZER_MASK_ID,
|
||
LLM_KV_TOKENIZER_ADD_BOS,
|
||
LLM_KV_TOKENIZER_ADD_EOS,
|
||
LLM_KV_TOKENIZER_ADD_PREFIX,
|
||
LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,
|
||
LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,
|
||
LLM_KV_TOKENIZER_HF_JSON,
|
||
LLM_KV_TOKENIZER_RWKV,
|
||
LLM_KV_TOKENIZER_PREFIX_ID,
|
||
LLM_KV_TOKENIZER_SUFFIX_ID,
|
||
LLM_KV_TOKENIZER_MIDDLE_ID,
|
||
LLM_KV_TOKENIZER_EOT_ID,
|
||
LLM_KV_TOKENIZER_EOM_ID,
|
||
|
||
LLM_KV_ADAPTER_TYPE,
|
||
LLM_KV_ADAPTER_LORA_ALPHA,
|
||
};
|
||
|
||
static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||
{ LLM_KV_GENERAL_TYPE, "general.type" },
|
||
{ LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
|
||
{ LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
|
||
{ LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
|
||
{ LLM_KV_GENERAL_NAME, "general.name" },
|
||
{ LLM_KV_GENERAL_AUTHOR, "general.author" },
|
||
{ LLM_KV_GENERAL_VERSION, "general.version" },
|
||
{ LLM_KV_GENERAL_URL, "general.url" },
|
||
{ LLM_KV_GENERAL_DESCRIPTION, "general.description" },
|
||
{ LLM_KV_GENERAL_LICENSE, "general.license" },
|
||
{ LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
|
||
{ LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
|
||
|
||
{ LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
|
||
{ LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
|
||
{ LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
|
||
{ LLM_KV_BLOCK_COUNT, "%s.block_count" },
|
||
{ LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
|
||
{ LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
|
||
{ LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
|
||
{ LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
|
||
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
|
||
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
|
||
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
|
||
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
|
||
{ LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
|
||
{ LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
|
||
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
|
||
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
|
||
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
|
||
{ LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
|
||
{ LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
|
||
{ LLM_KV_SWIN_NORM, "%s.swin_norm" },
|
||
{ LLM_KV_RESCALE_EVERY_N_LAYERS, "%s.rescale_every_n_layers" },
|
||
{ LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" },
|
||
{ LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" },
|
||
{ LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
|
||
{ LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
|
||
|
||
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
|
||
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
|
||
{ LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
|
||
{ LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
|
||
{ LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
|
||
{ LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
|
||
{ LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
|
||
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
|
||
{ LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
|
||
{ LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
|
||
{ LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
|
||
{ LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
|
||
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||
|
||
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
||
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
||
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
|
||
{ LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
|
||
{ LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
|
||
{ LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
|
||
{ LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
|
||
{ LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
|
||
{ LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
|
||
|
||
{ LLM_KV_SPLIT_NO, "split.no" },
|
||
{ LLM_KV_SPLIT_COUNT, "split.count" },
|
||
{ LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
|
||
|
||
{ LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
|
||
{ LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
|
||
{ LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
|
||
{ LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
|
||
{ LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" },
|
||
|
||
{ LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" },
|
||
|
||
{ LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
|
||
{ LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
|
||
{ LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
|
||
{ LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
|
||
{ LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
|
||
{ LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
|
||
{ LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
|
||
{ LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
|
||
{ LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
|
||
{ LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
|
||
{ LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
|
||
{ LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
|
||
{ LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
|
||
{ LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
|
||
{ LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
|
||
{ LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
|
||
{ LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
|
||
{ LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, "tokenizer.ggml.remove_extra_whitespaces" },
|
||
{ LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, "tokenizer.ggml.precompiled_charsmap" },
|
||
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
|
||
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
|
||
{ LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
|
||
{ LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
|
||
{ LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
|
||
{ LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
|
||
{ LLM_KV_TOKENIZER_EOM_ID, "tokenizer.ggml.eom_token_id" },
|
||
|
||
{ LLM_KV_ADAPTER_TYPE, "adapter.type" },
|
||
{ LLM_KV_ADAPTER_LORA_ALPHA, "adapter.lora.alpha" },
|
||
};
|
||
|
||
struct LLM_KV {
|
||
LLM_KV(llm_arch arch) : arch(arch) {}
|
||
|
||
llm_arch arch;
|
||
|
||
std::string operator()(llm_kv kv) const {
|
||
return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
|
||
}
|
||
};
|
||
|
||
enum llm_tensor {
|
||
LLM_TENSOR_TOKEN_EMBD,
|
||
LLM_TENSOR_TOKEN_EMBD_NORM,
|
||
LLM_TENSOR_TOKEN_TYPES,
|
||
LLM_TENSOR_POS_EMBD,
|
||
LLM_TENSOR_OUTPUT,
|
||
LLM_TENSOR_OUTPUT_NORM,
|
||
LLM_TENSOR_ROPE_FREQS,
|
||
LLM_TENSOR_ROPE_FACTORS_LONG,
|
||
LLM_TENSOR_ROPE_FACTORS_SHORT,
|
||
LLM_TENSOR_ATTN_Q,
|
||
LLM_TENSOR_ATTN_K,
|
||
LLM_TENSOR_ATTN_V,
|
||
LLM_TENSOR_ATTN_QKV,
|
||
LLM_TENSOR_ATTN_OUT,
|
||
LLM_TENSOR_ATTN_NORM,
|
||
LLM_TENSOR_ATTN_NORM_2,
|
||
LLM_TENSOR_ATTN_OUT_NORM,
|
||
LLM_TENSOR_ATTN_POST_NORM,
|
||
LLM_TENSOR_ATTN_ROT_EMBD,
|
||
LLM_TENSOR_FFN_GATE_INP,
|
||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||
LLM_TENSOR_FFN_NORM,
|
||
LLM_TENSOR_FFN_POST_NORM,
|
||
LLM_TENSOR_FFN_GATE,
|
||
LLM_TENSOR_FFN_DOWN,
|
||
LLM_TENSOR_FFN_UP,
|
||
LLM_TENSOR_FFN_ACT,
|
||
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
|
||
LLM_TENSOR_FFN_GATE_EXP,
|
||
LLM_TENSOR_FFN_UP_EXP,
|
||
LLM_TENSOR_FFN_NORM_EXPS,
|
||
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
|
||
LLM_TENSOR_FFN_GATE_EXPS,
|
||
LLM_TENSOR_FFN_UP_EXPS,
|
||
LLM_TENSOR_FFN_DOWN_SHEXP,
|
||
LLM_TENSOR_FFN_GATE_SHEXP,
|
||
LLM_TENSOR_FFN_UP_SHEXP,
|
||
LLM_TENSOR_ATTN_Q_NORM,
|
||
LLM_TENSOR_ATTN_K_NORM,
|
||
LLM_TENSOR_LAYER_OUT_NORM,
|
||
LLM_TENSOR_SSM_IN,
|
||
LLM_TENSOR_SSM_CONV1D,
|
||
LLM_TENSOR_SSM_X,
|
||
LLM_TENSOR_SSM_DT,
|
||
LLM_TENSOR_SSM_A,
|
||
LLM_TENSOR_SSM_D,
|
||
LLM_TENSOR_SSM_OUT,
|
||
LLM_TENSOR_TIME_MIX_W1,
|
||
LLM_TENSOR_TIME_MIX_W2,
|
||
LLM_TENSOR_TIME_MIX_LERP_X,
|
||
LLM_TENSOR_TIME_MIX_LERP_W,
|
||
LLM_TENSOR_TIME_MIX_LERP_K,
|
||
LLM_TENSOR_TIME_MIX_LERP_V,
|
||
LLM_TENSOR_TIME_MIX_LERP_R,
|
||
LLM_TENSOR_TIME_MIX_LERP_G,
|
||
LLM_TENSOR_TIME_MIX_FIRST,
|
||
LLM_TENSOR_TIME_MIX_DECAY,
|
||
LLM_TENSOR_TIME_MIX_DECAY_W1,
|
||
LLM_TENSOR_TIME_MIX_DECAY_W2,
|
||
LLM_TENSOR_TIME_MIX_KEY,
|
||
LLM_TENSOR_TIME_MIX_VALUE,
|
||
LLM_TENSOR_TIME_MIX_RECEPTANCE,
|
||
LLM_TENSOR_TIME_MIX_GATE,
|
||
LLM_TENSOR_TIME_MIX_LN,
|
||
LLM_TENSOR_TIME_MIX_OUTPUT,
|
||
LLM_TENSOR_CHANNEL_MIX_LERP_K,
|
||
LLM_TENSOR_CHANNEL_MIX_LERP_R,
|
||
LLM_TENSOR_CHANNEL_MIX_KEY,
|
||
LLM_TENSOR_CHANNEL_MIX_RECEPTANCE,
|
||
LLM_TENSOR_CHANNEL_MIX_VALUE,
|
||
LLM_TENSOR_ATTN_Q_A,
|
||
LLM_TENSOR_ATTN_Q_B,
|
||
LLM_TENSOR_ATTN_KV_A_MQA,
|
||
LLM_TENSOR_ATTN_KV_B,
|
||
LLM_TENSOR_ATTN_Q_A_NORM,
|
||
LLM_TENSOR_ATTN_KV_A_NORM,
|
||
LLM_TENSOR_ATTN_SUB_NORM,
|
||
LLM_TENSOR_FFN_SUB_NORM,
|
||
LLM_TENSOR_DEC_ATTN_NORM,
|
||
LLM_TENSOR_DEC_ATTN_Q,
|
||
LLM_TENSOR_DEC_ATTN_K,
|
||
LLM_TENSOR_DEC_ATTN_V,
|
||
LLM_TENSOR_DEC_ATTN_OUT,
|
||
LLM_TENSOR_DEC_ATTN_REL_B,
|
||
LLM_TENSOR_DEC_CROSS_ATTN_NORM,
|
||
LLM_TENSOR_DEC_CROSS_ATTN_Q,
|
||
LLM_TENSOR_DEC_CROSS_ATTN_K,
|
||
LLM_TENSOR_DEC_CROSS_ATTN_V,
|
||
LLM_TENSOR_DEC_CROSS_ATTN_OUT,
|
||
LLM_TENSOR_DEC_CROSS_ATTN_REL_B,
|
||
LLM_TENSOR_DEC_FFN_NORM,
|
||
LLM_TENSOR_DEC_FFN_GATE,
|
||
LLM_TENSOR_DEC_FFN_DOWN,
|
||
LLM_TENSOR_DEC_FFN_UP,
|
||
LLM_TENSOR_DEC_OUTPUT_NORM,
|
||
LLM_TENSOR_ENC_ATTN_NORM,
|
||
LLM_TENSOR_ENC_ATTN_Q,
|
||
LLM_TENSOR_ENC_ATTN_K,
|
||
LLM_TENSOR_ENC_ATTN_V,
|
||
LLM_TENSOR_ENC_ATTN_OUT,
|
||
LLM_TENSOR_ENC_ATTN_REL_B,
|
||
LLM_TENSOR_ENC_FFN_NORM,
|
||
LLM_TENSOR_ENC_FFN_GATE,
|
||
LLM_TENSOR_ENC_FFN_DOWN,
|
||
LLM_TENSOR_ENC_FFN_UP,
|
||
LLM_TENSOR_ENC_OUTPUT_NORM,
|
||
LLM_TENSOR_CLS,
|
||
LLM_TENSOR_CLS_OUT,
|
||
};
|
||
|
||
static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_NAMES = {
|
||
{
|
||
LLM_ARCH_LLAMA,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_BAICHUAN,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_FALCON,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_GROK,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
|
||
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_GPT2,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_POS_EMBD, "position_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_GPTJ,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_GPTNEOX,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_MPT,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output"},
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
|
||
{ LLM_TENSOR_POS_EMBD, "position_embd" },
|
||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
|
||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_STARCODER,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_POS_EMBD, "position_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_REFACT,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_BERT,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
|
||
{ LLM_TENSOR_POS_EMBD, "position_embd" },
|
||
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_CLS, "cls" },
|
||
{ LLM_TENSOR_CLS_OUT, "cls.output" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_NOMIC_BERT,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
|
||
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_JINA_BERT_V2,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||
{ LLM_TENSOR_TOKEN_TYPES, "token_types" },
|
||
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
|
||
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_CLS, "cls" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_BLOOM,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_STABLELM,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_QWEN,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_QWEN2,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_QWEN2MOE,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||
{ LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
|
||
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
|
||
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_PHI2,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_PHI3,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
|
||
{ LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_PLAMO,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_CODESHELL,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_ORION,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_INTERNLM2,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_MINICPM,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_MINICPM3,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
|
||
{ LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
|
||
{ LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
|
||
{ LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
|
||
{ LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
|
||
{ LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_GEMMA,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_GEMMA2,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_STARCODER2,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_MAMBA,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
|
||
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
|
||
{ LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
|
||
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
|
||
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
|
||
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
|
||
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_XVERSE,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_COMMAND_R,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_DBRX,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
|
||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_OLMO,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_OLMOE,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_OPENELM,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_ARCTIC,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
|
||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_DEEPSEEK2,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
|
||
{ LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
|
||
{ LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
|
||
{ LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
|
||
{ LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||
{ LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
|
||
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
|
||
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_CHATGLM,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_BITNET,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_T5,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_DEC_OUTPUT_NORM, "dec.output_norm" },
|
||
{ LLM_TENSOR_DEC_ATTN_NORM, "dec.blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_DEC_ATTN_Q, "dec.blk.%d.attn_q" },
|
||
{ LLM_TENSOR_DEC_ATTN_K, "dec.blk.%d.attn_k" },
|
||
{ LLM_TENSOR_DEC_ATTN_V, "dec.blk.%d.attn_v" },
|
||
{ LLM_TENSOR_DEC_ATTN_OUT, "dec.blk.%d.attn_o" },
|
||
{ LLM_TENSOR_DEC_ATTN_REL_B, "dec.blk.%d.attn_rel_b" },
|
||
{ LLM_TENSOR_DEC_CROSS_ATTN_NORM, "dec.blk.%d.cross_attn_norm" },
|
||
{ LLM_TENSOR_DEC_CROSS_ATTN_Q, "dec.blk.%d.cross_attn_q" },
|
||
{ LLM_TENSOR_DEC_CROSS_ATTN_K, "dec.blk.%d.cross_attn_k" },
|
||
{ LLM_TENSOR_DEC_CROSS_ATTN_V, "dec.blk.%d.cross_attn_v" },
|
||
{ LLM_TENSOR_DEC_CROSS_ATTN_OUT, "dec.blk.%d.cross_attn_o" },
|
||
{ LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "dec.blk.%d.cross_attn_rel_b" },
|
||
{ LLM_TENSOR_DEC_FFN_NORM, "dec.blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_DEC_FFN_GATE, "dec.blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_DEC_FFN_DOWN, "dec.blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_DEC_FFN_UP, "dec.blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
|
||
{ LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
|
||
{ LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
|
||
{ LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_T5ENCODER,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ENC_OUTPUT_NORM, "enc.output_norm" },
|
||
{ LLM_TENSOR_ENC_ATTN_NORM, "enc.blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ENC_ATTN_Q, "enc.blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ENC_ATTN_K, "enc.blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ENC_ATTN_V, "enc.blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ENC_ATTN_OUT, "enc.blk.%d.attn_o" },
|
||
{ LLM_TENSOR_ENC_ATTN_REL_B, "enc.blk.%d.attn_rel_b" },
|
||
{ LLM_TENSOR_ENC_FFN_NORM, "enc.blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_ENC_FFN_GATE, "enc.blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_ENC_FFN_DOWN, "enc.blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_ENC_FFN_UP, "enc.blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_JAIS,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_NEMOTRON,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_EXAONE,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_RWKV6,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
|
||
{ LLM_TENSOR_TIME_MIX_W1, "blk.%d.time_mix_w1" },
|
||
{ LLM_TENSOR_TIME_MIX_W2, "blk.%d.time_mix_w2" },
|
||
{ LLM_TENSOR_TIME_MIX_LERP_X, "blk.%d.time_mix_lerp_x" },
|
||
{ LLM_TENSOR_TIME_MIX_LERP_W, "blk.%d.time_mix_lerp_w" },
|
||
{ LLM_TENSOR_TIME_MIX_LERP_K, "blk.%d.time_mix_lerp_k" },
|
||
{ LLM_TENSOR_TIME_MIX_LERP_V, "blk.%d.time_mix_lerp_v" },
|
||
{ LLM_TENSOR_TIME_MIX_LERP_R, "blk.%d.time_mix_lerp_r" },
|
||
{ LLM_TENSOR_TIME_MIX_LERP_G, "blk.%d.time_mix_lerp_g" },
|
||
{ LLM_TENSOR_TIME_MIX_FIRST, "blk.%d.time_mix_first" },
|
||
{ LLM_TENSOR_TIME_MIX_DECAY, "blk.%d.time_mix_decay" },
|
||
{ LLM_TENSOR_TIME_MIX_DECAY_W1, "blk.%d.time_mix_decay_w1" },
|
||
{ LLM_TENSOR_TIME_MIX_DECAY_W2, "blk.%d.time_mix_decay_w2" },
|
||
{ LLM_TENSOR_TIME_MIX_KEY, "blk.%d.time_mix_key" },
|
||
{ LLM_TENSOR_TIME_MIX_VALUE, "blk.%d.time_mix_value" },
|
||
{ LLM_TENSOR_TIME_MIX_RECEPTANCE, "blk.%d.time_mix_receptance" },
|
||
{ LLM_TENSOR_TIME_MIX_GATE, "blk.%d.time_mix_gate" },
|
||
{ LLM_TENSOR_TIME_MIX_LN, "blk.%d.time_mix_ln" },
|
||
{ LLM_TENSOR_TIME_MIX_OUTPUT, "blk.%d.time_mix_output" },
|
||
{ LLM_TENSOR_CHANNEL_MIX_LERP_K, "blk.%d.channel_mix_lerp_k" },
|
||
{ LLM_TENSOR_CHANNEL_MIX_LERP_R, "blk.%d.channel_mix_lerp_r" },
|
||
{ LLM_TENSOR_CHANNEL_MIX_KEY, "blk.%d.channel_mix_key" },
|
||
{ LLM_TENSOR_CHANNEL_MIX_VALUE, "blk.%d.channel_mix_value" },
|
||
{ LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_GRANITE,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_GRANITE_MOE,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_CHAMELEON,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||
{ LLM_TENSOR_OUTPUT, "output" },
|
||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||
},
|
||
},
|
||
{
|
||
LLM_ARCH_UNKNOWN,
|
||
{
|
||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||
},
|
||
},
|
||
};
|
||
|
||
static llm_arch llm_arch_from_string(const std::string & name) {
|
||
for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
|
||
if (kv.second == name) {
|
||
return kv.first;
|
||
}
|
||
}
|
||
|
||
return LLM_ARCH_UNKNOWN;
|
||
}
|
||
|
||
// helper to handle gguf constants
|
||
// usage:
|
||
//
|
||
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
|
||
//
|
||
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
|
||
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
|
||
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
|
||
//
|
||
struct LLM_TN {
|
||
LLM_TN(llm_arch arch) : arch(arch) {}
|
||
|
||
llm_arch arch;
|
||
|
||
std::string operator()(llm_tensor tensor) const {
|
||
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
|
||
return "__missing__";
|
||
}
|
||
return LLM_TENSOR_NAMES.at(arch).at(tensor);
|
||
}
|
||
|
||
std::string operator()(llm_tensor tensor, const char * suffix) const {
|
||
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
|
||
return "__missing__";
|
||
}
|
||
return std::string(LLM_TENSOR_NAMES.at(arch).at(tensor)) + "." + suffix;
|
||
}
|
||
|
||
std::string operator()(llm_tensor tensor, int bid) const {
|
||
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
|
||
return "__missing__";
|
||
}
|
||
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid);
|
||
}
|
||
|
||
std::string operator()(llm_tensor tensor, const char * suffix, int bid) const {
|
||
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
|
||
return "__missing__";
|
||
}
|
||
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid) + "." + suffix;
|
||
}
|
||
|
||
std::string operator()(llm_tensor tensor, const char * suffix, int bid, int xid) const {
|
||
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
|
||
return "__missing__";
|
||
}
|
||
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid, xid) + "." + suffix;
|
||
}
|
||
};
|
||
|
||
//
|
||
// gguf helpers
|
||
//
|
||
|
||
static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
|
||
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
|
||
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
|
||
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
|
||
};
|
||
|
||
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
|
||
for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
|
||
if (kv.second == name) {
|
||
return (llama_rope_scaling_type) kv.first;
|
||
}
|
||
}
|
||
|
||
return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||
}
|
||
|
||
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
|
||
switch (type) {
|
||
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
|
||
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
|
||
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
|
||
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
|
||
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
|
||
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
|
||
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
|
||
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
|
||
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
|
||
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
|
||
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
|
||
default: return format("unknown type %d", type);
|
||
}
|
||
}
|
||
|
||
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
|
||
|
||
switch (type) {
|
||
case GGUF_TYPE_STRING:
|
||
return gguf_get_val_str(ctx_gguf, i);
|
||
case GGUF_TYPE_ARRAY:
|
||
{
|
||
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
|
||
int arr_n = gguf_get_arr_n(ctx_gguf, i);
|
||
const void * data = gguf_get_arr_data(ctx_gguf, i);
|
||
std::stringstream ss;
|
||
ss << "[";
|
||
for (int j = 0; j < arr_n; j++) {
|
||
if (arr_type == GGUF_TYPE_STRING) {
|
||
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
|
||
// escape quotes
|
||
replace_all(val, "\\", "\\\\");
|
||
replace_all(val, "\"", "\\\"");
|
||
ss << '"' << val << '"';
|
||
} else if (arr_type == GGUF_TYPE_ARRAY) {
|
||
ss << "???";
|
||
} else {
|
||
ss << gguf_data_to_str(arr_type, data, j);
|
||
}
|
||
if (j < arr_n - 1) {
|
||
ss << ", ";
|
||
}
|
||
}
|
||
ss << "]";
|
||
return ss.str();
|
||
}
|
||
default:
|
||
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
|
||
}
|
||
}
|
||
|
||
//
|
||
// llama helpers
|
||
//
|
||
|
||
#if defined(_WIN32)
|
||
static std::string llama_format_win_err(DWORD err) {
|
||
LPSTR buf;
|
||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||
if (!size) {
|
||
return "FormatMessageA failed";
|
||
}
|
||
std::string ret(buf, size);
|
||
LocalFree(buf);
|
||
return ret;
|
||
}
|
||
#endif
|
||
|
||
template <typename T>
|
||
struct no_init {
|
||
T value;
|
||
no_init() { /* do nothing */ }
|
||
};
|
||
|
||
struct llama_file {
|
||
|
||
#if defined(_WIN32)
|
||
// use FILE * so we don't have to re-open the file to mmap
|
||
FILE * fp;
|
||
HANDLE fp_win32;
|
||
size_t size;
|
||
|
||
private:
|
||
std::string GetErrorMessageWin32(DWORD error_code) const {
|
||
std::string ret;
|
||
LPSTR lpMsgBuf = NULL;
|
||
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
|
||
if (!bufLen) {
|
||
ret = format("Win32 error code: %s", error_code);
|
||
} else {
|
||
ret = lpMsgBuf;
|
||
LocalFree(lpMsgBuf);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
public:
|
||
|
||
llama_file(const char * fname, const char * mode) {
|
||
fp = ggml_fopen(fname, mode);
|
||
if (fp == NULL) {
|
||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||
}
|
||
fp_win32 = (HANDLE) _get_osfhandle(_fileno(fp));
|
||
seek(0, SEEK_END);
|
||
size = tell();
|
||
seek(0, SEEK_SET);
|
||
}
|
||
|
||
size_t tell() const {
|
||
// SetFilePointerEx returns the current position when seeking relative 0 bytes
|
||
LARGE_INTEGER li;
|
||
li.QuadPart = 0;
|
||
BOOL ret = SetFilePointerEx(fp_win32, li, &li, FILE_CURRENT);
|
||
if (!ret) {
|
||
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||
}
|
||
|
||
return li.QuadPart;
|
||
}
|
||
|
||
void seek(size_t offset, int whence) const {
|
||
// no need to convert SEEK_* to FILE_*. The enums are the same.
|
||
// Still, keep static asserts to avoid failures in the future.
|
||
static_assert(SEEK_SET == FILE_BEGIN, "SEEK_SET != FILE_BEGIN");
|
||
static_assert(SEEK_CUR == FILE_CURRENT, "SEEK_CUR != FILE_CURRENT");
|
||
static_assert(SEEK_END == FILE_END, "SEEK_END != FILE_END");
|
||
|
||
LARGE_INTEGER li;
|
||
li.QuadPart = offset;
|
||
BOOL ret = SetFilePointerEx(fp_win32, li, NULL, whence);
|
||
if (!ret) {
|
||
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||
}
|
||
}
|
||
|
||
void read_raw(void * ptr, size_t len) const {
|
||
// On Win32 ReadFile is significant faster than fread which is again significant faster than std::fstream. Thus
|
||
// use the Win32 API to do file io instead of the C/C++ library functions.
|
||
|
||
// There are conditions under which ReadFile cannot read chunks >64MB.
|
||
// Thus split the operation into smaller chunks if len exceeds this limit.
|
||
size_t bytes_read = 0;
|
||
while (bytes_read < len) {
|
||
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
|
||
DWORD chunk_read = 0;
|
||
BOOL result = ReadFile(fp_win32, reinterpret_cast<char*>(ptr) + bytes_read, chunk_size, &chunk_read, NULL);
|
||
if (!result) {
|
||
throw std::runtime_error(format("read error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||
}
|
||
if (chunk_read < chunk_size || chunk_read == 0) {
|
||
throw std::runtime_error("unexpectedly reached end of file");
|
||
}
|
||
|
||
bytes_read += chunk_read;
|
||
} ;
|
||
}
|
||
|
||
uint32_t read_u32() const {
|
||
uint32_t val;
|
||
read_raw(&val, sizeof(val));
|
||
return val;
|
||
}
|
||
|
||
void write_raw(const void * ptr, size_t len) const {
|
||
// There are conditions under which WriteFile cannot write chunks >64MB.
|
||
// Thus split the operation into smaller chunks if len exceeds this limit.
|
||
size_t bytes_written = 0;
|
||
while (bytes_written < len) {
|
||
size_t chunk_size = std::min<size_t>(len - bytes_written, 64*1024*1024);
|
||
DWORD chunk_written = 0;
|
||
BOOL result = WriteFile(fp_win32, reinterpret_cast<char const*>(ptr) + bytes_written, chunk_size, &chunk_written, NULL);
|
||
if (!result) {
|
||
throw std::runtime_error(format("write error: %s", GetErrorMessageWin32(GetLastError()).c_str()));
|
||
}
|
||
if (chunk_written < chunk_size || chunk_written == 0) {
|
||
throw std::runtime_error("unexpectedly failed to write bytes");
|
||
}
|
||
|
||
bytes_written += chunk_written;
|
||
}
|
||
}
|
||
|
||
void write_u32(std::uint32_t val) const {
|
||
write_raw(&val, sizeof(val));
|
||
}
|
||
|
||
~llama_file() {
|
||
if (fp) {
|
||
std::fclose(fp);
|
||
}
|
||
}
|
||
#else
|
||
// use FILE * so we don't have to re-open the file to mmap
|
||
FILE * fp;
|
||
size_t size;
|
||
|
||
llama_file(const char * fname, const char * mode) {
|
||
fp = ggml_fopen(fname, mode);
|
||
if (fp == NULL) {
|
||
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
|
||
}
|
||
seek(0, SEEK_END);
|
||
size = tell();
|
||
seek(0, SEEK_SET);
|
||
}
|
||
|
||
size_t tell() const {
|
||
#ifdef _WIN32
|
||
__int64 ret = _ftelli64(fp);
|
||
#else
|
||
long ret = std::ftell(fp);
|
||
#endif
|
||
if (ret == -1) {
|
||
throw std::runtime_error(format("ftell error: %s", strerror(errno)));
|
||
}
|
||
|
||
return (size_t) ret;
|
||
}
|
||
|
||
void seek(size_t offset, int whence) const {
|
||
#ifdef _WIN32
|
||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||
#else
|
||
int ret = std::fseek(fp, (long) offset, whence);
|
||
#endif
|
||
if (ret != 0) {
|
||
throw std::runtime_error(format("seek error: %s", strerror(errno)));
|
||
}
|
||
}
|
||
|
||
void read_raw(void * ptr, size_t len) const {
|
||
if (len == 0) {
|
||
return;
|
||
}
|
||
errno = 0;
|
||
std::size_t ret = std::fread(ptr, len, 1, fp);
|
||
if (ferror(fp)) {
|
||
throw std::runtime_error(format("read error: %s", strerror(errno)));
|
||
}
|
||
if (ret != 1) {
|
||
throw std::runtime_error("unexpectedly reached end of file");
|
||
}
|
||
}
|
||
|
||
uint32_t read_u32() const {
|
||
uint32_t ret;
|
||
read_raw(&ret, sizeof(ret));
|
||
return ret;
|
||
}
|
||
|
||
void write_raw(const void * ptr, size_t len) const {
|
||
if (len == 0) {
|
||
return;
|
||
}
|
||
errno = 0;
|
||
size_t ret = std::fwrite(ptr, len, 1, fp);
|
||
if (ret != 1) {
|
||
throw std::runtime_error(format("write error: %s", strerror(errno)));
|
||
}
|
||
}
|
||
|
||
void write_u32(std::uint32_t val) const {
|
||
write_raw(&val, sizeof(val));
|
||
}
|
||
|
||
~llama_file() {
|
||
if (fp) {
|
||
std::fclose(fp);
|
||
}
|
||
}
|
||
#endif
|
||
};
|
||
using llama_files = std::vector<std::unique_ptr<llama_file>>;
|
||
|
||
struct llama_mmap {
|
||
void * addr;
|
||
size_t size;
|
||
|
||
llama_mmap(const llama_mmap &) = delete;
|
||
|
||
#ifdef _POSIX_MAPPED_FILES
|
||
static constexpr bool SUPPORTED = true;
|
||
|
||
// list of mapped fragments (first_offset, last_offset)
|
||
std::vector<std::pair<size_t, size_t>> mapped_fragments;
|
||
|
||
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
|
||
size = file->size;
|
||
int fd = fileno(file->fp);
|
||
int flags = MAP_SHARED;
|
||
// prefetch/readahead impairs performance on NUMA systems
|
||
if (numa) { prefetch = 0; }
|
||
#ifdef __linux__
|
||
// advise the kernel to read the file sequentially (increases readahead)
|
||
if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
|
||
LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
|
||
strerror(errno));
|
||
}
|
||
if (prefetch) { flags |= MAP_POPULATE; }
|
||
#endif
|
||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
||
if (addr == MAP_FAILED) { // NOLINT
|
||
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
|
||
}
|
||
|
||
if (prefetch > 0) {
|
||
// advise the kernel to preload the mapped memory
|
||
if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
|
||
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
|
||
strerror(errno));
|
||
}
|
||
}
|
||
if (numa) {
|
||
// advise the kernel not to use readahead
|
||
// (because the next page might not belong on the same node)
|
||
if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
|
||
LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
|
||
strerror(errno));
|
||
}
|
||
}
|
||
|
||
// initialize list of mapped_fragments
|
||
mapped_fragments.emplace_back(0, file->size);
|
||
}
|
||
|
||
static void align_range(size_t * first, size_t * last, size_t page_size) {
|
||
// align first to the next page
|
||
size_t offset_in_page = *first & (page_size - 1);
|
||
size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
|
||
*first += offset_to_page;
|
||
|
||
// align last to the previous page
|
||
*last = *last & ~(page_size - 1);
|
||
|
||
if (*last <= *first) {
|
||
*last = *first;
|
||
}
|
||
}
|
||
|
||
// partially unmap the file in the range [first, last)
|
||
void unmap_fragment(size_t first, size_t last) {
|
||
// note: this function must not be called multiple times with overlapping ranges
|
||
// otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
|
||
int page_size = sysconf(_SC_PAGESIZE);
|
||
align_range(&first, &last, page_size);
|
||
size_t len = last - first;
|
||
|
||
if (len == 0) {
|
||
return;
|
||
}
|
||
|
||
GGML_ASSERT(first % page_size == 0);
|
||
GGML_ASSERT(last % page_size == 0);
|
||
GGML_ASSERT(last > first);
|
||
|
||
void * next_page_start = (uint8_t *) addr + first;
|
||
|
||
// unmap the range
|
||
if (munmap(next_page_start, len)) {
|
||
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
|
||
}
|
||
|
||
// update the list of mapped fragments to avoid unmapping the same range again in the destructor
|
||
std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
|
||
for (const auto & frag : mapped_fragments) {
|
||
if (frag.first < first && frag.second > last) {
|
||
// the range is in the middle of the fragment, split it
|
||
new_mapped_fragments.emplace_back(frag.first, first);
|
||
new_mapped_fragments.emplace_back(last, frag.second);
|
||
} else if (frag.first < first && frag.second > first) {
|
||
// the range starts in the middle of the fragment
|
||
new_mapped_fragments.emplace_back(frag.first, first);
|
||
} else if (frag.first < last && frag.second > last) {
|
||
// the range ends in the middle of the fragment
|
||
new_mapped_fragments.emplace_back(last, frag.second);
|
||
} else if (frag.first >= first && frag.second <= last) {
|
||
// the range covers the entire fragment
|
||
} else {
|
||
// the range is outside the fragment
|
||
new_mapped_fragments.push_back(frag);
|
||
}
|
||
}
|
||
mapped_fragments = std::move(new_mapped_fragments);
|
||
}
|
||
|
||
~llama_mmap() {
|
||
for (const auto & frag : mapped_fragments) {
|
||
if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
|
||
LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
|
||
}
|
||
}
|
||
}
|
||
#elif defined(_WIN32)
|
||
static constexpr bool SUPPORTED = true;
|
||
|
||
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
|
||
GGML_UNUSED(numa);
|
||
|
||
size = file->size;
|
||
|
||
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
|
||
|
||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||
|
||
if (hMapping == NULL) {
|
||
DWORD error = GetLastError();
|
||
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
|
||
}
|
||
|
||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||
DWORD error = GetLastError();
|
||
CloseHandle(hMapping);
|
||
|
||
if (addr == NULL) {
|
||
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
|
||
}
|
||
|
||
if (prefetch > 0) {
|
||
#if _WIN32_WINNT >= 0x602
|
||
// PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
|
||
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
|
||
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
|
||
|
||
// may fail on pre-Windows 8 systems
|
||
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
|
||
|
||
if (pPrefetchVirtualMemory) {
|
||
// advise the kernel to preload the mapped memory
|
||
WIN32_MEMORY_RANGE_ENTRY range;
|
||
range.VirtualAddress = addr;
|
||
range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
|
||
if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||
LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
|
||
llama_format_win_err(GetLastError()).c_str());
|
||
}
|
||
}
|
||
#else
|
||
throw std::runtime_error("PrefetchVirtualMemory unavailable");
|
||
#endif
|
||
}
|
||
}
|
||
|
||
void unmap_fragment(size_t first, size_t last) {
|
||
// not supported
|
||
GGML_UNUSED(first);
|
||
GGML_UNUSED(last);
|
||
}
|
||
|
||
~llama_mmap() {
|
||
if (!UnmapViewOfFile(addr)) {
|
||
LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
|
||
llama_format_win_err(GetLastError()).c_str());
|
||
}
|
||
}
|
||
#else
|
||
static constexpr bool SUPPORTED = false;
|
||
|
||
llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
|
||
GGML_UNUSED(file);
|
||
GGML_UNUSED(prefetch);
|
||
GGML_UNUSED(numa);
|
||
|
||
throw std::runtime_error("mmap not supported");
|
||
}
|
||
|
||
void unmap_fragment(size_t first, size_t last) {
|
||
GGML_UNUSED(first);
|
||
GGML_UNUSED(last);
|
||
|
||
throw std::runtime_error("mmap not supported");
|
||
}
|
||
#endif
|
||
};
|
||
using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
|
||
|
||
// Represents some region of memory being locked using mlock or VirtualLock;
|
||
// will automatically unlock on destruction.
|
||
struct llama_mlock {
|
||
void * addr = NULL;
|
||
size_t size = 0;
|
||
|
||
bool failed_already = false;
|
||
|
||
llama_mlock() {}
|
||
llama_mlock(const llama_mlock &) = delete;
|
||
|
||
~llama_mlock() {
|
||
if (size) {
|
||
raw_unlock(addr, size);
|
||
}
|
||
}
|
||
|
||
void init(void * ptr) {
|
||
GGML_ASSERT(addr == NULL && size == 0); // NOLINT
|
||
addr = ptr;
|
||
}
|
||
|
||
void grow_to(size_t target_size) {
|
||
GGML_ASSERT(addr);
|
||
if (failed_already) {
|
||
return;
|
||
}
|
||
size_t granularity = lock_granularity();
|
||
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
||
if (target_size > size) {
|
||
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
||
size = target_size;
|
||
} else {
|
||
failed_already = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef _POSIX_MEMLOCK_RANGE
|
||
static constexpr bool SUPPORTED = true;
|
||
|
||
static size_t lock_granularity() {
|
||
return (size_t) sysconf(_SC_PAGESIZE);
|
||
}
|
||
|
||
#ifdef __APPLE__
|
||
#define MLOCK_SUGGESTION \
|
||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
|
||
#else
|
||
#define MLOCK_SUGGESTION \
|
||
"Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
|
||
#endif
|
||
|
||
bool raw_lock(const void * addr, size_t size) const {
|
||
if (!mlock(addr, size)) {
|
||
return true;
|
||
}
|
||
|
||
char* errmsg = std::strerror(errno);
|
||
bool suggest = (errno == ENOMEM);
|
||
|
||
// Check if the resource limit is fine after all
|
||
struct rlimit lock_limit;
|
||
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
|
||
suggest = false;
|
||
}
|
||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
|
||
suggest = false;
|
||
}
|
||
|
||
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
|
||
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
|
||
return false;
|
||
}
|
||
|
||
#undef MLOCK_SUGGESTION
|
||
|
||
static void raw_unlock(void * addr, size_t size) {
|
||
if (munlock(addr, size)) {
|
||
LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||
}
|
||
}
|
||
#elif defined(_WIN32)
|
||
static constexpr bool SUPPORTED = true;
|
||
|
||
static size_t lock_granularity() {
|
||
SYSTEM_INFO si;
|
||
GetSystemInfo(&si);
|
||
return (size_t) si.dwPageSize;
|
||
}
|
||
|
||
bool raw_lock(void * ptr, size_t len) const {
|
||
for (int tries = 1; ; tries++) {
|
||
if (VirtualLock(ptr, len)) {
|
||
return true;
|
||
}
|
||
if (tries == 2) {
|
||
LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||
len, size, llama_format_win_err(GetLastError()).c_str());
|
||
return false;
|
||
}
|
||
|
||
// It failed but this was only the first try; increase the working
|
||
// set size and try again.
|
||
SIZE_T min_ws_size, max_ws_size;
|
||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||
LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
|
||
llama_format_win_err(GetLastError()).c_str());
|
||
return false;
|
||
}
|
||
// Per MSDN: "The maximum number of pages that a process can lock
|
||
// is equal to the number of pages in its minimum working set minus
|
||
// a small overhead."
|
||
// Hopefully a megabyte is enough overhead:
|
||
size_t increment = len + 1048576;
|
||
// The minimum must be <= the maximum, so we need to increase both:
|
||
min_ws_size += increment;
|
||
max_ws_size += increment;
|
||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||
LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
|
||
llama_format_win_err(GetLastError()).c_str());
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void raw_unlock(void * ptr, size_t len) {
|
||
if (!VirtualUnlock(ptr, len)) {
|
||
LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
|
||
llama_format_win_err(GetLastError()).c_str());
|
||
}
|
||
}
|
||
#else
|
||
static constexpr bool SUPPORTED = false;
|
||
|
||
static size_t lock_granularity() {
|
||
return (size_t) 65536;
|
||
}
|
||
|
||
bool raw_lock(const void * addr, size_t len) const {
|
||
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
|
||
return false;
|
||
}
|
||
|
||
static void raw_unlock(const void * addr, size_t len) {}
|
||
#endif
|
||
};
|
||
using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
|
||
|
||
// NOTE: avoid ever using this except for building the token_to_piece caches
|
||
static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
|
||
std::string piece;
|
||
piece.resize(piece.capacity()); // using string internal cache
|
||
const int n_chars = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
|
||
if (n_chars < 0) {
|
||
piece.resize(-n_chars);
|
||
int check = llama_token_to_piece(model, token, &piece[0], piece.size(), 0, special);
|
||
GGML_ASSERT(check == -n_chars);
|
||
}
|
||
else {
|
||
piece.resize(n_chars);
|
||
}
|
||
|
||
return piece;
|
||
}
|
||
|
||
//
|
||
// globals
|
||
//
|
||
|
||
struct llama_logger_state {
|
||
ggml_log_callback log_callback = llama_log_callback_default;
|
||
void * log_callback_user_data = nullptr;
|
||
};
|
||
|
||
static llama_logger_state g_logger_state;
|
||
|
||
// available llama models
|
||
enum e_model {
|
||
MODEL_UNKNOWN,
|
||
MODEL_14M,
|
||
MODEL_17M,
|
||
MODEL_22M,
|
||
MODEL_33M,
|
||
MODEL_60M,
|
||
MODEL_70M,
|
||
MODEL_80M,
|
||
MODEL_109M,
|
||
MODEL_137M,
|
||
MODEL_160M,
|
||
MODEL_220M,
|
||
MODEL_250M,
|
||
MODEL_270M,
|
||
MODEL_335M,
|
||
MODEL_410M,
|
||
MODEL_450M,
|
||
MODEL_770M,
|
||
MODEL_780M,
|
||
MODEL_0_5B,
|
||
MODEL_1B,
|
||
MODEL_1_3B,
|
||
MODEL_1_4B,
|
||
MODEL_1_6B,
|
||
MODEL_2B,
|
||
MODEL_2_8B,
|
||
MODEL_3B,
|
||
MODEL_4B,
|
||
MODEL_6B,
|
||
MODEL_6_9B,
|
||
MODEL_7B,
|
||
MODEL_8B,
|
||
MODEL_9B,
|
||
MODEL_11B,
|
||
MODEL_12B,
|
||
MODEL_13B,
|
||
MODEL_14B,
|
||
MODEL_15B,
|
||
MODEL_16B,
|
||
MODEL_20B,
|
||
MODEL_30B,
|
||
MODEL_34B,
|
||
MODEL_35B,
|
||
MODEL_40B,
|
||
MODEL_65B,
|
||
MODEL_70B,
|
||
MODEL_236B,
|
||
MODEL_314B,
|
||
MODEL_SMALL,
|
||
MODEL_MEDIUM,
|
||
MODEL_LARGE,
|
||
MODEL_XL,
|
||
MODEL_A1_7B,
|
||
MODEL_A2_7B,
|
||
MODEL_8x7B,
|
||
MODEL_8x22B,
|
||
MODEL_16x12B,
|
||
MODEL_10B_128x3_66B,
|
||
MODEL_57B_A14B,
|
||
MODEL_27B,
|
||
};
|
||
|
||
static const size_t kiB = 1024;
|
||
static const size_t MiB = 1024*kiB;
|
||
static const size_t GiB = 1024*MiB;
|
||
|
||
struct llama_hparams {
|
||
bool vocab_only;
|
||
bool rope_finetuned;
|
||
bool use_par_res;
|
||
bool swin_norm;
|
||
|
||
uint32_t n_vocab;
|
||
uint32_t n_ctx_train; // context size the model was trained on
|
||
uint32_t n_embd;
|
||
uint32_t n_layer;
|
||
uint32_t n_rot;
|
||
uint32_t n_swa = 0; // sliding window attention (SWA)
|
||
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
||
uint32_t n_expert = 0;
|
||
uint32_t n_expert_used = 0;
|
||
uint32_t n_vocab_type = 0; // for BERT-style token types
|
||
uint32_t n_rel_attn_bkts = 0;
|
||
|
||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
|
||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
|
||
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
||
|
||
uint32_t n_layer_dense_lead = 0;
|
||
uint32_t n_lora_q = 0;
|
||
uint32_t n_lora_kv = 0;
|
||
uint32_t n_ff_exp = 0;
|
||
uint32_t n_ff_shexp = 0;
|
||
uint32_t n_expert_shared = 0;
|
||
float expert_weights_scale = 0.0;
|
||
|
||
float f_norm_eps;
|
||
float f_norm_rms_eps;
|
||
|
||
float f_attn_logit_softcapping = 50.0f;
|
||
float f_final_logit_softcapping = 30.0f;
|
||
|
||
// for RWKV
|
||
uint32_t rescale_every_n_layers = 0;
|
||
uint32_t time_mix_extra_dim = 0;
|
||
uint32_t time_decay_extra_dim = 0;
|
||
uint32_t wkv_head_size = 0;
|
||
|
||
float rope_attn_factor = 1.0f;
|
||
float rope_freq_base_train;
|
||
float rope_freq_scale_train;
|
||
uint32_t n_ctx_orig_yarn;
|
||
float rope_yarn_log_mul;
|
||
|
||
// for State Space Models
|
||
uint32_t ssm_d_conv = 0;
|
||
uint32_t ssm_d_inner = 0;
|
||
uint32_t ssm_d_state = 0;
|
||
uint32_t ssm_dt_rank = 0;
|
||
bool ssm_dt_b_c_rms = false;
|
||
|
||
float f_clamp_kqv = 0.0f;
|
||
float f_max_alibi_bias = 0.0f;
|
||
float f_logit_scale = 0.0f;
|
||
|
||
// Additional scale factors (Granite/Granite MoE)
|
||
float f_residual_scale = 0.0f;
|
||
float f_embedding_scale = 0.0f;
|
||
float f_attention_scale = 0.0f;
|
||
|
||
bool causal_attn = true;
|
||
bool use_alibi = false;
|
||
bool attn_soft_cap = false;
|
||
|
||
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
||
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
||
llama_token dec_start_token_id = -1;
|
||
|
||
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
|
||
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
|
||
|
||
bool operator!=(const llama_hparams & other) const {
|
||
if (this->vocab_only != other.vocab_only) return true;
|
||
if (this->n_vocab != other.n_vocab) return true;
|
||
if (this->n_ctx_train != other.n_ctx_train) return true;
|
||
if (this->n_embd != other.n_embd) return true;
|
||
if (this->n_layer != other.n_layer) return true;
|
||
if (this->n_rot != other.n_rot) return true;
|
||
if (this->n_swa != other.n_swa) return true;
|
||
if (this->n_embd_head_k != other.n_embd_head_k) return true;
|
||
if (this->n_embd_head_v != other.n_embd_head_v) return true;
|
||
if (this->n_expert != other.n_expert) return true;
|
||
if (this->n_expert_used != other.n_expert_used) return true;
|
||
|
||
if (this->n_head_arr != other.n_head_arr) return true;
|
||
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
||
if (this->n_ff_arr != other.n_ff_arr) return true;
|
||
|
||
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
||
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
||
if (this->n_lora_q != other.n_lora_q) return true;
|
||
if (this->n_lora_kv != other.n_lora_kv) return true;
|
||
if (this->n_ff_exp != other.n_ff_exp) return true;
|
||
if (this->n_ff_shexp != other.n_ff_shexp) return true;
|
||
if (this->n_expert_shared != other.n_expert_shared) return true;
|
||
|
||
if (this->rope_finetuned != other.rope_finetuned) return true;
|
||
if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
|
||
|
||
if (this->ssm_d_conv != other.ssm_d_conv) return true;
|
||
if (this->ssm_d_inner != other.ssm_d_inner) return true;
|
||
if (this->ssm_d_state != other.ssm_d_state) return true;
|
||
if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
|
||
if (this->ssm_dt_b_c_rms != other.ssm_dt_b_c_rms) return true;
|
||
|
||
if (this->rescale_every_n_layers != other.rescale_every_n_layers) return true;
|
||
if (this->time_mix_extra_dim != other.time_mix_extra_dim) return true;
|
||
if (this->time_decay_extra_dim != other.time_decay_extra_dim) return true;
|
||
if (this->wkv_head_size != other.wkv_head_size) return true;
|
||
|
||
if (this->dec_start_token_id != other.dec_start_token_id) return true;
|
||
|
||
const float EPSILON = 1e-9f;
|
||
|
||
if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
|
||
if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
|
||
if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
|
||
if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
|
||
if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
|
||
if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
|
||
if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
|
||
if (!is_float_close(this->f_residual_scale, other.f_residual_scale, EPSILON)) return true;
|
||
if (!is_float_close(this->f_embedding_scale, other.f_embedding_scale, EPSILON)) return true;
|
||
if (!is_float_close(this->f_attention_scale, other.f_attention_scale, EPSILON)) return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
uint32_t n_head(uint32_t il = 0) const {
|
||
if (il < n_layer) {
|
||
return n_head_arr[il];
|
||
}
|
||
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
|
||
uint32_t n_head_kv(uint32_t il = 0) const {
|
||
if (il < n_layer) {
|
||
return n_head_kv_arr[il];
|
||
}
|
||
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
|
||
uint32_t n_ff(uint32_t il = 0) const {
|
||
if (il < n_layer) {
|
||
return n_ff_arr[il];
|
||
}
|
||
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
|
||
uint32_t n_gqa(uint32_t il = 0) const {
|
||
const uint32_t n_head = this->n_head(il);
|
||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||
|
||
if (n_head_kv == 0) {
|
||
return 0;
|
||
}
|
||
|
||
return n_head/n_head_kv;
|
||
}
|
||
|
||
uint32_t n_embd_k_gqa(uint32_t il = 0) const { // dimension of key embeddings across all k-v heads
|
||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||
|
||
return n_embd_head_k * n_head_kv;
|
||
}
|
||
|
||
uint32_t n_embd_v_gqa(uint32_t il = 0) const { // dimension of value embeddings across all k-v heads
|
||
const uint32_t n_head_kv = this->n_head_kv(il);
|
||
|
||
return n_embd_head_v * n_head_kv;
|
||
}
|
||
|
||
uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
|
||
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
|
||
if (wkv_head_size != 0) {
|
||
// for RWKV models
|
||
return 2 * n_embd;
|
||
} else {
|
||
// TODO: maybe support other convolution strides than 1
|
||
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
|
||
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
|
||
}
|
||
}
|
||
|
||
uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
|
||
if (wkv_head_size != 0) {
|
||
// corresponds to RWKV's wkv_states size
|
||
return n_embd * wkv_head_size;
|
||
} else {
|
||
// corresponds to Mamba's ssm_states size
|
||
return ssm_d_state * ssm_d_inner;
|
||
}
|
||
}
|
||
};
|
||
|
||
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
||
|
||
struct llama_cparams {
|
||
uint32_t n_ctx; // context size used during inference
|
||
uint32_t n_batch;
|
||
uint32_t n_ubatch;
|
||
uint32_t n_seq_max;
|
||
int n_threads; // number of threads to use for generation
|
||
int n_threads_batch; // number of threads to use for batch processing
|
||
|
||
float rope_freq_base;
|
||
float rope_freq_scale;
|
||
|
||
uint32_t n_ctx_orig_yarn;
|
||
// These hyperparameters are not exposed in GGUF, because all
|
||
// existing YaRN models use the same values for them.
|
||
float yarn_ext_factor;
|
||
float yarn_attn_factor;
|
||
float yarn_beta_fast;
|
||
float yarn_beta_slow;
|
||
float defrag_thold;
|
||
|
||
bool embeddings;
|
||
bool causal_attn;
|
||
bool offload_kqv;
|
||
bool flash_attn;
|
||
bool no_perf;
|
||
|
||
enum llama_pooling_type pooling_type;
|
||
|
||
ggml_backend_sched_eval_callback cb_eval;
|
||
void * cb_eval_user_data;
|
||
};
|
||
|
||
// TODO: separate into "llama_layer_enc" and "llama_layer_dec"
|
||
struct llama_layer {
|
||
// normalization
|
||
struct ggml_tensor * attn_norm;
|
||
struct ggml_tensor * attn_norm_b;
|
||
struct ggml_tensor * attn_norm_2;
|
||
struct ggml_tensor * attn_norm_2_b;
|
||
struct ggml_tensor * attn_q_norm;
|
||
struct ggml_tensor * attn_q_norm_b;
|
||
struct ggml_tensor * attn_k_norm;
|
||
struct ggml_tensor * attn_k_norm_b;
|
||
struct ggml_tensor * attn_out_norm;
|
||
struct ggml_tensor * attn_out_norm_b;
|
||
struct ggml_tensor * attn_q_a_norm;
|
||
struct ggml_tensor * attn_kv_a_norm;
|
||
struct ggml_tensor * attn_sub_norm;
|
||
struct ggml_tensor * attn_post_norm;
|
||
struct ggml_tensor * ffn_sub_norm;
|
||
struct ggml_tensor * attn_norm_cross;
|
||
struct ggml_tensor * attn_norm_enc;
|
||
|
||
// attention
|
||
struct ggml_tensor * wq;
|
||
struct ggml_tensor * wk;
|
||
struct ggml_tensor * wv;
|
||
struct ggml_tensor * wo;
|
||
struct ggml_tensor * wqkv;
|
||
struct ggml_tensor * wq_a;
|
||
struct ggml_tensor * wq_b;
|
||
struct ggml_tensor * wkv_a_mqa;
|
||
struct ggml_tensor * wkv_b;
|
||
struct ggml_tensor * wq_cross;
|
||
struct ggml_tensor * wk_cross;
|
||
struct ggml_tensor * wv_cross;
|
||
struct ggml_tensor * wo_cross;
|
||
struct ggml_tensor * wq_enc;
|
||
struct ggml_tensor * wk_enc;
|
||
struct ggml_tensor * wv_enc;
|
||
struct ggml_tensor * wo_enc;
|
||
|
||
// attention bias
|
||
struct ggml_tensor * bq;
|
||
struct ggml_tensor * bk;
|
||
struct ggml_tensor * bv;
|
||
struct ggml_tensor * bo;
|
||
struct ggml_tensor * bqkv;
|
||
|
||
// relative position bias
|
||
struct ggml_tensor * attn_rel_b;
|
||
struct ggml_tensor * attn_rel_b_enc;
|
||
struct ggml_tensor * attn_rel_b_cross;
|
||
|
||
// normalization
|
||
struct ggml_tensor * ffn_norm;
|
||
struct ggml_tensor * ffn_norm_b;
|
||
struct ggml_tensor * ffn_post_norm;
|
||
struct ggml_tensor * layer_out_norm;
|
||
struct ggml_tensor * layer_out_norm_b;
|
||
struct ggml_tensor * ffn_norm_exps;
|
||
struct ggml_tensor * ffn_norm_enc;
|
||
|
||
// ff
|
||
struct ggml_tensor * ffn_gate; // w1
|
||
struct ggml_tensor * ffn_down; // w2
|
||
struct ggml_tensor * ffn_up; // w3
|
||
struct ggml_tensor * ffn_gate_enc;
|
||
struct ggml_tensor * ffn_down_enc;
|
||
struct ggml_tensor * ffn_up_enc;
|
||
|
||
// ff MoE
|
||
struct ggml_tensor * ffn_gate_inp;
|
||
struct ggml_tensor * ffn_gate_exps;
|
||
struct ggml_tensor * ffn_down_exps;
|
||
struct ggml_tensor * ffn_up_exps ;
|
||
|
||
// ff shared expert (shexp)
|
||
struct ggml_tensor * ffn_gate_inp_shexp;
|
||
struct ggml_tensor * ffn_gate_shexp;
|
||
struct ggml_tensor * ffn_down_shexp;
|
||
struct ggml_tensor * ffn_up_shexp;
|
||
|
||
// ff bias
|
||
struct ggml_tensor * ffn_gate_b = nullptr;
|
||
struct ggml_tensor * ffn_down_b = nullptr; // b2
|
||
struct ggml_tensor * ffn_up_b = nullptr; // b3
|
||
struct ggml_tensor * ffn_act;
|
||
|
||
// mamba proj
|
||
struct ggml_tensor * ssm_in;
|
||
struct ggml_tensor * ssm_x;
|
||
struct ggml_tensor * ssm_dt;
|
||
struct ggml_tensor * ssm_out;
|
||
|
||
// mamba
|
||
struct ggml_tensor * ssm_conv1d;
|
||
struct ggml_tensor * ssm_a;
|
||
struct ggml_tensor * ssm_d;
|
||
|
||
// mamba bias
|
||
struct ggml_tensor * ssm_conv1d_b;
|
||
struct ggml_tensor * ssm_dt_b;
|
||
|
||
// rwkv
|
||
struct ggml_tensor * time_mix_w1;
|
||
struct ggml_tensor * time_mix_w2;
|
||
struct ggml_tensor * time_mix_lerp_x;
|
||
struct ggml_tensor * time_mix_lerp_w;
|
||
struct ggml_tensor * time_mix_lerp_k;
|
||
struct ggml_tensor * time_mix_lerp_v;
|
||
struct ggml_tensor * time_mix_lerp_r;
|
||
struct ggml_tensor * time_mix_lerp_g;
|
||
|
||
struct ggml_tensor * time_mix_first;
|
||
struct ggml_tensor * time_mix_decay;
|
||
struct ggml_tensor * time_mix_decay_w1;
|
||
struct ggml_tensor * time_mix_decay_w2;
|
||
struct ggml_tensor * time_mix_key;
|
||
struct ggml_tensor * time_mix_value;
|
||
struct ggml_tensor * time_mix_receptance;
|
||
struct ggml_tensor * time_mix_gate;
|
||
|
||
struct ggml_tensor * time_mix_ln;
|
||
struct ggml_tensor * time_mix_ln_b;
|
||
struct ggml_tensor * time_mix_output;
|
||
|
||
struct ggml_tensor * channel_mix_lerp_k;
|
||
struct ggml_tensor * channel_mix_lerp_r;
|
||
|
||
struct ggml_tensor * channel_mix_key;
|
||
struct ggml_tensor * channel_mix_receptance;
|
||
struct ggml_tensor * channel_mix_value;
|
||
|
||
// long rope factors
|
||
struct ggml_tensor * rope_long = nullptr;
|
||
struct ggml_tensor * rope_short = nullptr;
|
||
struct ggml_tensor * rope_freqs = nullptr;
|
||
|
||
// bitnet scale
|
||
struct ggml_tensor * wq_scale;
|
||
struct ggml_tensor * wk_scale;
|
||
struct ggml_tensor * wv_scale;
|
||
struct ggml_tensor * wo_scale;
|
||
struct ggml_tensor * ffn_gate_scale;
|
||
struct ggml_tensor * ffn_up_scale;
|
||
struct ggml_tensor * ffn_down_scale;
|
||
};
|
||
|
||
// very similar to llama_batch,
|
||
// but has more metadata about sequences
|
||
struct llama_ubatch {
|
||
bool equal_seqs;
|
||
// TODO: whole_seqs for embeddings?
|
||
|
||
uint32_t n_tokens; // total tokens (n_seq_tokens * n_seqs)
|
||
uint32_t n_seq_tokens; // tokens per sequence
|
||
uint32_t n_seqs;
|
||
|
||
llama_token * token; // [n_tokens]
|
||
float * embd; // [n_embd, n_tokens]
|
||
llama_pos * pos; // [n_tokens]
|
||
int32_t * n_seq_id; // [n_seqs]
|
||
llama_seq_id ** seq_id; // [n_seqs]
|
||
int8_t * output; // [n_tokens]
|
||
};
|
||
|
||
struct llama_kv_cell {
|
||
llama_pos pos = -1;
|
||
llama_pos delta = 0;
|
||
int32_t src = -1; // used by recurrent state models to copy states
|
||
int32_t tail = -1;
|
||
|
||
std::set<llama_seq_id> seq_id;
|
||
|
||
bool has_seq_id(const llama_seq_id & id) const {
|
||
return seq_id.find(id) != seq_id.end();
|
||
}
|
||
|
||
bool is_empty() const {
|
||
return seq_id.empty();
|
||
}
|
||
|
||
bool is_same_seq(const llama_kv_cell & other) const {
|
||
return seq_id == other.seq_id;
|
||
}
|
||
};
|
||
|
||
// ring-buffer of cached KV data
|
||
struct llama_kv_cache {
|
||
bool has_shift = false;
|
||
bool do_defrag = false;
|
||
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
|
||
bool v_trans = true; // the value tensor is transposed
|
||
|
||
// Note: The value of head isn't only used to optimize searching
|
||
// for a free KV slot. llama_decode_internal also uses it, so it
|
||
// cannot be freely changed after a slot has been allocated.
|
||
uint32_t head = 0;
|
||
uint32_t size = 0;
|
||
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
||
|
||
// computed before each graph build
|
||
uint32_t n = 0;
|
||
|
||
ggml_type type_k = GGML_TYPE_F16;
|
||
ggml_type type_v = GGML_TYPE_F16;
|
||
|
||
std::vector<llama_kv_cell> cells;
|
||
|
||
std::vector<struct ggml_tensor *> k_l; // per layer
|
||
std::vector<struct ggml_tensor *> v_l;
|
||
|
||
std::vector<struct ggml_context *> ctxs;
|
||
std::vector<ggml_backend_buffer_t> bufs;
|
||
|
||
size_t total_size() const {
|
||
size_t size = 0;
|
||
for (ggml_backend_buffer_t buf : bufs) {
|
||
size += ggml_backend_buffer_get_size(buf);
|
||
}
|
||
return size;
|
||
}
|
||
|
||
~llama_kv_cache() {
|
||
for (struct ggml_context * ctx : ctxs) {
|
||
ggml_free(ctx);
|
||
}
|
||
for (ggml_backend_buffer_t buf : bufs) {
|
||
ggml_backend_buffer_free(buf);
|
||
}
|
||
}
|
||
};
|
||
|
||
struct llama_control_vector {
|
||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||
std::vector<struct ggml_context *> ctxs;
|
||
std::vector<ggml_backend_buffer_t> bufs;
|
||
|
||
int32_t layer_start = -1;
|
||
int32_t layer_end = -1;
|
||
|
||
struct ggml_tensor * tensor_for(int il) const {
|
||
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
|
||
return nullptr;
|
||
}
|
||
return tensors[il];
|
||
}
|
||
|
||
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
|
||
ggml_tensor * layer_dir = tensor_for(il);
|
||
if (layer_dir != nullptr) {
|
||
cur = ggml_add(ctx, cur, layer_dir);
|
||
}
|
||
return cur;
|
||
}
|
||
|
||
~llama_control_vector() {
|
||
for (struct ggml_context * ctx : ctxs) {
|
||
ggml_free(ctx);
|
||
}
|
||
for (ggml_backend_buffer_t buf : bufs) {
|
||
ggml_backend_buffer_free(buf);
|
||
}
|
||
}
|
||
};
|
||
|
||
struct llama_model {
|
||
e_model type = MODEL_UNKNOWN;
|
||
llm_arch arch = LLM_ARCH_UNKNOWN;
|
||
llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
|
||
|
||
std::string name = "n/a";
|
||
|
||
llama_hparams hparams = {};
|
||
llama_vocab vocab;
|
||
|
||
// TODO: should init all tensors to nullptr
|
||
struct ggml_tensor * tok_embd;
|
||
struct ggml_tensor * type_embd;
|
||
struct ggml_tensor * pos_embd;
|
||
struct ggml_tensor * tok_norm;
|
||
struct ggml_tensor * tok_norm_b;
|
||
|
||
struct ggml_tensor * output_norm;
|
||
struct ggml_tensor * output_norm_b;
|
||
struct ggml_tensor * output;
|
||
struct ggml_tensor * output_b;
|
||
struct ggml_tensor * output_norm_enc;
|
||
|
||
// classifier
|
||
struct ggml_tensor * cls;
|
||
struct ggml_tensor * cls_b;
|
||
struct ggml_tensor * cls_out = nullptr;
|
||
struct ggml_tensor * cls_out_b = nullptr;
|
||
|
||
std::vector<llama_layer> layers;
|
||
|
||
// gguf metadata
|
||
std::unordered_map<std::string, std::string> gguf_kv;
|
||
|
||
llama_split_mode split_mode;
|
||
int main_gpu;
|
||
int n_gpu_layers;
|
||
|
||
// list of devices used in this model
|
||
std::vector<ggml_backend_dev_t> devices;
|
||
|
||
std::vector<std::string> rpc_servers;
|
||
|
||
// layer -> buffer type mapping
|
||
struct layer_buft {
|
||
layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
|
||
layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
|
||
layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
|
||
|
||
ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
|
||
ggml_backend_buffer_type_t buft; // everything else
|
||
};
|
||
|
||
layer_buft buft_input;
|
||
layer_buft buft_output;
|
||
std::vector<layer_buft> buft_layer;
|
||
|
||
// contexts where the model tensors metadata is stored
|
||
std::vector<struct ggml_context *> ctxs;
|
||
|
||
// the model memory buffers for the tensor data
|
||
std::vector<ggml_backend_buffer_t> bufs;
|
||
|
||
// model memory mapped files
|
||
llama_mmaps mappings;
|
||
|
||
// objects representing data potentially being locked in memory
|
||
llama_mlocks mlock_bufs;
|
||
llama_mlocks mlock_mmaps;
|
||
|
||
// for quantize-stats only
|
||
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
||
|
||
int64_t t_load_us = 0;
|
||
int64_t t_start_us = 0;
|
||
|
||
// keep track of loaded lora adapters
|
||
std::set<struct llama_lora_adapter *> lora_adapters;
|
||
|
||
~llama_model() {
|
||
for (struct ggml_context * ctx : ctxs) {
|
||
ggml_free(ctx);
|
||
}
|
||
for (ggml_backend_buffer_t buf : bufs) {
|
||
ggml_backend_buffer_free(buf);
|
||
}
|
||
while (!lora_adapters.empty()) {
|
||
llama_lora_adapter_free(*lora_adapters.begin());
|
||
}
|
||
}
|
||
};
|
||
|
||
struct llama_sbatch_seq {
|
||
int32_t n_seq_id;
|
||
llama_seq_id * seq_id;
|
||
size_t offset;
|
||
size_t length;
|
||
|
||
// helper for smoother batch API transition -- can be deprecated in the future
|
||
llama_seq_id all_seq_id; // used if seq_id == NULL
|
||
};
|
||
|
||
// sequence-length-aware batch splitting
|
||
struct llama_sbatch {
|
||
// tokens left in this batch
|
||
size_t n_tokens;
|
||
|
||
size_t n_embd;
|
||
|
||
bool logits_all; // TODO: remove once lctx.logits_all is removed too
|
||
|
||
// sorted indices into the batch
|
||
std::vector<size_t> ids;
|
||
// batch indices of the output
|
||
std::vector<size_t> out_ids;
|
||
std::vector<llama_sbatch_seq> seq;
|
||
const llama_batch * batch = nullptr;
|
||
|
||
// buffers for the ubatch
|
||
std::vector<llama_token> ubatch_token;
|
||
std::vector<float> ubatch_embd;
|
||
std::vector<llama_pos> ubatch_pos;
|
||
std::vector<int32_t> ubatch_n_seq_id;
|
||
std::vector<llama_seq_id *> ubatch_seq_id;
|
||
std::vector<int8_t> ubatch_output;
|
||
|
||
llama_ubatch reserve_ubatch(size_t n_ubatch, bool has_embd = false) {
|
||
// clear empty sequences
|
||
// the previous ubatch is assumed to be gone,
|
||
// so nothing should refer to values in these sequences anymore.
|
||
for (size_t i = seq.size(); i-- > 0;) {
|
||
if (seq[i].length == 0) {
|
||
seq.pop_back();
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
ubatch_token.resize(!has_embd ? n_ubatch : 0);
|
||
ubatch_embd.resize(has_embd ? n_embd * n_ubatch : 0);
|
||
ubatch_pos.resize(n_ubatch);
|
||
ubatch_n_seq_id.resize(n_ubatch);
|
||
ubatch_seq_id.resize(n_ubatch);
|
||
ubatch_output.resize(n_ubatch);
|
||
llama_ubatch ubatch = {
|
||
/*equal_seqs =*/ true,
|
||
/*n_tokens =*/ 0,
|
||
/*n_seq_tokens =*/ 0,
|
||
/*n_seqs =*/ 0,
|
||
/*token =*/ !has_embd ? ubatch_token.data() : nullptr,
|
||
/*embd =*/ has_embd ? ubatch_embd.data() : nullptr,
|
||
/*pos =*/ ubatch_pos.data(),
|
||
/*n_seq_id =*/ ubatch_n_seq_id.data(),
|
||
/*seq_id =*/ ubatch_seq_id.data(),
|
||
/*output =*/ ubatch_output.data(),
|
||
};
|
||
return ubatch;
|
||
}
|
||
|
||
void add_seq_to_ubatch(llama_ubatch & ubatch, llama_sbatch_seq & seq, size_t length) {
|
||
GGML_ASSERT(batch != nullptr);
|
||
GGML_ASSERT(length <= seq.length);
|
||
// Can only add sequences of equal lengths to a batch,
|
||
// otherwise it isn't clear to which sequence a token belongs
|
||
GGML_ASSERT(seq.n_seq_id == 0 || ubatch.n_seqs == 0 || length == (size_t) ubatch.n_tokens / ubatch.n_seqs);
|
||
GGML_ASSERT((seq.n_seq_id != 0) == ubatch.equal_seqs);
|
||
// NOTE: loops are separated for cache-friendliness
|
||
if (batch->token) {
|
||
if (ubatch.equal_seqs) {
|
||
for (size_t i = 0; i < length; ++i) {
|
||
ubatch.token[ubatch.n_tokens + i] = batch->token[ids[seq.offset + i]];
|
||
}
|
||
} else {
|
||
// simple split
|
||
ubatch.token = batch->token + seq.offset;
|
||
}
|
||
} else {
|
||
ubatch.token = nullptr;
|
||
}
|
||
if (batch->embd) {
|
||
if (ubatch.equal_seqs) {
|
||
for (size_t i = 0; i < length; ++i) {
|
||
memcpy(
|
||
ubatch.embd + n_embd * (ubatch.n_tokens + i),
|
||
batch->embd + n_embd * ids[seq.offset + i],
|
||
n_embd * sizeof(float)
|
||
);
|
||
}
|
||
} else {
|
||
// simple split
|
||
ubatch.embd = batch->embd + (n_embd * seq.offset);
|
||
}
|
||
} else {
|
||
ubatch.embd = nullptr;
|
||
}
|
||
// from here on, the else branches are deprecated;
|
||
// they are helpers for smoother batch API transition
|
||
if (batch->pos) {
|
||
if (ubatch.equal_seqs) {
|
||
for (size_t i = 0; i < length; ++i) {
|
||
ubatch.pos[ubatch.n_tokens + i] = batch->pos[ids[seq.offset + i]];
|
||
}
|
||
} else {
|
||
// simple split
|
||
ubatch.pos = batch->pos + seq.offset;
|
||
}
|
||
} else {
|
||
for (size_t i = 0; i < length; ++i) {
|
||
llama_pos bi = ids[seq.offset + i];
|
||
ubatch.pos[ubatch.n_tokens + i] = batch->all_pos_0 + (bi * batch->all_pos_1);
|
||
}
|
||
}
|
||
if (ubatch.equal_seqs) {
|
||
ubatch.n_seq_id[ubatch.n_seqs] = seq.n_seq_id;
|
||
if (seq.seq_id) {
|
||
ubatch.seq_id[ubatch.n_seqs] = seq.seq_id;
|
||
} else {
|
||
GGML_ASSERT(seq.n_seq_id == 1);
|
||
ubatch.seq_id[ubatch.n_seqs] = &seq.all_seq_id;
|
||
}
|
||
} else {
|
||
// simple split
|
||
if (batch->n_seq_id) {
|
||
ubatch.n_seq_id = batch->n_seq_id + seq.offset;
|
||
} else {
|
||
for (size_t i = 0; i < length; ++i) {
|
||
ubatch.n_seq_id[ubatch.n_seqs + i] = 1;
|
||
}
|
||
}
|
||
if (batch->seq_id) {
|
||
ubatch.seq_id = batch->seq_id + seq.offset;
|
||
} else {
|
||
for (size_t i = 0; i < length; ++i) {
|
||
ubatch.seq_id[ubatch.n_seqs + i] = &seq.all_seq_id;
|
||
}
|
||
}
|
||
}
|
||
if (logits_all) {
|
||
for (size_t i = 0; i < length; ++i) {
|
||
ubatch.output[ubatch.n_tokens + i] = 1;
|
||
out_ids.push_back(ids[seq.offset + i]);
|
||
}
|
||
} else if (batch->logits) {
|
||
if (ubatch.equal_seqs) {
|
||
for (size_t i = 0; i < length; ++i) {
|
||
size_t id = ids[seq.offset + i];
|
||
int8_t is_output = batch->logits[id];
|
||
ubatch.output[ubatch.n_tokens + i] = is_output;
|
||
if (is_output) { out_ids.push_back(id); }
|
||
}
|
||
} else {
|
||
// simple split
|
||
ubatch.output = batch->logits + seq.offset;
|
||
for (size_t i = 0; i < length; ++i) {
|
||
if (ubatch.output[i] != 0) { out_ids.push_back(seq.offset + i); }
|
||
}
|
||
}
|
||
} else {
|
||
// only get last output
|
||
for (size_t i = 0; i < length; ++i) {
|
||
size_t id = ids[seq.offset + i];
|
||
int8_t is_last = id == ids.size() - 1;
|
||
ubatch.output[ubatch.n_tokens + i] = is_last;
|
||
if (is_last) { out_ids.push_back(id); }
|
||
}
|
||
}
|
||
if (ubatch.n_tokens == 0 && ubatch.n_seqs == 0) {
|
||
ubatch.n_seq_tokens = ubatch.equal_seqs ? length : 1;
|
||
}
|
||
ubatch.n_tokens += length;
|
||
ubatch.n_seqs += ubatch.equal_seqs ? 1 : length; // virtual sequences for simple splits
|
||
seq.offset += length;
|
||
seq.length -= length;
|
||
n_tokens -= length;
|
||
GGML_ASSERT(ubatch.n_tokens == ubatch.n_seq_tokens * ubatch.n_seqs);
|
||
}
|
||
|
||
// simple split, unknown number of sequences of unequal lengths
|
||
llama_ubatch split_simple(size_t n_ubatch) {
|
||
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
|
||
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
|
||
ubatch.equal_seqs = false;
|
||
if (!seq.empty()) {
|
||
llama_sbatch_seq & s = seq[0];
|
||
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
|
||
GGML_ASSERT(seq.size() == 1 && s.n_seq_id == 0); // don't mix with other splits
|
||
add_seq_to_ubatch(ubatch, s, length);
|
||
}
|
||
return ubatch;
|
||
}
|
||
|
||
// make batches of equal-length sequences
|
||
llama_ubatch split_equal(size_t n_ubatch) {
|
||
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
|
||
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
|
||
if (!seq.empty()) {
|
||
size_t length = 0;
|
||
size_t n_tokens_in_ubatch = 0;
|
||
GGML_ASSERT(seq[0].n_seq_id > 0); // should not be mixed with simple splits
|
||
// smallest first, because it's easier to split this way;
|
||
// starting from the end to pop in constant time.
|
||
for (size_t i = seq.size(); i-- > 0;) {
|
||
llama_sbatch_seq & s = seq[i];
|
||
GGML_ASSERT(s.length > 0);
|
||
if (length == 0) {
|
||
length = s.length < n_ubatch ? s.length : n_ubatch;
|
||
}
|
||
add_seq_to_ubatch(ubatch, s, length);
|
||
n_tokens_in_ubatch += length;
|
||
// shared prompts can't be mixed with any of their sequences,
|
||
// so it's safer to compute them in their own ubatch
|
||
if (s.n_seq_id > 1) { break; }
|
||
// stop when there isn't enough space for another sequence
|
||
if (length + n_tokens_in_ubatch > n_ubatch) { break; }
|
||
}
|
||
}
|
||
return ubatch;
|
||
}
|
||
|
||
// sequence-wise split
|
||
llama_ubatch split_seq(size_t n_ubatch) {
|
||
n_ubatch = n_tokens < n_ubatch ? n_tokens : n_ubatch;
|
||
llama_ubatch ubatch = reserve_ubatch(n_ubatch, /* has_embd */ batch->embd != nullptr);
|
||
if (!seq.empty()) {
|
||
llama_sbatch_seq & s = seq[seq.size() - 1];
|
||
size_t length = s.length < n_ubatch ? s.length : n_ubatch;
|
||
GGML_ASSERT(s.n_seq_id > 0); // should not be mixed with simple splits
|
||
add_seq_to_ubatch(ubatch, s, length);
|
||
}
|
||
return ubatch;
|
||
}
|
||
|
||
void from_batch(const llama_batch & batch, const size_t n_embd, const bool simple_split = false, const bool logits_all = false) {
|
||
GGML_ASSERT(batch.n_tokens >= 0);
|
||
this->batch = &batch;
|
||
this->n_embd = n_embd;
|
||
this->logits_all = logits_all;
|
||
|
||
n_tokens = batch.n_tokens;
|
||
ids.resize(n_tokens);
|
||
out_ids.clear();
|
||
// TODO: reserve out_ids and seq
|
||
|
||
for (size_t i = 0; i < n_tokens; ++i) {
|
||
ids[i] = i;
|
||
}
|
||
if (simple_split) {
|
||
seq.resize(1);
|
||
llama_sbatch_seq & s = seq[0];
|
||
s.n_seq_id = 0;
|
||
s.seq_id = nullptr;
|
||
s.offset = 0;
|
||
s.length = n_tokens;
|
||
s.all_seq_id = batch.all_seq_id;
|
||
return;
|
||
}
|
||
std::sort(ids.begin(), ids.end(),
|
||
[&batch](size_t a, size_t b) {
|
||
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
|
||
int32_t n_seq_b = batch.n_seq_id ? batch.n_seq_id[b] : 1;
|
||
// sort by seq_id, then by pos
|
||
if (n_seq_a == n_seq_b) {
|
||
if (batch.seq_id) {
|
||
for (int32_t i = 0; i < n_seq_a; ++i) {
|
||
llama_seq_id seq_id_a = batch.seq_id[a][i];
|
||
llama_seq_id seq_id_b = batch.seq_id[b][i];
|
||
// smaller seq_ids go first
|
||
if (seq_id_a != seq_id_b) {
|
||
return seq_id_a < seq_id_b;
|
||
}
|
||
}
|
||
}
|
||
// when all else is equal, sort by pos
|
||
if (batch.pos) {
|
||
return batch.pos[a] < batch.pos[b];
|
||
}
|
||
// no pos, sort by id (assuming batch.all_pos_1 is positive)
|
||
return a < b;
|
||
}
|
||
// shared prompts go first
|
||
return n_seq_a > n_seq_b;
|
||
}
|
||
);
|
||
// init seq
|
||
llama_sbatch_seq * last_seq = nullptr;
|
||
|
||
if (batch.n_seq_id != nullptr && batch.seq_id != nullptr) {
|
||
for (size_t i = 0; i < n_tokens; ++i) {
|
||
const size_t bi = ids[i];
|
||
const int32_t n_seqs = batch.n_seq_id[bi];
|
||
llama_seq_id * seq_ids = batch.seq_id[bi];
|
||
if (last_seq != nullptr) {
|
||
bool same = n_seqs == last_seq->n_seq_id;
|
||
for (int32_t j = 0; same && j < n_seqs; ++j) {
|
||
if (seq_ids[j] != last_seq->seq_id[j]) {
|
||
same = false;
|
||
}
|
||
}
|
||
if (same) {
|
||
last_seq->length += 1;
|
||
continue;
|
||
}
|
||
}
|
||
llama_sbatch_seq new_seq = {n_seqs, seq_ids, i, 1, batch.all_seq_id};
|
||
seq.push_back(new_seq);
|
||
last_seq = &seq.back();
|
||
}
|
||
} else {
|
||
llama_sbatch_seq new_seq = {1, nullptr, 0, n_tokens, batch.all_seq_id};
|
||
seq.push_back(new_seq);
|
||
}
|
||
// keep shared prompts first at the end, then sort by length descending.
|
||
std::sort(seq.begin(), seq.end(),
|
||
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
|
||
if (a.n_seq_id == b.n_seq_id) {
|
||
return a.length > b.length;
|
||
}
|
||
return a.n_seq_id < b.n_seq_id;
|
||
}
|
||
);
|
||
}
|
||
};
|
||
|
||
struct llama_context {
|
||
llama_context(const llama_model & model)
|
||
: model(model)
|
||
, t_start_us(model.t_start_us)
|
||
, t_load_us(model.t_load_us) {}
|
||
|
||
~llama_context() {
|
||
ggml_backend_sched_free(sched);
|
||
|
||
for (ggml_backend_t backend : backends) {
|
||
ggml_backend_free(backend);
|
||
}
|
||
|
||
ggml_backend_buffer_free(buf_output);
|
||
}
|
||
|
||
const struct llama_model & model;
|
||
|
||
struct llama_cparams cparams;
|
||
struct llama_sbatch sbatch;
|
||
struct llama_kv_cache kv_self;
|
||
struct llama_control_vector cvec;
|
||
|
||
std::unordered_map<struct llama_lora_adapter *, float> lora_adapters;
|
||
|
||
std::vector<ggml_backend_t> backends;
|
||
#ifdef GGML_USE_METAL
|
||
ggml_backend_t backend_metal = nullptr;
|
||
#endif
|
||
#ifdef GGML_USE_BLAS
|
||
ggml_backend_t backend_blas = nullptr;
|
||
#endif
|
||
ggml_backend_t backend_cpu = nullptr;
|
||
|
||
ggml_threadpool_t threadpool = nullptr;
|
||
ggml_threadpool_t threadpool_batch = nullptr;
|
||
|
||
bool has_evaluated_once = false;
|
||
|
||
mutable int64_t t_start_us;
|
||
mutable int64_t t_load_us;
|
||
mutable int64_t t_p_eval_us = 0;
|
||
mutable int64_t t_eval_us = 0;
|
||
|
||
mutable int64_t t_compute_start_us = 0;
|
||
mutable int64_t n_queued_tokens = 0;
|
||
|
||
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
|
||
mutable int32_t n_eval = 0; // number of eval calls
|
||
|
||
// host buffer for the model output (logits and embeddings)
|
||
ggml_backend_buffer_t buf_output = nullptr;
|
||
|
||
// decode output (2-dimensional array: [n_outputs][n_vocab])
|
||
size_t logits_size = 0; // capacity (of floats) for logits
|
||
float * logits = nullptr;
|
||
|
||
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
|
||
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
|
||
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
|
||
|
||
bool logits_all = false;
|
||
|
||
// embeddings output (2-dimensional array: [n_outputs][n_embd])
|
||
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
|
||
size_t embd_size = 0; // capacity (of floats) for embeddings
|
||
float * embd = nullptr;
|
||
|
||
// sequence embeddings output (map of [n_embd] vectors)
|
||
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
|
||
std::map<llama_seq_id, std::vector<float>> embd_seq;
|
||
|
||
// whether we are computing encoder output or decoder output
|
||
bool is_encoding = false;
|
||
|
||
// output of the encoder part of the encoder-decoder models
|
||
std::vector<float> embd_enc;
|
||
std::vector<std::set<llama_seq_id>> seq_ids_enc;
|
||
|
||
// memory buffers used to evaluate the model
|
||
std::vector<uint8_t> buf_compute_meta;
|
||
ggml_backend_sched_t sched = nullptr;
|
||
|
||
ggml_abort_callback abort_callback = nullptr;
|
||
void * abort_callback_data = nullptr;
|
||
|
||
// input tensors
|
||
struct ggml_tensor * inp_tokens; // I32 [n_batch]
|
||
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
|
||
struct ggml_tensor * inp_pos; // I32 [n_batch]
|
||
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
|
||
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
|
||
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
|
||
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
|
||
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
|
||
struct ggml_tensor * inp_cls; // I32 [n_batch]
|
||
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
|
||
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
|
||
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
|
||
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
||
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||
};
|
||
|
||
struct llama_lora_weight {
|
||
struct ggml_tensor * a = nullptr;
|
||
struct ggml_tensor * b = nullptr;
|
||
llama_lora_weight() = default;
|
||
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b): a(a), b(b) {}
|
||
};
|
||
|
||
struct llama_lora_adapter {
|
||
struct llama_model * base_model;
|
||
// map tensor name to lora_a_b
|
||
std::unordered_map<std::string, struct llama_lora_weight> ab_map;
|
||
std::vector<struct ggml_context *> ctxs;
|
||
std::vector<ggml_backend_buffer_t> bufs;
|
||
|
||
float alpha;
|
||
|
||
llama_lora_adapter(struct llama_model * base_model): base_model(base_model) {
|
||
base_model->lora_adapters.insert(this);
|
||
}
|
||
|
||
llama_lora_weight * get_weight(struct ggml_tensor * w) {
|
||
std::string name(w->name);
|
||
auto pos = ab_map.find(name);
|
||
if (ab_map.find(name) != ab_map.end()) {
|
||
return &pos->second;
|
||
}
|
||
return nullptr;
|
||
}
|
||
|
||
~llama_lora_adapter() {
|
||
for (struct ggml_context * ctx : ctxs) {
|
||
ggml_free(ctx);
|
||
}
|
||
for (ggml_backend_buffer_t buf : bufs) {
|
||
ggml_backend_buffer_free(buf);
|
||
}
|
||
auto pos = base_model->lora_adapters.find(this);
|
||
if (pos != base_model->lora_adapters.end()) {
|
||
base_model->lora_adapters.erase(pos);
|
||
}
|
||
}
|
||
};
|
||
|
||
static int llama_get_device_count(const llama_model & model) {
|
||
int count = (int) model.devices.size();
|
||
|
||
#if defined(GGML_USE_RPC)
|
||
count += (int) model.rpc_servers.size();
|
||
#endif
|
||
|
||
#if defined(GGML_USE_METAL)
|
||
count += 1;
|
||
#elif defined(GGML_USE_SYCL)
|
||
count += ggml_backend_sycl_get_device_count();
|
||
#elif defined(GGML_USE_VULKAN)
|
||
count += ggml_backend_vk_get_device_count();
|
||
#elif defined(GGML_USE_CANN)
|
||
count += ggml_backend_cann_get_device_count();
|
||
#endif
|
||
|
||
return count;
|
||
|
||
GGML_UNUSED(model);
|
||
}
|
||
|
||
static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(const llama_model & model, bool host_buffer) {
|
||
ggml_backend_buffer_type_t buft = nullptr;
|
||
|
||
if (host_buffer) {
|
||
for (auto * dev : model.devices) {
|
||
buft = ggml_backend_dev_host_buffer_type(dev);
|
||
if (buft != nullptr) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
#if defined(GGML_USE_SYCL)
|
||
if (host_buffer) {
|
||
buft = ggml_backend_sycl_host_buffer_type();
|
||
}
|
||
#elif defined(GGML_USE_CANN)
|
||
if (host_buffer) {
|
||
buft = ggml_backend_cann_host_buffer_type();
|
||
}
|
||
#elif defined(GGML_USE_CPU_HBM)
|
||
buft = ggml_backend_cpu_hbm_buffer_type();
|
||
#elif defined(GGML_USE_VULKAN)
|
||
if (host_buffer) {
|
||
buft = ggml_backend_vk_host_buffer_type();
|
||
}
|
||
#endif
|
||
|
||
if (buft == nullptr) {
|
||
buft = ggml_backend_cpu_buffer_type();
|
||
}
|
||
return buft;
|
||
|
||
GGML_UNUSED(host_buffer);
|
||
}
|
||
|
||
static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int device) {
|
||
ggml_backend_buffer_type_t buft = nullptr;
|
||
|
||
#if defined(GGML_USE_RPC)
|
||
int rpc_count = (int)model.rpc_servers.size();
|
||
if (device < rpc_count) {
|
||
const char * endpoint = model.rpc_servers[device].c_str();
|
||
return ggml_backend_rpc_buffer_type(endpoint);
|
||
}
|
||
device -= rpc_count;
|
||
#endif
|
||
|
||
if (device < (int)model.devices.size()) {
|
||
return ggml_backend_dev_buffer_type(model.devices[device]);
|
||
}
|
||
device -= (int)model.devices.size();
|
||
|
||
#if defined(GGML_USE_METAL)
|
||
buft = ggml_backend_metal_buffer_type();
|
||
#elif defined(GGML_USE_VULKAN)
|
||
buft = ggml_backend_vk_buffer_type(device);
|
||
#elif defined(GGML_USE_SYCL)
|
||
buft = ggml_backend_sycl_buffer_type(device);
|
||
#elif defined(GGML_USE_KOMPUTE)
|
||
buft = ggml_backend_kompute_buffer_type(device);
|
||
#elif defined(GGML_USE_CANN)
|
||
buft = ggml_backend_cann_buffer_type(device);
|
||
#endif
|
||
|
||
if (buft == nullptr) {
|
||
buft = llama_default_buffer_type_cpu(model, true);
|
||
}
|
||
return buft;
|
||
|
||
GGML_UNUSED(model);
|
||
}
|
||
|
||
static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
|
||
ggml_backend_buffer_type_t buft = nullptr;
|
||
|
||
// find a backend that supports split buffers
|
||
for (size_t i = 0; i < ggml_backend_reg_count(); ++i) {
|
||
ggml_backend_reg_t reg = ggml_backend_reg_get(i);
|
||
|
||
auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
|
||
if (ggml_backend_split_buffer_type_fn) {
|
||
buft = ggml_backend_split_buffer_type_fn(tensor_split);
|
||
if (buft != nullptr) {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef GGML_USE_SYCL
|
||
if (ggml_backend_sycl_get_device_count() > 1) {
|
||
buft = ggml_backend_sycl_split_buffer_type(tensor_split);
|
||
}
|
||
#endif
|
||
|
||
if (buft == nullptr) {
|
||
buft = llama_default_buffer_type_offload(model, fallback_gpu);
|
||
}
|
||
return buft;
|
||
|
||
GGML_UNUSED(tensor_split);
|
||
}
|
||
|
||
static size_t llama_get_device_memory(const llama_model & model, int device) {
|
||
#if defined(GGML_USE_RPC)
|
||
int rpc_count = (int)model.rpc_servers.size();
|
||
if (device < rpc_count) {
|
||
size_t total;
|
||
size_t free;
|
||
const char * endpoint = model.rpc_servers[device].c_str();
|
||
ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
|
||
return free;
|
||
}
|
||
device = device - rpc_count;
|
||
#endif
|
||
|
||
if (device < (int)model.devices.size()) {
|
||
ggml_backend_dev_t dev = model.devices[device];
|
||
size_t total;
|
||
size_t free;
|
||
ggml_backend_dev_memory(dev, &free, &total);
|
||
return free;
|
||
}
|
||
|
||
#if defined(GGML_USE_SYCL)
|
||
size_t total;
|
||
size_t free;
|
||
ggml_backend_sycl_get_device_memory(device, &free, &total);
|
||
return free;
|
||
#elif defined(GGML_USE_VULKAN)
|
||
size_t total;
|
||
size_t free;
|
||
ggml_backend_vk_get_device_memory(device, &free, &total);
|
||
return free;
|
||
#elif defined(GGML_USE_CANN)
|
||
size_t total;
|
||
size_t free;
|
||
ggml_backend_cann_get_device_memory(device, &free, &total);
|
||
return free;
|
||
#else
|
||
return 1;
|
||
#endif
|
||
GGML_UNUSED(model);
|
||
GGML_UNUSED(device);
|
||
}
|
||
|
||
//
|
||
// kv cache helpers
|
||
//
|
||
|
||
static bool llama_kv_cache_init(
|
||
struct llama_kv_cache & cache,
|
||
const llama_context * ctx,
|
||
ggml_type type_k,
|
||
ggml_type type_v,
|
||
uint32_t kv_size,
|
||
bool offload) {
|
||
const llama_model & model = ctx->model;
|
||
const llama_cparams & cparams = ctx->cparams;
|
||
|
||
const struct llama_hparams & hparams = model.hparams;
|
||
|
||
const int64_t n_layer = hparams.n_layer;
|
||
|
||
cache.has_shift = false;
|
||
|
||
cache.recurrent = llama_model_is_recurrent(&model);
|
||
cache.v_trans = !cache.recurrent && !cparams.flash_attn;
|
||
|
||
cache.head = 0;
|
||
cache.size = kv_size;
|
||
cache.used = 0;
|
||
|
||
cache.type_k = type_k;
|
||
cache.type_v = type_v;
|
||
|
||
cache.cells.clear();
|
||
cache.cells.resize(kv_size);
|
||
|
||
// count used buffer types
|
||
std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
|
||
if (offload) {
|
||
for (int64_t i = 0; i < n_layer; ++i) {
|
||
buft_layer_count[model.buft_layer[i].buft]++;
|
||
}
|
||
} else {
|
||
buft_layer_count[llama_default_buffer_type_cpu(model, true)] = n_layer;
|
||
}
|
||
|
||
// create a context for each buffer type
|
||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||
for (auto & it : buft_layer_count) {
|
||
int n_layers = it.second;
|
||
struct ggml_init_params params = {
|
||
/*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
|
||
/*.mem_buffer =*/ NULL,
|
||
/*.no_alloc =*/ true,
|
||
};
|
||
ggml_context * ctx = ggml_init(params);
|
||
if (!ctx) {
|
||
LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
|
||
return false;
|
||
}
|
||
ctx_map[it.first] = ctx;
|
||
cache.ctxs.push_back(ctx);
|
||
}
|
||
|
||
cache.k_l.reserve(n_layer);
|
||
cache.v_l.reserve(n_layer);
|
||
|
||
for (int i = 0; i < (int) n_layer; i++) {
|
||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
||
|
||
struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
|
||
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
||
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
||
ggml_format_name(k, "cache_k_l%d", i);
|
||
ggml_format_name(v, "cache_v_l%d", i);
|
||
cache.k_l.push_back(k);
|
||
cache.v_l.push_back(v);
|
||
}
|
||
|
||
// allocate tensors and initialize the buffers to avoid NaNs in the padding
|
||
for (auto it : ctx_map) {
|
||
ggml_backend_buffer_type_t buft = it.first;
|
||
ggml_context * ctx = it.second;
|
||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||
if (!buf) {
|
||
LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
|
||
return false;
|
||
}
|
||
ggml_backend_buffer_clear(buf, 0);
|
||
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
||
cache.bufs.push_back(buf);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
// find an empty slot of size "n_tokens" in the cache
|
||
// updates the cache head
|
||
// Note: On success, it's important that cache.head points
|
||
// to the first cell of the slot.
|
||
static bool llama_kv_cache_find_slot(
|
||
struct llama_kv_cache & cache,
|
||
const struct llama_ubatch & batch) {
|
||
const uint32_t n_tokens = batch.n_tokens;
|
||
const uint32_t n_seqs = batch.n_seqs;
|
||
const uint32_t n_seq_tokens = batch.n_seq_tokens;
|
||
|
||
if (cache.recurrent) {
|
||
// For recurrent state architectures (like Mamba or RWKV),
|
||
// each cache cell can store the state for a whole sequence.
|
||
// A slot should be always be contiguous.
|
||
|
||
// can only process batches with an equal number of new tokens in each sequence
|
||
GGML_ASSERT(batch.equal_seqs);
|
||
|
||
int32_t min = cache.size - 1;
|
||
int32_t max = 0;
|
||
|
||
// everything should fit if all seq_ids are smaller than the max
|
||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||
const uint32_t n_seq_id = batch.n_seq_id[s];
|
||
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
||
|
||
if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
|
||
// too big seq_id
|
||
// TODO: would it be possible to resize the cache instead?
|
||
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
|
||
return false;
|
||
}
|
||
if (j > 0) {
|
||
llama_kv_cell & seq = cache.cells[seq_id];
|
||
if (seq.tail >= 0) {
|
||
llama_kv_cell & cell = cache.cells[seq.tail];
|
||
// clear cells from seq_ids that become shared
|
||
// (should not normally happen, but let's handle it anyway)
|
||
cell.seq_id.erase(seq_id);
|
||
seq.tail = -1;
|
||
if (cell.seq_id.empty()) {
|
||
cell.pos = -1;
|
||
cell.src = -1;
|
||
cache.used -= 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifndef NDEBUG
|
||
{
|
||
std::vector<int32_t> tails_verif;
|
||
tails_verif.assign(cache.size, -1);
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
llama_kv_cell & cell = cache.cells[i];
|
||
for (llama_seq_id seq_id : cell.seq_id) {
|
||
if (tails_verif[seq_id] != -1) {
|
||
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
|
||
}
|
||
tails_verif[seq_id] = i;
|
||
}
|
||
}
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
if (tails_verif[i] != cache.cells[i].tail) {
|
||
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]);
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
// find next empty cell
|
||
uint32_t next_empty_cell = cache.head;
|
||
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
|
||
llama_kv_cell & cell = cache.cells[next_empty_cell];
|
||
if (cell.is_empty()) { break; }
|
||
next_empty_cell += 1;
|
||
}
|
||
|
||
// find usable cell range
|
||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
||
llama_kv_cell & seq_meta = cache.cells[seq_id];
|
||
bool has_cell = false;
|
||
if (seq_meta.tail >= 0) {
|
||
llama_kv_cell & cell = cache.cells[seq_meta.tail];
|
||
GGML_ASSERT(cell.has_seq_id(seq_id));
|
||
// does this seq_id "own" the cell?
|
||
if (cell.seq_id.size() == 1) { has_cell = true; }
|
||
}
|
||
if (!has_cell) {
|
||
llama_kv_cell & empty_cell = cache.cells[next_empty_cell];
|
||
GGML_ASSERT(empty_cell.is_empty());
|
||
// copy old tail into the empty cell
|
||
if (seq_meta.tail >= 0) {
|
||
llama_kv_cell & orig_cell = cache.cells[seq_meta.tail];
|
||
empty_cell.pos = orig_cell.pos;
|
||
empty_cell.src = orig_cell.src;
|
||
orig_cell.seq_id.erase(seq_id);
|
||
empty_cell.seq_id.insert(seq_id); // will be overwritten
|
||
}
|
||
seq_meta.tail = next_empty_cell;
|
||
// find next empty cell
|
||
if (s + 1 < n_seqs) {
|
||
next_empty_cell += 1;
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
|
||
llama_kv_cell & cell = cache.cells[next_empty_cell];
|
||
if (cell.is_empty()) { break; }
|
||
next_empty_cell += 1;
|
||
}
|
||
}
|
||
}
|
||
if (min > seq_meta.tail) { min = seq_meta.tail; }
|
||
if (max < seq_meta.tail) { max = seq_meta.tail; }
|
||
}
|
||
|
||
// gather and re-order
|
||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||
int32_t dst_id = s + min;
|
||
int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
|
||
if (dst_id != src_id) {
|
||
llama_kv_cell & dst_cell = cache.cells[dst_id];
|
||
llama_kv_cell & src_cell = cache.cells[src_id];
|
||
|
||
std::swap(dst_cell.pos, src_cell.pos);
|
||
std::swap(dst_cell.src, src_cell.src);
|
||
std::swap(dst_cell.seq_id, src_cell.seq_id);
|
||
|
||
// swap tails (assuming they NEVER overlap)
|
||
for (const llama_seq_id seq_id : src_cell.seq_id) {
|
||
cache.cells[seq_id].tail = src_id;
|
||
}
|
||
for (const llama_seq_id seq_id : dst_cell.seq_id) {
|
||
cache.cells[seq_id].tail = dst_id;
|
||
}
|
||
}
|
||
}
|
||
|
||
// update the pos of the used seqs
|
||
for (uint32_t s = 0; s < n_seqs; ++s) {
|
||
const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
||
int32_t cell_id = s + min;
|
||
llama_kv_cell & cell = cache.cells[cell_id];
|
||
|
||
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
|
||
// What should happen when the pos backtracks or skips a value?
|
||
// Clearing the state mid-batch would require special-casing which isn't done.
|
||
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
||
__func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
|
||
}
|
||
cell.pos = last_pos;
|
||
cell.seq_id.clear();
|
||
for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
|
||
const llama_seq_id seq_id = batch.seq_id[s][j];
|
||
cell.seq_id.insert(seq_id);
|
||
cache.cells[seq_id].tail = cell_id;
|
||
}
|
||
}
|
||
|
||
// allow getting the range of used cells, from head to head + n
|
||
cache.head = min;
|
||
cache.n = max - min + 1;
|
||
|
||
// sanity check
|
||
return cache.n >= n_seqs;
|
||
}
|
||
// otherwise, one cell per token.
|
||
|
||
if (n_tokens > cache.size) {
|
||
LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
|
||
return false;
|
||
}
|
||
|
||
uint32_t n_tested = 0;
|
||
|
||
while (true) {
|
||
if (cache.head + n_tokens > cache.size) {
|
||
n_tested += cache.size - cache.head;
|
||
cache.head = 0;
|
||
continue;
|
||
}
|
||
|
||
bool found = true;
|
||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||
if (cache.cells[cache.head + i].pos >= 0) {
|
||
found = false;
|
||
cache.head += i + 1;
|
||
n_tested += i + 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (found) {
|
||
break;
|
||
}
|
||
|
||
if (n_tested >= cache.size) {
|
||
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
for (uint32_t s = 0; s < n_seqs; s++) {
|
||
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
|
||
uint32_t k = s*n_seq_tokens + i;
|
||
cache.cells[cache.head + k].pos = batch.pos[k];
|
||
|
||
for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
|
||
cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
|
||
}
|
||
}
|
||
}
|
||
|
||
cache.used += n_tokens;
|
||
|
||
return true;
|
||
}
|
||
|
||
// find how many cells are currently in use
|
||
static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
|
||
for (uint32_t i = cache.size; i > 0; --i) {
|
||
const llama_kv_cell & cell = cache.cells[i - 1];
|
||
|
||
if (cell.pos >= 0 && !cell.is_empty()) {
|
||
return i;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
|
||
for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
|
||
cache.cells[i].pos = -1;
|
||
cache.cells[i].seq_id.clear();
|
||
cache.cells[i].src = -1;
|
||
cache.cells[i].tail = -1;
|
||
}
|
||
cache.head = 0;
|
||
cache.used = 0;
|
||
|
||
for (auto & buf : cache.bufs) {
|
||
ggml_backend_buffer_clear(buf, 0);
|
||
}
|
||
}
|
||
|
||
static bool llama_kv_cache_seq_rm(
|
||
struct llama_kv_cache & cache,
|
||
llama_seq_id seq_id,
|
||
llama_pos p0,
|
||
llama_pos p1) {
|
||
uint32_t new_head = cache.size;
|
||
|
||
if (p0 < 0) p0 = 0;
|
||
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
||
|
||
// models like Mamba or RWKV can't have a state partially erased
|
||
if (cache.recurrent) {
|
||
if (seq_id >= (int64_t) cache.size) {
|
||
// could be fatal
|
||
return false;
|
||
}
|
||
if (0 <= seq_id) {
|
||
int32_t & tail_id = cache.cells[seq_id].tail;
|
||
if (tail_id >= 0) {
|
||
const llama_kv_cell & cell = cache.cells[tail_id];
|
||
// partial intersection is invalid
|
||
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
|
||
return false;
|
||
}
|
||
// invalidate tails which will be cleared
|
||
if (p0 <= cell.pos && cell.pos < p1) {
|
||
tail_id = -1;
|
||
}
|
||
}
|
||
} else {
|
||
// seq_id is negative, then the range should include everything or nothing
|
||
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
||
if (seq_id < 0) {
|
||
cache.cells[i].seq_id.clear();
|
||
} else if (cache.cells[i].has_seq_id(seq_id)) {
|
||
cache.cells[i].seq_id.erase(seq_id);
|
||
} else {
|
||
continue;
|
||
}
|
||
if (cache.cells[i].is_empty()) {
|
||
// keep count of the number of used cells
|
||
if (cache.cells[i].pos >= 0) cache.used--;
|
||
|
||
cache.cells[i].pos = -1;
|
||
cache.cells[i].src = -1;
|
||
if (new_head == cache.size) new_head = i;
|
||
}
|
||
}
|
||
}
|
||
|
||
// If we freed up a slot, set head to it so searching can start there.
|
||
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
|
||
|
||
return true;
|
||
}
|
||
|
||
static void llama_kv_cache_seq_cp(
|
||
struct llama_kv_cache & cache,
|
||
llama_seq_id seq_id_src,
|
||
llama_seq_id seq_id_dst,
|
||
llama_pos p0,
|
||
llama_pos p1) {
|
||
if (p0 < 0) p0 = 0;
|
||
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
||
|
||
if (cache.recurrent) {
|
||
if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
|
||
llama_kv_cell & tail_src = cache.cells[seq_id_src];
|
||
llama_kv_cell & tail_dst = cache.cells[seq_id_dst];
|
||
if (tail_dst.tail >= 0) {
|
||
// clear destination seq_id if it wasn't empty
|
||
llama_kv_cell & cell_dst = cache.cells[tail_dst.tail];
|
||
|
||
cell_dst.seq_id.erase(seq_id_dst);
|
||
tail_dst.tail = -1;
|
||
if (cell_dst.seq_id.empty()) {
|
||
cell_dst.pos = -1;
|
||
cell_dst.delta = -1;
|
||
cell_dst.src = -1;
|
||
cache.used -= 1;
|
||
}
|
||
}
|
||
if (tail_src.tail >= 0) {
|
||
llama_kv_cell & cell_src = cache.cells[tail_src.tail];
|
||
|
||
cell_src.seq_id.insert(seq_id_dst);
|
||
tail_dst.tail = tail_src.tail;
|
||
}
|
||
}
|
||
|
||
return;
|
||
}
|
||
// otherwise, this is the KV cache of a Transformer-like model
|
||
|
||
cache.head = 0;
|
||
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
||
cache.cells[i].seq_id.insert(seq_id_dst);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
|
||
uint32_t new_head = cache.size;
|
||
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
if (cache.recurrent && (llama_seq_id) i != seq_id) {
|
||
cache.cells[i].tail = -1;
|
||
}
|
||
if (!cache.cells[i].has_seq_id(seq_id)) {
|
||
if (cache.cells[i].pos >= 0) cache.used--;
|
||
cache.cells[i].pos = -1;
|
||
cache.cells[i].src = -1;
|
||
cache.cells[i].seq_id.clear();
|
||
if (new_head == cache.size) new_head = i;
|
||
} else {
|
||
cache.cells[i].seq_id.clear();
|
||
cache.cells[i].seq_id.insert(seq_id);
|
||
}
|
||
}
|
||
|
||
// If we freed up a slot, set head to it so searching can start there.
|
||
if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
|
||
}
|
||
|
||
static void llama_kv_cache_seq_add(
|
||
struct llama_kv_cache & cache,
|
||
llama_seq_id seq_id,
|
||
llama_pos p0,
|
||
llama_pos p1,
|
||
llama_pos delta) {
|
||
uint32_t new_head = cache.size;
|
||
|
||
if (p0 < 0) p0 = 0;
|
||
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
||
// If there is no range then return early to avoid looping over the cache.
|
||
if (p0 == p1) return;
|
||
|
||
if (cache.recurrent) {
|
||
// for Mamba-like or RWKV models, only the pos needs to be shifted
|
||
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
|
||
const int32_t tail_id = cache.cells[seq_id].tail;
|
||
if (tail_id >= 0) {
|
||
llama_kv_cell & cell = cache.cells[tail_id];
|
||
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
||
cell.pos += delta;
|
||
}
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
||
cache.has_shift = true;
|
||
cache.cells[i].pos += delta;
|
||
cache.cells[i].delta += delta;
|
||
|
||
if (cache.cells[i].pos < 0) {
|
||
if (!cache.cells[i].is_empty()) {
|
||
cache.used--;
|
||
}
|
||
cache.cells[i].pos = -1;
|
||
cache.cells[i].seq_id.clear();
|
||
if (new_head == cache.size) {
|
||
new_head = i;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// If we freed up a slot, set head to it so searching can start there.
|
||
// Otherwise we just start the next search from the beginning.
|
||
cache.head = new_head != cache.size ? new_head : 0;
|
||
}
|
||
|
||
static void llama_kv_cache_seq_div(
|
||
struct llama_kv_cache & cache,
|
||
llama_seq_id seq_id,
|
||
llama_pos p0,
|
||
llama_pos p1,
|
||
int d) {
|
||
if (p0 < 0) p0 = 0;
|
||
if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
|
||
// If there is no range then return early to avoid looping over the cache.
|
||
if (p0 == p1) return;
|
||
|
||
if (cache.recurrent) {
|
||
// for Mamba-like or RWKV models, only the pos needs to be changed
|
||
if (0 <= seq_id && seq_id < (int64_t) cache.size) {
|
||
const int32_t tail_id = cache.cells[seq_id].tail;
|
||
if (tail_id >= 0) {
|
||
llama_kv_cell & cell = cache.cells[tail_id];
|
||
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
||
cell.pos /= d;
|
||
}
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
|
||
cache.has_shift = true;
|
||
|
||
{
|
||
llama_pos p_old = cache.cells[i].pos;
|
||
cache.cells[i].pos /= d;
|
||
cache.cells[i].delta += cache.cells[i].pos - p_old;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
|
||
llama_pos result = 0;
|
||
|
||
for (uint32_t i = 0; i < cache.size; ++i) {
|
||
if (cache.cells[i].has_seq_id(seq_id)) {
|
||
result = std::max(result, cache.cells[i].pos);
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
|
||
if (!cache.recurrent) {
|
||
cache.do_defrag = true;
|
||
}
|
||
}
|
||
|
||
static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
|
||
// the FA kernels require padding to avoid extra runtime boundary checks
|
||
return cparams.flash_attn ? 256u : 32u;
|
||
}
|
||
|
||
//
|
||
// model loading and saving
|
||
//
|
||
|
||
enum llama_fver {
|
||
GGUF_FILE_VERSION_V1 = 1,
|
||
GGUF_FILE_VERSION_V2 = 2,
|
||
GGUF_FILE_VERSION_V3 = 3,
|
||
};
|
||
|
||
static const char * llama_file_version_name(llama_fver version) {
|
||
switch (version) {
|
||
case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
|
||
case GGUF_FILE_VERSION_V2: return "GGUF V2";
|
||
case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
|
||
}
|
||
|
||
return "unknown";
|
||
}
|
||
|
||
static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
|
||
char buf[256];
|
||
snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
|
||
for (size_t i = 1; i < ne.size(); i++) {
|
||
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
|
||
}
|
||
return buf;
|
||
}
|
||
|
||
static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
|
||
char buf[256];
|
||
snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
|
||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
|
||
}
|
||
return buf;
|
||
}
|
||
|
||
namespace GGUFMeta {
|
||
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
|
||
struct GKV_Base_Type {
|
||
static constexpr gguf_type gt = gt_;
|
||
|
||
static T getter(const gguf_context * ctx, const int kid) {
|
||
return gfun(ctx, kid);
|
||
}
|
||
};
|
||
|
||
template<typename T> struct GKV_Base;
|
||
|
||
template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
|
||
template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
|
||
template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
|
||
template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
|
||
template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
|
||
template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
|
||
template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
|
||
template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
|
||
template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
|
||
template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
|
||
template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
|
||
template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
|
||
|
||
template<> struct GKV_Base<std::string> {
|
||
static constexpr gguf_type gt = GGUF_TYPE_STRING;
|
||
|
||
static std::string getter(const gguf_context * ctx, const int kid) {
|
||
return gguf_get_val_str(ctx, kid);
|
||
}
|
||
};
|
||
|
||
struct ArrayInfo {
|
||
const gguf_type gt;
|
||
const size_t length;
|
||
const void * data;
|
||
};
|
||
|
||
template<> struct GKV_Base<ArrayInfo> {
|
||
public:
|
||
static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
|
||
static ArrayInfo getter(const gguf_context *ctx, const int k) {
|
||
return ArrayInfo {
|
||
gguf_get_arr_type(ctx, k),
|
||
size_t(gguf_get_arr_n(ctx, k)),
|
||
gguf_get_arr_data(ctx, k),
|
||
};
|
||
}
|
||
};
|
||
|
||
template<typename T>
|
||
class GKV : public GKV_Base<T> {
|
||
GKV() = delete;
|
||
|
||
public:
|
||
static T get_kv(const gguf_context * ctx, const int k) {
|
||
const enum gguf_type kt = gguf_get_kv_type(ctx, k);
|
||
|
||
if (kt != GKV::gt) {
|
||
throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
|
||
gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
|
||
}
|
||
return GKV::getter(ctx, k);
|
||
}
|
||
|
||
static const char * override_type_to_str(const llama_model_kv_override_type ty) {
|
||
switch (ty) {
|
||
case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
|
||
case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
|
||
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
|
||
case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
|
||
}
|
||
return "unknown";
|
||
}
|
||
|
||
static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
|
||
if (!ovrd) { return false; }
|
||
if (ovrd->tag == expected_type) {
|
||
LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
|
||
__func__, override_type_to_str(ovrd->tag), ovrd->key);
|
||
switch (ovrd->tag) {
|
||
case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
|
||
LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
|
||
} break;
|
||
case LLAMA_KV_OVERRIDE_TYPE_INT: {
|
||
LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
|
||
} break;
|
||
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
|
||
LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
|
||
} break;
|
||
case LLAMA_KV_OVERRIDE_TYPE_STR: {
|
||
LLAMA_LOG_INFO("%s\n", ovrd->val_str);
|
||
} break;
|
||
default:
|
||
// Shouldn't be possible to end up here, but just in case...
|
||
throw std::runtime_error(
|
||
format("Unsupported attempt to override %s type for metadata key %s\n",
|
||
override_type_to_str(ovrd->tag), ovrd->key));
|
||
}
|
||
return true;
|
||
}
|
||
LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
|
||
__func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
|
||
return false;
|
||
}
|
||
|
||
template<typename OT>
|
||
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
|
||
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
|
||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
|
||
target = ovrd->val_bool;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
template<typename OT>
|
||
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
|
||
try_override(OT & target, const struct llama_model_kv_override * ovrd) {
|
||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
|
||
target = ovrd->val_i64;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
template<typename OT>
|
||
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
|
||
try_override(T & target, const struct llama_model_kv_override * ovrd) {
|
||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
|
||
target = ovrd->val_f64;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
template<typename OT>
|
||
static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
|
||
try_override(T & target, const struct llama_model_kv_override * ovrd) {
|
||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
|
||
target = ovrd->val_str;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
|
||
if (try_override<T>(target, ovrd)) {
|
||
return true;
|
||
}
|
||
if (k < 0) { return false; }
|
||
target = get_kv(ctx, k);
|
||
return true;
|
||
}
|
||
|
||
static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
|
||
return set(ctx, gguf_find_key(ctx, key), target, ovrd);
|
||
}
|
||
|
||
static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
|
||
return set(ctx, key.c_str(), target, ovrd);
|
||
}
|
||
};
|
||
}
|
||
|
||
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
|
||
|
||
static size_t llama_model_max_nodes(const llama_model & model) {
|
||
return std::max<size_t>(8192, model.tensors_by_name.size()*5);
|
||
}
|
||
|
||
struct llama_model_loader {
|
||
int n_kv = 0;
|
||
int n_tensors = 0;
|
||
int n_created = 0;
|
||
|
||
int64_t n_elements = 0;
|
||
size_t n_bytes = 0;
|
||
|
||
bool use_mmap = false;
|
||
bool check_tensors;
|
||
|
||
llama_files files;
|
||
llama_ftype ftype;
|
||
llama_fver fver;
|
||
|
||
llama_mmaps mappings;
|
||
|
||
// Holds information on a model weight
|
||
struct llama_tensor_weight {
|
||
uint16_t idx; // source file index
|
||
size_t offs; // tensor data offset in the original file
|
||
|
||
ggml_tensor * tensor;
|
||
|
||
llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
|
||
const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
|
||
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
|
||
|
||
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
|
||
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
|
||
}
|
||
}
|
||
};
|
||
std::vector<llama_tensor_weight> weights;
|
||
|
||
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
|
||
|
||
struct gguf_context * meta = NULL;
|
||
std::vector<ggml_context *> contexts;
|
||
|
||
std::string arch_name;
|
||
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||
|
||
llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
|
||
int trace = 0;
|
||
if (getenv("LLAMA_TRACE")) {
|
||
trace = atoi(getenv("LLAMA_TRACE"));
|
||
}
|
||
|
||
if (param_overrides_p != nullptr) {
|
||
for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) {
|
||
kv_overrides.insert({std::string(p->key), *p});
|
||
}
|
||
}
|
||
|
||
struct ggml_context * ctx = NULL;
|
||
struct gguf_init_params params = {
|
||
/*.no_alloc = */ true,
|
||
/*.ctx = */ &ctx,
|
||
};
|
||
|
||
meta = gguf_init_from_file(fname.c_str(), params);
|
||
if (!meta) {
|
||
throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
|
||
}
|
||
|
||
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
|
||
llm_kv = LLM_KV(llm_arch_from_string(arch_name));
|
||
|
||
files.emplace_back(new llama_file(fname.c_str(), "rb"));
|
||
contexts.emplace_back(ctx);
|
||
|
||
// Save tensors data offset of the main file.
|
||
// For subsidiary files, `meta` tensor data offset must not be used,
|
||
// so we build a unified tensors index for weights.
|
||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
||
weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
|
||
}
|
||
uint16_t n_split = 0;
|
||
get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
|
||
|
||
// Load additional GGML contexts
|
||
if (n_split > 1) {
|
||
uint16_t idx = 0;
|
||
get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
|
||
if (idx != 0) {
|
||
throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
|
||
}
|
||
|
||
char split_prefix[PATH_MAX] = {0};
|
||
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
|
||
throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
|
||
}
|
||
|
||
if (trace > 0) {
|
||
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
|
||
}
|
||
|
||
char split_path[PATH_MAX] = {0};
|
||
for (idx = 1; idx < n_split; idx++) {
|
||
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
|
||
|
||
struct gguf_init_params split_params = {
|
||
/*.no_alloc = */ true,
|
||
/*.ctx = */ &ctx,
|
||
};
|
||
struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
|
||
if (!ctx_gguf) {
|
||
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
|
||
}
|
||
|
||
files.emplace_back(new llama_file(split_path, "rb"));
|
||
contexts.emplace_back(ctx);
|
||
|
||
// Save tensors data offset info of the shard.
|
||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
||
weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
|
||
}
|
||
|
||
gguf_free(ctx_gguf);
|
||
}
|
||
|
||
get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
|
||
|
||
// sanity check
|
||
{
|
||
const int n_tensors_loaded = (int) weights.size();
|
||
if (n_tensors != n_tensors_loaded) {
|
||
throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
|
||
}
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
|
||
}
|
||
|
||
n_kv = gguf_get_n_kv(meta);
|
||
n_tensors = weights.size();
|
||
|
||
fver = (enum llama_fver) gguf_get_version(meta);
|
||
|
||
std::set<std::string> tensor_names;
|
||
for (auto & w : weights) {
|
||
n_elements += ggml_nelements(w.tensor);
|
||
n_bytes += ggml_nbytes(w.tensor);
|
||
// make sure there is no duplicated tensor names
|
||
const std::string name(w.tensor->name);
|
||
auto found = tensor_names.find(name);
|
||
if (found != tensor_names.end()) {
|
||
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
|
||
}
|
||
tensor_names.insert(name);
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
|
||
__func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
|
||
|
||
// determine file type based on the number of tensors for each quantization and print meta data
|
||
// TODO: make optional
|
||
{
|
||
std::map<enum ggml_type, uint32_t> n_type;
|
||
|
||
uint32_t n_type_max = 0;
|
||
enum ggml_type type_max = GGML_TYPE_F32;
|
||
|
||
for (int i = 0; i < n_tensors; i++) {
|
||
const ggml_tensor * tensor = weights.at(i).tensor;
|
||
enum ggml_type type = tensor->type;
|
||
|
||
n_type[type]++;
|
||
|
||
if (n_type_max < n_type[type]) {
|
||
n_type_max = n_type[type];
|
||
type_max = type;
|
||
}
|
||
|
||
if (trace > 0) {
|
||
const uint16_t sid = weights.at(i).idx;
|
||
LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
|
||
}
|
||
}
|
||
|
||
switch (type_max) {
|
||
case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
|
||
case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
|
||
case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
|
||
case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
|
||
case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
|
||
case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
|
||
case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
|
||
case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
|
||
case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
|
||
case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
|
||
case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
|
||
case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
|
||
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
|
||
case GGML_TYPE_TQ1_0: ftype = LLAMA_FTYPE_MOSTLY_TQ1_0; break;
|
||
case GGML_TYPE_TQ2_0: ftype = LLAMA_FTYPE_MOSTLY_TQ2_0; break;
|
||
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
|
||
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
|
||
case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
|
||
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
|
||
case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
|
||
case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
|
||
case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
|
||
case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
|
||
case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
|
||
case GGML_TYPE_Q4_0_4_4: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_4; break;
|
||
case GGML_TYPE_Q4_0_4_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_4_8; break;
|
||
case GGML_TYPE_Q4_0_8_8: ftype = LLAMA_FTYPE_MOSTLY_Q4_0_8_8; break;
|
||
default:
|
||
{
|
||
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
|
||
ftype = LLAMA_FTYPE_ALL_F32;
|
||
} break;
|
||
}
|
||
|
||
// this is a way to mark that we have "guessed" the file type
|
||
ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
|
||
|
||
{
|
||
const int kid = gguf_find_key(meta, "general.file_type"); // TODO: use LLM_KV
|
||
if (kid >= 0) {
|
||
ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
|
||
}
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
|
||
|
||
for (int i = 0; i < n_kv; i++) {
|
||
const char * name = gguf_get_key(meta, i);
|
||
const enum gguf_type type = gguf_get_kv_type(meta, i);
|
||
const std::string type_name =
|
||
type == GGUF_TYPE_ARRAY
|
||
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
|
||
: gguf_type_name(type);
|
||
|
||
std::string value = gguf_kv_to_str(meta, i);
|
||
const size_t MAX_VALUE_LEN = 40;
|
||
if (value.size() > MAX_VALUE_LEN) {
|
||
value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
|
||
}
|
||
replace_all(value, "\n", "\\n");
|
||
|
||
LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
|
||
}
|
||
|
||
// print type counts
|
||
for (auto & kv : n_type) {
|
||
if (kv.second == 0) {
|
||
continue;
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
|
||
}
|
||
}
|
||
|
||
if (!llama_mmap::SUPPORTED) {
|
||
LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
|
||
use_mmap = false;
|
||
}
|
||
|
||
this->use_mmap = use_mmap;
|
||
this->check_tensors = check_tensors;
|
||
}
|
||
|
||
~llama_model_loader() {
|
||
if (meta) {
|
||
gguf_free(meta);
|
||
}
|
||
for (auto * ctx : contexts) {
|
||
ggml_free(ctx);
|
||
}
|
||
}
|
||
|
||
template<typename T>
|
||
typename std::enable_if<std::is_integral<T>::value, bool>::type
|
||
get_arr_n(const std::string & key, T & result, const bool required = true) {
|
||
const int kid = gguf_find_key(meta, key.c_str());
|
||
|
||
if (kid < 0) {
|
||
if (required) {
|
||
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
|
||
}
|
||
return false;
|
||
}
|
||
|
||
struct GGUFMeta::ArrayInfo arr_info =
|
||
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
|
||
|
||
|
||
result = arr_info.length;
|
||
return true;
|
||
}
|
||
|
||
template<typename T>
|
||
typename std::enable_if<std::is_integral<T>::value, bool>::type
|
||
get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
|
||
return get_arr_n(llm_kv(kid), result, required);
|
||
}
|
||
|
||
template<typename T>
|
||
bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
|
||
const int kid = gguf_find_key(meta, key.c_str());
|
||
|
||
if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
|
||
if (required) {
|
||
throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
|
||
}
|
||
return false;
|
||
}
|
||
|
||
struct GGUFMeta::ArrayInfo arr_info =
|
||
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
|
||
|
||
switch (arr_info.gt) {
|
||
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
|
||
case GGUF_TYPE_INT32: GGML_ASSERT(
|
||
(std::is_same<T, int32_t>::value) ||
|
||
(std::is_same<T, uint32_t>::value)); break;
|
||
default:
|
||
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
|
||
}
|
||
|
||
result.resize(arr_info.length);
|
||
result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
|
||
|
||
return true;
|
||
}
|
||
|
||
template<typename T, size_t N_MAX>
|
||
bool get_arr(const std::string & key, std::array<T, N_MAX> & result, const bool required = true) {
|
||
const int kid = gguf_find_key(meta, key.c_str());
|
||
|
||
if (kid < 0 || gguf_get_kv_type(meta, kid) != GGUF_TYPE_ARRAY) {
|
||
if (required) {
|
||
throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
|
||
}
|
||
return false;
|
||
}
|
||
|
||
struct GGUFMeta::ArrayInfo arr_info =
|
||
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
|
||
|
||
switch (arr_info.gt) {
|
||
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
|
||
case GGUF_TYPE_INT32: GGML_ASSERT(
|
||
(std::is_same<T, int32_t>::value) ||
|
||
(std::is_same<T, uint32_t>::value)); break;
|
||
default:
|
||
throw std::runtime_error(format("%s is not a float32, int32 array", key.c_str()));
|
||
}
|
||
|
||
if (arr_info.length > N_MAX) {
|
||
throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX));
|
||
}
|
||
|
||
std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
|
||
|
||
return true;
|
||
}
|
||
|
||
template<typename T>
|
||
bool get_arr(const enum llm_kv kid, T & result, const bool required = true) {
|
||
return get_arr(llm_kv(kid), result, required);
|
||
}
|
||
|
||
template<typename T>
|
||
bool get_key(const std::string & key, T & result, const bool required = true) {
|
||
auto it = kv_overrides.find(key);
|
||
|
||
const struct llama_model_kv_override * override =
|
||
it != kv_overrides.end() ? &it->second : nullptr;
|
||
|
||
const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
|
||
|
||
if (required && !found) {
|
||
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
|
||
}
|
||
|
||
return found;
|
||
}
|
||
|
||
template<typename T>
|
||
bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
|
||
return get_key(llm_kv(kid), result, required);
|
||
}
|
||
|
||
// get array of n <= N_MAX elements, or a single element repeated n times
|
||
template<typename T, size_t N_MAX>
|
||
bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, const bool required = true) {
|
||
const int kid = gguf_find_key(meta, key.c_str());
|
||
|
||
if (kid < 0) {
|
||
if (required) {
|
||
throw std::runtime_error(format("key not found in model: %s", key.c_str()));
|
||
}
|
||
return false;
|
||
}
|
||
|
||
if (n > N_MAX) {
|
||
throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str()));
|
||
}
|
||
|
||
if (gguf_get_kv_type(meta, kid) == GGUF_TYPE_ARRAY) {
|
||
struct GGUFMeta::ArrayInfo arr_info =
|
||
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
|
||
|
||
if (n != arr_info.length) {
|
||
throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length));
|
||
}
|
||
|
||
return get_arr(key, result, required);
|
||
} else {
|
||
T value;
|
||
|
||
bool ok = get_key(key, value, required);
|
||
if (!ok) {
|
||
return false;
|
||
}
|
||
|
||
for (uint32_t i = 0; i < n; i++) {
|
||
result[i] = value;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
}
|
||
|
||
template<typename T>
|
||
bool get_key_or_arr(const enum llm_kv kid, T & result, uint32_t n, const bool required = true) {
|
||
return get_key_or_arr(llm_kv(kid), result, n, required);
|
||
}
|
||
|
||
std::string get_arch_name() const {
|
||
return arch_name;
|
||
}
|
||
|
||
enum llm_arch get_arch() const {
|
||
return llm_kv.arch;
|
||
}
|
||
|
||
const char * get_tensor_name(int i) const {
|
||
return weights.at(i).tensor->name;
|
||
}
|
||
|
||
const llama_tensor_weight * get_weight(const char * name) const {
|
||
for (const auto & weight : weights) {
|
||
if (strcmp(name, weight.tensor->name) == 0) {
|
||
return &weight;
|
||
}
|
||
}
|
||
return nullptr;
|
||
}
|
||
|
||
const llama_tensor_weight * get_weight(int i) const {
|
||
return get_weight(get_tensor_name(i));
|
||
}
|
||
|
||
const llama_tensor_weight & require_weight(const char * name) const {
|
||
const llama_tensor_weight * weight = get_weight(name);
|
||
if (!weight) {
|
||
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
|
||
}
|
||
return *weight;
|
||
}
|
||
|
||
struct ggml_tensor * get_tensor_meta(const char * name) const {
|
||
const auto * weight = get_weight(name);
|
||
if (!weight) {
|
||
return nullptr;
|
||
}
|
||
return weight->tensor;
|
||
}
|
||
|
||
struct ggml_tensor * require_tensor_meta(const char * name) const {
|
||
struct ggml_tensor * tensor = get_tensor_meta(name);
|
||
if (!tensor) {
|
||
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
|
||
}
|
||
return tensor;
|
||
}
|
||
|
||
struct ggml_tensor * get_tensor_meta(int i) const {
|
||
return get_tensor_meta(get_tensor_name(i));
|
||
}
|
||
|
||
struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
|
||
struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
|
||
ggml_set_name(tensor, ggml_get_name(cur));
|
||
|
||
if (duplicated) {
|
||
size_data += ggml_nbytes(cur);
|
||
} else {
|
||
n_created++;
|
||
}
|
||
|
||
return tensor;
|
||
}
|
||
|
||
const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
|
||
const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
|
||
|
||
if (cur == NULL) {
|
||
if (!required) {
|
||
return NULL;
|
||
}
|
||
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
|
||
}
|
||
|
||
{
|
||
bool is_ok = true;
|
||
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
|
||
if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
|
||
is_ok = false;
|
||
break;
|
||
}
|
||
}
|
||
if (!is_ok) {
|
||
throw std::runtime_error(
|
||
format("%s: tensor '%s' has wrong shape; expected %s, got %s",
|
||
__func__, name.c_str(),
|
||
llama_format_tensor_shape(ne).c_str(),
|
||
llama_format_tensor_shape(cur).c_str()));
|
||
}
|
||
}
|
||
|
||
return cur;
|
||
}
|
||
|
||
static const int TENSOR_NOT_REQUIRED = 1;
|
||
static const int TENSOR_DUPLICATED = 2;
|
||
|
||
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags = 0) {
|
||
const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
|
||
|
||
if (cur == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
|
||
}
|
||
|
||
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required = true) {
|
||
const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
|
||
|
||
if (cur == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
if (cur->type != base->type) {
|
||
throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
|
||
}
|
||
|
||
std::array<int64_t, GGML_MAX_DIMS> dims;
|
||
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
|
||
dims[i] = i < ne.size() ? ne.begin()[i] : 1;
|
||
}
|
||
|
||
struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
|
||
dims[0], dims[1], dims[2], dims[3],
|
||
cur->nb[1], cur->nb[2], cur->nb[3],
|
||
offset);
|
||
|
||
ggml_set_name(tensor, name.c_str());
|
||
|
||
n_created++;
|
||
|
||
return tensor;
|
||
}
|
||
|
||
void done_getting_tensors() const {
|
||
if (n_created != n_tensors) {
|
||
throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
|
||
}
|
||
}
|
||
|
||
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
|
||
if (use_mmap) {
|
||
mappings.reserve(files.size());
|
||
mmaps_used.reserve(files.size());
|
||
for (const auto & file : files) {
|
||
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
|
||
mmaps_used.emplace_back(mapping->size, 0);
|
||
if (mlock_mmaps) {
|
||
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
|
||
mlock_mmap->init(mapping->addr);
|
||
mlock_mmaps->emplace_back(std::move(mlock_mmap));
|
||
}
|
||
mappings.emplace_back(std::move(mapping));
|
||
}
|
||
}
|
||
|
||
// compute the total size of all tensors for progress reporting
|
||
for (auto & w : weights) {
|
||
size_data += ggml_nbytes(w.tensor);
|
||
}
|
||
}
|
||
|
||
void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
|
||
GGML_ASSERT(!mappings.empty());
|
||
const auto & mapping = mappings.at(idx);
|
||
|
||
*first = mapping->size;
|
||
*last = 0;
|
||
*addr = mapping->addr;
|
||
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
|
||
try {
|
||
const auto * weight = get_weight(ggml_get_name(tensor));
|
||
if (!weight) {
|
||
continue;
|
||
}
|
||
if (weight->idx != idx) {
|
||
continue;
|
||
}
|
||
*first = std::min(*first, weight->offs);
|
||
*last = std::max(*last, weight->offs + ggml_nbytes(tensor));
|
||
} catch(...) {
|
||
// the tensor is not in the model
|
||
}
|
||
}
|
||
}
|
||
|
||
// for backwards compatibility, does not support ggml-backend
|
||
void load_data_for(struct ggml_tensor * cur) const {
|
||
const auto & w = require_weight(ggml_get_name(cur));
|
||
|
||
if (use_mmap) {
|
||
const auto & mapping = mappings.at(w.idx);
|
||
if (cur->data == nullptr) {
|
||
cur->data = (uint8_t *)mapping->addr + w.offs;
|
||
} else {
|
||
memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
|
||
}
|
||
} else {
|
||
GGML_ASSERT(cur->data != nullptr);
|
||
GGML_ASSERT(w.idx < files.size());
|
||
const auto & file = files.at(w.idx);
|
||
file->seek(w.offs, SEEK_SET);
|
||
file->read_raw(cur->data, ggml_nbytes(cur));
|
||
}
|
||
|
||
if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
|
||
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
|
||
}
|
||
}
|
||
|
||
size_t size_done = 0;
|
||
size_t size_data = 0;
|
||
std::vector<std::pair<size_t, size_t>> mmaps_used;
|
||
|
||
// Returns false if cancelled by progress_callback
|
||
bool load_all_data(
|
||
struct ggml_context * ctx,
|
||
llama_buf_map & bufs,
|
||
llama_mlocks * lmlocks,
|
||
llama_progress_callback progress_callback,
|
||
void * progress_callback_user_data) {
|
||
GGML_ASSERT(size_data != 0 && "call init_mappings() first");
|
||
|
||
std::vector<no_init<uint8_t>> read_buf;
|
||
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
|
||
|
||
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
|
||
// NVMe raid configurations might require more / larger buffers.
|
||
constexpr size_t n_buffers = 4;
|
||
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
|
||
|
||
std::vector<ggml_backend_buffer_t> host_buffers;
|
||
std::vector<ggml_backend_event_t> events;
|
||
std::vector<void *> host_ptrs;
|
||
size_t buffer_idx = 0; // buffer to use for async loads
|
||
ggml_backend_t upload_backend = [&](const char * fn) -> ggml_backend_t {
|
||
if (use_mmap || check_tensors) {
|
||
return nullptr;
|
||
}
|
||
// When not using mmaped io use async uploads from pinned memory to GPU memory.
|
||
// First determine if the backend supports the necessary features for async uploads.
|
||
auto * buf = bufs.count(0) ? bufs.at(0) : nullptr;
|
||
if (!buf) {
|
||
LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", fn);
|
||
return nullptr;
|
||
}
|
||
|
||
auto * buft = ggml_backend_buffer_get_type(buf);
|
||
auto * dev = ggml_backend_buft_get_device(buft);
|
||
if (!dev) {
|
||
LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", fn,
|
||
ggml_backend_buft_name(buft));
|
||
return nullptr;
|
||
}
|
||
|
||
if (buft != ggml_backend_dev_buffer_type(dev)) {
|
||
LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", fn,
|
||
ggml_backend_buft_name(buft), ggml_backend_dev_name(dev));
|
||
return nullptr;
|
||
}
|
||
|
||
ggml_backend_dev_props props;
|
||
ggml_backend_dev_get_props(dev, &props);
|
||
if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) {
|
||
LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", fn,
|
||
ggml_backend_dev_name(dev));
|
||
return nullptr;
|
||
}
|
||
|
||
auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
|
||
if (!host_buft) {
|
||
LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", fn,
|
||
ggml_backend_dev_name(dev));
|
||
return nullptr;
|
||
}
|
||
|
||
// If the backend is supported, create pinned memory buffers and events for synchronisation.
|
||
for (size_t idx = 0; idx < n_buffers; ++idx) {
|
||
auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size);
|
||
if (!buf) {
|
||
LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", fn,
|
||
ggml_backend_dev_name(dev));
|
||
return nullptr;
|
||
}
|
||
|
||
host_buffers.emplace_back(buf);
|
||
host_ptrs.emplace_back(ggml_backend_buffer_get_base(buf));
|
||
|
||
auto * event = ggml_backend_event_new(dev);
|
||
if (!event) {
|
||
LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", fn,
|
||
ggml_backend_dev_name(dev));
|
||
return nullptr;
|
||
}
|
||
|
||
events.emplace_back(event);
|
||
}
|
||
|
||
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
|
||
if (!backend) {
|
||
LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", fn,
|
||
ggml_backend_dev_name(dev));
|
||
return nullptr;
|
||
}
|
||
|
||
return backend;
|
||
}(__func__);
|
||
|
||
if (upload_backend) {
|
||
LLAMA_LOG_DEBUG("%s: using async uploads for device %s, buffer type %s, backend %s\n", __func__,
|
||
ggml_backend_dev_name(ggml_backend_get_device(upload_backend)),
|
||
ggml_backend_buft_name(ggml_backend_buffer_get_type(bufs.at(0))),
|
||
ggml_backend_name(upload_backend));
|
||
}
|
||
|
||
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
|
||
const auto * weight = get_weight(ggml_get_name(cur));
|
||
if (weight == nullptr) {
|
||
// this can happen with split experts models
|
||
continue;
|
||
}
|
||
|
||
if (progress_callback) {
|
||
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
size_t n_size = ggml_nbytes(cur);
|
||
|
||
if (use_mmap) {
|
||
const auto & mapping = mappings.at(weight->idx);
|
||
ggml_backend_buffer_t buf_mmap = nullptr;
|
||
if (bufs.count(weight->idx)) {
|
||
buf_mmap = bufs.at(weight->idx);
|
||
}
|
||
uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
|
||
|
||
if (check_tensors) {
|
||
validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
|
||
return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
|
||
}));
|
||
}
|
||
|
||
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
|
||
if (buf_mmap && cur->data == nullptr) {
|
||
ggml_backend_tensor_alloc(buf_mmap, cur, data);
|
||
if (lmlocks) {
|
||
const auto & lmlock = lmlocks->at(weight->idx);
|
||
lmlock->grow_to(weight->offs + n_size);
|
||
}
|
||
|
||
auto & mmap_used = mmaps_used[weight->idx];
|
||
mmap_used.first = std::min(mmap_used.first, weight->offs);
|
||
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
|
||
} else {
|
||
ggml_backend_tensor_set(cur, data, 0, n_size);
|
||
}
|
||
} else {
|
||
GGML_ASSERT(weight->idx < files.size());
|
||
const auto & file = files.at(weight->idx);
|
||
if (ggml_backend_buffer_is_host(cur->buffer)) {
|
||
file->seek(weight->offs, SEEK_SET);
|
||
file->read_raw(cur->data, n_size);
|
||
if (check_tensors) {
|
||
validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
|
||
return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
|
||
}));
|
||
}
|
||
} else {
|
||
// If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
|
||
if (upload_backend) {
|
||
file->seek(weight->offs, SEEK_SET);
|
||
|
||
size_t bytes_read = 0;
|
||
|
||
while (bytes_read < n_size) {
|
||
size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
|
||
|
||
ggml_backend_event_synchronize(events[buffer_idx]);
|
||
file->read_raw(host_ptrs[buffer_idx], read_iteration);
|
||
ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
|
||
ggml_backend_event_record(events[buffer_idx], upload_backend);
|
||
|
||
bytes_read += read_iteration;
|
||
++buffer_idx;
|
||
buffer_idx %= n_buffers;
|
||
}
|
||
} else {
|
||
read_buf.resize(n_size);
|
||
file->seek(weight->offs, SEEK_SET);
|
||
file->read_raw(read_buf.data(), n_size);
|
||
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
|
||
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
|
||
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
size_done += n_size;
|
||
}
|
||
|
||
// free temporary resources used for async uploads
|
||
for (auto * event : events) {
|
||
ggml_backend_event_synchronize(event);
|
||
ggml_backend_event_free(event);
|
||
}
|
||
for (auto * buf : host_buffers) {
|
||
ggml_backend_buffer_free(buf);
|
||
}
|
||
ggml_backend_free(upload_backend);
|
||
|
||
// check validation results
|
||
bool validation_failed = false;
|
||
for (auto & future : validation_result) {
|
||
auto result = future.get();
|
||
if (!result.second) {
|
||
LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
|
||
validation_failed = true;
|
||
}
|
||
}
|
||
if (validation_failed) {
|
||
throw std::runtime_error("found tensors with invalid data");
|
||
}
|
||
|
||
// check if this is the last call and do final cleanup
|
||
if (size_done >= size_data) {
|
||
// unmap offloaded tensors and metadata
|
||
if (use_mmap) {
|
||
for (uint32_t idx = 0; idx < mappings.size(); idx++) {
|
||
const auto & mmap_used = mmaps_used.at(idx);
|
||
auto & mapping = mappings.at(idx);
|
||
mapping->unmap_fragment(0, mmap_used.first);
|
||
if (mmap_used.second != 0) {
|
||
mapping->unmap_fragment(mmap_used.second, mapping->size);
|
||
}
|
||
}
|
||
}
|
||
if (progress_callback) {
|
||
// Even though the model is done loading, we still honor
|
||
// cancellation since we need to free allocations.
|
||
return progress_callback(1.0f, progress_callback_user_data);
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
};
|
||
|
||
template<>
|
||
bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
|
||
uint32_t tmp;
|
||
const bool found = get_key(kid, tmp, required);
|
||
if (found) {
|
||
result = (enum llama_pooling_type) tmp;
|
||
} else {
|
||
result = LLAMA_POOLING_TYPE_UNSPECIFIED;
|
||
}
|
||
return found;
|
||
}
|
||
|
||
|
||
//
|
||
// load LLaMA models
|
||
//
|
||
|
||
static const char * llama_model_arch_name(llm_arch arch) {
|
||
auto it = LLM_ARCH_NAMES.find(arch);
|
||
if (it == LLM_ARCH_NAMES.end()) {
|
||
return "unknown";
|
||
}
|
||
return it->second;
|
||
}
|
||
|
||
static std::string llama_model_ftype_name(llama_ftype ftype) {
|
||
if (ftype & LLAMA_FTYPE_GUESSED) {
|
||
return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
|
||
}
|
||
|
||
switch (ftype) {
|
||
case LLAMA_FTYPE_ALL_F32: return "all F32";
|
||
case LLAMA_FTYPE_MOSTLY_F16: return "F16";
|
||
case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
|
||
case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
|
||
case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
|
||
case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
|
||
case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
|
||
case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
|
||
case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
|
||
case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
|
||
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
|
||
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
|
||
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
|
||
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
|
||
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
|
||
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
|
||
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
|
||
case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
|
||
case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary";
|
||
case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary";
|
||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
|
||
case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: return "Q4_0_4_4";
|
||
case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: return "Q4_0_4_8";
|
||
case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: return "Q4_0_8_8";
|
||
|
||
default: return "unknown, may not work";
|
||
}
|
||
}
|
||
|
||
static const char * llama_model_type_name(e_model type) {
|
||
switch (type) {
|
||
case MODEL_14M: return "14M";
|
||
case MODEL_17M: return "17M";
|
||
case MODEL_22M: return "22M";
|
||
case MODEL_33M: return "33M";
|
||
case MODEL_60M: return "60M";
|
||
case MODEL_70M: return "70M";
|
||
case MODEL_80M: return "80M";
|
||
case MODEL_109M: return "109M";
|
||
case MODEL_137M: return "137M";
|
||
case MODEL_160M: return "160M";
|
||
case MODEL_220M: return "220M";
|
||
case MODEL_250M: return "250M";
|
||
case MODEL_270M: return "270M";
|
||
case MODEL_335M: return "335M";
|
||
case MODEL_410M: return "410M";
|
||
case MODEL_450M: return "450M";
|
||
case MODEL_770M: return "770M";
|
||
case MODEL_780M: return "780M";
|
||
case MODEL_0_5B: return "0.5B";
|
||
case MODEL_1B: return "1B";
|
||
case MODEL_1_3B: return "1.3B";
|
||
case MODEL_1_4B: return "1.4B";
|
||
case MODEL_1_6B: return "1.6B";
|
||
case MODEL_2B: return "2B";
|
||
case MODEL_2_8B: return "2.8B";
|
||
case MODEL_3B: return "3B";
|
||
case MODEL_4B: return "4B";
|
||
case MODEL_6B: return "6B";
|
||
case MODEL_6_9B: return "6.9B";
|
||
case MODEL_7B: return "7B";
|
||
case MODEL_8B: return "8B";
|
||
case MODEL_9B: return "9B";
|
||
case MODEL_11B: return "11B";
|
||
case MODEL_12B: return "12B";
|
||
case MODEL_13B: return "13B";
|
||
case MODEL_14B: return "14B";
|
||
case MODEL_15B: return "15B";
|
||
case MODEL_16B: return "16B";
|
||
case MODEL_20B: return "20B";
|
||
case MODEL_30B: return "30B";
|
||
case MODEL_34B: return "34B";
|
||
case MODEL_35B: return "35B";
|
||
case MODEL_40B: return "40B";
|
||
case MODEL_65B: return "65B";
|
||
case MODEL_70B: return "70B";
|
||
case MODEL_236B: return "236B";
|
||
case MODEL_314B: return "314B";
|
||
case MODEL_SMALL: return "0.1B";
|
||
case MODEL_MEDIUM: return "0.4B";
|
||
case MODEL_LARGE: return "0.8B";
|
||
case MODEL_XL: return "1.5B";
|
||
case MODEL_A1_7B: return "A1.7B";
|
||
case MODEL_A2_7B: return "A2.7B";
|
||
case MODEL_8x7B: return "8x7B";
|
||
case MODEL_8x22B: return "8x22B";
|
||
case MODEL_16x12B: return "16x12B";
|
||
case MODEL_10B_128x3_66B: return "10B+128x3.66B";
|
||
case MODEL_57B_A14B: return "57B.A14B";
|
||
case MODEL_27B: return "27B";
|
||
default: return "?B";
|
||
}
|
||
}
|
||
|
||
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
|
||
switch (type) {
|
||
case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
|
||
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
|
||
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
|
||
case LLAMA_VOCAB_TYPE_WPM: return "WPM";
|
||
case LLAMA_VOCAB_TYPE_UGM: return "UGM";
|
||
case LLAMA_VOCAB_TYPE_RWKV: return "RWKV";
|
||
default: return "unknown";
|
||
}
|
||
}
|
||
|
||
static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
|
||
model.arch = ml.get_arch();
|
||
if (model.arch == LLM_ARCH_UNKNOWN) {
|
||
throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
|
||
}
|
||
}
|
||
|
||
static void llm_load_hparams(
|
||
llama_model_loader & ml,
|
||
llama_model & model) {
|
||
auto & hparams = model.hparams;
|
||
const gguf_context * ctx = ml.meta;
|
||
|
||
// get metadata as string
|
||
for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
|
||
enum gguf_type type = gguf_get_kv_type(ctx, i);
|
||
if (type == GGUF_TYPE_ARRAY) {
|
||
continue;
|
||
}
|
||
const char * name = gguf_get_key(ctx, i);
|
||
const std::string value = gguf_kv_to_str(ctx, i);
|
||
model.gguf_kv.emplace(name, value);
|
||
}
|
||
|
||
// get general kv
|
||
ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
|
||
|
||
// get hparams kv
|
||
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
|
||
|
||
// everything past this point is not vocab-related
|
||
if (hparams.vocab_only) {
|
||
return;
|
||
}
|
||
|
||
ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
|
||
ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
|
||
ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
||
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
|
||
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
|
||
|
||
GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
|
||
GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
|
||
if (hparams.n_expert > 0) {
|
||
GGML_ASSERT(hparams.n_expert_used > 0);
|
||
} else {
|
||
GGML_ASSERT(hparams.n_expert_used == 0);
|
||
}
|
||
|
||
// zero-out the per-layer hparams
|
||
std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
||
std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
||
std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
||
|
||
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
||
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
||
|
||
// n_head_kv is optional, default to n_head
|
||
hparams.n_head_kv_arr = hparams.n_head_arr;
|
||
|
||
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
|
||
|
||
bool rope_finetuned = false;
|
||
ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
|
||
hparams.rope_finetuned = rope_finetuned;
|
||
|
||
hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
|
||
ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
|
||
|
||
// rope_freq_base (optional)
|
||
hparams.rope_freq_base_train = 10000.0f;
|
||
ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
|
||
|
||
std::string rope_scaling("linear");
|
||
ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
|
||
hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
|
||
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
|
||
|
||
// rope_freq_scale (inverse of the kv) is optional
|
||
float ropescale = 0.0f;
|
||
if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
|
||
// try the old key name
|
||
ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
|
||
}
|
||
hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
|
||
|
||
ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
|
||
|
||
// non-transformer models do not have attention heads
|
||
if (hparams.n_head() > 0) {
|
||
// gpt-neox n_rot = rotary_pct * (n_embd / n_head)
|
||
// gpt-j n_rot = rotary_dim
|
||
|
||
hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
|
||
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
|
||
|
||
hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
|
||
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
|
||
|
||
// sanity check for n_rot (optional)
|
||
hparams.n_rot = hparams.n_embd_head_k;
|
||
|
||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||
|
||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||
}
|
||
}
|
||
} else {
|
||
hparams.n_rot = 0;
|
||
hparams.n_embd_head_k = 0;
|
||
hparams.n_embd_head_v = 0;
|
||
}
|
||
|
||
// arch-specific KVs
|
||
switch (model.arch) {
|
||
case LLM_ARCH_LLAMA:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
if (hparams.n_expert == 8) {
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_8x7B; break;
|
||
case 56: model.type = e_model::MODEL_8x22B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} else {
|
||
switch (hparams.n_layer) {
|
||
case 16: model.type = e_model::MODEL_1B; break; // Llama 3.2 1B
|
||
case 22: model.type = e_model::MODEL_1B; break;
|
||
case 26: model.type = e_model::MODEL_3B; break;
|
||
case 28: model.type = e_model::MODEL_3B; break; // Llama 3.2 3B
|
||
// granite uses a vocab with len 49152
|
||
case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
|
||
case 36: model.type = e_model::MODEL_8B; break; // granite
|
||
case 40: model.type = e_model::MODEL_13B; break;
|
||
case 48: model.type = e_model::MODEL_34B; break;
|
||
case 60: model.type = e_model::MODEL_30B; break;
|
||
case 80: model.type = hparams.n_head() == hparams.n_head_kv() ? e_model::MODEL_65B : e_model::MODEL_70B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
}
|
||
} break;
|
||
case LLM_ARCH_MINICPM:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 40: model.type = e_model::MODEL_2B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_MINICPM3:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
|
||
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 62: model.type = e_model::MODEL_4B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GROK:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 64: model.type = e_model::MODEL_314B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_FALCON:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 60: model.type = e_model::MODEL_40B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_BAICHUAN:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 40: model.type = e_model::MODEL_13B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
|
||
if (model.type == e_model::MODEL_13B) {
|
||
// TODO: become GGUF KV parameter
|
||
hparams.f_max_alibi_bias = 8.0f;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_STARCODER:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
switch (hparams.n_layer) {
|
||
case 24: model.type = e_model::MODEL_1B; break;
|
||
case 36: model.type = e_model::MODEL_3B; break;
|
||
case 42: model.type = e_model::MODEL_7B; break;
|
||
case 40: model.type = e_model::MODEL_15B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_REFACT:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_1B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
|
||
// TODO: become GGUF KV parameter
|
||
hparams.f_max_alibi_bias = 8.0f;
|
||
} break;
|
||
case LLM_ARCH_BERT:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
||
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
|
||
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 3:
|
||
model.type = e_model::MODEL_17M; break; // bge-micro
|
||
case 6:
|
||
model.type = e_model::MODEL_22M; break; // MiniLM-L6
|
||
case 12:
|
||
switch (hparams.n_embd) {
|
||
case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
|
||
case 768: model.type = e_model::MODEL_109M; break; // bge-base
|
||
} break;
|
||
case 24:
|
||
model.type = e_model::MODEL_335M; break; // bge-large
|
||
}
|
||
} break;
|
||
case LLM_ARCH_JINA_BERT_V2:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
||
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
|
||
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
|
||
hparams.f_max_alibi_bias = 8.0f;
|
||
|
||
switch (hparams.n_layer) {
|
||
case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
|
||
case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
|
||
}
|
||
} break;
|
||
case LLM_ARCH_NOMIC_BERT:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
||
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
|
||
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
|
||
|
||
if (hparams.n_layer == 12 && hparams.n_embd == 768) {
|
||
model.type = e_model::MODEL_137M;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_BLOOM:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 24: model.type = e_model::MODEL_1B; break;
|
||
case 30:
|
||
switch (hparams.n_embd) {
|
||
case 2560: model.type = e_model::MODEL_3B; break;
|
||
case 4096: model.type = e_model::MODEL_7B; break;
|
||
} break;
|
||
}
|
||
|
||
// TODO: become GGUF KV parameter
|
||
hparams.f_max_alibi_bias = 8.0f;
|
||
} break;
|
||
case LLM_ARCH_MPT:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
|
||
ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 48: model.type = e_model::MODEL_30B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_STABLELM:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 24: model.type = e_model::MODEL_1B; break;
|
||
case 32: model.type = e_model::MODEL_3B; break;
|
||
case 40: model.type = e_model::MODEL_12B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_QWEN:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 40: model.type = e_model::MODEL_13B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_QWEN2:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
switch (hparams.n_layer) {
|
||
case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 40: model.type = hparams.n_head() == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
|
||
case 80: model.type = e_model::MODEL_70B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_QWEN2MOE:
|
||
{
|
||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
|
||
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
switch (hparams.n_layer) {
|
||
case 24: model.type = e_model::MODEL_A2_7B; break;
|
||
case 28: model.type = e_model::MODEL_57B_A14B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_PHI2:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 24: model.type = e_model::MODEL_1B; break;
|
||
case 32: model.type = e_model::MODEL_3B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_PHI3:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 24: model.type = e_model::MODEL_1B; break;
|
||
case 32: model.type = e_model::MODEL_3B; break;
|
||
case 40: model.type = e_model::MODEL_14B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
|
||
// for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
|
||
if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
|
||
// default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
|
||
hparams.n_swa = 2047;
|
||
} else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
|
||
// default value for Phi-3-mini-128k-instruct
|
||
hparams.n_swa = 262144;
|
||
} else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
|
||
// default value for Phi-3-medium-128k-instruct
|
||
hparams.n_swa = 131072;
|
||
}
|
||
bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||
if (!found_swa && hparams.n_swa == 0) {
|
||
throw std::runtime_error("invalid value for sliding_window");
|
||
}
|
||
} break;
|
||
case LLM_ARCH_PLAMO:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 40: model.type = e_model::MODEL_13B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GPT2:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
switch (hparams.n_layer) {
|
||
case 12: model.type = e_model::MODEL_SMALL; break;
|
||
case 24: model.type = e_model::MODEL_MEDIUM; break;
|
||
case 36: model.type = e_model::MODEL_LARGE; break;
|
||
case 48: model.type = e_model::MODEL_XL; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_CODESHELL:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
switch (hparams.n_layer) {
|
||
case 42: model.type = e_model::MODEL_7B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_ORION:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 40: model.type = e_model::MODEL_14B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_INTERNLM2:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 48: model.type = e_model::MODEL_20B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GEMMA:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 18: model.type = e_model::MODEL_2B; break;
|
||
case 28: model.type = e_model::MODEL_7B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GEMMA2:
|
||
{
|
||
hparams.n_swa = 4096; // default value of gemma 2
|
||
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
|
||
ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
|
||
hparams.attn_soft_cap = true;
|
||
|
||
switch (hparams.n_layer) {
|
||
case 26: model.type = e_model::MODEL_2B; break;
|
||
case 42: model.type = e_model::MODEL_9B; break;
|
||
case 46: model.type = e_model::MODEL_27B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_STARCODER2:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
switch (hparams.n_layer) {
|
||
case 30: model.type = e_model::MODEL_3B; break;
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 40: model.type = e_model::MODEL_15B; break;
|
||
case 52: model.type = e_model::MODEL_20B; break; // granite
|
||
case 88: model.type = e_model::MODEL_34B; break; // granite
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_MAMBA:
|
||
{
|
||
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
||
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
||
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
||
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
||
ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
|
||
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 24:
|
||
switch (hparams.n_embd) {
|
||
case 768: model.type = e_model::MODEL_SMALL; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 48:
|
||
switch (hparams.n_embd) {
|
||
case 1024: model.type = e_model::MODEL_MEDIUM; break;
|
||
case 1536: model.type = e_model::MODEL_LARGE; break;
|
||
case 2048: model.type = e_model::MODEL_XL; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 64:
|
||
switch (hparams.n_embd) {
|
||
case 2560: model.type = e_model::MODEL_3B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_XVERSE:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 40: model.type = e_model::MODEL_13B; break;
|
||
case 80: model.type = e_model::MODEL_65B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_COMMAND_R:
|
||
{
|
||
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
switch (hparams.n_layer) {
|
||
case 40: model.type = e_model::MODEL_35B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_DBRX:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 40: model.type = e_model::MODEL_16x12B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_OLMO:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 22: model.type = e_model::MODEL_1B; break;
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 80: model.type = e_model::MODEL_70B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_OLMOE:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
switch (hparams.n_layer) {
|
||
case 16: model.type = e_model::MODEL_A1_7B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_OPENELM:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 16: model.type = e_model::MODEL_270M; break;
|
||
case 20: model.type = e_model::MODEL_450M; break;
|
||
case 28: model.type = e_model::MODEL_1B; break;
|
||
case 36: model.type = e_model::MODEL_3B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GPTNEOX:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
|
||
switch (hparams.n_layer) {
|
||
case 6:
|
||
switch (hparams.n_ff()) {
|
||
case 512: model.type = e_model::MODEL_14M; break;
|
||
case 2048: model.type = e_model::MODEL_70M; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 12:
|
||
switch (hparams.n_ff()) {
|
||
case 3072: model.type = e_model::MODEL_160M; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 16:
|
||
switch (hparams.n_ff()) {
|
||
case 8192: model.type = e_model::MODEL_1B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 24:
|
||
switch (hparams.n_ff()) {
|
||
case 4096: model.type = e_model::MODEL_410M; break;
|
||
case 8192: model.type = e_model::MODEL_1_4B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 32:
|
||
switch (hparams.n_ff()) {
|
||
case 10240: model.type = e_model::MODEL_2_8B; break;
|
||
case 16384: model.type = e_model::MODEL_6_9B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 36:
|
||
switch (hparams.n_ff()) {
|
||
case 20480: model.type = e_model::MODEL_12B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 44:
|
||
switch (hparams.n_ff()) {
|
||
case 24576: model.type = e_model::MODEL_20B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_ARCTIC:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
if (hparams.n_expert == 128) {
|
||
switch (hparams.n_layer) {
|
||
case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} else {
|
||
model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_DEEPSEEK2:
|
||
{
|
||
bool is_lite = (hparams.n_layer == 27);
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
|
||
if (!is_lite) {
|
||
ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
|
||
}
|
||
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
|
||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
||
ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 27: model.type = e_model::MODEL_16B; break;
|
||
case 60: model.type = e_model::MODEL_236B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_CHATGLM:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
switch (hparams.n_layer) {
|
||
case 28: model.type = e_model::MODEL_6B; break;
|
||
case 40: model.type = e_model::MODEL_9B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_BITNET:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 26: model.type = e_model::MODEL_3B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_T5:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
|
||
|
||
uint32_t dec_start_token_id;
|
||
if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
|
||
hparams.dec_start_token_id = dec_start_token_id;
|
||
}
|
||
|
||
switch (hparams.n_layer) {
|
||
case 6: model.type = e_model::MODEL_60M; break; // t5-small
|
||
case 8: model.type = e_model::MODEL_80M; break; // flan-t5-small
|
||
case 12:
|
||
switch (hparams.n_ff()) {
|
||
case 3072: model.type = e_model::MODEL_220M; break; // t5-base
|
||
case 2048: model.type = e_model::MODEL_250M; break; // flan-t5-base
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 24:
|
||
switch (hparams.n_ff()) {
|
||
case 4096: model.type = e_model::MODEL_770M; break; // t5-large
|
||
case 2816: model.type = e_model::MODEL_780M; break; // flan-t5-large
|
||
case 16384: model.type = e_model::MODEL_3B; break; // t5-3b
|
||
case 5120: model.type = e_model::MODEL_3B; break; // flan-t5-xl
|
||
case 65536: model.type = e_model::MODEL_11B; break; // t5-11b
|
||
case 10240: model.type = e_model::MODEL_11B; break; // flan-t5-xxl
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_T5ENCODER:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
|
||
model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case LLM_ARCH_JAIS:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 24: model.type = e_model::MODEL_1_3B; break;
|
||
case 40: model.type = e_model::MODEL_13B; break;
|
||
/* TODO: add variants */
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_NEMOTRON:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_4B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_EXAONE:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_8B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_RWKV6:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||
ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
|
||
ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
|
||
ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
|
||
ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 24: model.type = e_model::MODEL_1_6B; break;
|
||
case 32:
|
||
switch (hparams.n_embd) {
|
||
case 2560: model.type = e_model::MODEL_3B; break;
|
||
case 4096: model.type = e_model::MODEL_7B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
} break;
|
||
case 61: model.type = e_model::MODEL_14B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GRANITE:
|
||
case LLM_ARCH_GRANITE_MOE:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
||
ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
|
||
ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
|
||
ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_3B; break;
|
||
case 40: model.type = e_model::MODEL_3B; break;
|
||
// Add additional layer/vocab/etc checks here for other model sizes
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
case LLM_ARCH_CHAMELEON:
|
||
{
|
||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||
hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
|
||
ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
|
||
|
||
switch (hparams.n_layer) {
|
||
case 32: model.type = e_model::MODEL_7B; break;
|
||
case 48: model.type = e_model::MODEL_34B; break;
|
||
default: model.type = e_model::MODEL_UNKNOWN;
|
||
}
|
||
} break;
|
||
default: (void)0;
|
||
}
|
||
|
||
model.ftype = ml.ftype;
|
||
|
||
if (hparams.f_max_alibi_bias > 0.0f) {
|
||
hparams.use_alibi = true;
|
||
}
|
||
|
||
hparams.rope_type = llama_rope_type(&model);
|
||
}
|
||
|
||
static void llm_load_vocab(
|
||
llama_model_loader & ml,
|
||
llama_model & model) {
|
||
auto & vocab = model.vocab;
|
||
|
||
struct gguf_context * ctx = ml.meta;
|
||
|
||
const auto kv = LLM_KV(model.arch);
|
||
|
||
// determine vocab type
|
||
{
|
||
std::string tokenizer_model;
|
||
std::string tokenizer_pre;
|
||
|
||
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
|
||
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
|
||
|
||
if (tokenizer_model == "no_vocab") {
|
||
vocab.type = LLAMA_VOCAB_TYPE_NONE;
|
||
|
||
// default special tokens
|
||
vocab.special_bos_id = -1;
|
||
vocab.special_eos_id = -1;
|
||
vocab.special_unk_id = -1;
|
||
vocab.special_sep_id = -1;
|
||
vocab.special_pad_id = -1;
|
||
vocab.special_cls_id = -1;
|
||
vocab.special_mask_id = -1;
|
||
vocab.linefeed_id = -1;
|
||
|
||
// read vocab size from metadata
|
||
if (!ml.get_key(LLM_KV_VOCAB_SIZE, vocab.n_vocab, false)) {
|
||
vocab.n_vocab = 0;
|
||
LLAMA_LOG_WARN("%s: there is no vocab_size in metadata, vocab.n_vocab will be set to %u\n", __func__, vocab.n_vocab);
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (tokenizer_model == "llama") {
|
||
vocab.type = LLAMA_VOCAB_TYPE_SPM;
|
||
|
||
// default special tokens
|
||
vocab.special_bos_id = 1;
|
||
vocab.special_eos_id = 2;
|
||
vocab.special_unk_id = 0;
|
||
vocab.special_sep_id = -1;
|
||
vocab.special_pad_id = -1;
|
||
vocab.special_cls_id = -1;
|
||
vocab.special_mask_id = -1;
|
||
} else if (tokenizer_model == "bert") {
|
||
vocab.type = LLAMA_VOCAB_TYPE_WPM;
|
||
|
||
// default special tokens
|
||
vocab.special_bos_id = -1;
|
||
vocab.special_eos_id = -1;
|
||
vocab.special_unk_id = 100;
|
||
vocab.special_sep_id = 102;
|
||
vocab.special_pad_id = 0;
|
||
vocab.special_cls_id = 101;
|
||
vocab.special_mask_id = 103;
|
||
} else if (tokenizer_model == "gpt2") {
|
||
vocab.type = LLAMA_VOCAB_TYPE_BPE;
|
||
|
||
// read bpe merges and populate bpe ranks
|
||
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
|
||
if (merges_keyidx == -1) {
|
||
throw std::runtime_error("cannot find tokenizer merges in model file\n");
|
||
}
|
||
|
||
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
|
||
for (int i = 0; i < n_merges; i++) {
|
||
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
|
||
GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
|
||
|
||
std::string first;
|
||
std::string second;
|
||
|
||
const size_t pos = word.find(' ', 1);
|
||
|
||
if (pos != std::string::npos) {
|
||
first = word.substr(0, pos);
|
||
second = word.substr(pos + 1);
|
||
}
|
||
|
||
vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
|
||
}
|
||
|
||
// default special tokens
|
||
vocab.special_bos_id = 11;
|
||
vocab.special_eos_id = 11;
|
||
vocab.special_unk_id = -1;
|
||
vocab.special_sep_id = -1;
|
||
vocab.special_pad_id = -1;
|
||
vocab.special_cls_id = -1;
|
||
vocab.special_mask_id = -1;
|
||
} else if (tokenizer_model == "t5") {
|
||
vocab.type = LLAMA_VOCAB_TYPE_UGM;
|
||
|
||
// default special tokens
|
||
vocab.special_bos_id = -1;
|
||
vocab.special_eos_id = 1;
|
||
vocab.special_unk_id = 2;
|
||
vocab.special_sep_id = -1;
|
||
vocab.special_pad_id = 0;
|
||
vocab.special_cls_id = -1;
|
||
vocab.special_mask_id = -1;
|
||
|
||
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
||
if (precompiled_charsmap_keyidx != -1) {
|
||
size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
|
||
const char * precompiled_charsmap = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
|
||
vocab.precompiled_charsmap.assign(precompiled_charsmap, precompiled_charsmap + n_precompiled_charsmap);
|
||
#ifdef IS_BIG_ENDIAN
|
||
// correct endiannes of data in precompiled_charsmap binary blob
|
||
uint32_t * xcda_blob_size = (uint32_t *) &vocab.precompiled_charsmap[0];
|
||
*xcda_blob_size = __builtin_bswap32(*xcda_blob_size);
|
||
assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap);
|
||
size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t);
|
||
uint32_t * xcda_array = (uint32_t *) &vocab.precompiled_charsmap[sizeof(uint32_t)];
|
||
for (size_t i = 0; i < xcda_array_size; ++i) {
|
||
xcda_array[i] = __builtin_bswap32(xcda_array[i]);
|
||
}
|
||
#endif
|
||
}
|
||
} else if (tokenizer_model == "rwkv") {
|
||
vocab.type = LLAMA_VOCAB_TYPE_RWKV;
|
||
|
||
// default special tokens
|
||
vocab.special_bos_id = -1;
|
||
vocab.special_eos_id = -1;
|
||
vocab.special_unk_id = -1;
|
||
vocab.special_sep_id = -1;
|
||
vocab.special_pad_id = -1;
|
||
} else {
|
||
throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
|
||
}
|
||
|
||
// for now, only BPE models have pre-tokenizers
|
||
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
|
||
vocab.tokenizer_add_space_prefix = false;
|
||
vocab.tokenizer_clean_spaces = true;
|
||
if (tokenizer_pre.empty()) {
|
||
LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
|
||
LLAMA_LOG_WARN("%s: \n", __func__);
|
||
LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
|
||
LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
|
||
LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
|
||
LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
|
||
LLAMA_LOG_WARN("%s: \n", __func__);
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||
} else if (tokenizer_pre == "default") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||
} else if (
|
||
tokenizer_pre == "llama3" ||
|
||
tokenizer_pre == "llama-v3" ||
|
||
tokenizer_pre == "llama-bpe") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
|
||
vocab.tokenizer_ignore_merges = true;
|
||
vocab.tokenizer_add_bos = true;
|
||
} else if (
|
||
tokenizer_pre == "deepseek-llm") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
} else if (
|
||
tokenizer_pre == "deepseek-coder") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
} else if (
|
||
tokenizer_pre == "falcon") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
|
||
} else if (
|
||
tokenizer_pre == "mpt") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
|
||
} else if (
|
||
tokenizer_pre == "starcoder") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
|
||
} else if (
|
||
tokenizer_pre == "gpt-2" ||
|
||
tokenizer_pre == "phi-2" ||
|
||
tokenizer_pre == "jina-es" ||
|
||
tokenizer_pre == "jina-de" ||
|
||
tokenizer_pre == "jina-v1-en" ||
|
||
tokenizer_pre == "jina-v2-es" ||
|
||
tokenizer_pre == "jina-v2-de" ||
|
||
tokenizer_pre == "jina-v2-code") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
|
||
} else if (
|
||
tokenizer_pre == "refact") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
|
||
} else if (
|
||
tokenizer_pre == "command-r") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
} else if (
|
||
tokenizer_pre == "qwen2") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
} else if (
|
||
tokenizer_pre == "stablelm2") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
|
||
} else if (
|
||
tokenizer_pre == "olmo") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
|
||
} else if (
|
||
tokenizer_pre == "dbrx") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
|
||
} else if (
|
||
tokenizer_pre == "smaug-bpe") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
|
||
} else if (
|
||
tokenizer_pre == "poro-chat") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
} else if (
|
||
tokenizer_pre == "chatglm-bpe") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHATGLM4;
|
||
vocab.special_bos_id = -1;
|
||
} else if (
|
||
tokenizer_pre == "viking") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_VIKING;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
} else if (
|
||
tokenizer_pre == "jais") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
|
||
} else if (
|
||
tokenizer_pre == "tekken") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_TEKKEN;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
vocab.tokenizer_ignore_merges = true;
|
||
vocab.tokenizer_add_bos = true;
|
||
} else if (
|
||
tokenizer_pre == "smollm") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMOLLM;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
} else if (
|
||
tokenizer_pre == "codeshell") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
|
||
} else if (
|
||
tokenizer_pre == "bloom") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_BLOOM;
|
||
} else if (
|
||
tokenizer_pre == "gpt3-finnish") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH;
|
||
} else if (
|
||
tokenizer_pre == "exaone") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE;
|
||
} else if (
|
||
tokenizer_pre == "chameleon") {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CHAMELEON;
|
||
vocab.tokenizer_add_bos = true;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
} else {
|
||
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
||
}
|
||
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||
vocab.tokenizer_add_space_prefix = true;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
vocab.tokenizer_add_bos = true;
|
||
vocab.tokenizer_add_eos = false;
|
||
} else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||
vocab.tokenizer_add_space_prefix = false;
|
||
vocab.tokenizer_clean_spaces = true;
|
||
vocab.tokenizer_add_bos = true;
|
||
vocab.tokenizer_add_eos = false;
|
||
} else if (vocab.type == LLAMA_VOCAB_TYPE_UGM) {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||
vocab.tokenizer_add_bos = false;
|
||
vocab.tokenizer_add_eos = true;
|
||
} else if (vocab.type == LLAMA_VOCAB_TYPE_RWKV) {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||
vocab.tokenizer_add_space_prefix = false;
|
||
vocab.tokenizer_clean_spaces = false;
|
||
vocab.tokenizer_add_bos = false;
|
||
vocab.tokenizer_add_eos = false;
|
||
} else {
|
||
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
||
}
|
||
|
||
ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.tokenizer_add_space_prefix, false);
|
||
ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.tokenizer_remove_extra_whitespaces, false);
|
||
}
|
||
|
||
const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
|
||
if (token_idx == -1) {
|
||
throw std::runtime_error("cannot find tokenizer vocab in model file\n");
|
||
}
|
||
|
||
const float * scores = nullptr;
|
||
const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
|
||
if (score_idx != -1) {
|
||
scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
|
||
}
|
||
|
||
const int * toktypes = nullptr;
|
||
const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
|
||
if (toktype_idx != -1) {
|
||
toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
||
}
|
||
|
||
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
||
|
||
vocab.n_vocab = n_vocab;
|
||
vocab.id_to_token.resize(n_vocab);
|
||
|
||
for (uint32_t i = 0; i < n_vocab; i++) {
|
||
std::string word = gguf_get_arr_str(ctx, token_idx, i);
|
||
|
||
//GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
|
||
if (word.empty()) {
|
||
LLAMA_LOG_WARN("%s: empty token at index %u\n", __func__, i);
|
||
word = "[EMPTY_" + std::to_string(i) + "]";
|
||
}
|
||
|
||
vocab.token_to_id[word] = i;
|
||
vocab.max_token_len = std::max(vocab.max_token_len, (int) word.size());
|
||
|
||
auto & token_data = vocab.id_to_token[i];
|
||
token_data.text = std::move(word);
|
||
token_data.score = scores ? scores[i] : 0.0f;
|
||
token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
|
||
|
||
if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
|
||
switch(toktypes[i]) {
|
||
case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
|
||
case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
|
||
case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
|
||
case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
|
||
case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
|
||
case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
|
||
case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
|
||
default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
|
||
}
|
||
}
|
||
}
|
||
GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
|
||
|
||
vocab.init_tokenizer();
|
||
|
||
// determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
|
||
if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
|
||
// For Fill-In-the-Middle (FIM)/infill models which where converted
|
||
// prior to support of FIM special tokens in GGUF, the following
|
||
// will allow those models to continue to work. The general names
|
||
// of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
|
||
// CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
|
||
// new versions of these models have been published.
|
||
std::string gen_name;
|
||
ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
|
||
|
||
std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
|
||
[](unsigned char c){ return std::tolower(c); });
|
||
|
||
if (gen_name.find("code") != std::string::npos) {
|
||
if (model.arch == LLM_ARCH_LLAMA
|
||
&& 32010 < vocab.id_to_token.size()
|
||
&& vocab.id_to_token[32007].text.find("<PRE>") != std::string::npos
|
||
&& vocab.id_to_token[32008].text.find("<SUF>") != std::string::npos
|
||
&& vocab.id_to_token[32009].text.find("<MID>") != std::string::npos
|
||
&& vocab.id_to_token[32010].text.find("<EOT>") != std::string::npos) {
|
||
vocab.special_prefix_id = 32007;
|
||
vocab.special_suffix_id = 32008;
|
||
vocab.special_middle_id = 32009;
|
||
vocab.special_eot_id = 32010;
|
||
} else if (model.arch == LLM_ARCH_GEMMA
|
||
&& 107 < vocab.id_to_token.size()
|
||
&& vocab.id_to_token[67].text == "<|fim_prefix|>"
|
||
&& vocab.id_to_token[69].text == "<|fim_suffix|>"
|
||
&& vocab.id_to_token[68].text == "<|fim_middle|>"
|
||
&& vocab.id_to_token[107].text == "<end_of_turn>") {
|
||
vocab.special_prefix_id = 67;
|
||
vocab.special_suffix_id = 69;
|
||
vocab.special_middle_id = 68;
|
||
// TODO: this is not EOT, it is "file separator" token, needs fix
|
||
// https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
|
||
//vocab.special_eot_id = 70;
|
||
vocab.special_eot_id = 107;
|
||
}
|
||
}
|
||
try {
|
||
vocab.linefeed_id = llama_byte_to_token_impl(vocab, '\n');
|
||
} catch (const std::exception & e) {
|
||
LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
|
||
vocab.linefeed_id = vocab.special_pad_id;
|
||
}
|
||
} else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
|
||
vocab.linefeed_id = vocab.special_pad_id;
|
||
} else if (vocab.type == LLAMA_VOCAB_TYPE_RWKV) {
|
||
const std::vector<int> ids = llama_tokenize_internal(vocab, "\n", false);
|
||
GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
|
||
vocab.linefeed_id = ids[0];
|
||
} else {
|
||
const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
|
||
|
||
//GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
|
||
if (ids.empty()) {
|
||
LLAMA_LOG_WARN("%s: model vocab missing newline token, using special_pad_id instead\n", __func__);
|
||
vocab.linefeed_id = vocab.special_pad_id;
|
||
} else {
|
||
vocab.linefeed_id = ids[0];
|
||
}
|
||
}
|
||
|
||
// special tokens
|
||
{
|
||
const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
|
||
{ LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
|
||
{ LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
|
||
{ LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
|
||
{ LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
|
||
{ LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
|
||
{ LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
|
||
{ LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
|
||
{ LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
|
||
{ LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
|
||
{ LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
|
||
{ LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
|
||
{ LLM_KV_TOKENIZER_EOM_ID, vocab.special_eom_id },
|
||
};
|
||
|
||
for (const auto & it : special_token_types) {
|
||
const std::string & key = kv(std::get<0>(it));
|
||
int32_t & id = std::get<1>(it);
|
||
|
||
uint32_t new_id;
|
||
if (!ml.get_key(std::get<0>(it), new_id, false)) {
|
||
continue;
|
||
}
|
||
if (new_id >= vocab.id_to_token.size()) {
|
||
LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
|
||
__func__, key.c_str(), new_id, id);
|
||
} else {
|
||
id = new_id;
|
||
}
|
||
}
|
||
|
||
// Handle add_bos_token and add_eos_token
|
||
{
|
||
bool temp = true;
|
||
|
||
if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
|
||
vocab.tokenizer_add_bos = temp;
|
||
}
|
||
if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
|
||
vocab.tokenizer_add_eos = temp;
|
||
}
|
||
}
|
||
|
||
// find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
|
||
//
|
||
// TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
|
||
// for now, we apply this workaround to find the EOT token based on its text
|
||
if (vocab.special_eot_id == -1) {
|
||
for (const auto & t : vocab.token_to_id) {
|
||
if (false
|
||
// TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
|
||
// need to fix convert script
|
||
//vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
|
||
|| t.first == "<|eot_id|>"
|
||
|| t.first == "<|im_end|>"
|
||
|| t.first == "<|end|>"
|
||
|| t.first == "<end_of_turn>"
|
||
|| t.first == "<|endoftext|>"
|
||
|| t.first == "<EOT>"
|
||
) {
|
||
vocab.special_eot_id = t.second;
|
||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||
__func__, t.first.c_str());
|
||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// find EOM token: "<|eom_id|>"
|
||
//
|
||
// TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOM_ID
|
||
// for now, we apply this workaround to find the EOM token based on its text
|
||
if (vocab.special_eom_id == -1) {
|
||
const auto & t = vocab.token_to_id.find("<|eom_id|>");
|
||
if (t != vocab.token_to_id.end()) {
|
||
vocab.special_eom_id = t->second;
|
||
if ((vocab.id_to_token[t->second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||
__func__, t->first.c_str());
|
||
vocab.id_to_token[t->second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||
}
|
||
}
|
||
}
|
||
|
||
// maintain a list of tokens that cause end-of-generation
|
||
// this is currently determined based on the token text, which is obviously not ideal
|
||
// ref: https://github.com/ggerganov/llama.cpp/issues/9606
|
||
vocab.special_eog_ids.clear();
|
||
for (const auto & t : vocab.token_to_id) {
|
||
if (false
|
||
|| t.first == "<|eot_id|>"
|
||
|| t.first == "<|im_end|>"
|
||
|| t.first == "<|end|>"
|
||
|| t.first == "<end_of_turn>"
|
||
|| t.first == "<|endoftext|>"
|
||
|| t.first == "<|eom_id|>"
|
||
|| t.first == "<EOT>"
|
||
) {
|
||
vocab.special_eog_ids.insert(t.second);
|
||
if ((vocab.id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
||
LLAMA_LOG_WARN("%s: control-looking token: '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n",
|
||
__func__, t.first.c_str());
|
||
vocab.id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (vocab.special_eos_id != -1 && vocab.special_eog_ids.count(vocab.special_eos_id) == 0) {
|
||
vocab.special_eog_ids.insert(vocab.special_eos_id);
|
||
LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||
}
|
||
|
||
if (vocab.special_eot_id != -1 && vocab.special_eog_ids.count(vocab.special_eot_id) == 0) {
|
||
vocab.special_eog_ids.insert(vocab.special_eot_id);
|
||
LLAMA_LOG_WARN("%s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||
}
|
||
|
||
if (vocab.special_eom_id != -1 && vocab.special_eog_ids.count(vocab.special_eom_id) == 0) {
|
||
vocab.special_eog_ids.insert(vocab.special_eom_id);
|
||
LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__);
|
||
}
|
||
}
|
||
|
||
// build special tokens cache
|
||
{
|
||
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
|
||
if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
|
||
vocab.cache_special_tokens.push_back(id);
|
||
}
|
||
}
|
||
|
||
std::sort(vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
|
||
[&] (const llama_vocab::id a, const llama_vocab::id b) {
|
||
return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
|
||
}
|
||
);
|
||
|
||
LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
|
||
}
|
||
|
||
// build token to piece cache
|
||
{
|
||
size_t size_cache = 0;
|
||
|
||
std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
|
||
|
||
for (uint32_t id = 0; id < n_vocab; ++id) {
|
||
cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
|
||
|
||
size_cache += cache_token_to_piece[id].size();
|
||
}
|
||
|
||
std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
|
||
|
||
LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
|
||
}
|
||
|
||
// Handle per token attributes
|
||
//NOTE: Each model customizes per token attributes.
|
||
//NOTE: Per token attributes are missing from the GGUF file.
|
||
//TODO: Extract attributes from GGUF file.
|
||
{
|
||
auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
|
||
for (auto substr : substrs) {
|
||
if (str.find(substr) < std::string::npos) {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
};
|
||
|
||
auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
|
||
uint32_t current = vocab.id_to_token.at(id).attr;
|
||
current = value ? (current | attr) : (current & ~attr);
|
||
vocab.id_to_token[id].attr = (llama_token_attr) current;
|
||
};
|
||
|
||
auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
|
||
_set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
|
||
};
|
||
|
||
std::string model_name;
|
||
std::string tokenizer_pre;
|
||
|
||
ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
|
||
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
|
||
|
||
// model name to lowercase
|
||
std::transform(model_name.begin(), model_name.end(), model_name.begin(),
|
||
[] (const std::string::value_type x) {
|
||
return std::tolower(x);
|
||
}
|
||
);
|
||
|
||
// set attributes by model/tokenizer name
|
||
if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) {
|
||
_set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
|
||
} else if (_contains_any(model_name, {"phi-3", "phi3"})) {
|
||
for (auto id : vocab.cache_special_tokens) {
|
||
_set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
|
||
}
|
||
for (auto token : {"</s>"}) {
|
||
_set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
|
||
}
|
||
for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
|
||
_set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
||
const auto & hparams = model.hparams;
|
||
const auto & vocab = model.vocab;
|
||
|
||
const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
|
||
|
||
auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
|
||
bool is_var = false;
|
||
|
||
std::vector<uint32_t> v;
|
||
for (uint32_t i = 0; i < n; ++i) {
|
||
v.push_back(f(i));
|
||
if (v[i] != v[0]) {
|
||
is_var = true;
|
||
}
|
||
}
|
||
|
||
std::stringstream ss;
|
||
|
||
if (is_var) {
|
||
ss << "[";
|
||
for (uint32_t i = 0; i < n; ++i) {
|
||
ss << v[i];
|
||
if (i < n - 1) {
|
||
ss << ", ";
|
||
}
|
||
}
|
||
ss << "]";
|
||
} else {
|
||
ss << v[0];
|
||
}
|
||
|
||
return ss.str();
|
||
};
|
||
|
||
// hparams
|
||
LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
|
||
LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
|
||
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
|
||
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
|
||
LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
|
||
LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
|
||
|
||
if (!hparams.vocab_only) {
|
||
LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
|
||
LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
|
||
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||
LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
|
||
LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
|
||
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
|
||
LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
|
||
LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
|
||
LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
|
||
LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
|
||
LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
|
||
LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
|
||
LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
|
||
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
|
||
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
|
||
LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
|
||
LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
|
||
LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
|
||
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
|
||
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
|
||
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
|
||
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
|
||
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
|
||
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
|
||
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
|
||
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
|
||
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
|
||
LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
|
||
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
||
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
|
||
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
|
||
LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
|
||
LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
|
||
LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
|
||
if (ml.n_elements >= 1e12) {
|
||
LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
|
||
} else if (ml.n_elements >= 1e9) {
|
||
LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
|
||
} else if (ml.n_elements >= 1e6) {
|
||
LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
|
||
} else {
|
||
LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
|
||
}
|
||
if (ml.n_bytes < GiB) {
|
||
LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||
} else {
|
||
LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
|
||
}
|
||
|
||
// general kv
|
||
LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
|
||
|
||
// special tokens
|
||
if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
|
||
if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
|
||
if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
|
||
if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
|
||
if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
|
||
if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
|
||
if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
|
||
|
||
if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
|
||
if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
|
||
if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
|
||
if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
|
||
if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
|
||
if (vocab.special_eom_id != -1) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, vocab.special_eom_id, vocab.id_to_token[vocab.special_eom_id].text.c_str() ); }
|
||
|
||
for (const auto & id : vocab.special_eog_ids) {
|
||
LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, vocab.id_to_token[id].text.c_str() );
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, vocab.max_token_len);
|
||
|
||
if (model.arch == LLM_ARCH_DEEPSEEK2) {
|
||
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
|
||
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
|
||
LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
|
||
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
||
LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
|
||
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
|
||
LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
|
||
}
|
||
|
||
if (model.arch == LLM_ARCH_QWEN2MOE) {
|
||
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
|
||
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
|
||
}
|
||
|
||
if (model.arch == LLM_ARCH_GRANITE || model.arch == LLM_ARCH_GRANITE_MOE) {
|
||
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
|
||
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
|
||
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
|
||
}
|
||
}
|
||
|
||
// Returns false if cancelled by progress_callback
|
||
static bool llm_load_tensors(
|
||
llama_model_loader & ml,
|
||
llama_model & model,
|
||
int n_gpu_layers,
|
||
enum llama_split_mode split_mode,
|
||
int main_gpu,
|
||
const float * tensor_split,
|
||
bool use_mlock,
|
||
llama_progress_callback progress_callback,
|
||
void * progress_callback_user_data) {
|
||
auto & hparams = model.hparams;
|
||
|
||
// check if the value of main_gpu is valid
|
||
if (llama_get_device_count(model) > 0 &&
|
||
split_mode != LLAMA_SPLIT_MODE_LAYER &&
|
||
(main_gpu < 0 || main_gpu >= llama_get_device_count(model))) {
|
||
throw std::runtime_error(format("invalid value for main_gpu: %d (available devices: %d)", main_gpu, llama_get_device_count(model)));
|
||
}
|
||
|
||
model.split_mode = split_mode;
|
||
model.main_gpu = main_gpu;
|
||
model.n_gpu_layers = n_gpu_layers;
|
||
|
||
const int n_layer = hparams.n_layer;
|
||
const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
|
||
bool use_mmap_buffer = true;
|
||
|
||
// there is very little benefit to offloading the input layer, so always keep it on the CPU
|
||
model.buft_input = llama_default_buffer_type_cpu(model, true);
|
||
//model.buft_input = llama_default_buffer_type_offload(main_gpu);
|
||
|
||
model.buft_layer.resize(n_layer);
|
||
|
||
// assign cpu layers
|
||
for (int i = 0; i < i_gpu_start; ++i) {
|
||
model.buft_layer[i] = llama_default_buffer_type_cpu(model, true);
|
||
}
|
||
|
||
if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
|
||
// calculate the split points
|
||
int device_count = llama_get_device_count(model);
|
||
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
|
||
std::vector<float> splits(device_count);
|
||
if (all_zero) {
|
||
// default split, by free memory
|
||
for (int i = 0; i < device_count; ++i) {
|
||
splits[i] = llama_get_device_memory(model, i);
|
||
}
|
||
} else {
|
||
std::copy(tensor_split, tensor_split + device_count, splits.begin());
|
||
}
|
||
|
||
// sum and normalize the splits to get the split points
|
||
float split_sum = 0.0f;
|
||
for (int i = 0; i < device_count; ++i) {
|
||
split_sum += splits[i];
|
||
splits[i] = split_sum;
|
||
}
|
||
for (int i = 0; i < device_count; ++i) {
|
||
splits[i] /= split_sum;
|
||
}
|
||
|
||
// assign the repeating layers to the devices according to the splits
|
||
int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
|
||
for (int i = i_gpu_start; i < n_layer; ++i) {
|
||
int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
|
||
model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
|
||
}
|
||
// assign the output layer
|
||
if (n_gpu_layers > n_layer) {
|
||
int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
|
||
model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
|
||
} else {
|
||
model.buft_output = llama_default_buffer_type_cpu(model, true);
|
||
}
|
||
} else {
|
||
ggml_backend_buffer_type_t split_buft;
|
||
if (split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||
split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
|
||
} else {
|
||
// LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
|
||
split_buft = llama_default_buffer_type_offload(model, main_gpu);
|
||
}
|
||
// assign the repeating layers
|
||
for (int i = i_gpu_start; i < n_layer; ++i) {
|
||
model.buft_layer[i] = {
|
||
split_buft,
|
||
llama_default_buffer_type_offload(model, main_gpu)
|
||
};
|
||
}
|
||
// assign the output layer
|
||
if (n_gpu_layers > n_layer) {
|
||
model.buft_output = {
|
||
split_buft,
|
||
llama_default_buffer_type_offload(model, main_gpu)
|
||
};
|
||
} else {
|
||
model.buft_output = llama_default_buffer_type_cpu(model, true);
|
||
}
|
||
}
|
||
|
||
// count used buffer types
|
||
std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
|
||
buft_layer_count[model.buft_input.buft]++;
|
||
buft_layer_count[model.buft_input.buft_matrix]++;
|
||
buft_layer_count[model.buft_output.buft]++;
|
||
buft_layer_count[model.buft_output.buft_matrix]++;
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
buft_layer_count[model.buft_layer[i].buft]++;
|
||
buft_layer_count[model.buft_layer[i].buft_matrix]++;
|
||
}
|
||
|
||
// create one context per buffer type
|
||
size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
|
||
|
||
// for moe merged tensors
|
||
ctx_size += ggml_tensor_overhead()*n_layer*3;
|
||
|
||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||
for (auto & it : buft_layer_count) {
|
||
struct ggml_init_params params = {
|
||
/*.mem_size =*/ ctx_size,
|
||
/*.mem_buffer =*/ NULL,
|
||
/*.no_alloc =*/ true,
|
||
};
|
||
ggml_context * ctx = ggml_init(params);
|
||
if (!ctx) {
|
||
throw std::runtime_error(format("failed to create context"));
|
||
}
|
||
ctx_map[it.first] = ctx;
|
||
model.ctxs.push_back(ctx);
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
|
||
|
||
// create tensors for the weights
|
||
{
|
||
// note: cast to int64_t since we will use these for the tensor dimensions
|
||
const int64_t n_head = hparams.n_head();
|
||
const int64_t n_head_kv = hparams.n_head_kv();
|
||
const int64_t n_embd = hparams.n_embd;
|
||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||
const int64_t n_embd_head_v = hparams.n_embd_head_v;
|
||
const int64_t n_ff = hparams.n_ff();
|
||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||
const int64_t n_vocab = hparams.n_vocab;
|
||
const int64_t n_vocab_type = hparams.n_vocab_type;
|
||
const int64_t n_rot = hparams.n_rot;
|
||
const int64_t n_expert = hparams.n_expert;
|
||
const int64_t n_expert_used = hparams.n_expert_used;
|
||
const int64_t n_ctx_train = hparams.n_ctx_train;
|
||
|
||
if (n_expert > 0 && hparams.n_expert_used == 0) {
|
||
throw std::runtime_error("model has expert layers but no expert layers are used");
|
||
}
|
||
|
||
ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
|
||
ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
|
||
ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
|
||
|
||
auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
|
||
auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
|
||
|
||
model.layers.resize(n_layer);
|
||
|
||
const auto tn = LLM_TN(model.arch);
|
||
switch (model.arch) {
|
||
case LLM_ARCH_LLAMA:
|
||
case LLM_ARCH_REFACT:
|
||
case LLM_ARCH_MINICPM:
|
||
case LLM_ARCH_GRANITE:
|
||
case LLM_ARCH_GRANITE_MOE:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||
|
||
// optional bias tensors
|
||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||
|
||
if (n_expert == 0) {
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
|
||
// optional MLP bias
|
||
layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
} else {
|
||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||
|
||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
if (layer.ffn_gate_exps) {
|
||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
|
||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||
} else {
|
||
// merge split expert into a single tensor for compatibility with older models
|
||
// requires disabling mmap
|
||
use_mmap_buffer = false;
|
||
|
||
ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
|
||
ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
|
||
ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
|
||
|
||
layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
|
||
layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
|
||
layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
|
||
|
||
ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
|
||
ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
|
||
ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
|
||
|
||
for (uint32_t x = 0; x < n_expert; ++x) {
|
||
// the individual experts are loaded into a view of the merged tensor
|
||
ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
|
||
ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
|
||
ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
} break;
|
||
case LLM_ARCH_MINICPM3:
|
||
{
|
||
const int64_t n_embd_head_qk_rope = hparams.n_rot;
|
||
const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
|
||
|
||
const int64_t q_lora_rank = hparams.n_lora_q;
|
||
const int64_t kv_lora_rank = hparams.n_lora_kv;
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
|
||
|
||
layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
|
||
|
||
layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
|
||
layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k});
|
||
|
||
layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)});
|
||
layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
|
||
layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GROK:
|
||
{
|
||
if (n_expert == 0) {
|
||
throw std::runtime_error("Grok model cannot have zero experts");
|
||
}
|
||
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
if (layer.ffn_gate_exps) {
|
||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
|
||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||
} else {
|
||
// merge split expert into a single tensor for compatibility with older models
|
||
// requires disabling mmap
|
||
use_mmap_buffer = false;
|
||
|
||
ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
|
||
ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
|
||
ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
|
||
|
||
layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
|
||
layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
|
||
layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
|
||
|
||
ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
|
||
ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
|
||
ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
|
||
|
||
for (uint32_t x = 0; x < n_expert; ++x) {
|
||
// the individual experts are loaded into a view of the merged tensor
|
||
ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
|
||
ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
|
||
ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
|
||
}
|
||
}
|
||
|
||
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_DBRX:
|
||
{
|
||
if (n_expert == 0) {
|
||
throw std::runtime_error("DBRX model cannot have zero experts");
|
||
}
|
||
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
|
||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_BAICHUAN:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_FALCON:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
if (!model.output) {
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_STARCODER:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
if (!model.output) {
|
||
// needs to be on GPU
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_BERT:
|
||
case LLM_ARCH_NOMIC_BERT:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
|
||
|
||
if (model.arch == LLM_ARCH_BERT) {
|
||
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
|
||
|
||
model.cls = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
model.cls_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
model.cls_out = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
model.cls_out_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
}
|
||
|
||
model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
|
||
model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
if (model.arch == LLM_ARCH_BERT) {
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
||
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
||
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
||
} else {
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
}
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
|
||
layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
|
||
if (model.arch == LLM_ARCH_BERT) {
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
} else {
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
}
|
||
|
||
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
||
layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_JINA_BERT_V2:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
|
||
model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); // token_type_embeddings
|
||
|
||
model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
|
||
model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
|
||
|
||
model.cls = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
model.cls_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_CLS, "bias"), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i]; // JinaBertLayer
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
||
|
||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
||
|
||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
|
||
|
||
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
|
||
layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
|
||
|
||
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
|
||
layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
||
layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_BLOOM:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
|
||
model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_MPT:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
if (!model.output) {
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
// AWQ ScaleActivation layer
|
||
layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
}
|
||
} break;
|
||
case LLM_ARCH_STABLELM:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
// optional bias tensors, present in Stable LM 2 1.6B
|
||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
// optional q and k layernorms, present in StableLM 2 12B
|
||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
// optional FFN norm, not present in StableLM 2 12B which uses parallel residual
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_QWEN:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_QWEN2:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
// optional bias tensors
|
||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_QWEN2MOE:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
// optional bias tensors
|
||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||
|
||
GGML_ASSERT(n_expert > 0);
|
||
GGML_ASSERT(n_expert_used > 0);
|
||
|
||
// MoE branch
|
||
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
||
|
||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
|
||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
|
||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
|
||
|
||
// Shared expert branch
|
||
const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
|
||
|
||
layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
|
||
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp});
|
||
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd});
|
||
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_PHI2:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
if (layer.wqkv == nullptr) {
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
||
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
||
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
||
}
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_PHI3:
|
||
{
|
||
const int64_t n_embd_head = n_embd / n_head;
|
||
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
|
||
|
||
layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||
}
|
||
} break;
|
||
case LLM_ARCH_PLAMO:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GPT2:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_CODESHELL:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_ORION:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_INTERNLM2:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
// layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GEMMA:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GEMMA2:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||
layer.attn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_STARCODER2:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
// optional bias tensors
|
||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
|
||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
|
||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
|
||
// optional bias tensors
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_MAMBA:
|
||
{
|
||
const int64_t d_conv = hparams.ssm_d_conv;
|
||
const int64_t d_inner = hparams.ssm_d_inner;
|
||
const int64_t d_state = hparams.ssm_d_state;
|
||
const int64_t dt_rank = hparams.ssm_dt_rank;
|
||
|
||
// only an expansion factor of 2 is supported for now
|
||
GGML_ASSERT(2 * n_embd == d_inner);
|
||
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
// if output is NULL, init from the input tok embed, duplicated to allow offloading
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
// norm
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
|
||
|
||
layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
|
||
layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
|
||
|
||
layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
|
||
|
||
layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
|
||
layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
|
||
|
||
// no "weight" suffix for these
|
||
layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
|
||
layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
|
||
|
||
// out_proj
|
||
layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_XVERSE:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_COMMAND_R:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
// init output from the input tok embed
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
if (n_layer >= 64){
|
||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
|
||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
|
||
}
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_OLMOE:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd});
|
||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||
|
||
GGML_ASSERT(n_expert > 0);
|
||
GGML_ASSERT(n_expert_used > 0);
|
||
|
||
// MoE branch
|
||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
|
||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_OPENELM:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
// init output from the input tok embed
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
const int64_t n_head = hparams.n_head(i);
|
||
const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
|
||
const int64_t n_ff = hparams.n_ff(i);
|
||
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k});
|
||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
|
||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_GPTNEOX:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_ARCTIC:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||
layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
|
||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
|
||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
|
||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_DEEPSEEK2:
|
||
{
|
||
const bool is_lite = (hparams.n_layer == 27);
|
||
|
||
const int64_t n_embd_head_qk_rope = hparams.n_rot;
|
||
const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
|
||
|
||
const int64_t q_lora_rank = hparams.n_lora_q;
|
||
const int64_t kv_lora_rank = hparams.n_lora_kv;
|
||
|
||
const int64_t n_ff_exp = hparams.n_ff_exp;
|
||
const int64_t n_expert_shared = hparams.n_expert_shared;
|
||
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
if (!is_lite) {
|
||
layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
|
||
}
|
||
|
||
layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
|
||
|
||
if (!is_lite) {
|
||
layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
|
||
layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k});
|
||
} else {
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
||
}
|
||
|
||
layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)});
|
||
layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
if (i < (int) hparams.n_layer_dense_lead) {
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
} else {
|
||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||
|
||
GGML_ASSERT(n_expert > 0);
|
||
GGML_ASSERT(n_expert_used > 0);
|
||
|
||
// MoE branch
|
||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
|
||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
|
||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
|
||
|
||
// Shared expert branch
|
||
layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
|
||
layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd});
|
||
layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
|
||
}
|
||
}
|
||
} break;
|
||
case LLM_ARCH_BITNET:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wq_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wk_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.wo_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_gate_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up_scale = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
}
|
||
} break;
|
||
case LLM_ARCH_T5:
|
||
{
|
||
const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
|
||
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd});
|
||
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||
layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
|
||
|
||
layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_rel_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
|
||
|
||
layer.attn_norm_cross = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd});
|
||
// this tensor seems to be unused in HF transformers implementation
|
||
layer.attn_rel_b_cross = ml.create_tensor(ctx_input, tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wq_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wk_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wv_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||
layer.wo_cross = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_T5ENCODER:
|
||
{
|
||
const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
|
||
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm_enc = ml.create_tensor(ctx_output, tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_rel_b_enc = ml.create_tensor(ctx_input, tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wq_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wk_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wv_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||
layer.wo_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd});
|
||
|
||
layer.ffn_norm_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_gate_enc = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.ffn_down_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up_enc = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_JAIS:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// Output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff});
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_CHATGLM:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_NEMOTRON:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
// optional bias tensors
|
||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
|
||
// optional MLP bias
|
||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
}
|
||
} break;
|
||
case LLM_ARCH_EXAONE:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
case LLM_ARCH_RWKV6:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// Block 0, LN0
|
||
model.tok_norm = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
|
||
model.tok_norm_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
|
||
|
||
// output
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||
|
||
const int time_mix_extra_dim = hparams.time_mix_extra_dim;
|
||
const int time_decay_extra_dim = hparams.time_decay_extra_dim;
|
||
const int head_size = hparams.wkv_head_size;
|
||
const int attn_hidden_size = n_embd;
|
||
const int ffn_size = hparams.n_ff_arr[0];
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||
|
||
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
|
||
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd});
|
||
|
||
layer.time_mix_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5});
|
||
layer.time_mix_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5});
|
||
|
||
layer.time_mix_lerp_x = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1});
|
||
layer.time_mix_lerp_w = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1});
|
||
layer.time_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1});
|
||
layer.time_mix_lerp_v = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1});
|
||
layer.time_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1});
|
||
layer.time_mix_lerp_g = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1});
|
||
|
||
layer.time_mix_first = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size});
|
||
layer.time_mix_decay = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd});
|
||
layer.time_mix_decay_w1 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim});
|
||
layer.time_mix_decay_w2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size});
|
||
layer.time_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd});
|
||
layer.time_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd});
|
||
layer.time_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd});
|
||
layer.time_mix_gate = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd});
|
||
|
||
layer.time_mix_ln = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd});
|
||
layer.time_mix_ln_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd});
|
||
layer.time_mix_output = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size});
|
||
|
||
layer.channel_mix_lerp_k = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1});
|
||
layer.channel_mix_lerp_r = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1});
|
||
|
||
layer.channel_mix_key = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size});
|
||
layer.channel_mix_value = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd});
|
||
layer.channel_mix_receptance = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd});
|
||
}
|
||
|
||
} break;
|
||
case LLM_ARCH_CHAMELEON:
|
||
{
|
||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||
|
||
// output
|
||
{
|
||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
// if output is NULL, init from the input tok embed
|
||
if (model.output == NULL) {
|
||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_layer; ++i) {
|
||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||
|
||
auto & layer = model.layers[i];
|
||
|
||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
|
||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
|
||
layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||
|
||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||
|
||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||
|
||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||
}
|
||
} break;
|
||
default:
|
||
throw std::runtime_error("unknown architecture");
|
||
}
|
||
}
|
||
|
||
ml.done_getting_tensors();
|
||
|
||
ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
|
||
model.mappings.reserve(ml.mappings.size());
|
||
|
||
// create the backend buffers
|
||
std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
|
||
ctx_bufs.reserve(ctx_map.size());
|
||
|
||
// Ensure we have enough capacity for the maximum backend buffer we will potentially create
|
||
size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
|
||
model.bufs.reserve(n_max_backend_buffer);
|
||
|
||
for (auto & it : ctx_map) {
|
||
ggml_backend_buffer_type_t buft = it.first;
|
||
ggml_context * ctx = it.second;
|
||
|
||
llama_buf_map bufs;
|
||
bufs.reserve(n_max_backend_buffer);
|
||
|
||
// only the mmap region containing the tensors in the model is mapped to the backend buffer
|
||
// this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
|
||
// this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
|
||
if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(model, true)) {
|
||
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
|
||
void * addr = nullptr;
|
||
size_t first, last;
|
||
ml.get_mapping_range(&first, &last, &addr, idx, ctx);
|
||
if (first >= last) {
|
||
continue;
|
||
}
|
||
ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
|
||
if (buf == nullptr) {
|
||
throw std::runtime_error("unable to allocate backend CPU buffer");
|
||
}
|
||
model.bufs.push_back(buf);
|
||
bufs.emplace(idx, buf);
|
||
}
|
||
}
|
||
#ifdef GGML_USE_METAL
|
||
else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
|
||
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
|
||
const size_t max_size = ggml_get_max_tensor_size(ctx);
|
||
void * addr = nullptr;
|
||
size_t first, last;
|
||
ml.get_mapping_range(&first, &last, &addr, idx, ctx);
|
||
if (first >= last) {
|
||
continue;
|
||
}
|
||
ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
|
||
if (buf == nullptr) {
|
||
throw std::runtime_error("unable to allocate backend metal buffer");
|
||
}
|
||
model.bufs.push_back(buf);
|
||
bufs.emplace(idx, buf);
|
||
}
|
||
}
|
||
#endif
|
||
else {
|
||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||
if (buf == nullptr) {
|
||
throw std::runtime_error("unable to allocate backend buffer");
|
||
}
|
||
model.bufs.push_back(buf);
|
||
if (use_mlock && ggml_backend_buffer_is_host(buf)) {
|
||
model.mlock_bufs.emplace_back(new llama_mlock);
|
||
auto & mlock_buf = model.mlock_bufs.back();
|
||
mlock_buf->init (ggml_backend_buffer_get_base(buf));
|
||
mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
|
||
}
|
||
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
|
||
bufs.emplace(idx, buf);
|
||
}
|
||
}
|
||
|
||
if (bufs.empty()) {
|
||
throw std::runtime_error("failed to allocate buffer");
|
||
}
|
||
|
||
for (auto & buf : bufs) {
|
||
// indicate that this buffer contains weights
|
||
// this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
|
||
ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
||
}
|
||
|
||
ctx_bufs.emplace_back(ctx, bufs);
|
||
}
|
||
|
||
if (llama_supports_gpu_offload()) {
|
||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||
|
||
LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
|
||
if (n_gpu_layers > (int) hparams.n_layer) {
|
||
LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
|
||
}
|
||
|
||
const int max_backend_supported_layers = hparams.n_layer + 1;
|
||
const int max_offloadable_layers = hparams.n_layer + 1;
|
||
|
||
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
||
}
|
||
|
||
// print memory requirements
|
||
for (ggml_backend_buffer_t buf : model.bufs) {
|
||
LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
|
||
}
|
||
|
||
// populate tensors_by_name
|
||
for (ggml_context * ctx : model.ctxs) {
|
||
for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
|
||
model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
|
||
}
|
||
}
|
||
|
||
// load tensor data
|
||
for (auto & it : ctx_bufs) {
|
||
ggml_context * ctx = it.first;
|
||
auto & bufs = it.second;
|
||
if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (use_mmap_buffer) {
|
||
for (auto & mapping : ml.mappings) {
|
||
model.mappings.emplace_back(std::move(mapping));
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
|
||
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
|
||
model.t_start_us = ggml_time_us();
|
||
|
||
try {
|
||
llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
|
||
|
||
model.hparams.vocab_only = params.vocab_only;
|
||
|
||
try {
|
||
llm_load_arch(ml, model);
|
||
} catch(const std::exception & e) {
|
||
throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
|
||
}
|
||
try {
|
||
llm_load_hparams(ml, model);
|
||
} catch(const std::exception & e) {
|
||
throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
|
||
}
|
||
try {
|
||
llm_load_vocab(ml, model);
|
||
} catch(const std::exception & e) {
|
||
throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
|
||
}
|
||
|
||
llm_load_print_meta(ml, model);
|
||
|
||
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
||
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
||
throw std::runtime_error("vocab size mismatch");
|
||
}
|
||
|
||
if (params.vocab_only) {
|
||
LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
|
||
return 0;
|
||
}
|
||
|
||
#ifdef GGML_USE_KOMPUTE
|
||
if (params.n_gpu_layers > 0 && (
|
||
!(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
|
||
|| !(
|
||
model.ftype == LLAMA_FTYPE_ALL_F32 ||
|
||
model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
|
||
model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
|
||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
|
||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
|
||
)
|
||
)) {
|
||
// TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
|
||
LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
|
||
params.n_gpu_layers = 0;
|
||
}
|
||
#endif
|
||
|
||
if (!llm_load_tensors(
|
||
ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
|
||
params.progress_callback, params.progress_callback_user_data
|
||
)) {
|
||
return -2;
|
||
}
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
|
||
return -1;
|
||
}
|
||
|
||
// loading time will be recalculate after the first eval, so
|
||
// we take page faults deferred by mmap() into consideration
|
||
model.t_load_us = ggml_time_us() - model.t_start_us;
|
||
|
||
return 0;
|
||
}
|
||
|
||
//
|
||
// llm_build
|
||
//
|
||
|
||
using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
|
||
|
||
enum llm_ffn_op_type {
|
||
LLM_FFN_SILU,
|
||
LLM_FFN_GELU,
|
||
LLM_FFN_RELU,
|
||
LLM_FFN_RELU_SQR,
|
||
LLM_FFN_SWIGLU,
|
||
};
|
||
|
||
enum llm_ffn_gate_type {
|
||
LLM_FFN_SEQ,
|
||
LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
|
||
};
|
||
|
||
enum llm_norm_type {
|
||
LLM_NORM,
|
||
LLM_NORM_RMS,
|
||
};
|
||
|
||
static struct ggml_tensor * llm_build_inp_embd(
|
||
struct ggml_context * ctx,
|
||
struct llama_context & lctx,
|
||
const llama_hparams & hparams,
|
||
const llama_ubatch & batch,
|
||
struct ggml_tensor * tok_embd,
|
||
const llm_build_cb & cb) {
|
||
const int64_t n_embd = hparams.n_embd;
|
||
|
||
struct ggml_tensor * inpL;
|
||
|
||
if (batch.token) {
|
||
lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
|
||
cb(lctx.inp_tokens, "inp_tokens", -1);
|
||
ggml_set_input(lctx.inp_tokens);
|
||
|
||
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
||
} else {
|
||
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
||
inpL = lctx.inp_embd;
|
||
ggml_set_input(lctx.inp_embd);
|
||
}
|
||
|
||
// For Granite architecture
|
||
if (hparams.f_embedding_scale != 0.0f) {
|
||
inpL = ggml_scale(ctx, inpL, hparams.f_embedding_scale);
|
||
}
|
||
|
||
cb(inpL, "inp_embd", -1);
|
||
|
||
return inpL;
|
||
}
|
||
|
||
static void llm_build_kv_store(
|
||
struct ggml_context * ctx,
|
||
const llama_hparams & hparams,
|
||
const llama_cparams & cparams,
|
||
const llama_kv_cache & kv,
|
||
struct ggml_cgraph * graph,
|
||
struct ggml_tensor * k_cur,
|
||
struct ggml_tensor * v_cur,
|
||
int32_t n_tokens,
|
||
int32_t kv_head,
|
||
const llm_build_cb & cb,
|
||
int64_t il) {
|
||
const int64_t n_ctx = cparams.n_ctx;
|
||
|
||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
||
|
||
GGML_ASSERT(kv.size == n_ctx);
|
||
|
||
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa, ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa)*kv_head);
|
||
cb(k_cache_view, "k_cache_view", il);
|
||
|
||
// note: storing RoPE-ed version of K in the KV cache
|
||
ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
|
||
|
||
assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
|
||
|
||
struct ggml_tensor * v_cache_view = nullptr;
|
||
|
||
if (cparams.flash_attn) {
|
||
v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa, ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa)*kv_head);
|
||
} else {
|
||
// note: the V cache is transposed when not using flash attention
|
||
v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
|
||
( n_ctx)*ggml_element_size(kv.v_l[il]),
|
||
(kv_head)*ggml_element_size(kv.v_l[il]));
|
||
|
||
v_cur = ggml_transpose(ctx, v_cur);
|
||
}
|
||
cb(v_cache_view, "v_cache_view", il);
|
||
|
||
ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
|
||
}
|
||
|
||
// do mat_mul, while optionally apply lora
|
||
static struct ggml_tensor * llm_build_lora_mm(
|
||
struct llama_context & lctx,
|
||
struct ggml_context * ctx0,
|
||
struct ggml_tensor * w,
|
||
struct ggml_tensor * cur) {
|
||
struct ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
|
||
for (auto & it : lctx.lora_adapters) {
|
||
struct llama_lora_weight * lora = it.first->get_weight(w);
|
||
if (lora == nullptr) {
|
||
continue;
|
||
}
|
||
const float alpha = it.first->alpha;
|
||
const float rank = (float) lora->b->ne[0];
|
||
const float scale = alpha ? it.second * alpha / rank : it.second;
|
||
struct ggml_tensor * ab_cur = ggml_mul_mat(
|
||
ctx0, lora->b,
|
||
ggml_mul_mat(ctx0, lora->a, cur)
|
||
);
|
||
ab_cur = ggml_scale(ctx0, ab_cur, scale);
|
||
res = ggml_add(ctx0, res, ab_cur);
|
||
}
|
||
return res;
|
||
}
|
||
|
||
// do mat_mul_id, while optionally apply lora
|
||
static struct ggml_tensor * llm_build_lora_mm_id(
|
||
struct llama_context & lctx,
|
||
struct ggml_context * ctx0,
|
||
struct ggml_tensor * w, // struct ggml_tensor * as
|
||
struct ggml_tensor * cur, // struct ggml_tensor * b
|
||
struct ggml_tensor * ids) {
|
||
struct ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
|
||
for (auto & it : lctx.lora_adapters) {
|
||
struct llama_lora_weight * lora = it.first->get_weight(w);
|
||
if (lora == nullptr) {
|
||
continue;
|
||
}
|
||
const float alpha = it.first->alpha;
|
||
const float rank = (float) lora->b->ne[0];
|
||
const float scale = alpha ? it.second * alpha / rank : it.second;
|
||
struct ggml_tensor * ab_cur = ggml_mul_mat_id(
|
||
ctx0, lora->b,
|
||
ggml_mul_mat_id(ctx0, lora->a, cur, ids),
|
||
ids
|
||
);
|
||
ab_cur = ggml_scale(ctx0, ab_cur, scale);
|
||
res = ggml_add(ctx0, res, ab_cur);
|
||
}
|
||
return res;
|
||
}
|
||
|
||
static struct ggml_tensor * llm_build_norm(
|
||
struct ggml_context * ctx,
|
||
struct ggml_tensor * cur,
|
||
const llama_hparams & hparams,
|
||
struct ggml_tensor * mw,
|
||
struct ggml_tensor * mb,
|
||
llm_norm_type type,
|
||
const llm_build_cb & cb,
|
||
int il) {
|
||
switch (type) {
|
||
case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
|
||
case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
|
||
}
|
||
|
||
if (mw || mb) {
|
||
cb(cur, "norm", il);
|
||
}
|
||
|
||
if (mw) {
|
||
cur = ggml_mul(ctx, cur, mw);
|
||
if (mb) {
|
||
cb(cur, "norm_w", il);
|
||
}
|
||
}
|
||
|
||
if (mb) {
|
||
cur = ggml_add(ctx, cur, mb);
|
||
}
|
||
|
||
return cur;
|
||
}
|
||
|
||
static struct ggml_tensor * llm_build_ffn(
|
||
struct ggml_context * ctx,
|
||
struct llama_context & lctx,
|
||
struct ggml_tensor * cur,
|
||
struct ggml_tensor * up,
|
||
struct ggml_tensor * up_b,
|
||
struct ggml_tensor * up_s,
|
||
struct ggml_tensor * gate,
|
||
struct ggml_tensor * gate_b,
|
||
struct ggml_tensor * gate_s,
|
||
struct ggml_tensor * down,
|
||
struct ggml_tensor * down_b,
|
||
struct ggml_tensor * down_s,
|
||
struct ggml_tensor * act_scales,
|
||
llm_ffn_op_type type_op,
|
||
llm_ffn_gate_type type_gate,
|
||
const llm_build_cb & cb,
|
||
int il) {
|
||
struct ggml_tensor * tmp = up ? llm_build_lora_mm(lctx, ctx, up, cur) : cur;
|
||
cb(tmp, "ffn_up", il);
|
||
|
||
if (up_b) {
|
||
tmp = ggml_add(ctx, tmp, up_b);
|
||
cb(tmp, "ffn_up_b", il);
|
||
}
|
||
|
||
if (up_s) {
|
||
tmp = ggml_mul(ctx, tmp, up_s);
|
||
cb(tmp, "ffn_up_s", il);
|
||
}
|
||
|
||
if (gate) {
|
||
switch (type_gate) {
|
||
case LLM_FFN_SEQ:
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx, gate, tmp);
|
||
cb(cur, "ffn_gate", il);
|
||
} break;
|
||
case LLM_FFN_PAR:
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx, gate, cur);
|
||
cb(cur, "ffn_gate", il);
|
||
} break;
|
||
}
|
||
|
||
if (gate_b) {
|
||
cur = ggml_add(ctx, cur, gate_b);
|
||
cb(cur, "ffn_gate_b", il);
|
||
}
|
||
|
||
if (gate_s) {
|
||
cur = ggml_mul(ctx, cur, gate_s);
|
||
cb(cur, "ffn_gate_s", il);
|
||
}
|
||
|
||
} else {
|
||
cur = tmp;
|
||
}
|
||
|
||
switch (type_op) {
|
||
case LLM_FFN_SILU:
|
||
{
|
||
cur = ggml_silu(ctx, cur);
|
||
cb(cur, "ffn_silu", il);
|
||
} break;
|
||
case LLM_FFN_GELU:
|
||
{
|
||
cur = ggml_gelu(ctx, cur);
|
||
cb(cur, "ffn_gelu", il);
|
||
if (act_scales != NULL) {
|
||
cur = ggml_div(ctx, cur, act_scales);
|
||
cb(cur, "ffn_act", il);
|
||
}
|
||
} break;
|
||
case LLM_FFN_RELU:
|
||
{
|
||
cur = ggml_relu(ctx, cur);
|
||
cb(cur, "ffn_relu", il);
|
||
} break;
|
||
case LLM_FFN_RELU_SQR:
|
||
{
|
||
cur = ggml_relu(ctx, cur);
|
||
cb(cur, "ffn_relu", il);
|
||
|
||
cur = ggml_sqr(ctx, cur);
|
||
cb(cur, "ffn_sqr(relu)", il);
|
||
} break;
|
||
case LLM_FFN_SWIGLU:
|
||
{
|
||
// Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
|
||
int64_t split_point = cur->ne[0] / 2;
|
||
struct ggml_tensor * x0 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], 0));
|
||
struct ggml_tensor * x1 = ggml_cont(ctx, ggml_view_2d(ctx, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
|
||
|
||
x0 = ggml_silu(ctx, x0);
|
||
cb(cur, "ffn_silu", il);
|
||
|
||
cur = ggml_mul(ctx, x0, x1);
|
||
cb(cur, "ffn_mul", il);
|
||
} break;
|
||
}
|
||
|
||
if (type_gate == LLM_FFN_PAR) {
|
||
cur = ggml_mul(ctx, cur, tmp);
|
||
cb(cur, "ffn_gate_par", il);
|
||
}
|
||
|
||
if (down) {
|
||
cur = llm_build_lora_mm(lctx, ctx, down, cur);
|
||
}
|
||
|
||
if (down_b) {
|
||
cb(cur, "ffn_down", il);
|
||
}
|
||
|
||
if (down_b) {
|
||
cur = ggml_add(ctx, cur, down_b);
|
||
}
|
||
|
||
if (down_s) {
|
||
cur = ggml_mul(ctx, cur, down_s);
|
||
cb(cur, "ffn_down_s", il);
|
||
}
|
||
|
||
return cur;
|
||
}
|
||
|
||
static struct ggml_tensor * llm_build_moe_ffn(
|
||
struct ggml_context * ctx,
|
||
struct llama_context & lctx,
|
||
struct ggml_tensor * cur,
|
||
struct ggml_tensor * gate_inp,
|
||
struct ggml_tensor * up_exps,
|
||
struct ggml_tensor * gate_exps,
|
||
struct ggml_tensor * down_exps,
|
||
int64_t n_expert,
|
||
int64_t n_expert_used,
|
||
llm_ffn_op_type type_op,
|
||
bool norm_w,
|
||
bool scale_w,
|
||
float w_scale,
|
||
const llm_build_cb & cb,
|
||
int il) {
|
||
int64_t n_embd = cur->ne[0];
|
||
int64_t n_tokens = cur->ne[1];
|
||
|
||
ggml_tensor * logits = llm_build_lora_mm(lctx, ctx, gate_inp, cur); // [n_expert, n_tokens]
|
||
cb(logits, "ffn_moe_logits", il);
|
||
|
||
ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
|
||
cb(probs, "ffn_moe_probs", il);
|
||
|
||
// select experts
|
||
ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
|
||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||
cb(selected_experts, "ffn_moe_topk", il);
|
||
|
||
ggml_tensor * weights = ggml_get_rows(ctx,
|
||
ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
|
||
cb(weights, "ffn_moe_weights", il);
|
||
|
||
if (norm_w) {
|
||
weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
|
||
|
||
ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
|
||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||
|
||
weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
|
||
cb(weights, "ffn_moe_weights_norm", il);
|
||
|
||
weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
|
||
}
|
||
if (scale_w) {
|
||
weights = ggml_scale(ctx, weights, w_scale);
|
||
cb(weights, "ffn_moe_weights_scaled", il);
|
||
}
|
||
|
||
cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
|
||
ggml_tensor * up = llm_build_lora_mm_id(lctx, ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
||
cb(up, "ffn_moe_up", il);
|
||
|
||
ggml_tensor * gate = llm_build_lora_mm_id(lctx, ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
||
cb(gate, "ffn_moe_gate", il);
|
||
|
||
switch (type_op) {
|
||
case LLM_FFN_SILU:
|
||
{
|
||
gate = ggml_silu(ctx, gate);
|
||
cb(gate, "ffn_moe_silu", il);
|
||
} break;
|
||
case LLM_FFN_GELU:
|
||
{
|
||
gate = ggml_gelu(ctx, gate);
|
||
cb(gate, "ffn_moe_gelu", il);
|
||
} break;
|
||
default:
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
|
||
ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
|
||
cb(par, "ffn_moe_gate_par", il);
|
||
|
||
ggml_tensor * experts = llm_build_lora_mm_id(lctx, ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
|
||
cb(experts, "ffn_moe_down", il);
|
||
|
||
experts = ggml_mul(ctx, experts, weights);
|
||
|
||
// aggregate experts
|
||
ggml_tensor * moe_out = nullptr;
|
||
for (int i = 0; i < n_expert_used; ++i) {
|
||
ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
|
||
experts->nb[2], i*experts->nb[1]);
|
||
|
||
if (i == 0) {
|
||
moe_out = cur_expert;
|
||
} else {
|
||
moe_out = ggml_add(ctx, moe_out, cur_expert);
|
||
}
|
||
}
|
||
|
||
if (n_expert_used == 1) {
|
||
// avoid returning a non-contiguous tensor
|
||
moe_out = ggml_cont(ctx, moe_out);
|
||
}
|
||
|
||
return moe_out;
|
||
}
|
||
|
||
static struct ggml_tensor * llm_build_kqv(
|
||
struct ggml_context * ctx,
|
||
struct llama_context & lctx,
|
||
const llama_kv_cache & kv,
|
||
struct ggml_cgraph * graph,
|
||
struct ggml_tensor * wo,
|
||
struct ggml_tensor * wo_b,
|
||
struct ggml_tensor * q_cur,
|
||
struct ggml_tensor * kq_mask,
|
||
int32_t n_tokens,
|
||
int32_t n_kv,
|
||
float kq_scale,
|
||
const llm_build_cb & cb,
|
||
int il) {
|
||
const llama_model & model = lctx.model;
|
||
const llama_hparams & hparams = lctx.model.hparams;
|
||
const llama_cparams & cparams = lctx.cparams;
|
||
|
||
const int64_t n_ctx = cparams.n_ctx;
|
||
const int64_t n_head = hparams.n_head(il);
|
||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||
const int64_t n_embd_head_v = hparams.n_embd_head_v;
|
||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
||
|
||
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
|
||
cb(q, "q", il);
|
||
|
||
struct ggml_tensor * k =
|
||
ggml_view_3d(ctx, kv.k_l[il],
|
||
n_embd_head_k, n_kv, n_head_kv,
|
||
ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
|
||
ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
|
||
0);
|
||
cb(k, "k", il);
|
||
|
||
struct ggml_tensor * cur;
|
||
|
||
if (cparams.flash_attn) {
|
||
GGML_UNUSED(model);
|
||
GGML_UNUSED(n_ctx);
|
||
|
||
// split cached v into n_head heads (not transposed)
|
||
struct ggml_tensor * v =
|
||
ggml_view_3d(ctx, kv.v_l[il],
|
||
n_embd_head_v, n_kv, n_head_kv,
|
||
ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
|
||
ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
|
||
0);
|
||
cb(v, "v", il);
|
||
|
||
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
|
||
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
|
||
|
||
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
|
||
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
||
}
|
||
|
||
cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
|
||
} else {
|
||
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
||
cb(kq, "kq", il);
|
||
|
||
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
|
||
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
|
||
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
|
||
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||
}
|
||
|
||
if (model.arch == LLM_ARCH_GROK) {
|
||
// need to do the following:
|
||
// multiply by attn_output_multiplyer of 0.08838834764831845
|
||
// and then :
|
||
// kq = 30 * tanh(kq / 30)
|
||
// before the softmax below
|
||
|
||
//try from phi2
|
||
//ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||
|
||
kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
|
||
kq = ggml_scale(ctx, kq, 30);
|
||
}
|
||
|
||
if (hparams.attn_soft_cap) {
|
||
kq = ggml_scale(ctx, kq, 1.0f / hparams.f_attn_logit_softcapping);
|
||
kq = ggml_tanh(ctx, kq);
|
||
kq = ggml_scale(ctx, kq, hparams.f_attn_logit_softcapping);
|
||
}
|
||
|
||
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
|
||
cb(kq, "kq_soft_max_ext", il);
|
||
|
||
GGML_ASSERT(kv.size == n_ctx);
|
||
|
||
// split cached v into n_head heads
|
||
struct ggml_tensor * v =
|
||
ggml_view_3d(ctx, kv.v_l[il],
|
||
n_kv, n_embd_head_v, n_head_kv,
|
||
ggml_element_size(kv.v_l[il])*n_ctx,
|
||
ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
|
||
0);
|
||
cb(v, "v", il);
|
||
|
||
struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
|
||
cb(kqv, "kqv", il);
|
||
|
||
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
|
||
cb(kqv_merged, "kqv_merged", il);
|
||
|
||
cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
|
||
cb(cur, "kqv_merged_cont", il);
|
||
}
|
||
|
||
ggml_build_forward_expand(graph, cur);
|
||
|
||
if (wo) {
|
||
cur = llm_build_lora_mm(lctx, ctx, wo, cur);
|
||
}
|
||
|
||
if (wo_b) {
|
||
cb(cur, "kqv_wo", il);
|
||
}
|
||
|
||
if (wo_b) {
|
||
cur = ggml_add(ctx, cur, wo_b);
|
||
}
|
||
|
||
return cur;
|
||
}
|
||
|
||
static struct ggml_tensor * llm_build_kv(
|
||
struct ggml_context * ctx,
|
||
struct llama_context & lctx,
|
||
const llama_kv_cache & kv,
|
||
struct ggml_cgraph * graph,
|
||
struct ggml_tensor * wo,
|
||
struct ggml_tensor * wo_b,
|
||
struct ggml_tensor * k_cur,
|
||
struct ggml_tensor * v_cur,
|
||
struct ggml_tensor * q_cur,
|
||
struct ggml_tensor * kq_mask,
|
||
int32_t n_tokens,
|
||
int32_t kv_head,
|
||
int32_t n_kv,
|
||
float kq_scale,
|
||
const llm_build_cb & cb,
|
||
int il) {
|
||
const llama_hparams & hparams = lctx.model.hparams;
|
||
const llama_cparams & cparams = lctx.cparams;
|
||
|
||
// these nodes are added to the graph together so that they are not reordered
|
||
// by doing so, the number of splits in the graph is reduced
|
||
ggml_build_forward_expand(graph, q_cur);
|
||
ggml_build_forward_expand(graph, k_cur);
|
||
ggml_build_forward_expand(graph, v_cur);
|
||
|
||
llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
|
||
|
||
struct ggml_tensor * cur;
|
||
|
||
cur = llm_build_kqv(ctx, lctx, kv, graph, wo, wo_b, q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
|
||
cb(cur, "kqv_out", il);
|
||
|
||
return cur;
|
||
}
|
||
|
||
static struct ggml_tensor * llm_build_copy_mask_state(
|
||
struct ggml_context * ctx,
|
||
struct ggml_cgraph * graph,
|
||
struct ggml_tensor * s,
|
||
struct ggml_tensor * state_copy,
|
||
struct ggml_tensor * state_mask,
|
||
int32_t n_state,
|
||
int32_t kv_size,
|
||
int32_t kv_head,
|
||
int32_t n_kv,
|
||
int32_t n_seqs) {
|
||
struct ggml_tensor * states = ggml_reshape_2d(ctx, s, n_state, kv_size);
|
||
|
||
// copy states
|
||
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
|
||
// this shrinks the tensors's ne[1] to n_kv
|
||
states = ggml_get_rows(ctx, states, state_copy);
|
||
|
||
// clear states of sequences which are starting at the beginning of this batch
|
||
// FIXME: zero-out NANs?
|
||
states = ggml_mul(ctx, states, state_mask);
|
||
|
||
// copy states which won't be changed further (between n_seqs and n_kv)
|
||
ggml_build_forward_expand(graph,
|
||
ggml_cpy(ctx,
|
||
ggml_view_1d(ctx, states, n_state*(n_kv - n_seqs), n_seqs*n_state*ggml_element_size(states)),
|
||
ggml_view_1d(ctx, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));
|
||
|
||
// the part of the states that will be used and modified
|
||
return ggml_view_2d(ctx, states, n_state, n_seqs, states->nb[1], 0);
|
||
}
|
||
|
||
// TODO: split
|
||
static struct ggml_tensor * llm_build_mamba(
|
||
struct ggml_context * ctx,
|
||
struct llama_context & lctx,
|
||
const llama_ubatch & batch,
|
||
struct ggml_cgraph * graph,
|
||
struct ggml_tensor * cur,
|
||
struct ggml_tensor * state_copy,
|
||
struct ggml_tensor * state_mask,
|
||
int32_t kv_head,
|
||
int32_t n_kv,
|
||
const llm_build_cb & cb,
|
||
int il) {
|
||
const llama_model & model = lctx.model;
|
||
const llama_hparams & hparams = model.hparams;
|
||
const llama_kv_cache & kv = lctx.kv_self;
|
||
const int64_t d_conv = hparams.ssm_d_conv;
|
||
const int64_t d_inner = hparams.ssm_d_inner;
|
||
const int64_t d_state = hparams.ssm_d_state;
|
||
const int64_t dt_rank = hparams.ssm_dt_rank;
|
||
const int64_t n_seqs = batch.n_seqs;
|
||
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
|
||
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
|
||
// Use the same RMS norm as the final layer norm
|
||
const float norm_rms_eps = hparams.f_norm_rms_eps;
|
||
|
||
const int64_t n_seq_tokens = batch.n_seq_tokens;
|
||
|
||
GGML_ASSERT(n_seqs != 0);
|
||
GGML_ASSERT(batch.equal_seqs);
|
||
GGML_ASSERT(batch.n_tokens == n_seq_tokens * n_seqs);
|
||
|
||
struct ggml_tensor * conv_states_all = kv.k_l[il];
|
||
struct ggml_tensor * ssm_states_all = kv.v_l[il];
|
||
|
||
// (ab)using the KV cache to store the states
|
||
struct ggml_tensor * conv = llm_build_copy_mask_state(ctx,
|
||
graph, conv_states_all, state_copy, state_mask,
|
||
hparams.n_embd_k_s(), kv.size, kv_head, n_kv, n_seqs);
|
||
conv = ggml_reshape_3d(ctx, conv, d_conv - 1, d_inner, n_seqs);
|
||
struct ggml_tensor * ssm = llm_build_copy_mask_state(ctx,
|
||
graph, ssm_states_all, state_copy, state_mask,
|
||
hparams.n_embd_v_s(), kv.size, kv_head, n_kv, n_seqs);
|
||
ssm = ggml_reshape_3d(ctx, ssm, d_state, d_inner, n_seqs);
|
||
|
||
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
|
||
cur = ggml_reshape_3d(ctx, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
||
|
||
// {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
|
||
struct ggml_tensor * xz = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_in, cur);
|
||
// split the above in two
|
||
// => {d_inner, n_seq_tokens, n_seqs}
|
||
struct ggml_tensor * x = ggml_view_3d(ctx, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
|
||
struct ggml_tensor * z = ggml_view_3d(ctx, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
|
||
|
||
// conv
|
||
{
|
||
// => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
|
||
struct ggml_tensor * conv_x = ggml_concat(ctx, conv, ggml_transpose(ctx, x), 0);
|
||
|
||
// copy last (d_conv - 1) columns back into the state cache
|
||
struct ggml_tensor * last_conv = ggml_view_3d(ctx, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
|
||
|
||
ggml_build_forward_expand(graph,
|
||
ggml_cpy(ctx, last_conv,
|
||
ggml_view_1d(ctx, conv_states_all,
|
||
(d_conv - 1)*(d_inner)*(n_seqs),
|
||
kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
|
||
|
||
// 1D convolution
|
||
// The equivalent is to make a self-overlapping view of conv_x
|
||
// over d_conv columns at each stride in the 3rd dimension,
|
||
// then element-wise multiply that with the conv1d weight,
|
||
// then sum the elements of each row,
|
||
// (the last two steps are a dot product over rows (also doable with mul_mat))
|
||
// then permute away the ne[0] dimension,
|
||
// and then you're left with the resulting x tensor.
|
||
// For simultaneous sequences, all sequences need to have the same length.
|
||
x = ggml_ssm_conv(ctx, conv_x, model.layers[il].ssm_conv1d);
|
||
|
||
// bias
|
||
x = ggml_add(ctx, x, model.layers[il].ssm_conv1d_b);
|
||
|
||
x = ggml_silu(ctx, x);
|
||
}
|
||
|
||
// ssm
|
||
{
|
||
// {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
|
||
struct ggml_tensor * x_db = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_x, x);
|
||
// split
|
||
struct ggml_tensor * dt = ggml_view_3d(ctx, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
|
||
struct ggml_tensor * B = ggml_view_3d(ctx, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
|
||
struct ggml_tensor * C = ggml_view_3d(ctx, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
|
||
|
||
// Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
|
||
if (ssm_dt_b_c_rms) {
|
||
dt = ggml_rms_norm(ctx, dt, norm_rms_eps);
|
||
B = ggml_rms_norm(ctx, B, norm_rms_eps);
|
||
C = ggml_rms_norm(ctx, C, norm_rms_eps);
|
||
}
|
||
|
||
// {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
|
||
dt = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_dt, dt);
|
||
dt = ggml_add(ctx, dt, model.layers[il].ssm_dt_b);
|
||
|
||
// Custom operator to optimize the parallel associative scan
|
||
// as described in the Annex D of the Mamba paper.
|
||
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
|
||
struct ggml_tensor * y_ssm = ggml_ssm_scan(ctx, ssm, x, dt, model.layers[il].ssm_a, B, C);
|
||
|
||
// store last states
|
||
ggml_build_forward_expand(graph,
|
||
ggml_cpy(ctx,
|
||
ggml_view_1d(ctx, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
|
||
ggml_view_1d(ctx, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
|
||
|
||
struct ggml_tensor * y = ggml_view_3d(ctx, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
|
||
|
||
// TODO: skip computing output earlier for unused tokens
|
||
|
||
// {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
|
||
y = ggml_add(ctx, y, ggml_mul(ctx, x, model.layers[il].ssm_d));
|
||
y = ggml_mul(ctx, y, ggml_silu(ctx, ggml_cont(ctx, z)));
|
||
|
||
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
||
cur = llm_build_lora_mm(lctx, ctx, model.layers[il].ssm_out, y);
|
||
}
|
||
|
||
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
||
cur = ggml_reshape_2d(ctx, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
||
cb(cur, "mamba_out", il);
|
||
|
||
return cur;
|
||
}
|
||
|
||
static struct ggml_tensor * llm_build_rwkv6_time_mix(
|
||
struct llama_context & lctx,
|
||
struct ggml_context * ctx,
|
||
const struct llama_layer * layer,
|
||
struct ggml_tensor * cur,
|
||
struct ggml_tensor * x_prev,
|
||
struct ggml_tensor ** wkv_state) {
|
||
size_t n_embd = cur->ne[0];
|
||
size_t n_seq_tokens = cur->ne[1];
|
||
size_t n_seqs = cur->ne[2];
|
||
|
||
size_t head_size = layer->time_mix_first->ne[0];
|
||
size_t head_count = layer->time_mix_first->ne[1];
|
||
|
||
size_t n_tokens = n_seqs * n_seq_tokens;
|
||
|
||
struct ggml_tensor * sx = ggml_sub(ctx, x_prev, cur);
|
||
|
||
sx = ggml_reshape_2d(ctx, sx, n_embd, n_tokens);
|
||
cur = ggml_reshape_2d(ctx, cur, n_embd, n_tokens);
|
||
|
||
struct ggml_tensor * xxx = ggml_add(ctx, ggml_mul(ctx, sx, layer->time_mix_lerp_x), cur);
|
||
|
||
xxx = ggml_reshape_4d(
|
||
ctx,
|
||
ggml_tanh(
|
||
ctx,
|
||
ggml_mul_mat(ctx, layer->time_mix_w1, xxx)
|
||
),
|
||
layer->time_mix_w1->ne[1] / 5, 1, 5, n_tokens
|
||
);
|
||
|
||
xxx = ggml_cont(ctx, ggml_permute(ctx, xxx, 0, 1, 3, 2));
|
||
|
||
xxx = ggml_mul_mat(
|
||
ctx,
|
||
ggml_reshape_4d(
|
||
ctx,
|
||
layer->time_mix_w2,
|
||
layer->time_mix_w2->ne[0], layer->time_mix_w2->ne[1], 1, 5
|
||
),
|
||
xxx
|
||
);
|
||
|
||
struct ggml_tensor *mw = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], 0);
|
||
struct ggml_tensor *mk = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
|
||
struct ggml_tensor *mv = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
|
||
struct ggml_tensor *mr = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
|
||
struct ggml_tensor *mg = ggml_view_2d(ctx, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
|
||
|
||
struct ggml_tensor * xw = ggml_add(
|
||
ctx,
|
||
ggml_mul(
|
||
ctx,
|
||
ggml_add(ctx, mw, layer->time_mix_lerp_w),
|
||
sx
|
||
),
|
||
cur
|
||
);
|
||
|
||
struct ggml_tensor * xk = ggml_add(
|
||
ctx,
|
||
ggml_mul(
|
||
ctx,
|
||
ggml_add(ctx, mk, layer->time_mix_lerp_k),
|
||
sx
|
||
),
|
||
cur
|
||
);
|
||
|
||
struct ggml_tensor * xv = ggml_add(
|
||
ctx,
|
||
ggml_mul(
|
||
ctx,
|
||
ggml_add(ctx, mv, layer->time_mix_lerp_v),
|
||
sx
|
||
),
|
||
cur
|
||
);
|
||
|
||
struct ggml_tensor * xr = ggml_add(
|
||
ctx,
|
||
ggml_mul(
|
||
ctx,
|
||
ggml_add(ctx, mr, layer->time_mix_lerp_r),
|
||
sx
|
||
),
|
||
cur
|
||
);
|
||
|
||
struct ggml_tensor * xg = ggml_add(
|
||
ctx,
|
||
ggml_mul(
|
||
ctx,
|
||
ggml_add(ctx, mg, layer->time_mix_lerp_g),
|
||
sx
|
||
),
|
||
cur
|
||
);
|
||
|
||
struct ggml_tensor * r = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_receptance, xr), head_size, 1, head_count, n_tokens);
|
||
struct ggml_tensor * k = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_key, xk), 1, head_size, head_count, n_tokens);
|
||
struct ggml_tensor * v = ggml_reshape_4d(ctx, llm_build_lora_mm(lctx, ctx, layer->time_mix_value, xv), head_size, 1, head_count, n_tokens);
|
||
struct ggml_tensor * g = ggml_silu(
|
||
ctx,
|
||
llm_build_lora_mm(lctx, ctx, layer->time_mix_gate, xg)
|
||
);
|
||
|
||
struct ggml_tensor * w = ggml_mul_mat(
|
||
ctx,
|
||
layer->time_mix_decay_w2,
|
||
ggml_tanh(
|
||
ctx,
|
||
ggml_mul_mat(ctx, layer->time_mix_decay_w1, xw)
|
||
)
|
||
);
|
||
|
||
w = ggml_add(ctx, w, ggml_reshape_1d(ctx, layer->time_mix_decay, n_embd));
|
||
w = ggml_exp(ctx, ggml_neg(ctx, ggml_exp(ctx, w)));
|
||
w = ggml_reshape_4d(ctx, w, 1, head_size, head_count, n_tokens);
|
||
|
||
k = ggml_transpose(ctx, k);
|
||
v = ggml_transpose(ctx, v);
|
||
r = ggml_transpose(ctx, r);
|
||
|
||
struct ggml_tensor * wkv_output = ggml_rwkv_wkv(ctx, k, v, r, layer->time_mix_first, w, *wkv_state);
|
||
cur = ggml_view_1d(ctx, wkv_output, n_embd * n_tokens, 0);
|
||
*wkv_state = ggml_view_1d(ctx, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
|
||
|
||
// group norm with head_count groups
|
||
cur = ggml_reshape_3d(ctx, cur, n_embd / head_count, head_count, n_tokens);
|
||
cur = ggml_norm(ctx, cur, 64e-5f);
|
||
|
||
// Convert back to regular vectors.
|
||
cur = ggml_reshape_2d(ctx, cur, n_embd, n_tokens);
|
||
cur = ggml_add(ctx, ggml_mul(ctx, cur, layer->time_mix_ln), layer->time_mix_ln_b);
|
||
|
||
cur = ggml_mul(ctx, cur, g);
|
||
cur = llm_build_lora_mm(lctx, ctx, layer->time_mix_output, cur);
|
||
|
||
return ggml_reshape_3d(ctx, cur, n_embd, n_seq_tokens, n_seqs);
|
||
}
|
||
|
||
static struct ggml_tensor * llm_build_rwkv6_channel_mix(
|
||
struct llama_context & lctx,
|
||
struct ggml_context * ctx,
|
||
const struct llama_layer * layer,
|
||
struct ggml_tensor * cur,
|
||
struct ggml_tensor * x_prev) {
|
||
struct ggml_tensor * sx = ggml_sub(ctx, x_prev, cur);
|
||
struct ggml_tensor * xk = ggml_add(ctx, ggml_mul(ctx, sx, layer->channel_mix_lerp_k), cur);
|
||
struct ggml_tensor * xr = ggml_add(ctx, ggml_mul(ctx, sx, layer->channel_mix_lerp_r), cur);
|
||
|
||
struct ggml_tensor * r = ggml_sigmoid(ctx, llm_build_lora_mm(lctx, ctx, layer->channel_mix_receptance, xr));
|
||
struct ggml_tensor * k = ggml_sqr(
|
||
ctx,
|
||
ggml_relu(
|
||
ctx,
|
||
llm_build_lora_mm(lctx, ctx, layer->channel_mix_key, xk)
|
||
)
|
||
);
|
||
|
||
return ggml_mul(ctx, r, llm_build_lora_mm(lctx, ctx, layer->channel_mix_value, k));
|
||
}
|
||
|
||
struct llm_build_context {
|
||
const llama_model & model;
|
||
llama_context & lctx;
|
||
const llama_hparams & hparams;
|
||
const llama_cparams & cparams;
|
||
const llama_ubatch & batch;
|
||
const llama_kv_cache & kv_self;
|
||
|
||
const int64_t n_embd;
|
||
const int64_t n_layer;
|
||
const int64_t n_rot;
|
||
const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
|
||
const int64_t n_head;
|
||
const int64_t n_head_kv;
|
||
const int64_t n_embd_head_k;
|
||
const int64_t n_embd_k_gqa;
|
||
const int64_t n_embd_head_v;
|
||
const int64_t n_embd_v_gqa;
|
||
const int64_t n_expert;
|
||
const int64_t n_expert_used;
|
||
|
||
const float freq_base;
|
||
const float freq_scale;
|
||
const float ext_factor;
|
||
const float attn_factor;
|
||
const float beta_fast;
|
||
const float beta_slow;
|
||
const float norm_eps;
|
||
const float norm_rms_eps;
|
||
|
||
const int32_t n_tokens;
|
||
const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
|
||
const int32_t n_outputs;
|
||
const int32_t n_outputs_enc;
|
||
const int32_t kv_head; // index of where we store new KV data in the cache
|
||
const int32_t n_ctx_orig;
|
||
|
||
const bool flash_attn;
|
||
|
||
const enum llama_pooling_type pooling_type;
|
||
const enum llama_rope_type rope_type;
|
||
|
||
const llm_build_cb & cb;
|
||
|
||
std::vector<uint8_t> & buf_compute_meta;
|
||
|
||
struct ggml_context * ctx0 = nullptr;
|
||
|
||
// TODO: consider making the entire interface noexcept
|
||
llm_build_context(
|
||
llama_context & lctx,
|
||
const llama_ubatch & batch,
|
||
const llm_build_cb & cb,
|
||
bool worst_case) :
|
||
model (lctx.model),
|
||
lctx (lctx),
|
||
hparams (model.hparams),
|
||
cparams (lctx.cparams),
|
||
batch (batch),
|
||
kv_self (lctx.kv_self),
|
||
n_embd (hparams.n_embd),
|
||
n_layer (hparams.n_layer),
|
||
n_rot (hparams.n_rot),
|
||
n_ctx (cparams.n_ctx),
|
||
n_head (hparams.n_head()),
|
||
n_head_kv (hparams.n_head_kv()),
|
||
n_embd_head_k (hparams.n_embd_head_k),
|
||
n_embd_k_gqa (hparams.n_embd_k_gqa()),
|
||
n_embd_head_v (hparams.n_embd_head_v),
|
||
n_embd_v_gqa (hparams.n_embd_v_gqa()),
|
||
n_expert (hparams.n_expert),
|
||
n_expert_used (hparams.n_expert_used),
|
||
freq_base (cparams.rope_freq_base),
|
||
freq_scale (cparams.rope_freq_scale),
|
||
ext_factor (cparams.yarn_ext_factor),
|
||
attn_factor (cparams.yarn_attn_factor),
|
||
beta_fast (cparams.yarn_beta_fast),
|
||
beta_slow (cparams.yarn_beta_slow),
|
||
norm_eps (hparams.f_norm_eps),
|
||
norm_rms_eps (hparams.f_norm_rms_eps),
|
||
n_tokens (batch.n_tokens),
|
||
n_kv (worst_case ? kv_self.size : kv_self.n),
|
||
n_outputs (worst_case ? n_tokens : lctx.n_outputs),
|
||
n_outputs_enc (worst_case ? n_tokens : lctx.embd_enc.size() / hparams.n_embd),
|
||
kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
|
||
n_ctx_orig (cparams.n_ctx_orig_yarn),
|
||
flash_attn (cparams.flash_attn),
|
||
pooling_type (cparams.pooling_type),
|
||
rope_type (hparams.rope_type),
|
||
cb (cb),
|
||
buf_compute_meta (lctx.buf_compute_meta) {
|
||
// all initializations should be done in init()
|
||
}
|
||
|
||
void init() {
|
||
struct ggml_init_params params = {
|
||
/*.mem_size =*/ buf_compute_meta.size(),
|
||
/*.mem_buffer =*/ buf_compute_meta.data(),
|
||
/*.no_alloc =*/ true,
|
||
};
|
||
|
||
ctx0 = ggml_init(params);
|
||
|
||
lctx.inp_tokens = nullptr;
|
||
lctx.inp_embd = nullptr;
|
||
lctx.inp_pos = nullptr;
|
||
lctx.inp_out_ids = nullptr;
|
||
lctx.inp_KQ_mask = nullptr;
|
||
lctx.inp_KQ_mask_swa = nullptr;
|
||
lctx.inp_K_shift = nullptr;
|
||
lctx.inp_mean = nullptr;
|
||
lctx.inp_cls = nullptr;
|
||
lctx.inp_s_copy = nullptr;
|
||
lctx.inp_s_mask = nullptr;
|
||
lctx.inp_s_seq = nullptr;
|
||
lctx.inp_pos_bucket = nullptr;
|
||
lctx.inp_embd_enc = nullptr;
|
||
lctx.inp_KQ_mask_cross = nullptr;
|
||
}
|
||
|
||
void free() {
|
||
if (ctx0) {
|
||
ggml_free(ctx0);
|
||
ctx0 = nullptr;
|
||
}
|
||
}
|
||
|
||
struct ggml_cgraph * build_k_shift() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
GGML_ASSERT(kv_self.size == n_ctx);
|
||
|
||
lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
|
||
cb(lctx.inp_K_shift, "K_shift", -1);
|
||
ggml_set_input(lctx.inp_K_shift);
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||
struct ggml_tensor * k =
|
||
ggml_view_3d(ctx0, kv_self.k_l[il],
|
||
n_embd_head_k, n_head_kv, n_ctx,
|
||
ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
|
||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||
0);
|
||
|
||
struct ggml_tensor * tmp;
|
||
if (ggml_is_quantized(k->type)) {
|
||
// dequantize to f32 -> RoPE -> quantize back
|
||
tmp = ggml_cast(ctx0, k, GGML_TYPE_F32);
|
||
cb(tmp, "K_f32", il);
|
||
for (auto * backend : lctx.backends) {
|
||
// Figure out which backend KV cache belongs to
|
||
if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft)) {
|
||
ggml_backend_sched_set_tensor_backend(lctx.sched, tmp, backend);
|
||
break;
|
||
}
|
||
}
|
||
tmp = ggml_rope_ext_inplace(ctx0, tmp,
|
||
lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||
cb(tmp, "K_shifted_f32", il);
|
||
tmp = ggml_cpy(ctx0, tmp, k);
|
||
} else {
|
||
// we rotate only the first n_rot dimensions
|
||
tmp = ggml_rope_ext_inplace(ctx0, k,
|
||
lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||
}
|
||
cb(tmp, "K_shifted", il);
|
||
ggml_build_forward_expand(gf, tmp);
|
||
}
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
for (uint32_t i = 0; i < ids.size(); ++i) {
|
||
const uint32_t id = ids[i];
|
||
|
||
if (i == id || id == ids.size()) {
|
||
continue;
|
||
}
|
||
|
||
uint32_t nm = 1;
|
||
|
||
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
||
nm++;
|
||
}
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
||
|
||
ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
|
||
n_embd_k_gqa, nm,
|
||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
|
||
|
||
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
|
||
n_embd_k_gqa, nm,
|
||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
|
||
|
||
ggml_tensor * view_v_src;
|
||
ggml_tensor * view_v_dst;
|
||
|
||
if (flash_attn) {
|
||
// NOTE: the V cache is not transposed when using flash attention
|
||
view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
|
||
n_embd_v_gqa, nm,
|
||
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
|
||
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
|
||
|
||
view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
|
||
n_embd_v_gqa, nm,
|
||
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
|
||
ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
|
||
} else {
|
||
view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
|
||
nm, n_embd_v_gqa,
|
||
ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
|
||
ggml_row_size(kv_self.v_l[il]->type, i));
|
||
|
||
view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
|
||
nm, n_embd_v_gqa,
|
||
ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
|
||
ggml_row_size(kv_self.v_l[il]->type, id));
|
||
}
|
||
|
||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
|
||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
|
||
}
|
||
|
||
i += nm - 1;
|
||
}
|
||
|
||
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_tensor * build_inp_pos() {
|
||
lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||
cb(lctx.inp_pos, "inp_pos", -1);
|
||
ggml_set_input(lctx.inp_pos);
|
||
return lctx.inp_pos;
|
||
}
|
||
|
||
struct ggml_tensor * build_rope_factors(int il) {
|
||
// choose long/short freq factors based on the context size
|
||
const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
|
||
|
||
if (model.layers[il].rope_freqs != nullptr) {
|
||
return model.layers[il].rope_freqs;
|
||
}
|
||
|
||
if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
|
||
return model.layers[il].rope_long;
|
||
}
|
||
|
||
return model.layers[il].rope_short;
|
||
}
|
||
|
||
struct ggml_tensor * build_inp_out_ids() {
|
||
lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
|
||
cb(lctx.inp_out_ids, "inp_out_ids", -1);
|
||
ggml_set_input(lctx.inp_out_ids);
|
||
return lctx.inp_out_ids;
|
||
}
|
||
|
||
struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
|
||
lctx.inp_KQ_mask = causal
|
||
? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
|
||
: ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
||
cb(lctx.inp_KQ_mask, "KQ_mask", -1);
|
||
ggml_set_input(lctx.inp_KQ_mask);
|
||
|
||
return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
|
||
}
|
||
|
||
struct ggml_tensor * build_inp_KQ_mask_swa(bool causal = true) {
|
||
GGML_ASSERT(hparams.n_swa > 0);
|
||
|
||
lctx.inp_KQ_mask_swa = causal
|
||
? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
|
||
: ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
||
cb(lctx.inp_KQ_mask_swa, "KQ_mask_swa", -1);
|
||
ggml_set_input(lctx.inp_KQ_mask_swa);
|
||
|
||
return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask_swa, GGML_TYPE_F16) : lctx.inp_KQ_mask_swa;
|
||
}
|
||
|
||
struct ggml_tensor * build_inp_mean() {
|
||
lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
|
||
cb(lctx.inp_mean, "inp_mean", -1);
|
||
ggml_set_input(lctx.inp_mean);
|
||
return lctx.inp_mean;
|
||
}
|
||
|
||
struct ggml_tensor * build_inp_cls() {
|
||
lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||
cb(lctx.inp_cls, "inp_cls", -1);
|
||
ggml_set_input(lctx.inp_cls);
|
||
return lctx.inp_cls;
|
||
}
|
||
|
||
struct ggml_tensor * build_inp_s_copy() {
|
||
lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv);
|
||
cb(lctx.inp_s_copy, "inp_s_copy", -1);
|
||
ggml_set_input(lctx.inp_s_copy);
|
||
return lctx.inp_s_copy;
|
||
}
|
||
|
||
struct ggml_tensor * build_inp_s_mask() {
|
||
lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
|
||
cb(lctx.inp_s_mask, "inp_s_mask", -1);
|
||
ggml_set_input(lctx.inp_s_mask);
|
||
return lctx.inp_s_mask;
|
||
}
|
||
|
||
struct ggml_cgraph * append_pooling(struct ggml_cgraph * gf) {
|
||
// find result_norm tensor for input
|
||
struct ggml_tensor * inp = nullptr;
|
||
for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
|
||
inp = ggml_graph_node(gf, i);
|
||
if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
|
||
break;
|
||
} else {
|
||
inp = nullptr;
|
||
}
|
||
}
|
||
GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
|
||
|
||
struct ggml_tensor * cur;
|
||
|
||
switch (pooling_type) {
|
||
case LLAMA_POOLING_TYPE_NONE:
|
||
{
|
||
cur = inp;
|
||
} break;
|
||
case LLAMA_POOLING_TYPE_MEAN:
|
||
{
|
||
struct ggml_tensor * inp_mean = build_inp_mean();
|
||
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
|
||
} break;
|
||
case LLAMA_POOLING_TYPE_CLS:
|
||
case LLAMA_POOLING_TYPE_LAST:
|
||
{
|
||
struct ggml_tensor * inp_cls = build_inp_cls();
|
||
cur = ggml_get_rows(ctx0, inp, inp_cls);
|
||
} break;
|
||
case LLAMA_POOLING_TYPE_RANK:
|
||
{
|
||
struct ggml_tensor * inp_cls = build_inp_cls();
|
||
inp = ggml_get_rows(ctx0, inp, inp_cls);
|
||
|
||
// classification head
|
||
// https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
|
||
GGML_ASSERT(model.cls != nullptr);
|
||
GGML_ASSERT(model.cls_b != nullptr);
|
||
|
||
cur = ggml_add (ctx0, ggml_mul_mat(ctx0, model.cls, inp), model.cls_b);
|
||
cur = ggml_tanh(ctx0, cur);
|
||
|
||
// some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
|
||
// https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
|
||
if (model.cls_out) {
|
||
GGML_ASSERT(model.cls_out_b != nullptr);
|
||
|
||
cur = ggml_add (ctx0, ggml_mul_mat(ctx0, model.cls_out, cur), model.cls_out_b);
|
||
}
|
||
} break;
|
||
default:
|
||
{
|
||
GGML_ABORT("unknown pooling type");
|
||
}
|
||
}
|
||
|
||
cb(cur, "result_embd_pooled", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_tensor * llm_build_pos_bucket(bool causal) {
|
||
if (causal) {
|
||
lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
|
||
} else {
|
||
lctx.inp_pos_bucket = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
|
||
}
|
||
|
||
ggml_set_input(lctx.inp_pos_bucket);
|
||
cb(lctx.inp_pos_bucket, "pos_bucket", -1);
|
||
|
||
return lctx.inp_pos_bucket;
|
||
}
|
||
|
||
struct ggml_tensor * llm_build_pos_bias(struct ggml_tensor * pos_bucket, struct ggml_tensor * attn_rel_b) {
|
||
struct ggml_tensor * pos_bucket_1d = ggml_view_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1], 0);
|
||
cb(pos_bucket_1d, "pos_bucket_1d", -1);
|
||
|
||
struct ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
|
||
cb(pos_bias, "pos_bias", -1);
|
||
|
||
pos_bias = ggml_view_3d(ctx0, pos_bias, pos_bias->ne[0], lctx.inp_pos_bucket->ne[0], lctx.inp_pos_bucket->ne[1], ggml_element_size(pos_bias) * pos_bias->ne[0], ggml_element_size(pos_bias) * pos_bias->ne[0] * lctx.inp_pos_bucket->ne[0], 0);
|
||
cb(pos_bias, "pos_bias", -1);
|
||
|
||
pos_bias = ggml_permute(ctx0, pos_bias, 2, 0, 1, 3);
|
||
cb(pos_bias, "pos_bias", -1);
|
||
|
||
pos_bias = ggml_cont(ctx0, pos_bias);
|
||
cb(pos_bias, "pos_bias", -1);
|
||
|
||
return pos_bias;
|
||
}
|
||
|
||
struct ggml_tensor * llm_build_inp_embd_enc() {
|
||
const int64_t n_embd = hparams.n_embd;
|
||
lctx.inp_embd_enc = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_outputs_enc);
|
||
ggml_set_input(lctx.inp_embd_enc);
|
||
cb(lctx.inp_embd_enc, "embd_enc", -1);
|
||
return lctx.inp_embd_enc;
|
||
}
|
||
|
||
struct ggml_tensor * llm_build_inp_KQ_mask_cross() {
|
||
lctx.inp_KQ_mask_cross = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_outputs_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
||
ggml_set_input(lctx.inp_KQ_mask_cross);
|
||
cb(lctx.inp_KQ_mask_cross, "KQ_mask_cross", -1);
|
||
return lctx.inp_KQ_mask_cross;
|
||
}
|
||
|
||
struct ggml_cgraph * build_llama() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
// For Granite architecture
|
||
if (hparams.f_residual_scale) {
|
||
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
} else {
|
||
// MoE branch
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_moe_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_gate_inp,
|
||
model.layers[il].ffn_up_exps,
|
||
model.layers[il].ffn_gate_exps,
|
||
model.layers[il].ffn_down_exps,
|
||
n_expert, n_expert_used,
|
||
LLM_FFN_SILU, true,
|
||
false, 0.0,
|
||
cb, il);
|
||
cb(cur, "ffn_moe_out", il);
|
||
}
|
||
|
||
// For Granite architecture
|
||
if (hparams.f_residual_scale) {
|
||
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
|
||
// For Granite architecture
|
||
if (hparams.f_logit_scale) {
|
||
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
|
||
}
|
||
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_baichuan() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
switch (model.type) {
|
||
case MODEL_7B:
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
break;
|
||
case MODEL_13B:
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
|
||
break;
|
||
default:
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_xverse() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_falcon() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * attn_norm;
|
||
|
||
attn_norm = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(attn_norm, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
if (model.layers[il].attn_norm_2) {
|
||
// Falcon-40B
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm_2,
|
||
model.layers[il].attn_norm_2_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm_2", il);
|
||
} else {
|
||
cur = attn_norm;
|
||
}
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
|
||
// using mode = 2 for neox mode
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = cur;
|
||
|
||
// feed forward
|
||
{
|
||
cur = llm_build_ffn(ctx0, lctx, attn_norm, // !! use the attn norm, not the result
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = ggml_add(ctx0, cur, inpL);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_grok() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// multiply by embedding_multiplier_scale of 78.38367176906169
|
||
inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
// Grok
|
||
// if attn_out_norm is present then apply it before adding the input
|
||
if (model.layers[il].attn_out_norm) {
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].attn_out_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_out_norm", il);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
// MoE branch
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_moe_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_gate_inp,
|
||
model.layers[il].ffn_up_exps,
|
||
model.layers[il].ffn_gate_exps,
|
||
model.layers[il].ffn_down_exps,
|
||
n_expert, n_expert_used,
|
||
LLM_FFN_GELU, true,
|
||
false, 0.0,
|
||
cb, il);
|
||
cb(cur, "ffn_moe_out", il);
|
||
|
||
// Grok
|
||
// if layer_out_norm is present then apply it before adding the input
|
||
// Idea: maybe ffn_out_norm is a better name
|
||
if (model.layers[il].layer_out_norm) {
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].layer_out_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "layer_out_norm", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
|
||
// Grok
|
||
// multiply logits by output_multiplier_scale of 0.5773502691896257
|
||
|
||
cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
|
||
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_dbrx() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
struct ggml_tensor * Qcur = nullptr;
|
||
struct ggml_tensor * Kcur = nullptr;
|
||
struct ggml_tensor * Vcur = nullptr;
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
|
||
cb(cur, "wqkv_clamped", il);
|
||
|
||
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
// MoE branch
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].attn_out_norm, NULL,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_out_norm", il);
|
||
|
||
cur = llm_build_moe_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_gate_inp,
|
||
model.layers[il].ffn_up_exps,
|
||
model.layers[il].ffn_gate_exps,
|
||
model.layers[il].ffn_down_exps,
|
||
n_expert, n_expert_used,
|
||
LLM_FFN_SILU, true,
|
||
false, 0.0,
|
||
cb, il);
|
||
cb(cur, "ffn_moe_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_starcoder() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
|
||
cb(pos, "pos_embd", -1);
|
||
|
||
inpL = ggml_add(ctx0, inpL, pos);
|
||
cb(inpL, "inpL", -1);
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
|
||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// add the input
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// FF
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_refact() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_bert() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
struct ggml_tensor * inp_pos = nullptr;
|
||
|
||
if (model.arch != LLM_ARCH_JINA_BERT_V2) {
|
||
inp_pos = build_inp_pos();
|
||
}
|
||
|
||
// construct input embeddings (token, type, position)
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// token types are hardcoded to zero ("Sentence A")
|
||
struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
|
||
inpL = ggml_add(ctx0, inpL, type_row0);
|
||
if (model.arch == LLM_ARCH_BERT) {
|
||
inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
|
||
}
|
||
cb(inpL, "inp_embd", -1);
|
||
|
||
// embed layer norm
|
||
inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
|
||
cb(inpL, "inp_norm", -1);
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
|
||
|
||
// iterate layers
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * cur = inpL;
|
||
|
||
struct ggml_tensor * Qcur;
|
||
struct ggml_tensor * Kcur;
|
||
struct ggml_tensor * Vcur;
|
||
|
||
// self-attention
|
||
if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
|
||
Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur), model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
if (model.layers[il].attn_q_norm) {
|
||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||
model.layers[il].attn_q_norm,
|
||
model.layers[il].attn_q_norm_b,
|
||
LLM_NORM, cb, il);
|
||
}
|
||
|
||
Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur), model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
if (model.layers[il].attn_k_norm) {
|
||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||
model.layers[il].attn_k_norm,
|
||
model.layers[il].attn_k_norm_b,
|
||
LLM_NORM, cb, il);
|
||
}
|
||
Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur), model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
} else {
|
||
// compute Q and K and RoPE them
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||
struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||
|
||
struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
|
||
cb(kq, "kq", il);
|
||
|
||
kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
|
||
cb(kq, "kq_soft_max_ext", il);
|
||
|
||
struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
|
||
cb(v, "v", il);
|
||
|
||
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
|
||
cb(kqv, "kqv", il);
|
||
|
||
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||
cb(kqv_merged, "kqv_merged", il);
|
||
|
||
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
||
cb(cur, "kqv_merged_cont", il);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
|
||
if (model.layers[il].bo) {
|
||
cb(cur, "kqv_wo", il);
|
||
}
|
||
|
||
if (model.layers[il].bo) {
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bo);
|
||
}
|
||
cb(cur, "kqv_out", il);
|
||
|
||
if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// re-add the layer input
|
||
cur = ggml_add(ctx0, cur, inpL);
|
||
|
||
// attention layer norm
|
||
cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
|
||
|
||
if (model.layers[il].attn_norm_2 != nullptr) {
|
||
cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
|
||
cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, cb, il);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = cur;
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
if (model.arch == LLM_ARCH_BERT) {
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
|
||
} else {
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
}
|
||
cb(cur, "ffn_out", il);
|
||
|
||
// attentions bypass the intermediate layer
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
|
||
// output layer norm
|
||
cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cb(cur, "result_embd", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_bloom() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
inpL = llm_build_norm(ctx0, inpL, hparams,
|
||
model.tok_norm,
|
||
model.tok_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(inpL, "inp_norm", -1);
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
|
||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// Add the input
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// FF
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_mpt() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * pos;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
if (model.pos_embd) {
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
|
||
cb(pos, "pos_embd", -1);
|
||
|
||
inpL = ggml_add(ctx0, inpL, pos);
|
||
cb(inpL, "inpL", -1);
|
||
}
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * attn_norm;
|
||
|
||
attn_norm = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(attn_norm, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
cur = attn_norm;
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
if (model.layers[il].bqkv){
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
}
|
||
|
||
if (hparams.f_clamp_kqv > 0.0f) {
|
||
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
|
||
cb(cur, "wqkv_clamped", il);
|
||
}
|
||
|
||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
// Q/K Layernorm
|
||
if (model.layers[il].attn_q_norm) {
|
||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||
model.layers[il].attn_q_norm,
|
||
model.layers[il].attn_q_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||
model.layers[il].attn_k_norm,
|
||
model.layers[il].attn_k_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
} else {
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// Add the input
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed forward
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
model.layers[il].ffn_act,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_stablelm() {
|
||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
struct ggml_tensor * inpSA = cur;
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
cb(Qcur, "Qcur", il);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
if (model.layers[il].attn_q_norm) {
|
||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||
model.layers[il].attn_q_norm,
|
||
NULL,
|
||
LLM_NORM, cb, il);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
if (model.layers[il].attn_k_norm) {
|
||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||
model.layers[il].attn_k_norm,
|
||
NULL,
|
||
LLM_NORM, cb, il);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, Qcur, inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, Kcur, inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
if (model.layers[il].ffn_norm) {
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
} else {
|
||
// parallel residual
|
||
cur = inpSA;
|
||
}
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_qwen() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
|
||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
|
||
// using mode = 2 for neox mode
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward forward
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_qwen2() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_qwen2moe() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self_attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// MoE branch
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
ggml_tensor * moe_out =
|
||
llm_build_moe_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_gate_inp,
|
||
model.layers[il].ffn_up_exps,
|
||
model.layers[il].ffn_gate_exps,
|
||
model.layers[il].ffn_down_exps,
|
||
n_expert, n_expert_used,
|
||
LLM_FFN_SILU, false,
|
||
false, 0.0,
|
||
cb, il);
|
||
cb(cur, "ffn_moe_out", il);
|
||
|
||
// FFN shared expert
|
||
{
|
||
ggml_tensor * cur_gate_inp = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
|
||
cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
|
||
|
||
// sigmoid
|
||
ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
|
||
cb(cur_gate, "ffn_shexp_gate", il);
|
||
|
||
ggml_tensor * cur_ffn = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up_shexp, NULL, NULL,
|
||
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
||
model.layers[il].ffn_down_shexp, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur_ffn, "ffn_shexp", il);
|
||
|
||
ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
|
||
cb(ffn_shexp_out, "ffn_shexp_out", il);
|
||
|
||
moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
|
||
cb(moe_out, "ffn_out", il);
|
||
|
||
cur = moe_out;
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_phi2() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * attn_norm_output;
|
||
struct ggml_tensor * ffn_output;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(attn_norm_output, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
struct ggml_tensor * Qcur = nullptr;
|
||
struct ggml_tensor * Kcur = nullptr;
|
||
struct ggml_tensor * Vcur = nullptr;
|
||
|
||
if (model.layers[il].wqkv) {
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
|
||
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
} else {
|
||
Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
|
||
Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
|
||
Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
|
||
}
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
// with phi2, we scale the Q to avoid precision issues
|
||
// ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
|
||
Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
|
||
}
|
||
|
||
// FF
|
||
{
|
||
ffn_output = llm_build_ffn(ctx0, lctx, attn_norm_output,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(ffn_output, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_output);
|
||
cur = ggml_add(ctx0, cur, inpL);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output_no_bias", -1);
|
||
|
||
cur = ggml_add(ctx0, cur, model.output_b);
|
||
cb(cur, "result_output", -1);
|
||
ggml_build_forward_expand(gf, cur);
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_phi3() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
auto residual = inpL;
|
||
|
||
// self-attention
|
||
{
|
||
// rope freq factors for 128k context
|
||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||
|
||
struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(attn_norm_output, "attn_norm", il);
|
||
|
||
struct ggml_tensor * Qcur = nullptr;
|
||
struct ggml_tensor * Kcur = nullptr;
|
||
struct ggml_tensor * Vcur = nullptr;
|
||
|
||
if (model.layers[il].wqkv) {
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, attn_norm_output);
|
||
cb(cur, "wqkv", il);
|
||
|
||
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
|
||
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
|
||
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
|
||
}
|
||
else {
|
||
Qcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
|
||
Kcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
|
||
Vcur = ggml_add(ctx0, llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
|
||
}
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask_swa, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor* inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, residual);
|
||
residual = cur;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
// FF
|
||
// special-case: the up and gate tensors are merged into a single tensor
|
||
// TOOD: support into llm_build_ffn
|
||
{
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, residual, cur);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm,
|
||
NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
|
||
struct ggml_cgraph * build_plamo() {
|
||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
struct ggml_tensor * attention_norm = cur;
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
|
||
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
struct ggml_tensor * sa_out = cur;
|
||
|
||
cur = attention_norm;
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, sa_out);
|
||
cur = ggml_add(ctx0, cur, inpL);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_gpt2() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * pos;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
|
||
cb(pos, "pos_embd", -1);
|
||
|
||
inpL = ggml_add(ctx0, inpL, pos);
|
||
cb(inpL, "inpL", -1);
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
|
||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// add the input
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// FF
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_codeshell() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
|
||
struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(tmpq, "tmpq", il);
|
||
cb(tmpk, "tmpk", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
struct ggml_tensor * Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// add the input
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// FF
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_orion() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
// if (model.layers[il].bq) {
|
||
// Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
// cb(Qcur, "Qcur", il);
|
||
// }
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
// if (model.layers[il].bk) {
|
||
// Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
// cb(Kcur, "Kcur", il);
|
||
// }
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
// if (model.layers[il].bv) {
|
||
// Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
// cb(Vcur, "Vcur", il);
|
||
// }
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_internlm2() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
// ref: https://arxiv.org/abs/2203.03466
|
||
// https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
|
||
// based on the original build_llama() function
|
||
struct ggml_cgraph * build_minicpm() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
const int64_t n_embd = hparams.n_embd;
|
||
//TODO: if the model varies, these parameters need to be read from the model
|
||
const int64_t n_embd_base = 256;
|
||
const float scale_embd = 12.0f;
|
||
const float scale_depth = 1.4f;
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// scale the input embeddings
|
||
inpL = ggml_scale(ctx0, inpL, scale_embd);
|
||
cb(inpL, "inp_scaled", -1);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
// scale_res - scale the hidden states for residual connection
|
||
const float scale_res = scale_depth/sqrtf(float(n_layer));
|
||
cur = ggml_scale(ctx0, cur, scale_res);
|
||
cb(cur, "hidden_scaled", -1);
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
// scale the hidden states for residual connection
|
||
cur = ggml_scale(ctx0, cur, scale_res);
|
||
cb(cur, "hidden_scaled_ffn", -1);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head scaling
|
||
const float scale_lmhead = float(n_embd_base)/float(n_embd);
|
||
cur = ggml_scale(ctx0, cur, scale_lmhead);
|
||
cb(cur, "lmhead_scaling", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_minicpm3() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
//TODO: if the model varies, these parameters need to be read from the model
|
||
const int64_t n_embd_base = 256;
|
||
const float scale_embd = 12.0f;
|
||
const float scale_depth = 1.4f;
|
||
const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
|
||
|
||
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
|
||
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
|
||
const uint32_t kv_lora_rank = hparams.n_lora_kv;
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// scale the input embeddings
|
||
inpL = ggml_scale(ctx0, inpL, scale_embd);
|
||
cb(inpL, "inp_scaled", -1);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self_attention
|
||
{
|
||
struct ggml_tensor * q = NULL;
|
||
// {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
|
||
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
|
||
cb(q, "q", il);
|
||
|
||
q = llm_build_norm(ctx0, q, hparams,
|
||
model.layers[il].attn_q_a_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(q, "q", il);
|
||
|
||
// {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
|
||
q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
|
||
cb(q, "q", il);
|
||
|
||
// split into {n_head * n_embd_head_qk_nope, n_tokens}
|
||
struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
|
||
ggml_row_size(q->type, hparams.n_embd_head_k),
|
||
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
|
||
0);
|
||
cb(q_nope, "q_nope", il);
|
||
|
||
// and {n_head * n_embd_head_qk_rope, n_tokens}
|
||
struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
|
||
ggml_row_size(q->type, hparams.n_embd_head_k),
|
||
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
|
||
ggml_row_size(q->type, n_embd_head_qk_nope));
|
||
cb(q_pe, "q_pe", il);
|
||
|
||
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
|
||
struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
|
||
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
|
||
|
||
// split into {kv_lora_rank, n_tokens}
|
||
struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
|
||
kv_pe_compresseed->nb[1],
|
||
0);
|
||
cb(kv_compressed, "kv_compressed", il);
|
||
|
||
// and {n_embd_head_qk_rope, n_tokens}
|
||
struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
|
||
kv_pe_compresseed->nb[1],
|
||
kv_pe_compresseed->nb[1],
|
||
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
|
||
cb(k_pe, "k_pe", il);
|
||
|
||
kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
|
||
kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
|
||
model.layers[il].attn_kv_a_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(kv_compressed, "kv_compressed", il);
|
||
|
||
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
|
||
struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
|
||
cb(kv, "kv", il);
|
||
|
||
// split into {n_head * n_embd_head_qk_nope, n_tokens}
|
||
struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
|
||
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
|
||
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||
0);
|
||
cb(k_nope, "k_nope", il);
|
||
|
||
// and {n_head * n_embd_head_v, n_tokens}
|
||
struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
|
||
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
|
||
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
|
||
cb(v_states, "v_states", il);
|
||
|
||
v_states = ggml_cont(ctx0, v_states);
|
||
cb(v_states, "v_states", il);
|
||
|
||
v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
|
||
ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
|
||
0);
|
||
cb(v_states, "v_states", il);
|
||
|
||
q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
|
||
q_pe = ggml_rope_ext(
|
||
ctx0, q_pe, inp_pos, rope_factors,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(q_pe, "q_pe", il);
|
||
|
||
// shared RoPE key
|
||
k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
|
||
k_pe = ggml_rope_ext(
|
||
ctx0, k_pe, inp_pos, rope_factors,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(k_pe, "k_pe", il);
|
||
|
||
struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
|
||
cb(q_states, "q_states", il);
|
||
|
||
struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
|
||
cb(k_states, "k_states", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
// scale_res - scale the hidden states for residual connection
|
||
const float scale_res = scale_depth/sqrtf(float(n_layer));
|
||
cur = ggml_scale(ctx0, cur, scale_res);
|
||
cb(cur, "hidden_scaled", il);
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
// scale the hidden states for residual connection
|
||
cur = ggml_scale(ctx0, cur, scale_res);
|
||
cb(cur, "hidden_scaled_ffn", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head scaling
|
||
const float scale_lmhead = float(n_embd_base)/float(n_embd);
|
||
cur = ggml_scale(ctx0, cur, scale_lmhead);
|
||
cb(cur, "lmhead_scaling", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_gemma() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||
cb(inpL, "inp_scaled", -1);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
|
||
cb(Qcur, "Qcur_scaled", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
|
||
cb(sa_out, "sa_out", il);
|
||
|
||
cur = llm_build_norm(ctx0, sa_out, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, sa_out);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_gemma2() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||
cb(inpL, "inp_scaled", -1);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
// gemma 2 requires different mask for layers using sliding window (SWA)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask(true);
|
||
struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa(true);
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
// (il % 2) layers use SWA
|
||
struct ggml_tensor * KQ_mask_l = (il % 2 == 0) ? KQ_mask_swa : KQ_mask;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
// ref: https://github.com/google/gemma_pytorch/commit/03e657582d17cb5a8617ebf333c1c16f3694670e
|
||
switch (model.type) {
|
||
case e_model::MODEL_2B:
|
||
case e_model::MODEL_9B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); break;
|
||
case e_model::MODEL_27B: Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd / n_head))); break;
|
||
default: GGML_ABORT("fatal error");
|
||
};
|
||
cb(Qcur, "Qcur_scaled", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask_l, n_tokens, kv_head, n_kv, 1.0f, cb, il);
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].attn_post_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_post_norm", il);
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
|
||
cb(sa_out, "sa_out", il);
|
||
|
||
cur = llm_build_norm(ctx0, sa_out, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].ffn_post_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "ffn_post_norm", -1);
|
||
|
||
cur = ggml_add(ctx0, cur, sa_out);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
|
||
// final logit soft-capping
|
||
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
|
||
cur = ggml_tanh(ctx0, cur);
|
||
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
|
||
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
|
||
struct ggml_cgraph * build_starcoder2() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_mamba() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
// {n_embd, n_tokens}
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
struct ggml_tensor * state_copy = build_inp_s_copy();
|
||
struct ggml_tensor * state_mask = build_inp_s_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
cur = llm_build_mamba(ctx0, lctx, batch, gf, cur,
|
||
state_copy, state_mask,
|
||
kv_head, n_kv, cb, il);
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// residual
|
||
cur = ggml_add(ctx0, cur, inpL);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
// final rmsnorm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_command_r() {
|
||
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
const float f_logit_scale = hparams.f_logit_scale;
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
struct ggml_tensor * ffn_inp = cur;
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
if (model.layers[il].attn_q_norm) {
|
||
Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
|
||
ggml_element_size(Qcur) * n_embd_head,
|
||
ggml_element_size(Qcur) * n_embd_head * n_head,
|
||
0);
|
||
cb(Qcur, "Qcur", il);
|
||
Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
|
||
ggml_element_size(Kcur) * n_embd_head,
|
||
ggml_element_size(Kcur) * n_embd_head * n_head_kv,
|
||
0);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||
model.layers[il].attn_q_norm,
|
||
NULL,
|
||
LLM_NORM, cb, il);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||
model.layers[il].attn_k_norm,
|
||
NULL,
|
||
LLM_NORM, cb, il);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * attn_out = cur;
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_ffn(ctx0, lctx, ffn_inp,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
// add together residual + FFN + self-attention
|
||
cur = ggml_add(ctx0, cur, inpL);
|
||
cur = ggml_add(ctx0, cur, attn_out);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
|
||
if (f_logit_scale) {
|
||
cur = ggml_scale(ctx0, cur, f_logit_scale);
|
||
}
|
||
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
|
||
}
|
||
|
||
// ref: https://allenai.org/olmo
|
||
// based on the original build_llama() function, changes:
|
||
// * non-parametric layer norm
|
||
// * clamp qkv
|
||
// * removed bias
|
||
// * removed MoE
|
||
struct ggml_cgraph * build_olmo() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
NULL, NULL,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (hparams.f_clamp_kqv > 0.0f) {
|
||
Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (hparams.f_clamp_kqv > 0.0f) {
|
||
Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (hparams.f_clamp_kqv > 0.0f) {
|
||
Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, nullptr,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
NULL, NULL,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
NULL, NULL,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
// based on the build_qwen2moe() function, changes:
|
||
// * removed shared experts
|
||
// * removed bias
|
||
// * added q, k norm
|
||
struct ggml_cgraph * build_olmoe() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self_attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(Qcur, "Qcur_normed", il);
|
||
|
||
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(Kcur, "Kcur_normed", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, Qcur, inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur_rope", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, Kcur, inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur_rope", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// MoE branch
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_moe_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_gate_inp,
|
||
model.layers[il].ffn_up_exps,
|
||
model.layers[il].ffn_gate_exps,
|
||
model.layers[il].ffn_down_exps,
|
||
n_expert, n_expert_used,
|
||
LLM_FFN_SILU, false,
|
||
false, 0.0,
|
||
cb, il);
|
||
cb(cur, "ffn_moe_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_openelm() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
const int64_t n_head = hparams.n_head(il);
|
||
const int64_t n_head_kv = hparams.n_head_kv(il);
|
||
const int64_t n_head_qkv = 2*n_head_kv + n_head;
|
||
|
||
cur = inpL;
|
||
struct ggml_tensor * residual = cur;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
|
||
|
||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||
model.layers[il].attn_q_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||
model.layers[il].attn_k_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, Qcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, Kcur, inp_pos, NULL, n_rot, rope_type, n_ctx_orig,
|
||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
Vcur = ggml_reshape_2d(ctx0, Vcur, n_embd_head * n_head_kv, n_tokens);
|
||
cb(Qcur, "Vcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_gptneox() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
|
||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// ffn
|
||
if (hparams.use_par_res) {
|
||
// attention and ffn are computed in parallel
|
||
// x = x + attn(ln1(x)) + ffn(ln2(x))
|
||
|
||
struct ggml_tensor * attn_out = cur;
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, inpL);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, attn_out);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
} else {
|
||
// attention and ffn are computed sequentially
|
||
// x = x + attn(ln1(x))
|
||
// x = x + ffn(ln2(x))
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_arctic() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(ffn_out, "ffn_out", il);
|
||
|
||
// MoE
|
||
cur = llm_build_norm(ctx0, inpSA, hparams,
|
||
model.layers[il].ffn_norm_exps, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm_exps", il);
|
||
|
||
cur = llm_build_moe_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_gate_inp,
|
||
model.layers[il].ffn_up_exps,
|
||
model.layers[il].ffn_gate_exps,
|
||
model.layers[il].ffn_down_exps,
|
||
n_expert, n_expert_used,
|
||
LLM_FFN_SILU, true,
|
||
false, 0.0,
|
||
cb, il);
|
||
cb(cur, "ffn_moe_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_out);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_deepseek2() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
bool is_lite = (hparams.n_layer == 27);
|
||
|
||
// We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
|
||
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
|
||
const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
|
||
const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
|
||
const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
|
||
|
||
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
|
||
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
|
||
const uint32_t kv_lora_rank = hparams.n_lora_kv;
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
// {n_embd, n_tokens}
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self_attention
|
||
{
|
||
struct ggml_tensor * q = NULL;
|
||
if (!is_lite) {
|
||
// {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
|
||
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
|
||
cb(q, "q", il);
|
||
|
||
q = llm_build_norm(ctx0, q, hparams,
|
||
model.layers[il].attn_q_a_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(q, "q", il);
|
||
|
||
// {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
|
||
q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
|
||
cb(q, "q", il);
|
||
} else {
|
||
q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||
cb(q, "q", il);
|
||
}
|
||
|
||
// split into {n_head * n_embd_head_qk_nope, n_tokens}
|
||
struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
|
||
ggml_row_size(q->type, hparams.n_embd_head_k),
|
||
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
|
||
0);
|
||
cb(q_nope, "q_nope", il);
|
||
|
||
// and {n_head * n_embd_head_qk_rope, n_tokens}
|
||
struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
|
||
ggml_row_size(q->type, hparams.n_embd_head_k),
|
||
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
|
||
ggml_row_size(q->type, n_embd_head_qk_nope));
|
||
cb(q_pe, "q_pe", il);
|
||
|
||
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
|
||
struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
|
||
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
|
||
|
||
// split into {kv_lora_rank, n_tokens}
|
||
struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
|
||
kv_pe_compresseed->nb[1],
|
||
0);
|
||
cb(kv_compressed, "kv_compressed", il);
|
||
|
||
// and {n_embd_head_qk_rope, n_tokens}
|
||
struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
|
||
kv_pe_compresseed->nb[1],
|
||
kv_pe_compresseed->nb[1],
|
||
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
|
||
cb(k_pe, "k_pe", il);
|
||
|
||
kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
|
||
kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
|
||
model.layers[il].attn_kv_a_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(kv_compressed, "kv_compressed", il);
|
||
|
||
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
|
||
struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
|
||
cb(kv, "kv", il);
|
||
|
||
// split into {n_head * n_embd_head_qk_nope, n_tokens}
|
||
struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
|
||
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
|
||
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||
0);
|
||
cb(k_nope, "k_nope", il);
|
||
|
||
// and {n_head * n_embd_head_v, n_tokens}
|
||
struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
|
||
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
|
||
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
|
||
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
|
||
cb(v_states, "v_states", il);
|
||
|
||
v_states = ggml_cont(ctx0, v_states);
|
||
cb(v_states, "v_states", il);
|
||
|
||
v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
|
||
ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
|
||
0);
|
||
cb(v_states, "v_states", il);
|
||
|
||
q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
|
||
q_pe = ggml_rope_ext(
|
||
ctx0, q_pe, inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor_scaled, beta_fast, beta_slow
|
||
);
|
||
cb(q_pe, "q_pe", il);
|
||
|
||
// shared RoPE key
|
||
k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
|
||
k_pe = ggml_rope_ext(
|
||
ctx0, k_pe, inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor_scaled, beta_fast, beta_slow
|
||
);
|
||
cb(k_pe, "k_pe", il);
|
||
|
||
struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
|
||
cb(q_states, "q_states", il);
|
||
|
||
struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
|
||
cb(k_states, "k_states", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
if ((uint32_t) il < hparams.n_layer_dense_lead) {
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
} else {
|
||
// MoE branch
|
||
ggml_tensor * moe_out =
|
||
llm_build_moe_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_gate_inp,
|
||
model.layers[il].ffn_up_exps,
|
||
model.layers[il].ffn_gate_exps,
|
||
model.layers[il].ffn_down_exps,
|
||
n_expert, n_expert_used,
|
||
LLM_FFN_SILU, false,
|
||
true, hparams.expert_weights_scale,
|
||
cb, il);
|
||
cb(moe_out, "ffn_moe_out", il);
|
||
|
||
// FFN shared expert
|
||
{
|
||
ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up_shexp, NULL, NULL,
|
||
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
||
model.layers[il].ffn_down_shexp, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(ffn_shexp, "ffn_shexp", il);
|
||
|
||
cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_bitnet() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
if (model.layers[il].wq_scale) {
|
||
Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
|
||
}
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
// B1.K
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
if (model.layers[il].wk_scale) {
|
||
Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
|
||
}
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
// B1.V
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
if (model.layers[il].wv_scale) {
|
||
Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
|
||
}
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
NULL, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].attn_sub_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_sub_norm", il);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
|
||
if (model.layers[il].wo_scale) {
|
||
cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
|
||
}
|
||
if (model.layers[il].bo) {
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bo);
|
||
}
|
||
cb(cur, "attn_o_out", il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward forward
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
|
||
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
|
||
NULL, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_sub_out", il);
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].ffn_sub_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_sub_norm", il);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_down, cur);
|
||
if (model.layers[il].ffn_down_scale) {
|
||
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
|
||
}
|
||
cb(cur, "ffn_down", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.tok_embd, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_t5_encoder() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
GGML_ASSERT(lctx.is_encoding);
|
||
struct ggml_tensor * pos_bucket_enc = llm_build_pos_bucket(false);
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask_enc = build_inp_KQ_mask(false);
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm_enc, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_enc, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_enc, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_enc, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||
|
||
struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||
struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||
|
||
struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
|
||
cb(kq, "kq", il);
|
||
|
||
struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
|
||
struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_enc, attn_rel_b);
|
||
struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
|
||
cb(kq_b, "kq_b", il);
|
||
|
||
kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_enc, 1.0f, hparams.f_max_alibi_bias);
|
||
cb(kq, "kq_soft_max_ext", il);
|
||
|
||
struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
|
||
cb(v, "v", il);
|
||
|
||
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
|
||
cb(kqv, "kqv", il);
|
||
|
||
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||
cb(kqv_merged, "kqv_merged", il);
|
||
|
||
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
||
cb(cur, "kqv_merged_cont", il);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_enc, cur);
|
||
cb(cur, "kqv_out", il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm_enc, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
// T5 uses relu, flan-T5 uses gelu-gated
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up_enc, NULL, NULL,
|
||
model.layers[il].ffn_gate_enc, NULL, NULL,
|
||
model.layers[il].ffn_down_enc, NULL, NULL,
|
||
NULL,
|
||
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
|
||
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
|
||
cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
||
if (layer_dir != nullptr) {
|
||
cur = ggml_add(ctx0, cur, layer_dir);
|
||
}
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
cb(cur, "result_embd", -1);
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm_enc, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_t5_decoder() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
GGML_ASSERT(!lctx.is_encoding);
|
||
GGML_ASSERT(n_outputs_enc > 0 && "call llama_encode() first");
|
||
|
||
struct ggml_tensor * embd_enc = llm_build_inp_embd_enc();
|
||
struct ggml_tensor * pos_bucket_dec = llm_build_pos_bucket(true);
|
||
|
||
struct ggml_tensor * KQ_mask_dec = build_inp_KQ_mask();
|
||
struct ggml_tensor * KQ_mask_cross = llm_build_inp_KQ_mask_cross();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
llm_build_kv_store(ctx0, hparams, cparams, kv_self, gf, Kcur, Vcur, n_tokens, kv_head, cb, il);
|
||
|
||
struct ggml_tensor * k =
|
||
ggml_view_3d(ctx0, kv_self.k_l[il],
|
||
n_embd_head_k, n_kv, n_head_kv,
|
||
ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
|
||
ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
|
||
0);
|
||
cb(k, "k", il);
|
||
|
||
struct ggml_tensor * v =
|
||
ggml_view_3d(ctx0, kv_self.v_l[il],
|
||
n_kv, n_embd_head_v, n_head_kv,
|
||
ggml_element_size(kv_self.v_l[il])*n_ctx,
|
||
ggml_element_size(kv_self.v_l[il])*n_ctx*n_embd_head_v,
|
||
0);
|
||
cb(v, "v", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
|
||
struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||
|
||
struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
|
||
cb(kq, "kq", il);
|
||
|
||
struct ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
|
||
struct ggml_tensor * pos_bias = llm_build_pos_bias(pos_bucket_dec, attn_rel_b);
|
||
struct ggml_tensor * kq_b = ggml_add(ctx0, kq, pos_bias);
|
||
cb(kq_b, "kq_b", il);
|
||
|
||
kq = ggml_soft_max_ext(ctx0, kq_b, KQ_mask_dec, 1.0f, hparams.f_max_alibi_bias);
|
||
cb(kq, "kq_soft_max_ext", il);
|
||
|
||
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
|
||
cb(kqv, "kqv", il);
|
||
|
||
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||
cb(kqv_merged, "kqv_merged", il);
|
||
|
||
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
||
cb(cur, "kqv_merged_cont", il);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
|
||
cb(cur, "kqv_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, inpSA);
|
||
cb(cur, "cross_inp", il);
|
||
|
||
struct ggml_tensor * inpCA = cur;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].attn_norm_cross, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm_cross", il);
|
||
|
||
// cross-attention
|
||
{
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq_cross, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk_cross, embd_enc);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv_cross, embd_enc);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
|
||
|
||
struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||
struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
||
|
||
struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
|
||
cb(kq, "kq", il);
|
||
|
||
kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
|
||
cb(kq, "kq_soft_max_ext", il);
|
||
|
||
struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
|
||
cb(v, "v", il);
|
||
|
||
struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
|
||
cb(kqv, "kqv", il);
|
||
|
||
struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
||
cb(kqv_merged, "kqv_merged", il);
|
||
|
||
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
|
||
cb(cur, "kqv_merged_cont", il);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo_cross, cur);
|
||
cb(cur, "kqv_out", il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
// T5 uses relu, flan-T5 uses gelu-gated
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
|
||
model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
|
||
cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
||
if (layer_dir != nullptr) {
|
||
cur = ggml_add(ctx0, cur, layer_dir);
|
||
}
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
cb(cur, "result_embd", -1);
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_jais() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
|
||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
|
||
struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
|
||
struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/float(n_embd_head), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
|
||
}
|
||
|
||
// add the input
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// FF
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
}
|
||
|
||
inpL = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(inpL, "l_out", il);
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm,
|
||
model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_chatglm() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
struct ggml_tensor * Qcur = nullptr;
|
||
struct ggml_tensor * Kcur = nullptr;
|
||
struct ggml_tensor * Vcur = nullptr;
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wqkv, cur);
|
||
cb(cur, "wqkv", il);
|
||
|
||
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
|
||
cb(cur, "bqkv", il);
|
||
|
||
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||
|
||
cb(Qcur, "Qcur", il);
|
||
cb(Kcur, "Kcur", il);
|
||
cb(Vcur, "Vcur", il);
|
||
//printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur_rope", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur_rope", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, NULL,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
// Add the input
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// FF
|
||
{
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SWIGLU, LLM_FFN_SEQ, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
}
|
||
|
||
inpL = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(inpL, "l_out", il);
|
||
}
|
||
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.output_norm,
|
||
NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_nemotron() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
//GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm,
|
||
model.layers[il].attn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm,
|
||
model.layers[il].ffn_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||
NULL, NULL, NULL,
|
||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||
NULL,
|
||
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, model.output_norm_b,
|
||
LLM_NORM, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
struct ggml_cgraph * build_exaone() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
|
||
// self-attention
|
||
{
|
||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
if (model.layers[il].bq) {
|
||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
if (model.layers[il].bk) {
|
||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
if (model.layers[il].bv) {
|
||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||
cb(Vcur, "Vcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, model.layers[il].bo,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
ggml_cgraph * build_rwkv6() {
|
||
ggml_cgraph *gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// Token shift state dimensions should be 2 * n_emb
|
||
GGML_ASSERT(n_embd == hparams.n_embd_k_s() / 2);
|
||
|
||
const int64_t n_seqs = batch.n_seqs;
|
||
const int64_t n_seq_tokens = batch.n_seq_tokens;
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
GGML_ASSERT(n_seqs != 0);
|
||
GGML_ASSERT(batch.equal_seqs);
|
||
GGML_ASSERT(n_tokens == n_seq_tokens * n_seqs);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
struct ggml_tensor * state_copy = build_inp_s_copy();
|
||
struct ggml_tensor * state_mask = build_inp_s_mask();
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
const llama_layer * layer = &model.layers[il];
|
||
|
||
// (ab)using the KV cache to store the states
|
||
struct ggml_tensor * token_shift = llm_build_copy_mask_state(ctx0,
|
||
gf, kv_self.k_l[il], state_copy, state_mask,
|
||
hparams.n_embd_k_s(), kv_self.size, kv_head, n_kv, n_seqs);
|
||
struct ggml_tensor * wkv_states = llm_build_copy_mask_state(ctx0,
|
||
gf, kv_self.v_l[il], state_copy, state_mask,
|
||
hparams.n_embd_v_s(), kv_self.size, kv_head, n_kv, n_seqs);
|
||
|
||
cur = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
|
||
token_shift = ggml_reshape_3d(ctx0, token_shift, n_embd, 2, n_seqs);
|
||
|
||
struct ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
|
||
struct ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
|
||
|
||
struct ggml_tensor * x_norm_att = llm_build_norm(ctx0, cur, hparams, layer->attn_norm, layer->attn_norm_b, LLM_NORM, cb, il);
|
||
struct ggml_tensor * x_prev = ggml_concat(
|
||
ctx0,
|
||
att_shift,
|
||
ggml_view_3d(ctx0, x_norm_att, n_embd, n_seq_tokens - 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], 0),
|
||
1
|
||
);
|
||
|
||
cur = ggml_add(ctx0, cur, llm_build_rwkv6_time_mix(lctx, ctx0, layer, x_norm_att, x_prev, &wkv_states));
|
||
ggml_build_forward_expand(gf, cur);
|
||
ggml_build_forward_expand(
|
||
gf,
|
||
ggml_cpy(
|
||
ctx0,
|
||
wkv_states,
|
||
ggml_view_1d(
|
||
ctx0,
|
||
kv_self.v_l[il],
|
||
hparams.n_embd_v_s() * n_seqs,
|
||
hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_self.v_l[il])
|
||
)
|
||
)
|
||
);
|
||
|
||
struct ggml_tensor * x_norm_ffn = llm_build_norm(ctx0, cur, hparams, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, cb, il);
|
||
x_prev = ggml_concat(
|
||
ctx0,
|
||
ffn_shift,
|
||
ggml_view_3d(ctx0, x_norm_ffn, n_embd, n_seq_tokens - 1, n_seqs, x_norm_ffn->nb[1], x_norm_ffn->nb[2], 0),
|
||
1
|
||
);
|
||
cur = ggml_add(ctx0, cur, llm_build_rwkv6_channel_mix(lctx, ctx0, layer, x_norm_ffn, x_prev));
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
struct ggml_tensor * last_norm_att = ggml_view_3d(ctx0, x_norm_att, n_embd, 1, n_seqs, x_norm_att->nb[1], x_norm_att->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(x_norm_att));
|
||
struct ggml_tensor * last_norm_ffn = ggml_view_3d(ctx0, x_norm_ffn, n_embd, 1, n_seqs, x_norm_ffn->nb[1], x_norm_ffn->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(x_norm_ffn));
|
||
|
||
token_shift = ggml_concat(ctx0, last_norm_att, last_norm_ffn, 1);
|
||
|
||
ggml_build_forward_expand(
|
||
gf,
|
||
ggml_cpy(
|
||
ctx0,
|
||
ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * 2, 0),
|
||
ggml_view_1d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self.k_l[il]))
|
||
)
|
||
);
|
||
|
||
if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
|
||
cur = ggml_scale(ctx0, cur, 0.5F);
|
||
}
|
||
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1);
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
|
||
cb(cur, "result_output", -1);
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
|
||
// ref: https://github.com/facebookresearch/chameleon
|
||
// based on the original build_llama() function, changes:
|
||
// * qk-norm
|
||
// * swin-norm
|
||
// * removed bias
|
||
// * removed MoE
|
||
struct ggml_cgraph * build_chameleon() {
|
||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||
|
||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||
int32_t n_tokens = this->n_tokens;
|
||
|
||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||
|
||
struct ggml_tensor * cur;
|
||
struct ggml_tensor * inpL;
|
||
|
||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||
|
||
// inp_pos - contains the positions
|
||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||
|
||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||
|
||
for (int il = 0; il < n_layer; ++il) {
|
||
struct ggml_tensor * inpSA = inpL;
|
||
|
||
// norm
|
||
if (hparams.swin_norm) {
|
||
cur = inpL;
|
||
} else {
|
||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "attn_norm", il);
|
||
}
|
||
|
||
// self-attention
|
||
{
|
||
// compute Q and K and RoPE them
|
||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||
cb(Vcur, "Vcur", il);
|
||
|
||
if (model.layers[il].attn_q_norm) {
|
||
Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
|
||
ggml_element_size(Qcur) * n_embd_head,
|
||
ggml_element_size(Qcur) * n_embd_head * n_head,
|
||
0);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||
model.layers[il].attn_q_norm,
|
||
model.layers[il].attn_q_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(Qcur, "Qcur", il);
|
||
}
|
||
|
||
if (model.layers[il].attn_k_norm) {
|
||
Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
|
||
ggml_element_size(Kcur) * n_embd_head,
|
||
ggml_element_size(Kcur) * n_embd_head * n_head_kv,
|
||
0);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||
model.layers[il].attn_k_norm,
|
||
model.layers[il].attn_k_norm_b,
|
||
LLM_NORM, cb, il);
|
||
cb(Kcur, "Kcur", il);
|
||
}
|
||
|
||
Qcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Qcur, "Qcur", il);
|
||
|
||
Kcur = ggml_rope_ext(
|
||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
|
||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||
ext_factor, attn_factor, beta_fast, beta_slow
|
||
);
|
||
cb(Kcur, "Kcur", il);
|
||
|
||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||
model.layers[il].wo, nullptr,
|
||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||
|
||
if (hparams.swin_norm) {
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].attn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
}
|
||
}
|
||
|
||
if (il == n_layer - 1) {
|
||
// skip computing output for unused tokens
|
||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||
n_tokens = n_outputs;
|
||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||
}
|
||
|
||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||
cb(ffn_inp, "ffn_inp", il);
|
||
|
||
// feed-forward network
|
||
if (!hparams.swin_norm) {
|
||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
}
|
||
|
||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||
model.layers[il].ffn_up, NULL, NULL,
|
||
model.layers[il].ffn_gate, NULL, NULL,
|
||
model.layers[il].ffn_down, NULL, NULL,
|
||
NULL,
|
||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
if (hparams.swin_norm) {
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.layers[il].ffn_norm, NULL,
|
||
LLM_NORM_RMS, cb, il);
|
||
cb(cur, "ffn_norm", il);
|
||
}
|
||
|
||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||
cb(cur, "ffn_out", il);
|
||
|
||
cur = lctx.cvec.apply_to(ctx0, cur, il);
|
||
cb(cur, "l_out", il);
|
||
|
||
// input for next layer
|
||
inpL = cur;
|
||
}
|
||
|
||
cur = inpL;
|
||
|
||
cur = llm_build_norm(ctx0, cur, hparams,
|
||
model.output_norm, NULL,
|
||
LLM_NORM_RMS, cb, -1);
|
||
cb(cur, "result_norm", -1);
|
||
|
||
// lm_head
|
||
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
||
cb(cur, "result_output_with_img_logits", -1);
|
||
|
||
// TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
|
||
// Needs to be removed once image outputs are supported.
|
||
int img_token_end_idx = 8196;
|
||
int img_token_start_idx = 4;
|
||
int num_img_tokens = img_token_end_idx - img_token_start_idx;
|
||
// creates 1d tensor of size num_img_tokens and values -FLT_MAX,
|
||
// which ensures that text token values are always at least larger than image token values
|
||
struct ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
|
||
img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
|
||
cb(img_logits, "img_logits", -1);
|
||
cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
|
||
cb(cur, "result_output", -1);
|
||
|
||
ggml_build_forward_expand(gf, cur);
|
||
|
||
return gf;
|
||
}
|
||
};
|
||
|
||
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
|
||
llama_ubatch dummy = {};
|
||
dummy.equal_seqs = true;
|
||
|
||
llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
|
||
|
||
struct llm_build_context llm(lctx, dummy, cb, false);
|
||
|
||
llm.init();
|
||
|
||
struct ggml_cgraph * result = llm.build_defrag(ids);
|
||
|
||
llm.free();
|
||
|
||
return result;
|
||
}
|
||
|
||
static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
|
||
llama_ubatch dummy = {};
|
||
dummy.equal_seqs = true;
|
||
|
||
llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
|
||
|
||
struct llm_build_context llm(lctx, dummy, cb, false);
|
||
|
||
llm.init();
|
||
|
||
struct ggml_cgraph * result = llm.build_k_shift();
|
||
|
||
llm.free();
|
||
|
||
return result;
|
||
}
|
||
|
||
static struct ggml_cgraph * llama_build_graph(
|
||
llama_context & lctx,
|
||
const llama_ubatch & batch,
|
||
bool worst_case) {
|
||
const auto & model = lctx.model;
|
||
|
||
// this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
|
||
llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
|
||
if (il >= 0) {
|
||
ggml_format_name(cur, "%s-%d", name, il);
|
||
} else {
|
||
ggml_set_name(cur, name);
|
||
}
|
||
|
||
if (!lctx.cparams.offload_kqv) {
|
||
if (strcmp(name, "kqv_merged_cont") == 0) {
|
||
// all nodes between the KV store and the attention output are run on the CPU
|
||
ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
|
||
}
|
||
}
|
||
|
||
// norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
|
||
// FIXME: fix in ggml_backend_sched
|
||
const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
|
||
if (batch.n_tokens < 32 || full_offload) {
|
||
if (il != -1 && strcmp(name, "norm") == 0) {
|
||
for (auto * backend : lctx.backends) {
|
||
if (ggml_backend_supports_buft(backend, lctx.model.buft_layer[il].buft) &&
|
||
(ggml_backend_supports_op(backend, cur) || ggml_backend_offload_op(backend, cur))) {
|
||
ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
};
|
||
|
||
struct ggml_cgraph * result = NULL;
|
||
|
||
struct llm_build_context llm(lctx, batch, cb, worst_case);
|
||
|
||
llm.init();
|
||
|
||
switch (model.arch) {
|
||
case LLM_ARCH_LLAMA:
|
||
case LLM_ARCH_GRANITE:
|
||
case LLM_ARCH_GRANITE_MOE:
|
||
{
|
||
result = llm.build_llama();
|
||
} break;
|
||
case LLM_ARCH_BAICHUAN:
|
||
{
|
||
result = llm.build_baichuan();
|
||
} break;
|
||
case LLM_ARCH_FALCON:
|
||
{
|
||
result = llm.build_falcon();
|
||
} break;
|
||
case LLM_ARCH_GROK:
|
||
{
|
||
result = llm.build_grok();
|
||
} break;
|
||
case LLM_ARCH_STARCODER:
|
||
{
|
||
result = llm.build_starcoder();
|
||
} break;
|
||
case LLM_ARCH_REFACT:
|
||
{
|
||
result = llm.build_refact();
|
||
} break;
|
||
case LLM_ARCH_BERT:
|
||
case LLM_ARCH_JINA_BERT_V2:
|
||
case LLM_ARCH_NOMIC_BERT:
|
||
{
|
||
result = llm.build_bert();
|
||
} break;
|
||
case LLM_ARCH_BLOOM:
|
||
{
|
||
result = llm.build_bloom();
|
||
} break;
|
||
case LLM_ARCH_MPT:
|
||
{
|
||
result = llm.build_mpt();
|
||
} break;
|
||
case LLM_ARCH_STABLELM:
|
||
{
|
||
result = llm.build_stablelm();
|
||
} break;
|
||
case LLM_ARCH_QWEN:
|
||
{
|
||
result = llm.build_qwen();
|
||
} break;
|
||
case LLM_ARCH_QWEN2:
|
||
{
|
||
result = llm.build_qwen2();
|
||
} break;
|
||
case LLM_ARCH_QWEN2MOE:
|
||
{
|
||
result = llm.build_qwen2moe();
|
||
} break;
|
||
case LLM_ARCH_PHI2:
|
||
{
|
||
result = llm.build_phi2();
|
||
} break;
|
||
case LLM_ARCH_PHI3:
|
||
{
|
||
result = llm.build_phi3();
|
||
} break;
|
||
case LLM_ARCH_PLAMO:
|
||
{
|
||
result = llm.build_plamo();
|
||
} break;
|
||
case LLM_ARCH_GPT2:
|
||
{
|
||
result = llm.build_gpt2();
|
||
} break;
|
||
case LLM_ARCH_CODESHELL:
|
||
{
|
||
result = llm.build_codeshell();
|
||
} break;
|
||
case LLM_ARCH_ORION:
|
||
{
|
||
result = llm.build_orion();
|
||
} break;
|
||
case LLM_ARCH_INTERNLM2:
|
||
{
|
||
result = llm.build_internlm2();
|
||
} break;
|
||
case LLM_ARCH_MINICPM:
|
||
{
|
||
result = llm.build_minicpm();
|
||
} break;
|
||
case LLM_ARCH_MINICPM3:
|
||
{
|
||
result = llm.build_minicpm3();
|
||
} break;
|
||
case LLM_ARCH_GEMMA:
|
||
{
|
||
result = llm.build_gemma();
|
||
} break;
|
||
case LLM_ARCH_GEMMA2:
|
||
{
|
||
result = llm.build_gemma2();
|
||
} break;
|
||
case LLM_ARCH_STARCODER2:
|
||
{
|
||
result = llm.build_starcoder2();
|
||
} break;
|
||
case LLM_ARCH_MAMBA:
|
||
{
|
||
result = llm.build_mamba();
|
||
} break;
|
||
case LLM_ARCH_XVERSE:
|
||
{
|
||
result = llm.build_xverse();
|
||
} break;
|
||
case LLM_ARCH_COMMAND_R:
|
||
{
|
||
result = llm.build_command_r();
|
||
} break;
|
||
case LLM_ARCH_DBRX:
|
||
{
|
||
result = llm.build_dbrx();
|
||
} break;
|
||
case LLM_ARCH_OLMO:
|
||
{
|
||
result = llm.build_olmo();
|
||
} break;
|
||
case LLM_ARCH_OLMOE:
|
||
{
|
||
result = llm.build_olmoe();
|
||
} break;
|
||
case LLM_ARCH_OPENELM:
|
||
{
|
||
result = llm.build_openelm();
|
||
} break;
|
||
case LLM_ARCH_GPTNEOX:
|
||
{
|
||
result = llm.build_gptneox();
|
||
} break;
|
||
case LLM_ARCH_ARCTIC:
|
||
{
|
||
result = llm.build_arctic();
|
||
} break;
|
||
case LLM_ARCH_DEEPSEEK2:
|
||
{
|
||
result = llm.build_deepseek2();
|
||
} break;
|
||
case LLM_ARCH_CHATGLM:
|
||
{
|
||
result = llm.build_chatglm();
|
||
} break;
|
||
case LLM_ARCH_BITNET:
|
||
{
|
||
result = llm.build_bitnet();
|
||
} break;
|
||
case LLM_ARCH_T5:
|
||
{
|
||
if (lctx.is_encoding) {
|
||
result = llm.build_t5_encoder();
|
||
} else {
|
||
result = llm.build_t5_decoder();
|
||
}
|
||
} break;
|
||
case LLM_ARCH_T5ENCODER:
|
||
{
|
||
result = llm.build_t5_encoder();
|
||
} break;
|
||
case LLM_ARCH_JAIS:
|
||
{
|
||
result = llm.build_jais();
|
||
} break;
|
||
case LLM_ARCH_NEMOTRON:
|
||
{
|
||
result = llm.build_nemotron();
|
||
} break;
|
||
case LLM_ARCH_EXAONE:
|
||
{
|
||
result = llm.build_exaone();
|
||
} break;
|
||
case LLM_ARCH_RWKV6:
|
||
{
|
||
result = llm.build_rwkv6();
|
||
} break;
|
||
case LLM_ARCH_CHAMELEON:
|
||
{
|
||
result = llm.build_chameleon();
|
||
} break;
|
||
default:
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
|
||
// add on pooling layer
|
||
if (lctx.cparams.embeddings) {
|
||
result = llm.append_pooling(result);
|
||
}
|
||
|
||
llm.free();
|
||
|
||
return result;
|
||
}
|
||
|
||
static void llama_set_k_shift(llama_context & lctx) {
|
||
const int64_t kv_size = lctx.kv_self.size;
|
||
|
||
assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
|
||
|
||
int32_t * data = (int32_t *) lctx.inp_K_shift->data;
|
||
|
||
for (int i = 0; i < kv_size; ++i) {
|
||
data[i] = lctx.kv_self.cells[i].delta;
|
||
}
|
||
}
|
||
|
||
static void llama_set_s_copy(llama_context & lctx) {
|
||
const int64_t kv_size = lctx.kv_self.size;
|
||
|
||
assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
|
||
|
||
int32_t * data = (int32_t *) lctx.inp_s_copy->data;
|
||
|
||
for (int i = 0; i < kv_size; ++i) {
|
||
data[i] = lctx.kv_self.cells[i].src;
|
||
}
|
||
}
|
||
|
||
static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
|
||
// TODO move to hparams if a T5 variant appears that uses a different value
|
||
const int64_t max_distance = 128;
|
||
|
||
if (bidirectional) {
|
||
n_buckets >>= 1;
|
||
}
|
||
|
||
const int64_t max_exact = n_buckets >> 1;
|
||
|
||
int32_t relative_position = x - y;
|
||
int32_t relative_bucket = 0;
|
||
if (bidirectional) {
|
||
relative_bucket += (relative_position > 0) * n_buckets;
|
||
relative_position = abs(relative_position);
|
||
} else {
|
||
relative_position = -std::min<int32_t>(relative_position, 0);
|
||
}
|
||
int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
|
||
relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
|
||
relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
|
||
return relative_bucket;
|
||
}
|
||
|
||
static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
||
//
|
||
// set input data
|
||
//
|
||
|
||
const auto & hparams = lctx.model.hparams;
|
||
const auto & cparams = lctx.cparams;
|
||
const auto & kv_self = lctx.kv_self;
|
||
|
||
if (batch.token) {
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
|
||
ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
|
||
}
|
||
|
||
if (batch.embd) {
|
||
const int64_t n_embd = hparams.n_embd;
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
|
||
ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
||
}
|
||
|
||
if (batch.pos && lctx.inp_pos) {
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
|
||
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
|
||
}
|
||
|
||
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
||
GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
|
||
int32_t * data = (int32_t *) lctx.inp_out_ids->data;
|
||
|
||
if (lctx.n_outputs == n_tokens) {
|
||
for (int i = 0; i < n_tokens; ++i) {
|
||
data[i] = i;
|
||
}
|
||
} else if (batch.output) {
|
||
int32_t n_outputs = 0;
|
||
for (int i = 0; i < n_tokens; ++i) {
|
||
if (batch.output[i]) {
|
||
data[n_outputs++] = i;
|
||
}
|
||
}
|
||
// the graph needs to have been passed the correct number of outputs
|
||
GGML_ASSERT(lctx.n_outputs == n_outputs);
|
||
} else if (lctx.n_outputs == 1) {
|
||
// only keep last output
|
||
data[0] = n_tokens - 1;
|
||
} else {
|
||
GGML_ASSERT(lctx.n_outputs == 0);
|
||
}
|
||
}
|
||
|
||
GGML_ASSERT(
|
||
// (!a || b) is a logical implication (a -> b)
|
||
// !hparams.causal_attn -> !cparams.causal_attn
|
||
(hparams.causal_attn || !cparams.causal_attn) &&
|
||
"causal attention is not supported by this model"
|
||
);
|
||
|
||
if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) {
|
||
// NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
|
||
if (cparams.causal_attn && !lctx.is_encoding) {
|
||
const int64_t n_kv = kv_self.n;
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
const int64_t n_seq_tokens = batch.n_seq_tokens;
|
||
const int64_t n_seqs = batch.n_seqs;
|
||
|
||
|
||
float * data = nullptr;
|
||
float * data_swa = nullptr;
|
||
|
||
if (lctx.inp_KQ_mask) {
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
|
||
data = (float *) lctx.inp_KQ_mask->data;
|
||
}
|
||
|
||
if (lctx.inp_KQ_mask_swa) {
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer));
|
||
data_swa = (float *) lctx.inp_KQ_mask_swa->data;
|
||
}
|
||
|
||
// For causal attention, use only the previous KV cells
|
||
// of the correct sequence for each token of the batch.
|
||
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
|
||
for (int h = 0; h < 1; ++h) {
|
||
for (int s = 0; s < n_seqs; ++s) {
|
||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
||
|
||
for (int j = 0; j < n_seq_tokens; ++j) {
|
||
const llama_pos pos = batch.pos[s*n_seq_tokens + j];
|
||
|
||
for (int i = 0; i < n_kv; ++i) {
|
||
float f;
|
||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||
f = -INFINITY;
|
||
} else {
|
||
if (hparams.use_alibi) {
|
||
f = -std::abs(kv_self.cells[i].pos - pos);
|
||
} else {
|
||
f = 0.0f;
|
||
}
|
||
}
|
||
|
||
if (data) {
|
||
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
|
||
}
|
||
|
||
// may need to cut off old tokens for sliding window
|
||
if (data_swa) {
|
||
if (pos - kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
|
||
f = -INFINITY;
|
||
}
|
||
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (data) {
|
||
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
|
||
for (int j = 0; j < n_kv; ++j) {
|
||
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (data_swa) {
|
||
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
|
||
for (int j = 0; j < n_kv; ++j) {
|
||
data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
const int64_t n_seq_tokens = batch.n_seq_tokens;
|
||
const int64_t n_seqs = batch.n_seqs;
|
||
// when using kv cache, the mask needs to match the kv cache size
|
||
const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens;
|
||
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
|
||
|
||
float * data = (float *) lctx.inp_KQ_mask->data;
|
||
|
||
for (int h = 0; h < 1; ++h) {
|
||
for (int s1 = 0; s1 < n_seqs; ++s1) {
|
||
const llama_seq_id seq_id = batch.seq_id[s1][0];
|
||
|
||
for (int j = 0; j < n_seq_tokens; ++j) {
|
||
const int32_t tj = s1*n_seq_tokens + j;
|
||
|
||
for (int s0 = 0; s0 < n_seqs; ++s0) {
|
||
for (int i = 0; i < n_seq_tokens; ++i) {
|
||
const int32_t ti = s0*n_seq_tokens + i;
|
||
float f = -INFINITY;
|
||
|
||
for (int s = 0; s < batch.n_seq_id[s0]; ++s) {
|
||
if (batch.seq_id[s0][s] == seq_id) {
|
||
if (hparams.use_alibi) {
|
||
f = -std::abs(batch.pos[ti] - batch.pos[tj]);
|
||
} else {
|
||
f = 0.0f;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
|
||
}
|
||
}
|
||
|
||
for (int i = n_tokens; i < n_stride; ++i) {
|
||
data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
const int64_t n_seq_tokens = batch.n_seq_tokens;
|
||
const int64_t n_seqs = batch.n_seqs;
|
||
|
||
GGML_ASSERT(lctx.inp_mean);
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
|
||
|
||
float * data = (float *) lctx.inp_mean->data;
|
||
memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
|
||
|
||
std::vector<uint64_t> sum(n_tokens, 0);
|
||
|
||
for (int s = 0; s < n_seqs; ++s) {
|
||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
||
|
||
// TODO: adapt limits to n_seqs when batch.equal_seqs is true
|
||
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
|
||
|
||
sum[seq_id] += batch.n_seq_tokens;
|
||
}
|
||
|
||
std::vector<float> div(n_tokens, 0.0f);
|
||
for (int i = 0; i < n_tokens; ++i) {
|
||
const uint64_t s = sum[i];
|
||
if (s > 0) {
|
||
div[i] = 1.0f/float(s);
|
||
}
|
||
}
|
||
|
||
for (int s = 0; s < n_seqs; ++s) {
|
||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
||
|
||
for (int i = 0; i < n_seq_tokens; ++i) {
|
||
data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
|
||
}
|
||
}
|
||
}
|
||
|
||
if (cparams.embeddings && (
|
||
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
|
||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
const int64_t n_seq_tokens = batch.n_seq_tokens;
|
||
const int64_t n_seqs = batch.n_seqs;
|
||
|
||
GGML_ASSERT(lctx.inp_cls);
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
||
|
||
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
|
||
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
|
||
|
||
for (int s = 0; s < n_seqs; ++s) {
|
||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
||
|
||
// TODO: adapt limits to n_seqs when batch.equal_seqs is true
|
||
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");
|
||
|
||
for (int i = 0; i < n_seq_tokens; ++i) {
|
||
const llama_pos pos = batch.pos[s*n_seq_tokens + i];
|
||
|
||
if (pos == 0) {
|
||
data[seq_id] = s*n_seq_tokens + i;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
const int64_t n_seq_tokens = batch.n_seq_tokens;
|
||
const int64_t n_seqs = batch.n_seqs;
|
||
|
||
GGML_ASSERT(lctx.inp_cls);
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
||
|
||
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
|
||
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
|
||
|
||
std::vector<int> last_pos(n_tokens, -1);
|
||
std::vector<int> last_row(n_tokens, -1);
|
||
|
||
for (int s = 0; s < n_seqs; ++s) {
|
||
const llama_seq_id seq_id = batch.seq_id[s][0];
|
||
|
||
// TODO: adapt limits to n_seqs when batch.equal_seqs is true
|
||
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
|
||
|
||
for (int i = 0; i < n_seq_tokens; ++i) {
|
||
const llama_pos pos = batch.pos[s*n_seq_tokens + i];
|
||
|
||
if (pos >= last_pos[seq_id]) {
|
||
last_pos[seq_id] = pos;
|
||
last_row[seq_id] = s*n_seq_tokens + i;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < n_tokens; ++i) {
|
||
if (last_row[i] >= 0) {
|
||
data[i] = last_row[i];
|
||
}
|
||
}
|
||
}
|
||
|
||
if (kv_self.recurrent) {
|
||
const int64_t n_kv = kv_self.n;
|
||
|
||
if (lctx.inp_s_mask) {
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
|
||
float * data = (float *) lctx.inp_s_mask->data;
|
||
|
||
// clear unused states
|
||
for (int i = 0; i < n_kv; ++i) {
|
||
const uint32_t cell_id = i + kv_self.head;
|
||
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
|
||
|
||
data[i] = (float) (kv_cell.src >= 0);
|
||
|
||
// only clear once
|
||
if (kv_cell.src < 0) {
|
||
kv_cell.src = cell_id;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (lctx.inp_s_copy) {
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
|
||
int32_t * data = (int32_t *) lctx.inp_s_copy->data;
|
||
|
||
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||
const uint32_t cell_id = i + kv_self.head;
|
||
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
|
||
|
||
// prevent out-of-bound sources
|
||
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self.size) {
|
||
kv_cell.src = cell_id;
|
||
}
|
||
|
||
data[i] = kv_cell.src;
|
||
|
||
// ensure copy only happens once
|
||
if (kv_cell.src != (int32_t) cell_id) {
|
||
kv_cell.src = cell_id;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (lctx.inp_pos_bucket) {
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer));
|
||
GGML_ASSERT(!batch.equal_seqs); // TODO: use batch.n_seqs instead of failing
|
||
|
||
int32_t * data = (int32_t *) lctx.inp_pos_bucket->data;
|
||
|
||
if (!lctx.is_encoding) {
|
||
const int64_t n_kv = kv_self.n;
|
||
for (int h = 0; h < 1; ++h) {
|
||
for (int j = 0; j < n_tokens; ++j) {
|
||
for (int i = 0; i < n_kv; ++i) {
|
||
data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
for (int h = 0; h < 1; ++h) {
|
||
for (int j = 0; j < n_tokens; ++j) {
|
||
for (int i = 0; i < n_tokens; ++i) {
|
||
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(batch.pos[i], batch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!lctx.is_encoding && lctx.inp_embd_enc) {
|
||
assert(lctx.inp_embd_enc->type == GGML_TYPE_F32);
|
||
assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size());
|
||
|
||
ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc));
|
||
}
|
||
|
||
if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) {
|
||
const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd;
|
||
const int64_t n_tokens = batch.n_tokens;
|
||
|
||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer));
|
||
GGML_ASSERT(!batch.equal_seqs); // TODO: use batch.n_seqs instead of failing
|
||
|
||
float * data = (float *) lctx.inp_KQ_mask_cross->data;
|
||
|
||
for (int h = 0; h < 1; ++h) {
|
||
for (int j = 0; j < n_tokens; ++j) {
|
||
for (int i = 0; i < n_output_enc; ++i) {
|
||
float f = -INFINITY;
|
||
for (int s = 0; s < batch.n_seq_id[j]; ++s) {
|
||
const llama_seq_id seq_id = batch.seq_id[j][s];
|
||
if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) {
|
||
f = 0.0f;
|
||
}
|
||
}
|
||
data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f;
|
||
}
|
||
}
|
||
|
||
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
|
||
for (int j = 0; j < n_output_enc; ++j) {
|
||
data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Make sure enough space is available for outputs.
|
||
// Returns max number of outputs for which space was reserved.
|
||
static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
|
||
const auto & cparams = lctx.cparams;
|
||
const auto & hparams = lctx.model.hparams;
|
||
|
||
const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
|
||
|
||
const auto n_batch = cparams.n_batch;
|
||
const auto n_vocab = hparams.n_vocab;
|
||
const auto n_embd = hparams.n_embd;
|
||
|
||
// TODO: use a per-batch flag for logits presence instead
|
||
const bool has_logits = !cparams.embeddings;
|
||
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
|
||
|
||
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
|
||
const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
|
||
|
||
if (lctx.output_ids.empty()) {
|
||
// init, never resized afterwards
|
||
lctx.output_ids.resize(n_batch);
|
||
}
|
||
|
||
const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
|
||
const size_t new_size = (logits_size + embd_size) * sizeof(float);
|
||
|
||
// alloc only when more than the current capacity is required
|
||
// TODO: also consider shrinking the buffer
|
||
if (!lctx.buf_output || prev_size < new_size) {
|
||
if (lctx.buf_output) {
|
||
#ifndef NDEBUG
|
||
// This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
|
||
LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||
#endif
|
||
ggml_backend_buffer_free(lctx.buf_output);
|
||
lctx.buf_output = nullptr;
|
||
lctx.logits = nullptr;
|
||
lctx.embd = nullptr;
|
||
}
|
||
|
||
lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(lctx.model, true), new_size);
|
||
if (lctx.buf_output == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
|
||
|
||
lctx.logits = has_logits ? output_base : nullptr;
|
||
lctx.embd = has_embd ? output_base + logits_size : nullptr;
|
||
|
||
lctx.output_size = n_outputs_max;
|
||
lctx.logits_size = logits_size;
|
||
lctx.embd_size = embd_size;
|
||
|
||
// set all ids as invalid (negative)
|
||
std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
|
||
|
||
ggml_backend_buffer_clear(lctx.buf_output, 0);
|
||
|
||
lctx.n_outputs = 0;
|
||
|
||
return n_outputs_max;
|
||
}
|
||
|
||
// make the outputs have the same order they had in the user-provided batch
|
||
static void llama_output_reorder(struct llama_context * ctx) {
|
||
std::vector<size_t> & out_ids = ctx->sbatch.out_ids;
|
||
if (!out_ids.empty()) {
|
||
uint32_t n_vocab = ctx->model.hparams.n_vocab;
|
||
uint32_t n_embd = ctx->model.hparams.n_embd;
|
||
int32_t n_outputs = ctx->n_outputs;
|
||
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
||
// TODO: is there something more efficient which also minimizes swaps?
|
||
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
|
||
for (int32_t i = 0; i < n_outputs - 1; ++i) {
|
||
int32_t j_min = i;
|
||
for (int32_t j = i + 1; j < n_outputs; ++j) {
|
||
if (out_ids[j] < out_ids[j_min]) {
|
||
j_min = j;
|
||
}
|
||
}
|
||
if (j_min == i) { continue; }
|
||
std::swap(out_ids[i], out_ids[j_min]);
|
||
if (ctx->logits_size > 0) {
|
||
for (uint32_t k = 0; k < n_vocab; k++) {
|
||
std::swap(ctx->logits[i*n_vocab + k], ctx->logits[j_min*n_vocab + k]);
|
||
}
|
||
}
|
||
if (ctx->embd_size > 0) {
|
||
for (uint32_t k = 0; k < n_embd; k++) {
|
||
std::swap(ctx->embd[i*n_embd + k], ctx->embd[j_min*n_embd + k]);
|
||
}
|
||
}
|
||
}
|
||
std::fill(ctx->output_ids.begin(), ctx->output_ids.end(), -1);
|
||
for (int32_t i = 0; i < n_outputs; ++i) {
|
||
ctx->output_ids[out_ids[i]] = i;
|
||
}
|
||
out_ids.clear();
|
||
}
|
||
}
|
||
|
||
static void llama_graph_compute(
|
||
llama_context & lctx,
|
||
ggml_cgraph * gf,
|
||
int n_threads,
|
||
ggml_threadpool * threadpool) {
|
||
if (lctx.backend_cpu != nullptr) {
|
||
ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
|
||
ggml_backend_cpu_set_threadpool(lctx.backend_cpu, threadpool);
|
||
ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
|
||
}
|
||
#ifdef GGML_USE_BLAS
|
||
if (lctx.backend_blas != nullptr) {
|
||
ggml_backend_blas_set_n_threads(lctx.backend_blas, n_threads);
|
||
}
|
||
#endif
|
||
|
||
ggml_backend_sched_graph_compute_async(lctx.sched, gf);
|
||
|
||
// fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
|
||
}
|
||
|
||
// decode a batch of tokens by evaluating the transformer
|
||
//
|
||
// - lctx: llama context
|
||
// - batch: batch to evaluate
|
||
//
|
||
// return 0 on success
|
||
// return positive int on warning
|
||
// return negative int on error
|
||
//
|
||
static int llama_decode_internal(
|
||
llama_context & lctx,
|
||
llama_batch batch_all) { // TODO: rename back to batch
|
||
|
||
lctx.is_encoding = false;
|
||
const uint32_t n_tokens_all = batch_all.n_tokens;
|
||
|
||
if (n_tokens_all == 0) {
|
||
LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
|
||
return -1;
|
||
}
|
||
|
||
const auto & model = lctx.model;
|
||
const auto & hparams = model.hparams;
|
||
const auto & cparams = lctx.cparams;
|
||
|
||
GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
|
||
|
||
if (batch_all.token) {
|
||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||
if (batch_all.token[i] < 0 || (uint32_t)batch_all.token[i] >= model.vocab.n_vocab) {
|
||
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d\n", __func__, i, batch_all.token[i]);
|
||
return -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
GGML_ASSERT(n_tokens_all <= cparams.n_batch);
|
||
|
||
GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
|
||
|
||
if (lctx.t_compute_start_us == 0) {
|
||
lctx.t_compute_start_us = ggml_time_us();
|
||
}
|
||
lctx.n_queued_tokens += n_tokens_all;
|
||
|
||
auto & kv_self = lctx.kv_self;
|
||
|
||
const int64_t n_embd = hparams.n_embd;
|
||
const int64_t n_vocab = hparams.n_vocab;
|
||
|
||
uint32_t n_outputs = 0;
|
||
uint32_t n_outputs_prev = 0;
|
||
|
||
const auto n_ubatch = cparams.n_ubatch;
|
||
|
||
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
|
||
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
|
||
|
||
lctx.embd_seq.clear();
|
||
|
||
// count outputs
|
||
if (batch_all.logits && !embd_pooled) {
|
||
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
||
n_outputs += batch_all.logits[i] != 0;
|
||
}
|
||
} else if (lctx.logits_all || embd_pooled) {
|
||
n_outputs = n_tokens_all;
|
||
} else {
|
||
// keep last output only
|
||
n_outputs = 1;
|
||
}
|
||
|
||
lctx.sbatch.from_batch(batch_all, n_embd,
|
||
/* simple_split */ !kv_self.recurrent,
|
||
/* logits_all */ n_outputs == n_tokens_all);
|
||
|
||
// reserve output buffer
|
||
if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
|
||
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
|
||
return -2;
|
||
};
|
||
|
||
while (lctx.sbatch.n_tokens > 0) {
|
||
llama_ubatch ubatch;
|
||
if (kv_self.recurrent) {
|
||
if (embd_pooled) {
|
||
// Pooled embeddings cannot be split across ubatches (yet)
|
||
ubatch = lctx.sbatch.split_seq(n_ubatch);
|
||
} else {
|
||
// recurrent model architectures are easier to implement
|
||
// with equal-length sequences
|
||
ubatch = lctx.sbatch.split_equal(n_ubatch);
|
||
}
|
||
} else {
|
||
ubatch = lctx.sbatch.split_simple(n_ubatch);
|
||
}
|
||
const uint32_t n_tokens = ubatch.n_tokens;
|
||
|
||
// count the outputs in this u_batch
|
||
{
|
||
int32_t n_outputs_new = 0;
|
||
|
||
if (n_outputs == n_tokens_all) {
|
||
n_outputs_new = n_tokens;
|
||
} else {
|
||
GGML_ASSERT(ubatch.output);
|
||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||
n_outputs_new += (int32_t) (ubatch.output[i] != 0);
|
||
}
|
||
}
|
||
|
||
// needs to happen before the graph is built
|
||
lctx.n_outputs = n_outputs_new;
|
||
}
|
||
|
||
int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
|
||
ggml_threadpool_t threadpool = n_tokens == 1 ? lctx.threadpool : lctx.threadpool_batch;
|
||
|
||
GGML_ASSERT(n_threads > 0);
|
||
|
||
// non-causal masks do not use the KV cache
|
||
if (hparams.causal_attn) {
|
||
llama_kv_cache_update(&lctx);
|
||
|
||
// if we have enough unused cells before the current head ->
|
||
// better to start searching from the beginning of the cache, hoping to fill it
|
||
if (kv_self.head > kv_self.used + 2*n_tokens) {
|
||
kv_self.head = 0;
|
||
}
|
||
|
||
if (!llama_kv_cache_find_slot(kv_self, ubatch)) {
|
||
return 1;
|
||
}
|
||
|
||
if (!kv_self.recurrent) {
|
||
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
||
// after enough generations, the benefit from this heuristic disappears
|
||
// if we start defragmenting the cache, the benefit from this will be more important
|
||
const uint32_t pad = llama_kv_cache_get_padding(cparams);
|
||
kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
|
||
//kv_self.n = llama_kv_cache_cell_max(kv_self);
|
||
}
|
||
}
|
||
|
||
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
|
||
|
||
ggml_backend_sched_reset(lctx.sched);
|
||
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
|
||
|
||
ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
|
||
|
||
// the output is always the last tensor in the graph
|
||
struct ggml_tensor * res = ggml_graph_node(gf, -1);
|
||
struct ggml_tensor * embd = ggml_graph_node(gf, -2);
|
||
|
||
if (lctx.n_outputs == 0) {
|
||
// no output
|
||
res = nullptr;
|
||
embd = nullptr;
|
||
} else if (cparams.embeddings) {
|
||
res = nullptr; // do not extract logits for embedding case
|
||
embd = nullptr;
|
||
for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
|
||
if (strcmp(ggml_graph_node(gf, i)->name, "result_embd_pooled") == 0) {
|
||
embd = ggml_graph_node(gf, i);
|
||
break;
|
||
}
|
||
}
|
||
GGML_ASSERT(embd != nullptr && "missing embeddings tensor");
|
||
} else {
|
||
embd = nullptr; // do not extract embeddings when not needed
|
||
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
|
||
}
|
||
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
||
|
||
ggml_backend_sched_alloc_graph(lctx.sched, gf);
|
||
|
||
llama_set_inputs(lctx, ubatch);
|
||
|
||
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
||
|
||
// update the kv ring buffer
|
||
{
|
||
kv_self.head += n_tokens;
|
||
|
||
// Ensure kv cache head points to a valid index.
|
||
if (kv_self.head >= kv_self.size) {
|
||
kv_self.head = 0;
|
||
}
|
||
}
|
||
|
||
// plot the computation graph in dot format (for debugging purposes)
|
||
//if (n_past%100 == 0) {
|
||
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
|
||
//}
|
||
|
||
// extract logits
|
||
if (res) {
|
||
ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
|
||
GGML_ASSERT(backend_res != nullptr);
|
||
GGML_ASSERT(lctx.logits != nullptr);
|
||
|
||
float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
|
||
const int32_t n_outputs_new = lctx.n_outputs;
|
||
|
||
if (n_outputs_new) {
|
||
GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
|
||
GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
|
||
ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
|
||
}
|
||
}
|
||
|
||
// extract embeddings
|
||
if (embd) {
|
||
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
|
||
GGML_ASSERT(backend_embd != nullptr);
|
||
|
||
switch (cparams.pooling_type) {
|
||
case LLAMA_POOLING_TYPE_NONE:
|
||
{
|
||
// extract token embeddings
|
||
GGML_ASSERT(lctx.embd != nullptr);
|
||
float * embd_out = lctx.embd + n_outputs_prev*n_embd;
|
||
const int32_t n_outputs_new = lctx.n_outputs;
|
||
|
||
if (n_outputs_new) {
|
||
GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
|
||
GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
|
||
ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
|
||
}
|
||
} break;
|
||
case LLAMA_POOLING_TYPE_MEAN:
|
||
case LLAMA_POOLING_TYPE_CLS:
|
||
case LLAMA_POOLING_TYPE_LAST:
|
||
{
|
||
// extract sequence embeddings (cleared before processing each batch)
|
||
auto & embd_seq_out = lctx.embd_seq;
|
||
|
||
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
|
||
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
||
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
|
||
continue;
|
||
}
|
||
embd_seq_out[seq_id].resize(n_embd);
|
||
ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
|
||
}
|
||
} break;
|
||
case LLAMA_POOLING_TYPE_RANK:
|
||
{
|
||
// extract the rerank score - a single float per sequence
|
||
auto & embd_seq_out = lctx.embd_seq;
|
||
|
||
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
|
||
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
||
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
|
||
continue;
|
||
}
|
||
embd_seq_out[seq_id].resize(1);
|
||
ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float));
|
||
}
|
||
} break;
|
||
case LLAMA_POOLING_TYPE_UNSPECIFIED:
|
||
{
|
||
GGML_ABORT("unknown pooling type");
|
||
}
|
||
}
|
||
}
|
||
n_outputs_prev += lctx.n_outputs;
|
||
}
|
||
|
||
// set output mappings
|
||
{
|
||
bool sorted_output = true;
|
||
|
||
GGML_ASSERT(lctx.sbatch.out_ids.size() == n_outputs);
|
||
|
||
for (size_t i = 0; i < n_outputs; ++i) {
|
||
size_t out_id = lctx.sbatch.out_ids[i];
|
||
lctx.output_ids[out_id] = i;
|
||
if (out_id != i) {
|
||
sorted_output = false;
|
||
}
|
||
}
|
||
|
||
if (sorted_output) {
|
||
lctx.sbatch.out_ids.clear();
|
||
}
|
||
}
|
||
|
||
// set to total number of outputs in the batch, for use in llama_get_logits_ith
|
||
lctx.n_outputs = n_outputs;
|
||
|
||
// wait for the computation to finish (automatically done when obtaining the model output)
|
||
//llama_synchronize(&lctx);
|
||
|
||
// decide if we need to defrag the kv cache
|
||
if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
|
||
const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
|
||
|
||
// queue defragmentation for next llama_kv_cache_update
|
||
if (fragmentation > cparams.defrag_thold) {
|
||
//LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
|
||
|
||
llama_kv_cache_defrag(kv_self);
|
||
}
|
||
}
|
||
|
||
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
|
||
// overlap with device computation.
|
||
ggml_backend_sched_reset(lctx.sched);
|
||
|
||
return 0;
|
||
}
|
||
|
||
// encode a batch of tokens by evaluating the encoder part of the transformer
|
||
//
|
||
// - lctx: llama context
|
||
// - batch: batch to evaluate
|
||
//
|
||
// return 0 on success
|
||
// return positive int on warning
|
||
// return negative int on error
|
||
//
|
||
static int llama_encode_internal(
|
||
llama_context & lctx,
|
||
llama_batch batch) {
|
||
|
||
lctx.is_encoding = true;
|
||
|
||
const uint32_t n_tokens = batch.n_tokens;
|
||
|
||
if (n_tokens == 0) {
|
||
LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
|
||
return -1;
|
||
}
|
||
|
||
const auto & model = lctx.model;
|
||
const auto & hparams = model.hparams;
|
||
const auto & cparams = lctx.cparams;
|
||
|
||
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
||
|
||
if (batch.token) {
|
||
for (uint32_t i = 0; i < n_tokens; ++i) {
|
||
if (batch.token[i] < 0 || (uint32_t)batch.token[i] >= model.vocab.n_vocab) {
|
||
LLAMA_LOG_ERROR("%s: invalid token[%d] = %d\n", __func__, i, batch.token[i]);
|
||
return -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
// micro-batching is not possible for non-causal encoding, so we process the batch in a single shot
|
||
GGML_ASSERT(cparams.n_ubatch >= n_tokens && "encoder requires n_ubatch >= n_tokens");
|
||
|
||
if (lctx.t_compute_start_us == 0) {
|
||
lctx.t_compute_start_us = ggml_time_us();
|
||
}
|
||
|
||
lctx.n_queued_tokens += n_tokens;
|
||
|
||
const int64_t n_embd = hparams.n_embd;
|
||
|
||
lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
||
|
||
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
|
||
|
||
// reserve output buffer
|
||
if (llama_output_reserve(lctx, n_tokens) < n_tokens) {
|
||
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_tokens);
|
||
return -2;
|
||
};
|
||
|
||
for (uint32_t i = 0; i < n_tokens; ++i) {
|
||
lctx.output_ids[i] = i;
|
||
}
|
||
|
||
lctx.inp_embd_enc = NULL;
|
||
lctx.n_outputs = n_tokens;
|
||
|
||
int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
|
||
ggml_threadpool_t threadpool = n_tokens == 1 ? lctx.threadpool : lctx.threadpool_batch;
|
||
|
||
GGML_ASSERT(n_threads > 0);
|
||
|
||
ggml_backend_sched_reset(lctx.sched);
|
||
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
|
||
|
||
ggml_cgraph * gf = llama_build_graph(lctx, ubatch, false);
|
||
|
||
// the output embeddings after the final encoder normalization
|
||
struct ggml_tensor * embd = nullptr;
|
||
|
||
// there are two cases here
|
||
if (llama_model_has_decoder(&lctx.model)) {
|
||
// first case is an encoder-decoder T5 model where embeddings are passed to decoder
|
||
embd = ggml_graph_node(gf, -1);
|
||
GGML_ASSERT(strcmp(embd->name, "result_norm") == 0 && "missing result_output tensor");
|
||
} else {
|
||
// second case is an encoder-only T5 model
|
||
if (cparams.embeddings) {
|
||
// only output embeddings if required
|
||
embd = ggml_graph_node(gf, -1);
|
||
if (strcmp(embd->name, "result_embd_pooled") != 0) {
|
||
embd = ggml_graph_node(gf, -2);
|
||
}
|
||
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
|
||
}
|
||
}
|
||
|
||
ggml_backend_sched_alloc_graph(lctx.sched, gf);
|
||
|
||
llama_set_inputs(lctx, ubatch);
|
||
|
||
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
||
|
||
// extract embeddings
|
||
if (embd) {
|
||
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
|
||
GGML_ASSERT(backend_embd != nullptr);
|
||
|
||
if (llama_model_has_decoder(&lctx.model)) {
|
||
lctx.embd_enc.resize(n_tokens*n_embd);
|
||
float * embd_out = lctx.embd_enc.data();
|
||
|
||
ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
|
||
GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits
|
||
|
||
// remember the sequence ids used during the encoding - needed for cross attention later
|
||
lctx.seq_ids_enc.resize(n_tokens);
|
||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||
for (int s = 0; s < ubatch.n_seq_id[i]; s++) {
|
||
llama_seq_id seq_id = ubatch.seq_id[i][s];
|
||
lctx.seq_ids_enc[i].insert(seq_id);
|
||
}
|
||
}
|
||
} else {
|
||
GGML_ASSERT(lctx.embd != nullptr);
|
||
|
||
switch (cparams.pooling_type) {
|
||
case LLAMA_POOLING_TYPE_NONE:
|
||
{
|
||
// extract token embeddings
|
||
GGML_ASSERT(lctx.embd != nullptr);
|
||
float * embd_out = lctx.embd;
|
||
|
||
GGML_ASSERT(n_tokens*n_embd <= (int64_t) lctx.embd_size);
|
||
ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_tokens*n_embd*sizeof(float));
|
||
} break;
|
||
case LLAMA_POOLING_TYPE_MEAN:
|
||
case LLAMA_POOLING_TYPE_CLS:
|
||
case LLAMA_POOLING_TYPE_LAST:
|
||
{
|
||
// extract sequence embeddings
|
||
auto & embd_seq_out = lctx.embd_seq;
|
||
embd_seq_out.clear();
|
||
|
||
GGML_ASSERT(!ubatch.equal_seqs); // TODO: handle equal splits
|
||
|
||
for (uint32_t i = 0; i < n_tokens; i++) {
|
||
const llama_seq_id seq_id = ubatch.seq_id[i][0];
|
||
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
|
||
continue;
|
||
}
|
||
embd_seq_out[seq_id].resize(n_embd);
|
||
ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
|
||
}
|
||
} break;
|
||
case LLAMA_POOLING_TYPE_RANK:
|
||
{
|
||
// TODO: this likely should be the same logic as in llama_decoder_internal, but better to
|
||
// wait for an encoder model that requires this pooling type in order to test it
|
||
// https://github.com/ggerganov/llama.cpp/pull/9510
|
||
GGML_ABORT("RANK pooling not implemented yet");
|
||
}
|
||
case LLAMA_POOLING_TYPE_UNSPECIFIED:
|
||
{
|
||
GGML_ABORT("unknown pooling type");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
|
||
// overlap with device computation.
|
||
ggml_backend_sched_reset(lctx.sched);
|
||
|
||
return 0;
|
||
}
|
||
|
||
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
|
||
static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||
auto & kv_self = lctx.kv_self;
|
||
|
||
const auto & hparams = lctx.model.hparams;
|
||
|
||
const uint32_t n_layer = hparams.n_layer;
|
||
|
||
const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
|
||
const uint32_t n_used = kv_self.used;
|
||
|
||
assert(n_used <= n_kv);
|
||
|
||
//const int64_t t_start = ggml_time_us();
|
||
|
||
// number of cells moved
|
||
uint32_t n_moves = 0;
|
||
|
||
// each move requires 6*n_layer tensors (see build_defrag)
|
||
// - source view, destination view, copy operation
|
||
// - x2 for keys and values
|
||
//const uint32_t max_moves = llama_model_max_nodes(model)/(6*n_layer);
|
||
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
||
const uint32_t max_moves = (llama_model_max_nodes(lctx.model) - 2*n_layer)/(6*n_layer);
|
||
|
||
// determine which KV cells to move where
|
||
//
|
||
// cell i moves to ids[i]
|
||
//
|
||
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
|
||
//
|
||
std::vector<uint32_t> ids(n_kv, n_kv);
|
||
|
||
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
|
||
const auto & cell0 = kv_self.cells[i0];
|
||
|
||
if (!cell0.is_empty()) {
|
||
ids[i0] = i0;
|
||
|
||
continue;
|
||
}
|
||
|
||
// found a hole - fill it with data from the end of the cache
|
||
|
||
uint32_t nh = 1;
|
||
|
||
// determine the size of the hole
|
||
while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
|
||
nh++;
|
||
}
|
||
|
||
uint32_t nf = 0;
|
||
uint32_t is = n_kv - 1;
|
||
|
||
// starting from the end, find nh non-empty cells
|
||
for (; is > i0; --is) {
|
||
const auto & cell1 = kv_self.cells[is];
|
||
|
||
if (cell1.is_empty() || ids[is] != n_kv) {
|
||
continue;
|
||
}
|
||
|
||
// non-empty cell which is not yet moved
|
||
nf++;
|
||
|
||
if (nf == nh) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
// this can only happen if `n_used` is not accurate, which would be a bug
|
||
GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
|
||
|
||
nf = 0;
|
||
|
||
uint32_t i1 = is;
|
||
|
||
// are we moving a continuous block of memory?
|
||
bool cont = false;
|
||
|
||
// should we stop searching for the next move?
|
||
bool stop = false;
|
||
|
||
// go back and move the nf cells to the hole
|
||
for (; i1 < n_kv; ++i1) {
|
||
auto & cell1 = kv_self.cells[i1];
|
||
|
||
if (cell1.is_empty() || ids[i1] != n_kv) {
|
||
if (n_moves == max_moves) {
|
||
stop = true;
|
||
break;
|
||
}
|
||
|
||
cont = false;
|
||
continue;
|
||
}
|
||
|
||
// this cell goes to (i0 + nf)
|
||
ids[i1] = i0 + nf;
|
||
|
||
// move the cell meta data
|
||
kv_self.cells[i0 + nf] = cell1;
|
||
|
||
// clear the old cell and move the head there
|
||
cell1 = llama_kv_cell();
|
||
kv_self.head = n_used;
|
||
|
||
if (!cont) {
|
||
n_moves++;
|
||
cont = true;
|
||
}
|
||
|
||
nf++;
|
||
|
||
if (nf == nh) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (stop || n_moves == max_moves) {
|
||
break;
|
||
}
|
||
|
||
//LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
|
||
|
||
i0 += nh - 1;
|
||
}
|
||
|
||
if (n_moves == 0) {
|
||
return;
|
||
}
|
||
|
||
//LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
|
||
|
||
//LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
|
||
|
||
#if 0
|
||
// CPU defrag
|
||
//
|
||
// TODO: optimizations are possible:
|
||
// - multiple threads
|
||
// - avoid copying to the host memory when already there
|
||
//
|
||
// likely not worth the effort, as we have ggml_graph based defrag
|
||
//
|
||
|
||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||
|
||
const uint32_t kv_size = kv_self.size;
|
||
|
||
std::vector<uint8_t> buf_k;
|
||
std::vector<uint8_t> buf_v;
|
||
|
||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||
const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
|
||
const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
|
||
|
||
const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
|
||
const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
|
||
|
||
buf_k.resize(k_size);
|
||
buf_v.resize(v_size);
|
||
|
||
ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
|
||
ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
|
||
|
||
// batch move [i, i+nm) to [id, id+nm)
|
||
// note: cells can move only to a lower index
|
||
for (uint32_t i = 0; i < n_kv; ++i) {
|
||
const uint32_t id = ids[i];
|
||
|
||
if (i == id || id == n_kv) {
|
||
continue;
|
||
}
|
||
|
||
uint32_t nm = 1;
|
||
|
||
while (i + nm < n_kv && ids[i + nm] == id + nm) {
|
||
nm++;
|
||
}
|
||
|
||
// move keys
|
||
{
|
||
const int64_t os = i*k_size_row;
|
||
const int64_t od = id*k_size_row;
|
||
|
||
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
|
||
}
|
||
|
||
// move values (note: they are transposed)
|
||
{
|
||
const int64_t os = i;
|
||
const int64_t od = id;
|
||
|
||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
||
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
|
||
}
|
||
}
|
||
|
||
i += nm - 1;
|
||
}
|
||
|
||
ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
|
||
ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
|
||
}
|
||
#else
|
||
// ggml_graph defrag
|
||
|
||
ggml_backend_sched_reset(lctx.sched);
|
||
|
||
ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
|
||
|
||
llama_graph_compute(lctx, gf, lctx.cparams.n_threads, lctx.threadpool);
|
||
#endif
|
||
|
||
//const int64_t t_end = ggml_time_us();
|
||
|
||
//LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
|
||
}
|
||
|
||
static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
||
bool need_reserve = false;
|
||
|
||
// apply K-shift if needed
|
||
if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
|
||
if (lctx.model.arch == LLM_ARCH_DEEPSEEK2) { // not supported due to MLA
|
||
GGML_ABORT("Deepseek2 does not support K-shift");
|
||
}
|
||
|
||
{
|
||
ggml_backend_sched_reset(lctx.sched);
|
||
|
||
ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
|
||
|
||
ggml_backend_sched_alloc_graph(lctx.sched, gf);
|
||
|
||
llama_set_k_shift(lctx);
|
||
|
||
llama_graph_compute(lctx, gf, lctx.cparams.n_threads, lctx.threadpool);
|
||
|
||
need_reserve = true;
|
||
}
|
||
|
||
{
|
||
auto & kv_self = lctx.kv_self;
|
||
|
||
kv_self.has_shift = false;
|
||
|
||
for (uint32_t i = 0; i < kv_self.size; ++i) {
|
||
kv_self.cells[i].delta = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
// defragment the KV cache if needed
|
||
if (lctx.kv_self.do_defrag) {
|
||
llama_kv_cache_defrag_internal(lctx);
|
||
|
||
need_reserve = true;
|
||
|
||
lctx.kv_self.do_defrag = false;
|
||
}
|
||
|
||
// reserve a worst case graph again
|
||
if (need_reserve) {
|
||
// TODO: extract to a function
|
||
// build worst-case graph
|
||
uint32_t n_seqs = 1; // TODO: worst-case number of sequences
|
||
uint32_t n_tokens = std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
|
||
llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||
ggml_cgraph * gf = llama_build_graph(lctx, ubatch, true);
|
||
|
||
// initialize scheduler with the worst-case graph
|
||
ggml_backend_sched_reset(lctx.sched);
|
||
if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
|
||
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
|
||
}
|
||
}
|
||
}
|
||
|
||
//
|
||
// quantization
|
||
//
|
||
|
||
struct quantize_state_internal {
|
||
const llama_model & model;
|
||
const llama_model_quantize_params * params;
|
||
|
||
int n_attention_wv = 0;
|
||
int n_ffn_down = 0;
|
||
int n_ffn_gate = 0;
|
||
int n_ffn_up = 0;
|
||
int i_attention_wv = 0;
|
||
int i_ffn_down = 0;
|
||
int i_ffn_gate = 0;
|
||
int i_ffn_up = 0;
|
||
|
||
int n_k_quantized = 0;
|
||
int n_fallback = 0;
|
||
|
||
bool has_imatrix = false;
|
||
|
||
// used to figure out if a model shares tok_embd with the output weight
|
||
bool has_output = false;
|
||
|
||
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
|
||
: model(model)
|
||
, params(params)
|
||
{}
|
||
};
|
||
|
||
static void llama_tensor_dequantize_internal(
|
||
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
||
const size_t nelements, const int nthread
|
||
) {
|
||
if (output.size() < nelements) {
|
||
output.resize(nelements);
|
||
}
|
||
float * f32_output = (float *) output.data();
|
||
|
||
ggml_type_traits_t qtype;
|
||
if (ggml_is_quantized(tensor->type)) {
|
||
qtype = ggml_internal_get_type_traits(tensor->type);
|
||
if (qtype.to_float == NULL) {
|
||
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
|
||
}
|
||
} else if (tensor->type != GGML_TYPE_F16 &&
|
||
tensor->type != GGML_TYPE_BF16) {
|
||
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
|
||
}
|
||
|
||
if (nthread < 2) {
|
||
if (tensor->type == GGML_TYPE_F16) {
|
||
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
|
||
} else if (tensor->type == GGML_TYPE_BF16) {
|
||
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
|
||
} else if (ggml_is_quantized(tensor->type)) {
|
||
qtype.to_float(tensor->data, f32_output, nelements);
|
||
} else {
|
||
GGML_ABORT("fatal error"); // unreachable
|
||
}
|
||
return;
|
||
}
|
||
|
||
size_t block_size;
|
||
if (tensor->type == GGML_TYPE_F16 ||
|
||
tensor->type == GGML_TYPE_BF16) {
|
||
block_size = 1;
|
||
} else {
|
||
block_size = (size_t)ggml_blck_size(tensor->type);
|
||
}
|
||
|
||
size_t block_size_bytes = ggml_type_size(tensor->type);
|
||
|
||
GGML_ASSERT(nelements % block_size == 0);
|
||
size_t nblocks = nelements / block_size;
|
||
size_t blocks_per_thread = nblocks / nthread;
|
||
size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
|
||
|
||
size_t in_buff_offs = 0;
|
||
size_t out_buff_offs = 0;
|
||
|
||
for (int tnum = 0; tnum < nthread; tnum++) {
|
||
size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
|
||
size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
|
||
size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
|
||
|
||
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
|
||
if (typ == GGML_TYPE_F16) {
|
||
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
|
||
} else if (typ == GGML_TYPE_BF16) {
|
||
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
|
||
} else {
|
||
qtype.to_float(inbuf, outbuf, nels);
|
||
}
|
||
};
|
||
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
|
||
in_buff_offs += thr_block_bytes;
|
||
out_buff_offs += thr_elems;
|
||
}
|
||
for (auto & w : workers) { w.join(); }
|
||
workers.clear();
|
||
}
|
||
|
||
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
||
const std::string name = ggml_get_name(tensor);
|
||
|
||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||
const llm_arch arch = qs.model.arch;
|
||
const auto tn = LLM_TN(arch);
|
||
|
||
auto use_more_bits = [](int i_layer, int n_layers) -> bool {
|
||
return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
|
||
};
|
||
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
|
||
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
|
||
if (n_expert > 1) {
|
||
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
|
||
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
|
||
// for getting the current layer as I initially thought, and we need to resort to parsing the
|
||
// tensor name.
|
||
if (sscanf(name, "blk.%d.", &i_layer) != 1) {
|
||
throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
|
||
}
|
||
if (i_layer < 0 || i_layer >= n_layer) {
|
||
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
|
||
}
|
||
}
|
||
return std::make_pair(i_layer, n_layer);
|
||
};
|
||
|
||
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
|
||
// with the quantization of the output tensor
|
||
if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
|
||
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
|
||
new_type = qs.params->output_tensor_type;
|
||
} else {
|
||
int nx = tensor->ne[0];
|
||
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
|
||
new_type = GGML_TYPE_Q8_0;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
|
||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||
new_type = GGML_TYPE_Q5_K;
|
||
}
|
||
else if (new_type != GGML_TYPE_Q8_0) {
|
||
new_type = GGML_TYPE_Q6_K;
|
||
}
|
||
}
|
||
} else if (name == "token_embd.weight") {
|
||
if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
|
||
new_type = qs.params->token_embedding_type;
|
||
} else {
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
|
||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||
new_type = GGML_TYPE_Q2_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
|
||
new_type = GGML_TYPE_IQ3_S;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||
new_type = GGML_TYPE_IQ3_S;
|
||
}
|
||
else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 ||
|
||
new_type == GGML_TYPE_Q4_0_8_8) {
|
||
new_type = GGML_TYPE_Q4_0;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) {
|
||
new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
}
|
||
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||
if (name.find("attn_v.weight") != std::string::npos) {
|
||
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
||
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
|
||
++qs.i_attention_wv;
|
||
}
|
||
else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
|
||
new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
else if (name.find("ffn_down") != std::string::npos) {
|
||
if (qs.i_ffn_down < qs.n_ffn_down/8) {
|
||
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
|
||
}
|
||
++qs.i_ffn_down;
|
||
}
|
||
else if (name.find("attn_output.weight") != std::string::npos) {
|
||
if (qs.model.hparams.n_expert == 8) {
|
||
new_type = GGML_TYPE_Q5_K;
|
||
} else {
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
|
||
}
|
||
}
|
||
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
|
||
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
|
||
new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
|
||
}
|
||
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
|
||
new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||
new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
|
||
new_type = GGML_TYPE_Q5_K;
|
||
}
|
||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||
if (qs.model.type == MODEL_70B) {
|
||
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
|
||
}
|
||
if (qs.model.hparams.n_expert == 8) {
|
||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||
// TODO: explore better strategies
|
||
new_type = GGML_TYPE_Q8_0;
|
||
}
|
||
++qs.i_attention_wv;
|
||
} else if (name.find("attn_k.weight") != std::string::npos) {
|
||
if (qs.model.hparams.n_expert == 8) {
|
||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||
// TODO: explore better strategies
|
||
new_type = GGML_TYPE_Q8_0;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||
new_type = GGML_TYPE_IQ3_XXS;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||
new_type = GGML_TYPE_IQ2_S;
|
||
}
|
||
} else if (name.find("attn_q.weight") != std::string::npos) {
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||
new_type = GGML_TYPE_IQ3_XXS;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||
new_type = GGML_TYPE_IQ2_S;
|
||
}
|
||
} else if (name.find("ffn_down") != std::string::npos) {
|
||
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
|
||
int i_layer = info.first, n_layer = info.second;
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
|
||
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
|
||
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
|
||
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||
: GGML_TYPE_Q3_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
|
||
(qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
|
||
new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||
if (arch == LLM_ARCH_FALCON) {
|
||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
|
||
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||
} else {
|
||
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||
}
|
||
}
|
||
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
|
||
new_type = GGML_TYPE_Q5_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
||
new_type = GGML_TYPE_Q5_K;
|
||
}
|
||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
|
||
&& qs.has_imatrix && i_layer < n_layer/8) {
|
||
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
|
||
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the
|
||
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
|
||
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
|
||
}
|
||
++qs.i_ffn_down;
|
||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||
if (arch != LLM_ARCH_FALCON) {
|
||
if (qs.model.hparams.n_expert == 8) {
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
|
||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
|
||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
|
||
new_type = GGML_TYPE_Q5_K;
|
||
}
|
||
} else {
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
} else {
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
}
|
||
else if (name.find("attn_qkv.weight") != std::string::npos) {
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||
new_type = GGML_TYPE_Q4_K;
|
||
}
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
|
||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
|
||
}
|
||
else if (name.find("ffn_gate") != std::string::npos) {
|
||
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
|
||
int i_layer = info.first, n_layer = info.second;
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||
new_type = GGML_TYPE_IQ3_XXS;
|
||
}
|
||
++qs.i_ffn_gate;
|
||
}
|
||
else if (name.find("ffn_up") != std::string::npos) {
|
||
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
|
||
int i_layer = info.first, n_layer = info.second;
|
||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||
new_type = GGML_TYPE_IQ3_XXS;
|
||
}
|
||
++qs.i_ffn_up;
|
||
}
|
||
|
||
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||
//}
|
||
// IK: let's remove this, else Q2_K is almost the same as Q3_K_S
|
||
//else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
|
||
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||
//}
|
||
// This can be used to reduce the size of the Q5_K_S model.
|
||
// The associated PPL increase is fully in line with the size reduction
|
||
//else {
|
||
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
|
||
//}
|
||
bool convert_incompatible_tensor = false;
|
||
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
|
||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
|
||
new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
|
||
new_type == GGML_TYPE_IQ1_M) {
|
||
int nx = tensor->ne[0];
|
||
int ny = tensor->ne[1];
|
||
if (nx % QK_K != 0) {
|
||
LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
|
||
convert_incompatible_tensor = true;
|
||
} else {
|
||
++qs.n_k_quantized;
|
||
}
|
||
}
|
||
if (convert_incompatible_tensor) {
|
||
switch (new_type) {
|
||
case GGML_TYPE_TQ1_0:
|
||
case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead
|
||
case GGML_TYPE_IQ2_XXS:
|
||
case GGML_TYPE_IQ2_XS:
|
||
case GGML_TYPE_IQ2_S:
|
||
case GGML_TYPE_IQ3_XXS:
|
||
case GGML_TYPE_IQ3_S:
|
||
case GGML_TYPE_IQ1_S:
|
||
case GGML_TYPE_IQ1_M:
|
||
case GGML_TYPE_Q2_K:
|
||
case GGML_TYPE_Q3_K:
|
||
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
|
||
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
|
||
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
|
||
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
|
||
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
|
||
}
|
||
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
|
||
new_type = GGML_TYPE_F16;
|
||
}
|
||
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
|
||
++qs.n_fallback;
|
||
}
|
||
|
||
return new_type;
|
||
}
|
||
|
||
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||
if (nthread < 2) {
|
||
// single-thread
|
||
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
|
||
if (!ggml_validate_row_data(new_type, new_data, new_size)) {
|
||
throw std::runtime_error("quantized data validation failed");
|
||
}
|
||
return new_size;
|
||
}
|
||
|
||
std::mutex mutex;
|
||
int64_t counter = 0;
|
||
size_t new_size = 0;
|
||
bool valid = true;
|
||
auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
|
||
nrows, n_per_row, imatrix]() {
|
||
const int64_t nrows_per_chunk = chunk_size / n_per_row;
|
||
size_t local_size = 0;
|
||
while (true) {
|
||
std::unique_lock<std::mutex> lock(mutex);
|
||
int64_t first_row = counter; counter += nrows_per_chunk;
|
||
if (first_row >= nrows) {
|
||
if (local_size > 0) {
|
||
new_size += local_size;
|
||
}
|
||
break;
|
||
}
|
||
lock.unlock();
|
||
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
|
||
size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
|
||
local_size += this_size;
|
||
|
||
// validate the quantized data
|
||
const size_t row_size = ggml_row_size(new_type, n_per_row);
|
||
void * this_data = (char *) new_data + first_row * row_size;
|
||
if (!ggml_validate_row_data(new_type, this_data, this_size)) {
|
||
std::unique_lock<std::mutex> lock(mutex);
|
||
valid = false;
|
||
break;
|
||
}
|
||
}
|
||
};
|
||
for (int it = 0; it < nthread - 1; ++it) {
|
||
workers.emplace_back(compute);
|
||
}
|
||
compute();
|
||
for (auto & w : workers) { w.join(); }
|
||
workers.clear();
|
||
if (!valid) {
|
||
throw std::runtime_error("quantized data validation failed");
|
||
}
|
||
return new_size;
|
||
}
|
||
|
||
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||
ggml_type default_type;
|
||
llama_ftype ftype = params->ftype;
|
||
|
||
switch (params->ftype) {
|
||
case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
|
||
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
|
||
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
|
||
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
|
||
|
||
// K-quants
|
||
case LLAMA_FTYPE_MOSTLY_Q2_K_S:
|
||
case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
|
||
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
|
||
case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
|
||
case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
|
||
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
|
||
case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break;
|
||
case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
|
||
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q4_0_4_4: default_type = GGML_TYPE_Q4_0_4_4; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q4_0_4_8: default_type = GGML_TYPE_Q4_0_4_8; break;
|
||
case LLAMA_FTYPE_MOSTLY_Q4_0_8_8: default_type = GGML_TYPE_Q4_0_8_8; break;
|
||
|
||
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
||
}
|
||
|
||
int nthread = params->nthread;
|
||
|
||
if (nthread <= 0) {
|
||
nthread = std::thread::hardware_concurrency();
|
||
}
|
||
|
||
// mmap consistently increases speed Linux, and also increases speed on Windows with
|
||
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
|
||
#if defined(__linux__) || defined(_WIN32)
|
||
constexpr bool use_mmap = true;
|
||
#else
|
||
constexpr bool use_mmap = false;
|
||
#endif
|
||
|
||
llama_model_kv_override * kv_overrides = nullptr;
|
||
if (params->kv_overrides) {
|
||
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
|
||
kv_overrides = v->data();
|
||
}
|
||
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
|
||
ml.init_mappings(false); // no prefetching
|
||
|
||
llama_model model;
|
||
llm_load_arch(ml, model);
|
||
llm_load_hparams(ml, model);
|
||
|
||
struct quantize_state_internal qs(model, params);
|
||
|
||
if (params->only_copy) {
|
||
ftype = model.ftype;
|
||
}
|
||
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
|
||
if (params->imatrix) {
|
||
imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
|
||
if (imatrix_data) {
|
||
LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
|
||
qs.has_imatrix = true;
|
||
// check imatrix for nans or infs
|
||
for (const auto & kv : *imatrix_data) {
|
||
for (float f : kv.second) {
|
||
if (!std::isfinite(f)) {
|
||
throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
const size_t align = GGUF_DEFAULT_ALIGNMENT;
|
||
struct gguf_context * ctx_out = gguf_init_empty();
|
||
|
||
// copy the KV pairs from the input file
|
||
gguf_set_kv (ctx_out, ml.meta);
|
||
gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
|
||
gguf_set_val_u32(ctx_out, "general.file_type", ftype); // TODO: use LLM_KV
|
||
|
||
// Remove split metadata
|
||
gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
|
||
gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
|
||
gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
|
||
|
||
if (params->kv_overrides) {
|
||
const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
|
||
for (auto & o : overrides) {
|
||
if (o.key[0] == 0) break;
|
||
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
|
||
gguf_set_val_f32(ctx_out, o.key, o.val_f64);
|
||
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
|
||
gguf_set_val_i32(ctx_out, o.key, o.val_i64);
|
||
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
|
||
gguf_set_val_bool(ctx_out, o.key, o.val_bool);
|
||
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
|
||
gguf_set_val_str(ctx_out, o.key, o.val_str);
|
||
} else {
|
||
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < ml.n_tensors; ++i) {
|
||
const struct ggml_tensor * meta = ml.get_tensor_meta(i);
|
||
|
||
const std::string name = ggml_get_name(meta);
|
||
|
||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||
if (name.find("attn_v.weight") != std::string::npos ||
|
||
name.find("attn_qkv.weight") != std::string::npos ||
|
||
name.find("attn_kv_b.weight")!= std::string::npos) {
|
||
++qs.n_attention_wv;
|
||
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
|
||
qs.has_output = true;
|
||
}
|
||
}
|
||
|
||
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
|
||
|
||
// sanity checks
|
||
{
|
||
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
|
||
// attention layers have a non-zero number of kv heads
|
||
int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
|
||
if (llama_model_has_encoder(&model)) {
|
||
n_attn_layer *= 3;
|
||
}
|
||
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||
}
|
||
|
||
size_t total_size_org = 0;
|
||
size_t total_size_new = 0;
|
||
|
||
std::vector<std::thread> workers;
|
||
workers.reserve(nthread);
|
||
|
||
int idx = 0;
|
||
|
||
std::vector<no_init<uint8_t>> read_data;
|
||
std::vector<no_init<uint8_t>> work;
|
||
std::vector<no_init<float>> f32_conv_buf;
|
||
|
||
uint16_t n_split = 1;
|
||
// Assume split index is continuous
|
||
if (params->keep_split) {
|
||
for (int i = 0; i < ml.n_tensors; ++i) {
|
||
n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
|
||
}
|
||
}
|
||
std::vector<gguf_context*> ctx_outs(n_split, NULL);
|
||
ctx_outs[0] = ctx_out;
|
||
|
||
// populate the original tensors so we get an initial meta data
|
||
for (int i = 0; i < ml.n_tensors; ++i) {
|
||
auto weight = ml.get_weight(i);
|
||
uint16_t i_split = params->keep_split ? weight->idx : 0;
|
||
struct ggml_tensor * tensor = weight->tensor;
|
||
if (ctx_outs[i_split] == NULL) {
|
||
ctx_outs[i_split] = gguf_init_empty();
|
||
}
|
||
gguf_add_tensor(ctx_outs[i_split], tensor);
|
||
}
|
||
|
||
// Set split info if needed
|
||
if (n_split > 1) {
|
||
for (size_t i = 0; i < ctx_outs.size(); ++i) {
|
||
gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
|
||
gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
|
||
gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
|
||
}
|
||
}
|
||
|
||
int cur_split = -1;
|
||
std::ofstream fout;
|
||
auto close_ofstream = [&]() {
|
||
// Write metadata and close file handler
|
||
if (fout.is_open()) {
|
||
fout.seekp(0);
|
||
std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
|
||
gguf_get_meta_data(ctx_outs[cur_split], data.data());
|
||
fout.write((const char *) data.data(), data.size());
|
||
fout.close();
|
||
}
|
||
};
|
||
auto new_ofstream = [&](int index) {
|
||
cur_split = index;
|
||
GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
|
||
std::string fname = fname_out;
|
||
if (params->keep_split) {
|
||
char split_path[PATH_MAX] = {0};
|
||
llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
|
||
fname = std::string(split_path);
|
||
}
|
||
|
||
fout = std::ofstream(fname, std::ios::binary);
|
||
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
||
const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
|
||
// placeholder for the meta data
|
||
::zeros(fout, meta_size);
|
||
};
|
||
|
||
const auto tn = LLM_TN(model.arch);
|
||
new_ofstream(0);
|
||
for (int i = 0; i < ml.n_tensors; ++i) {
|
||
auto weight = ml.get_weight(i);
|
||
struct ggml_tensor * tensor = weight->tensor;
|
||
if (weight->idx != cur_split && params->keep_split) {
|
||
close_ofstream();
|
||
new_ofstream(weight->idx);
|
||
}
|
||
|
||
const std::string name = ggml_get_name(tensor);
|
||
|
||
if (!ml.use_mmap) {
|
||
if (read_data.size() < ggml_nbytes(tensor)) {
|
||
read_data.resize(ggml_nbytes(tensor));
|
||
}
|
||
tensor->data = read_data.data();
|
||
}
|
||
ml.load_data_for(tensor);
|
||
|
||
LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
|
||
++idx, ml.n_tensors,
|
||
ggml_get_name(tensor),
|
||
llama_format_tensor_shape(tensor).c_str(),
|
||
ggml_type_name(tensor->type));
|
||
|
||
// This used to be a regex, but <regex> has an extreme cost to compile times.
|
||
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
|
||
|
||
// quantize only 2D and 3D tensors (experts)
|
||
quantize &= (ggml_n_dims(tensor) >= 2);
|
||
|
||
// do not quantize norm tensors
|
||
quantize &= name.find("_norm.weight") == std::string::npos;
|
||
|
||
quantize &= params->quantize_output_tensor || name != "output.weight";
|
||
quantize &= !params->only_copy;
|
||
|
||
// do not quantize expert gating tensors
|
||
// NOTE: can't use LLM_TN here because the layer number is not known
|
||
quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
|
||
|
||
// do not quantize positional embeddings and token types (BERT)
|
||
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
|
||
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
|
||
|
||
// do not quantize Mamba's small yet 2D weights
|
||
// NOTE: can't use LLM_TN here because the layer number is not known
|
||
quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
|
||
|
||
// do not quantize RWKV's time_mix_first tensors
|
||
quantize &= name.find("time_mix_first.weight") == std::string::npos;
|
||
quantize &= name.find("time_mix_w1.weight") == std::string::npos;
|
||
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
|
||
quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos;
|
||
quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos;
|
||
|
||
// do not quantize relative position bias (T5)
|
||
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
|
||
|
||
enum ggml_type new_type;
|
||
void * new_data;
|
||
size_t new_size;
|
||
|
||
if (quantize) {
|
||
new_type = default_type;
|
||
|
||
// get more optimal quantization type based on the tensor shape, layer, etc.
|
||
if (!params->pure && ggml_is_quantized(default_type)) {
|
||
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
|
||
}
|
||
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
|
||
new_type = params->token_embedding_type;
|
||
}
|
||
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
|
||
new_type = params->output_tensor_type;
|
||
}
|
||
|
||
// If we've decided to quantize to the same type the tensor is already
|
||
// in then there's nothing to do.
|
||
quantize = tensor->type != new_type;
|
||
}
|
||
|
||
if (!quantize) {
|
||
new_type = tensor->type;
|
||
new_data = tensor->data;
|
||
new_size = ggml_nbytes(tensor);
|
||
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
|
||
} else {
|
||
const int64_t nelements = ggml_nelements(tensor);
|
||
|
||
const float * imatrix = nullptr;
|
||
if (imatrix_data) {
|
||
auto it = imatrix_data->find(tensor->name);
|
||
if (it == imatrix_data->end()) {
|
||
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
|
||
} else {
|
||
if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
|
||
imatrix = it->second.data();
|
||
} else {
|
||
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
|
||
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
|
||
|
||
// this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
|
||
// this is a significant error and it may be good idea to abort the process if this happens,
|
||
// since many people will miss the error and not realize that most of the model is being quantized without an imatrix
|
||
// tok_embd should be ignored in this case, since it always causes this warning
|
||
if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
|
||
throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
|
||
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if ((new_type == GGML_TYPE_IQ2_XXS ||
|
||
new_type == GGML_TYPE_IQ2_XS ||
|
||
new_type == GGML_TYPE_IQ2_S ||
|
||
new_type == GGML_TYPE_IQ1_S ||
|
||
(new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
|
||
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
|
||
LLAMA_LOG_ERROR("\n\n============================================================\n");
|
||
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
|
||
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
|
||
LLAMA_LOG_ERROR("============================================================\n\n");
|
||
throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
|
||
}
|
||
|
||
float * f32_data;
|
||
|
||
if (tensor->type == GGML_TYPE_F32) {
|
||
f32_data = (float *) tensor->data;
|
||
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
|
||
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
|
||
} else {
|
||
llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
|
||
f32_data = (float *) f32_conv_buf.data();
|
||
}
|
||
|
||
int chunk_size_multiplier = 1;
|
||
if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8 || new_type == GGML_TYPE_Q4_0_8_8) {
|
||
if ((new_type == GGML_TYPE_Q4_0_8_8) && (tensor->ne[1] % 8 != 0)) new_type = GGML_TYPE_Q4_0;
|
||
else if (tensor->ne[1] % 4 != 0) new_type = GGML_TYPE_Q4_0;
|
||
if (new_type == GGML_TYPE_Q4_0_8_8) chunk_size_multiplier = 8;
|
||
else if (new_type == GGML_TYPE_Q4_0_4_4 || new_type == GGML_TYPE_Q4_0_4_8) chunk_size_multiplier = 4;
|
||
}
|
||
|
||
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
|
||
fflush(stdout);
|
||
|
||
if (work.size() < (size_t)nelements * 4) {
|
||
work.resize(nelements * 4); // upper bound on size
|
||
}
|
||
new_data = work.data();
|
||
|
||
const int64_t n_per_row = tensor->ne[0];
|
||
const int64_t nrows = tensor->ne[1];
|
||
|
||
static const int64_t min_chunk_size = 32 * 512;
|
||
const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)) *
|
||
chunk_size_multiplier;
|
||
|
||
const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
|
||
const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
|
||
const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
|
||
|
||
// quantize each expert separately since they have different importance matrices
|
||
new_size = 0;
|
||
for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
|
||
const float * f32_data_03 = f32_data + i03 * nelements_matrix;
|
||
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
|
||
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
|
||
|
||
new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
|
||
}
|
||
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||
}
|
||
total_size_org += ggml_nbytes(tensor);
|
||
total_size_new += new_size;
|
||
|
||
// update the gguf meta data as we go
|
||
gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
|
||
gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
|
||
|
||
// write tensor data + padding
|
||
fout.write((const char *) new_data, new_size);
|
||
zeros(fout, GGML_PAD(new_size, align) - new_size);
|
||
}
|
||
close_ofstream();
|
||
for (auto & c:ctx_outs) {
|
||
gguf_free(c);
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
||
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
||
|
||
if (qs.n_fallback > 0) {
|
||
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
|
||
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
|
||
}
|
||
}
|
||
|
||
static void llama_lora_adapter_init_internal(struct llama_model * model, const char * path_lora, struct llama_lora_adapter & adapter) {
|
||
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
|
||
|
||
ggml_context * ctx = nullptr;
|
||
struct gguf_init_params meta_gguf_params = {
|
||
/* .no_alloc = */ true,
|
||
/* .ctx = */ &ctx,
|
||
};
|
||
struct gguf_context * ctx_gguf = gguf_init_from_file(path_lora, meta_gguf_params);
|
||
if (!ctx_gguf) {
|
||
throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
|
||
}
|
||
|
||
// check metadata
|
||
{
|
||
auto get_kv_str = [&](const std::string & key) -> std::string {
|
||
int id = gguf_find_key(ctx_gguf, key.c_str());
|
||
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
|
||
};
|
||
auto get_kv_f32 = [&](const std::string & key) -> float {
|
||
int id = gguf_find_key(ctx_gguf, key.c_str());
|
||
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
|
||
};
|
||
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
|
||
|
||
auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
|
||
if (general_type != "adapter") {
|
||
gguf_free(ctx_gguf);
|
||
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
|
||
}
|
||
|
||
auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
|
||
auto general_arch = llm_arch_from_string(general_arch_str);
|
||
if (general_arch != model->arch) {
|
||
gguf_free(ctx_gguf);
|
||
throw std::runtime_error("model arch and LoRA arch mismatch");
|
||
}
|
||
|
||
auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
|
||
if (adapter_type != "lora") {
|
||
gguf_free(ctx_gguf);
|
||
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
|
||
}
|
||
|
||
adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
|
||
}
|
||
|
||
int n_tensors = gguf_get_n_tensors(ctx_gguf);
|
||
|
||
// contexts for each buffer type
|
||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||
auto get_ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||
auto it = ctx_map.find(buft);
|
||
if (it == ctx_map.end()) {
|
||
// add a new context
|
||
struct ggml_init_params params = {
|
||
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
|
||
/*.mem_buffer =*/ NULL,
|
||
/*.no_alloc =*/ true,
|
||
};
|
||
ggml_context * buft_ctx = ggml_init(params);
|
||
ctx_map[buft] = buft_ctx;
|
||
return buft_ctx;
|
||
};
|
||
return it->second;
|
||
};
|
||
|
||
// bundle lora_a and lora_b into pairs
|
||
std::map<std::string, llama_lora_weight> ab_map;
|
||
auto str_endswith = [](const std::string & str, const std::string & suffix) {
|
||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||
};
|
||
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
|
||
std::string name(cur->name);
|
||
if (str_endswith(name, ".lora_a")) {
|
||
replace_all(name, ".lora_a", "");
|
||
if (ab_map.find(name) == ab_map.end()) {
|
||
ab_map[name] = llama_lora_weight(cur, nullptr);
|
||
} else {
|
||
ab_map[name].a = cur;
|
||
}
|
||
} else if (str_endswith(name, ".lora_b")) {
|
||
replace_all(name, ".lora_b", "");
|
||
if (ab_map.find(name) == ab_map.end()) {
|
||
ab_map[name] = llama_lora_weight(nullptr, cur);
|
||
} else {
|
||
ab_map[name].b = cur;
|
||
}
|
||
} else {
|
||
gguf_free(ctx_gguf);
|
||
ggml_free(ctx);
|
||
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
|
||
}
|
||
}
|
||
|
||
// add tensors
|
||
for (auto & it : ab_map) {
|
||
const std::string & name = it.first;
|
||
llama_lora_weight & w = it.second;
|
||
|
||
if (!w.a || !w.b) {
|
||
gguf_free(ctx_gguf);
|
||
ggml_free(ctx);
|
||
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
|
||
}
|
||
|
||
// device buft and device ctx
|
||
auto * model_tensor = llama_get_model_tensor(model, name.c_str());
|
||
if (!model_tensor) {
|
||
gguf_free(ctx_gguf);
|
||
ggml_free(ctx);
|
||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
|
||
}
|
||
struct ggml_context * dev_ctx = get_ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
|
||
// validate tensor shape
|
||
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
|
||
gguf_free(ctx_gguf);
|
||
ggml_free(ctx);
|
||
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
|
||
}
|
||
if (w.a->ne[1] != w.b->ne[0]) {
|
||
gguf_free(ctx_gguf);
|
||
ggml_free(ctx);
|
||
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
|
||
}
|
||
// save tensor to adapter
|
||
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
|
||
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
|
||
ggml_set_name(tensor_a, w.a->name);
|
||
ggml_set_name(tensor_b, w.b->name);
|
||
adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
|
||
}
|
||
|
||
// allocate tensors / buffers and zero
|
||
{
|
||
adapter.ctxs.reserve(ctx_map.size());
|
||
adapter.bufs.reserve(ctx_map.size());
|
||
for (auto it : ctx_map) {
|
||
ggml_backend_buffer_type_t buft = it.first;
|
||
ggml_context * ctx_dev = it.second;
|
||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft);
|
||
if (!buf) {
|
||
gguf_free(ctx_gguf);
|
||
ggml_free(ctx);
|
||
throw std::runtime_error("failed to allocate buffer for lora adapter\n");
|
||
}
|
||
LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
||
adapter.ctxs.push_back(ctx_dev);
|
||
adapter.bufs.push_back(buf);
|
||
}
|
||
}
|
||
|
||
// set tensor data
|
||
{
|
||
llama_file gguf_file(path_lora, "rb");
|
||
std::vector<uint8_t> read_buf;
|
||
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
|
||
size_t offs = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, gguf_find_tensor(ctx_gguf, orig->name));
|
||
size_t size = ggml_nbytes(orig);
|
||
read_buf.resize(size);
|
||
gguf_file.seek(offs, SEEK_SET);
|
||
gguf_file.read_raw(read_buf.data(), size);
|
||
ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
|
||
};
|
||
for (auto & it : adapter.ab_map) {
|
||
auto orig = ab_map[it.first];
|
||
auto dev = it.second;
|
||
set_tensor(orig.a, dev.a);
|
||
set_tensor(orig.b, dev.b);
|
||
}
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: loaded %ld tensors from lora file\n", __func__, adapter.ab_map.size()*2);
|
||
|
||
// free ctx for reading gguf
|
||
gguf_free(ctx_gguf);
|
||
ggml_free(ctx);
|
||
}
|
||
|
||
int32_t llama_lora_adapter_set(
|
||
struct llama_context * ctx,
|
||
struct llama_lora_adapter * adapter,
|
||
float scale) {
|
||
if (ctx->cparams.flash_attn) {
|
||
LLAMA_LOG_ERROR("%s: flash_attn is not compatible with LoRA\n", __func__);
|
||
return -1;
|
||
}
|
||
ctx->lora_adapters[adapter] = scale;
|
||
return 0;
|
||
}
|
||
|
||
int32_t llama_lora_adapter_remove(
|
||
struct llama_context * ctx,
|
||
struct llama_lora_adapter * adapter) {
|
||
auto pos = ctx->lora_adapters.find(adapter);
|
||
if (pos != ctx->lora_adapters.end()) {
|
||
ctx->lora_adapters.erase(pos);
|
||
return 0;
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
void llama_lora_adapter_clear(struct llama_context * ctx) {
|
||
ctx->lora_adapters.clear();
|
||
}
|
||
|
||
void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
|
||
delete adapter;
|
||
}
|
||
|
||
//
|
||
// interface implementation
|
||
//
|
||
struct llama_model_params llama_model_default_params() {
|
||
struct llama_model_params result = {
|
||
/*.n_gpu_layers =*/ 0,
|
||
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
|
||
/*.main_gpu =*/ 0,
|
||
/*.tensor_split =*/ nullptr,
|
||
/*.rpc_servers =*/ nullptr,
|
||
/*.progress_callback =*/ nullptr,
|
||
/*.progress_callback_user_data =*/ nullptr,
|
||
/*.kv_overrides =*/ nullptr,
|
||
/*.vocab_only =*/ false,
|
||
/*.use_mmap =*/ true,
|
||
/*.use_mlock =*/ false,
|
||
/*.check_tensors =*/ false,
|
||
};
|
||
|
||
#ifdef GGML_USE_METAL
|
||
// note: we usually have plenty of VRAM, so by default offload all layers to the GPU
|
||
result.n_gpu_layers = 999;
|
||
#endif
|
||
|
||
return result;
|
||
}
|
||
|
||
struct llama_context_params llama_context_default_params() {
|
||
struct llama_context_params result = {
|
||
/*.n_ctx =*/ 512,
|
||
/*.n_batch =*/ 2048,
|
||
/*.n_ubatch =*/ 512,
|
||
/*.n_seq_max =*/ 1,
|
||
/*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
|
||
/*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
|
||
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
|
||
/*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
|
||
/*.attention_type =*/ LLAMA_ATTENTION_TYPE_UNSPECIFIED,
|
||
/*.rope_freq_base =*/ 0.0f,
|
||
/*.rope_freq_scale =*/ 0.0f,
|
||
/*.yarn_ext_factor =*/ -1.0f,
|
||
/*.yarn_attn_factor =*/ 1.0f,
|
||
/*.yarn_beta_fast =*/ 32.0f,
|
||
/*.yarn_beta_slow =*/ 1.0f,
|
||
/*.yarn_orig_ctx =*/ 0,
|
||
/*.defrag_thold =*/ -1.0f,
|
||
/*.cb_eval =*/ nullptr,
|
||
/*.cb_eval_user_data =*/ nullptr,
|
||
/*.type_k =*/ GGML_TYPE_F16,
|
||
/*.type_v =*/ GGML_TYPE_F16,
|
||
/*.logits_all =*/ false,
|
||
/*.embeddings =*/ false,
|
||
/*.offload_kqv =*/ true,
|
||
/*.flash_attn =*/ false,
|
||
/*.no_perf =*/ true,
|
||
/*.abort_callback =*/ nullptr,
|
||
/*.abort_callback_data =*/ nullptr,
|
||
};
|
||
|
||
return result;
|
||
}
|
||
|
||
struct llama_sampler_chain_params llama_sampler_chain_default_params() {
|
||
struct llama_sampler_chain_params result = {
|
||
/*.no_perf =*/ true,
|
||
};
|
||
|
||
return result;
|
||
}
|
||
|
||
struct llama_model_quantize_params llama_model_quantize_default_params() {
|
||
struct llama_model_quantize_params result = {
|
||
/*.nthread =*/ 0,
|
||
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
|
||
/*.output_tensor_type =*/ GGML_TYPE_COUNT,
|
||
/*.token_embedding_type =*/ GGML_TYPE_COUNT,
|
||
/*.allow_requantize =*/ false,
|
||
/*.quantize_output_tensor =*/ true,
|
||
/*.only_copy =*/ false,
|
||
/*.pure =*/ false,
|
||
/*.keep_split =*/ false,
|
||
/*.imatrix =*/ nullptr,
|
||
/*.kv_overrides =*/ nullptr,
|
||
};
|
||
|
||
return result;
|
||
}
|
||
|
||
size_t llama_max_devices(void) {
|
||
return 16;
|
||
}
|
||
|
||
bool llama_supports_mmap(void) {
|
||
return llama_mmap::SUPPORTED;
|
||
}
|
||
|
||
bool llama_supports_mlock(void) {
|
||
return llama_mlock::SUPPORTED;
|
||
}
|
||
|
||
bool llama_supports_gpu_offload(void) {
|
||
#if defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
|
||
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
|
||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||
return true;
|
||
#else
|
||
return ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU) != nullptr ||
|
||
ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU_FULL) != nullptr;
|
||
#endif
|
||
}
|
||
|
||
void llama_backend_init(void) {
|
||
ggml_time_init();
|
||
|
||
// needed to initialize f16 tables
|
||
{
|
||
struct ggml_init_params params = { 0, NULL, false };
|
||
struct ggml_context * ctx = ggml_init(params);
|
||
ggml_free(ctx);
|
||
}
|
||
}
|
||
|
||
void llama_numa_init(enum ggml_numa_strategy numa) {
|
||
if (numa != GGML_NUMA_STRATEGY_DISABLED) {
|
||
ggml_numa_init(numa);
|
||
}
|
||
}
|
||
|
||
void llama_attach_threadpool(
|
||
struct llama_context * ctx,
|
||
ggml_threadpool_t threadpool,
|
||
ggml_threadpool_t threadpool_batch) {
|
||
ctx->threadpool = threadpool;
|
||
ctx->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool;
|
||
}
|
||
|
||
void llama_detach_threadpool(struct llama_context * ctx) {
|
||
ctx->threadpool = nullptr;
|
||
ctx->threadpool_batch = nullptr;
|
||
}
|
||
|
||
void llama_backend_free(void) {
|
||
ggml_quantize_free();
|
||
}
|
||
|
||
int64_t llama_time_us(void) {
|
||
return ggml_time_us();
|
||
}
|
||
|
||
struct llama_model * llama_load_model_from_file(
|
||
const char * path_model,
|
||
struct llama_model_params params) {
|
||
ggml_time_init();
|
||
|
||
llama_model * model = new llama_model;
|
||
|
||
unsigned cur_percentage = 0;
|
||
if (params.progress_callback == NULL) {
|
||
params.progress_callback_user_data = &cur_percentage;
|
||
params.progress_callback = [](float progress, void * ctx) {
|
||
unsigned * cur_percentage_p = (unsigned *) ctx;
|
||
unsigned percentage = (unsigned) (100 * progress);
|
||
while (percentage > *cur_percentage_p) {
|
||
*cur_percentage_p = percentage;
|
||
LLAMA_LOG_CONT(".");
|
||
if (percentage >= 100) {
|
||
LLAMA_LOG_CONT("\n");
|
||
}
|
||
}
|
||
return true;
|
||
};
|
||
}
|
||
|
||
if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
|
||
// split the servers set them into model->rpc_servers
|
||
std::string servers(params.rpc_servers);
|
||
size_t pos = 0;
|
||
while ((pos = servers.find(',')) != std::string::npos) {
|
||
std::string server = servers.substr(0, pos);
|
||
model->rpc_servers.push_back(server);
|
||
servers.erase(0, pos + 1);
|
||
}
|
||
model->rpc_servers.push_back(servers);
|
||
}
|
||
|
||
// create list of devices to use with this model
|
||
// currently, we use all available devices
|
||
// TODO: rework API to give user more control over device selection
|
||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||
// skip the CPU backend since it is handled separately
|
||
if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU_FULL) {
|
||
model->devices.push_back(dev);
|
||
}
|
||
}
|
||
|
||
int status = llama_model_load(path_model, *model, params);
|
||
GGML_ASSERT(status <= 0);
|
||
if (status < 0) {
|
||
if (status == -1) {
|
||
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
|
||
} else if (status == -2) {
|
||
LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
|
||
}
|
||
delete model;
|
||
return nullptr;
|
||
}
|
||
|
||
return model;
|
||
}
|
||
|
||
void llama_free_model(struct llama_model * model) {
|
||
delete model;
|
||
}
|
||
|
||
struct llama_context * llama_new_context_with_model(
|
||
struct llama_model * model,
|
||
struct llama_context_params params) {
|
||
|
||
if (!model) {
|
||
LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
|
||
return nullptr;
|
||
}
|
||
|
||
if (params.n_batch == 0 && params.n_ubatch == 0) {
|
||
LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
|
||
return nullptr;
|
||
}
|
||
|
||
if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
|
||
LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
|
||
return nullptr;
|
||
}
|
||
|
||
if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
|
||
LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
|
||
params.flash_attn = false;
|
||
}
|
||
|
||
if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
|
||
LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
|
||
params.flash_attn = false;
|
||
}
|
||
|
||
if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
|
||
LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
|
||
return nullptr;
|
||
}
|
||
|
||
llama_context * ctx = new llama_context(*model);
|
||
|
||
const auto & hparams = model->hparams;
|
||
auto & cparams = ctx->cparams;
|
||
|
||
cparams.n_seq_max = std::max(1u, params.n_seq_max);
|
||
cparams.n_threads = params.n_threads;
|
||
cparams.n_threads_batch = params.n_threads_batch;
|
||
cparams.yarn_ext_factor = params.yarn_ext_factor;
|
||
cparams.yarn_attn_factor = params.yarn_attn_factor;
|
||
cparams.yarn_beta_fast = params.yarn_beta_fast;
|
||
cparams.yarn_beta_slow = params.yarn_beta_slow;
|
||
cparams.defrag_thold = params.defrag_thold;
|
||
cparams.embeddings = params.embeddings;
|
||
cparams.offload_kqv = params.offload_kqv;
|
||
cparams.flash_attn = params.flash_attn;
|
||
cparams.no_perf = params.no_perf;
|
||
cparams.pooling_type = params.pooling_type;
|
||
|
||
cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
|
||
cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
|
||
cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
|
||
|
||
// this is necessary due to kv_self.n being padded later during inference
|
||
cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
|
||
|
||
// with causal attention, the batch size is limited by the context size
|
||
cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
|
||
|
||
// the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
|
||
// this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
|
||
// ref: https://github.com/ggerganov/llama.cpp/pull/5021
|
||
if (cparams.n_batch < GGML_KQ_MASK_PAD) {
|
||
LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
|
||
cparams.n_batch = GGML_KQ_MASK_PAD;
|
||
}
|
||
|
||
cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
|
||
|
||
cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
|
||
hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
|
||
hparams.n_ctx_train;
|
||
|
||
cparams.cb_eval = params.cb_eval;
|
||
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||
|
||
auto rope_scaling_type = params.rope_scaling_type;
|
||
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
|
||
rope_scaling_type = hparams.rope_scaling_type_train;
|
||
}
|
||
|
||
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
|
||
cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
|
||
}
|
||
|
||
if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
|
||
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
|
||
}
|
||
|
||
cparams.yarn_attn_factor *= hparams.rope_attn_factor;
|
||
|
||
if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
|
||
if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
|
||
cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||
} else {
|
||
cparams.pooling_type = hparams.pooling_type;
|
||
}
|
||
}
|
||
|
||
if (params.attention_type == LLAMA_ATTENTION_TYPE_UNSPECIFIED) {
|
||
cparams.causal_attn = hparams.causal_attn;
|
||
} else {
|
||
cparams.causal_attn = params.attention_type == LLAMA_ATTENTION_TYPE_CAUSAL;
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
|
||
LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
|
||
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
|
||
LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
|
||
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
|
||
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
|
||
|
||
ctx->abort_callback = params.abort_callback;
|
||
ctx->abort_callback_data = params.abort_callback_data;
|
||
|
||
ctx->logits_all = params.logits_all;
|
||
|
||
// build worst-case graph for encoder if a model contains encoder
|
||
ctx->is_encoding = llama_model_has_encoder(model);
|
||
|
||
uint32_t kv_size = cparams.n_ctx;
|
||
ggml_type type_k = params.type_k;
|
||
ggml_type type_v = params.type_v;
|
||
|
||
// Mamba only needs a constant number of KV cache cells per sequence
|
||
if (llama_model_is_recurrent(model)) {
|
||
// Mamba needs at least as many KV cells as there are sequences kept at any time
|
||
kv_size = std::max((uint32_t) 1, params.n_seq_max);
|
||
// it's probably best to keep as much precision as possible for the states
|
||
type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
|
||
type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
|
||
}
|
||
|
||
GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
|
||
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
|
||
|
||
if (!hparams.vocab_only) {
|
||
// initialize backends
|
||
int main_gpu = model->main_gpu;
|
||
|
||
// with registry
|
||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||
if (main_gpu >= 0 && main_gpu < (int)model->devices.size()) {
|
||
ggml_backend_dev_t main_dev = model->devices[main_gpu];
|
||
ggml_backend_t backend = ggml_backend_dev_init(main_dev, nullptr);
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(main_dev));
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
}
|
||
} else {
|
||
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
|
||
for (auto * dev : model->devices) {
|
||
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev));
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
}
|
||
}
|
||
if (main_gpu >= (int)model->devices.size()) {
|
||
main_gpu -= (int)model->devices.size();
|
||
}
|
||
|
||
#if defined(GGML_USE_RPC)
|
||
if (model->n_gpu_layers > 0) {
|
||
for (const auto & endpoint : model->rpc_servers) {
|
||
ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
}
|
||
}
|
||
if (main_gpu >= (int)model->rpc_servers.size()) {
|
||
main_gpu -= (int)model->rpc_servers.size();
|
||
}
|
||
#endif
|
||
|
||
#if defined(GGML_USE_METAL)
|
||
if (model->n_gpu_layers > 0) {
|
||
ctx->backend_metal = ggml_backend_metal_init();
|
||
if (ctx->backend_metal == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(ctx->backend_metal);
|
||
}
|
||
#elif defined(GGML_USE_VULKAN)
|
||
if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||
LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
|
||
ggml_backend_t backend = ggml_backend_vk_init(main_gpu);
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
} else {
|
||
for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
|
||
ggml_backend_t backend = ggml_backend_vk_init(device);
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
}
|
||
}
|
||
#elif defined(GGML_USE_SYCL)
|
||
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||
ggml_backend_t backend = ggml_backend_sycl_init(main_gpu);
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, main_gpu);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
} else {
|
||
// LLAMA_SPLIT_LAYER requires a backend for each GPU
|
||
for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
|
||
ggml_backend_t backend = ggml_backend_sycl_init(i);
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d for No.%d backend\n", __func__, i, i);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
}
|
||
}
|
||
#elif defined(GGML_USE_KOMPUTE)
|
||
if (model->n_gpu_layers > 0) {
|
||
auto * backend = ggml_backend_kompute_init(main_gpu);
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
}
|
||
#elif defined(GGML_USE_CANN)
|
||
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
||
// TODO: ggml_backend_cann is not support split tensor now, just leave code here.
|
||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||
ggml_backend_t backend = ggml_backend_cann_init(main_gpu);
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, main_gpu);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
} else {
|
||
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
|
||
// TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
|
||
for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
|
||
ggml_backend_t backend = ggml_backend_cann_init(device);
|
||
if (backend == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(backend);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
#ifdef GGML_USE_BLAS
|
||
ctx->backend_blas = ggml_backend_blas_init();
|
||
if (ctx->backend_blas == nullptr) {
|
||
LLAMA_LOG_WARN("%s: failed to initialize BLAS backend\n", __func__);
|
||
} else {
|
||
ctx->backends.push_back(ctx->backend_blas);
|
||
}
|
||
#endif
|
||
|
||
ctx->backend_cpu = ggml_backend_cpu_init();
|
||
if (ctx->backend_cpu == nullptr) {
|
||
LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
ctx->backends.push_back(ctx->backend_cpu);
|
||
|
||
if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
|
||
LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
|
||
{
|
||
size_t memory_size_k = 0;
|
||
size_t memory_size_v = 0;
|
||
|
||
for (auto & k : ctx->kv_self.k_l) {
|
||
memory_size_k += ggml_nbytes(k);
|
||
}
|
||
|
||
for (auto & v : ctx->kv_self.v_l) {
|
||
memory_size_v += ggml_nbytes(v);
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
||
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
||
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
||
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
||
}
|
||
|
||
// graph outputs buffer
|
||
{
|
||
// resized during inference when a batch uses more outputs
|
||
if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
|
||
LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
|
||
LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
|
||
ggml_backend_buffer_name(ctx->buf_output),
|
||
ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
|
||
}
|
||
|
||
// scheduler and compute buffers
|
||
{
|
||
// buffer types used for the compute buffer of each backend
|
||
std::vector<ggml_backend_buffer_type_t> backend_buft;
|
||
for (auto * backend : ctx->backends) {
|
||
if (ggml_backend_is_cpu(backend)) {
|
||
// use host buffers for the CPU backend compute buffer
|
||
backend_buft.push_back(llama_default_buffer_type_cpu(*model, true));
|
||
} else {
|
||
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
|
||
}
|
||
}
|
||
|
||
const size_t max_nodes = llama_model_max_nodes(*model);
|
||
|
||
// buffer used to store the computation graph and the tensor meta data
|
||
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
|
||
|
||
// TODO: move these checks to ggml_backend_sched
|
||
// enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
|
||
bool pipeline_parallel =
|
||
llama_get_device_count(*model) > 1 &&
|
||
model->n_gpu_layers > (int)model->hparams.n_layer &&
|
||
model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
|
||
params.offload_kqv;
|
||
|
||
// pipeline parallelism requires support for async compute and events in all devices
|
||
if (pipeline_parallel) {
|
||
for (auto * backend : ctx->backends) {
|
||
if (ggml_backend_is_cpu(backend)) {
|
||
// ignore CPU backend
|
||
continue;
|
||
}
|
||
auto * dev = ggml_backend_get_device(backend);
|
||
if (!dev) {
|
||
// backend is using old interface, not supported
|
||
pipeline_parallel = false;
|
||
break;
|
||
}
|
||
ggml_backend_dev_props props;
|
||
ggml_backend_dev_get_props(dev, &props);
|
||
if (!props.caps.async || !props.caps.events) {
|
||
// device does not support async compute or events
|
||
pipeline_parallel = false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel);
|
||
|
||
if (pipeline_parallel) {
|
||
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
|
||
}
|
||
|
||
// build worst-case graph
|
||
uint32_t n_seqs = 1; // TODO: worst-case number of sequences
|
||
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||
llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
||
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
||
ggml_cgraph * gf = llama_build_graph(*ctx, ubatch, true);
|
||
|
||
// initialize scheduler with the worst-case graph
|
||
if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
|
||
LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
|
||
llama_free(ctx);
|
||
return nullptr;
|
||
}
|
||
|
||
for (size_t i = 0; i < ctx->backends.size(); i++) {
|
||
ggml_backend_t backend = ctx->backends[i];
|
||
ggml_backend_buffer_type_t buft = backend_buft[i];
|
||
size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
|
||
if (size > 1) {
|
||
LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
|
||
ggml_backend_buft_name(buft),
|
||
size / 1024.0 / 1024.0);
|
||
}
|
||
}
|
||
|
||
// note: the number of splits during measure is higher than during inference due to the kv shift
|
||
int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
|
||
LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, ggml_graph_n_nodes(gf));
|
||
LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
|
||
}
|
||
}
|
||
|
||
return ctx;
|
||
}
|
||
|
||
void llama_free(struct llama_context * ctx) {
|
||
delete ctx;
|
||
}
|
||
|
||
uint32_t llama_n_ctx(const struct llama_context * ctx) {
|
||
return ctx->cparams.n_ctx;
|
||
}
|
||
|
||
uint32_t llama_n_batch(const struct llama_context * ctx) {
|
||
return ctx->cparams.n_batch;
|
||
}
|
||
|
||
uint32_t llama_n_ubatch(const struct llama_context * ctx) {
|
||
return ctx->cparams.n_ubatch;
|
||
}
|
||
|
||
uint32_t llama_n_seq_max(const struct llama_context * ctx) {
|
||
return ctx->kv_self.size;
|
||
}
|
||
|
||
enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
|
||
return model->vocab.type;
|
||
}
|
||
|
||
int32_t llama_n_vocab(const struct llama_model * model) {
|
||
return model->hparams.n_vocab;
|
||
}
|
||
|
||
int32_t llama_n_ctx_train(const struct llama_model * model) {
|
||
return model->hparams.n_ctx_train;
|
||
}
|
||
|
||
int32_t llama_n_embd(const struct llama_model * model) {
|
||
return model->hparams.n_embd;
|
||
}
|
||
|
||
int32_t llama_n_layer(const struct llama_model * model) {
|
||
return model->hparams.n_layer;
|
||
}
|
||
|
||
int32_t llama_n_head(const struct llama_model * model) {
|
||
return model->hparams.n_head();
|
||
}
|
||
|
||
const struct llama_model * llama_get_model(const struct llama_context * ctx) {
|
||
return &ctx->model;
|
||
}
|
||
|
||
enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
|
||
return ctx->cparams.pooling_type;
|
||
}
|
||
|
||
enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||
switch (model->arch) {
|
||
// these models do not use RoPE
|
||
case LLM_ARCH_GPT2:
|
||
case LLM_ARCH_GPTJ:
|
||
case LLM_ARCH_MPT:
|
||
case LLM_ARCH_REFACT:
|
||
case LLM_ARCH_BLOOM:
|
||
case LLM_ARCH_MAMBA:
|
||
case LLM_ARCH_JINA_BERT_V2:
|
||
case LLM_ARCH_T5:
|
||
case LLM_ARCH_T5ENCODER:
|
||
case LLM_ARCH_JAIS:
|
||
case LLM_ARCH_RWKV6:
|
||
return LLAMA_ROPE_TYPE_NONE;
|
||
|
||
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
||
case LLM_ARCH_LLAMA:
|
||
case LLM_ARCH_BAICHUAN:
|
||
case LLM_ARCH_STARCODER:
|
||
case LLM_ARCH_PLAMO:
|
||
case LLM_ARCH_ORION:
|
||
case LLM_ARCH_INTERNLM2:
|
||
case LLM_ARCH_MINICPM:
|
||
case LLM_ARCH_XVERSE:
|
||
case LLM_ARCH_COMMAND_R:
|
||
case LLM_ARCH_OLMO:
|
||
case LLM_ARCH_ARCTIC:
|
||
case LLM_ARCH_DEEPSEEK2:
|
||
case LLM_ARCH_CHATGLM:
|
||
case LLM_ARCH_GRANITE:
|
||
case LLM_ARCH_GRANITE_MOE:
|
||
case LLM_ARCH_CHAMELEON:
|
||
return LLAMA_ROPE_TYPE_NORM;
|
||
|
||
// the pairs of head values are offset by n_rot/2
|
||
case LLM_ARCH_FALCON:
|
||
case LLM_ARCH_GROK:
|
||
case LLM_ARCH_DBRX:
|
||
case LLM_ARCH_BERT:
|
||
case LLM_ARCH_NOMIC_BERT:
|
||
case LLM_ARCH_STABLELM:
|
||
case LLM_ARCH_BITNET:
|
||
case LLM_ARCH_QWEN:
|
||
case LLM_ARCH_QWEN2:
|
||
case LLM_ARCH_QWEN2MOE:
|
||
case LLM_ARCH_OLMOE:
|
||
case LLM_ARCH_PHI2:
|
||
case LLM_ARCH_PHI3:
|
||
case LLM_ARCH_GEMMA:
|
||
case LLM_ARCH_GEMMA2:
|
||
case LLM_ARCH_STARCODER2:
|
||
case LLM_ARCH_OPENELM:
|
||
case LLM_ARCH_GPTNEOX:
|
||
case LLM_ARCH_CODESHELL:
|
||
case LLM_ARCH_NEMOTRON:
|
||
case LLM_ARCH_EXAONE:
|
||
case LLM_ARCH_MINICPM3:
|
||
return LLAMA_ROPE_TYPE_NEOX;
|
||
|
||
// all model arches should be listed explicitly here
|
||
case LLM_ARCH_UNKNOWN:
|
||
GGML_ABORT("unknown architecture");
|
||
}
|
||
|
||
return LLAMA_ROPE_TYPE_NONE;
|
||
}
|
||
|
||
float llama_rope_freq_scale_train(const struct llama_model * model) {
|
||
return model->hparams.rope_freq_scale_train;
|
||
}
|
||
|
||
int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
|
||
const auto & it = model->gguf_kv.find(key);
|
||
if (it == model->gguf_kv.end()) {
|
||
if (buf_size > 0) {
|
||
buf[0] = '\0';
|
||
}
|
||
return -1;
|
||
}
|
||
return snprintf(buf, buf_size, "%s", it->second.c_str());
|
||
}
|
||
|
||
int32_t llama_model_meta_count(const struct llama_model * model) {
|
||
return (int)model->gguf_kv.size();
|
||
}
|
||
|
||
int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
|
||
if (i < 0 || i >= (int)model->gguf_kv.size()) {
|
||
if (buf_size > 0) {
|
||
buf[0] = '\0';
|
||
}
|
||
return -1;
|
||
}
|
||
auto it = model->gguf_kv.begin();
|
||
std::advance(it, i);
|
||
return snprintf(buf, buf_size, "%s", it->first.c_str());
|
||
}
|
||
|
||
int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
|
||
if (i < 0 || i >= (int)model->gguf_kv.size()) {
|
||
if (buf_size > 0) {
|
||
buf[0] = '\0';
|
||
}
|
||
return -1;
|
||
}
|
||
auto it = model->gguf_kv.begin();
|
||
std::advance(it, i);
|
||
return snprintf(buf, buf_size, "%s", it->second.c_str());
|
||
}
|
||
|
||
int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
|
||
return snprintf(buf, buf_size, "%s %s %s",
|
||
llama_model_arch_name(model->arch),
|
||
llama_model_type_name(model->type),
|
||
llama_model_ftype_name(model->ftype).c_str());
|
||
}
|
||
|
||
uint64_t llama_model_size(const struct llama_model * model) {
|
||
uint64_t size = 0;
|
||
for (const auto & it : model->tensors_by_name) {
|
||
size += ggml_nbytes(it.second);
|
||
}
|
||
return size;
|
||
}
|
||
|
||
uint64_t llama_model_n_params(const struct llama_model * model) {
|
||
uint64_t nparams = 0;
|
||
for (const auto & it : model->tensors_by_name) {
|
||
nparams += ggml_nelements(it.second);
|
||
}
|
||
return nparams;
|
||
}
|
||
|
||
struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
|
||
auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
|
||
[name](const std::pair<std::string, struct ggml_tensor *> & it) {
|
||
return it.first == name;
|
||
});
|
||
if (it == model->tensors_by_name.end()) {
|
||
return nullptr;
|
||
}
|
||
return it->second;
|
||
}
|
||
|
||
bool llama_model_has_encoder(const struct llama_model * model) {
|
||
switch (model->arch) {
|
||
case LLM_ARCH_T5: return true;
|
||
case LLM_ARCH_T5ENCODER: return true;
|
||
default: return false;
|
||
}
|
||
}
|
||
|
||
bool llama_model_has_decoder(const struct llama_model * model) {
|
||
switch (model->arch) {
|
||
case LLM_ARCH_T5ENCODER: return false;
|
||
default: return true;
|
||
}
|
||
}
|
||
|
||
llama_token llama_model_decoder_start_token(const struct llama_model * model) {
|
||
return model->hparams.dec_start_token_id;
|
||
}
|
||
|
||
bool llama_model_is_recurrent(const struct llama_model * model) {
|
||
switch (model->arch) {
|
||
case LLM_ARCH_MAMBA: return true;
|
||
case LLM_ARCH_RWKV6: return true;
|
||
default: return false;
|
||
}
|
||
}
|
||
|
||
uint32_t llama_model_quantize(
|
||
const char * fname_inp,
|
||
const char * fname_out,
|
||
const llama_model_quantize_params * params) {
|
||
try {
|
||
llama_model_quantize_internal(fname_inp, fname_out, params);
|
||
return 0;
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
|
||
try {
|
||
struct llama_lora_adapter * adapter = new llama_lora_adapter(model);
|
||
llama_lora_adapter_init_internal(model, path_lora, *adapter);
|
||
return adapter;
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||
return nullptr;
|
||
}
|
||
}
|
||
|
||
static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
|
||
GGML_ASSERT(cvec.tensors.empty());
|
||
GGML_ASSERT(cvec.ctxs.empty());
|
||
GGML_ASSERT(cvec.bufs.empty());
|
||
|
||
// count layer buffer types
|
||
std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
|
||
for (int64_t i = 0; i < model.hparams.n_layer; i++) {
|
||
buft_layer_count[model.buft_layer[i].buft]++;
|
||
}
|
||
|
||
// allocate contexts
|
||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||
for (auto & it : buft_layer_count) {
|
||
int n_layers = it.second;
|
||
struct ggml_init_params params = {
|
||
/*.mem_size =*/ n_layers * ggml_tensor_overhead(),
|
||
/*.mem_buffer =*/ NULL,
|
||
/*.no_alloc =*/ true,
|
||
};
|
||
ggml_context * ctx = ggml_init(params);
|
||
if (!ctx) {
|
||
LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
|
||
return 1;
|
||
}
|
||
ctx_map[it.first] = ctx;
|
||
}
|
||
|
||
// make tensors
|
||
cvec.tensors.reserve(model.hparams.n_layer);
|
||
cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
|
||
for (size_t il = 1; il < model.hparams.n_layer; il++) {
|
||
struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
|
||
ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
|
||
cvec.tensors.push_back(tensor);
|
||
}
|
||
|
||
// allocate tensors / buffers and zero
|
||
cvec.ctxs.reserve(ctx_map.size());
|
||
cvec.bufs.reserve(ctx_map.size());
|
||
for (auto it : ctx_map) {
|
||
ggml_backend_buffer_type_t buft = it.first;
|
||
ggml_context * ctx = it.second;
|
||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||
if (!buf) {
|
||
LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
|
||
return false;
|
||
}
|
||
ggml_backend_buffer_clear(buf, 0);
|
||
cvec.ctxs.push_back(ctx);
|
||
cvec.bufs.push_back(buf);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
|
||
const llama_model & model = lctx->model;
|
||
llama_control_vector & cvec = lctx->cvec;
|
||
|
||
if (data == nullptr) {
|
||
// disable the current control vector (but leave allocated for later)
|
||
cvec.layer_start = -1;
|
||
cvec.layer_end = -1;
|
||
return 0;
|
||
}
|
||
|
||
if (n_embd != (int) model.hparams.n_embd) {
|
||
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
|
||
return 1;
|
||
}
|
||
|
||
if (cvec.tensors.empty()) {
|
||
if (!llama_control_vector_init(cvec, model)) {
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
cvec.layer_start = il_start;
|
||
cvec.layer_end = il_end;
|
||
|
||
for (size_t il = 1; il < model.hparams.n_layer; il++) {
|
||
assert(cvec.tensors[il] != nullptr);
|
||
|
||
const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
|
||
if (off + n_embd <= len) {
|
||
ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
|
||
struct llama_kv_cache_view result = {
|
||
/*.n_cells = */ 0,
|
||
/*.n_seq_max = */ n_seq_max,
|
||
/*.token_count = */ 0,
|
||
/*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
|
||
/*.max_contiguous = */ 0,
|
||
/*.max_contiguous_idx = */ -1,
|
||
/*.cells = */ nullptr,
|
||
/*.cells_sequences = */ nullptr,
|
||
};
|
||
return result;
|
||
}
|
||
|
||
void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
|
||
if (view->cells != nullptr) {
|
||
free(view->cells);
|
||
view->cells = nullptr;
|
||
}
|
||
if (view->cells_sequences != nullptr) {
|
||
free(view->cells_sequences);
|
||
view->cells_sequences = nullptr;
|
||
}
|
||
}
|
||
|
||
void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
|
||
if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
|
||
view->n_cells = int32_t(ctx->kv_self.size);
|
||
void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
|
||
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
|
||
view->cells = (struct llama_kv_cache_view_cell *)p;
|
||
p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
|
||
GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
|
||
view->cells_sequences = (llama_seq_id *)p;
|
||
}
|
||
|
||
const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
|
||
llama_kv_cache_view_cell * c_curr = view->cells;
|
||
llama_seq_id * cs_curr = view->cells_sequences;
|
||
int32_t used_cells = 0;
|
||
int32_t token_count = 0;
|
||
int32_t curr_contig_idx = -1;
|
||
uint32_t max_contig = 0;
|
||
int32_t max_contig_idx = -1;
|
||
|
||
for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
|
||
const size_t curr_size = kv_cells[i].seq_id.size();
|
||
token_count += curr_size;
|
||
c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
|
||
|
||
if (curr_size > 0) {
|
||
if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
|
||
max_contig = i - curr_contig_idx;
|
||
max_contig_idx = curr_contig_idx;
|
||
}
|
||
curr_contig_idx = -1;
|
||
} else if (curr_contig_idx < 0) {
|
||
curr_contig_idx = i;
|
||
}
|
||
|
||
int seq_idx = 0;
|
||
for (const llama_seq_id it : kv_cells[i].seq_id) {
|
||
if (seq_idx >= view->n_seq_max) {
|
||
break;
|
||
}
|
||
cs_curr[seq_idx] = it;
|
||
seq_idx++;
|
||
}
|
||
if (seq_idx != 0) {
|
||
used_cells++;
|
||
}
|
||
for (; seq_idx < view->n_seq_max; seq_idx++) {
|
||
cs_curr[seq_idx] = -1;
|
||
}
|
||
}
|
||
if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
|
||
max_contig_idx = curr_contig_idx;
|
||
max_contig = kv_cells.size() - curr_contig_idx;
|
||
}
|
||
view->max_contiguous = max_contig;
|
||
view->max_contiguous_idx = max_contig_idx;
|
||
view->token_count = token_count;
|
||
view->used_cells = used_cells;
|
||
if (uint32_t(used_cells) != ctx->kv_self.used) {
|
||
LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
|
||
__func__, ctx->kv_self.used, used_cells);
|
||
}
|
||
}
|
||
|
||
int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
|
||
int result = 0;
|
||
|
||
for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
|
||
result += ctx->kv_self.cells[i].seq_id.size();
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
|
||
return ctx->kv_self.used;
|
||
}
|
||
|
||
void llama_kv_cache_clear(struct llama_context * ctx) {
|
||
llama_kv_cache_clear(ctx->kv_self);
|
||
}
|
||
|
||
bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
||
return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
|
||
}
|
||
|
||
void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
||
if (seq_id_src == seq_id_dst) {
|
||
return;
|
||
}
|
||
llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
|
||
}
|
||
|
||
void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
|
||
llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
|
||
}
|
||
|
||
void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
|
||
if (delta == 0) {
|
||
return;
|
||
}
|
||
|
||
llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
|
||
}
|
||
|
||
void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
||
if (d == 1) {
|
||
return;
|
||
}
|
||
|
||
llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
|
||
}
|
||
|
||
llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
|
||
return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
|
||
}
|
||
|
||
void llama_kv_cache_defrag(struct llama_context * ctx) {
|
||
llama_kv_cache_defrag(ctx->kv_self);
|
||
}
|
||
|
||
void llama_kv_cache_update(struct llama_context * ctx) {
|
||
llama_kv_cache_update_internal(*ctx);
|
||
}
|
||
|
||
// deprecated
|
||
size_t llama_get_state_size(struct llama_context * ctx) {
|
||
return llama_state_get_size(ctx);
|
||
}
|
||
|
||
// deprecated
|
||
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
||
return llama_state_get_data(ctx, dst, -1);
|
||
}
|
||
|
||
// deprecated
|
||
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
|
||
return llama_state_set_data(ctx, src, -1);
|
||
}
|
||
|
||
// deprecated
|
||
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
|
||
return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
|
||
}
|
||
|
||
// deprecated
|
||
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
|
||
return llama_state_save_file(ctx, path_session, tokens, n_token_count);
|
||
}
|
||
|
||
// TODO: replace all non-fatal assertions with returned errors or exceptions
|
||
struct llama_data_write {
|
||
virtual void write(const void * src, size_t size) = 0;
|
||
virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0;
|
||
virtual size_t get_size_written() = 0;
|
||
virtual ~llama_data_write() = default;
|
||
|
||
void write_string(const std::string & str) {
|
||
uint32_t str_size = str.size();
|
||
|
||
write(&str_size, sizeof(str_size));
|
||
write(str.data(), str_size);
|
||
}
|
||
|
||
void write_model_info(const struct llama_context * ctx) {
|
||
std::string arch_str = LLM_ARCH_NAMES.at(ctx->model.arch);
|
||
write_string(arch_str);
|
||
// TODO: add more model-specific info which should prevent loading the session file if not identical
|
||
}
|
||
|
||
//void write_rng(const std::mt19937 & rng) {
|
||
// std::ostringstream rng_ss;
|
||
// rng_ss << rng;
|
||
|
||
// const std::string & rng_str = rng_ss.str();
|
||
|
||
// write_string(rng_str);
|
||
//}
|
||
|
||
void write_output_ids(struct llama_context * ctx) {
|
||
llama_output_reorder(ctx);
|
||
|
||
const uint32_t n_outputs = ctx->n_outputs;
|
||
|
||
std::vector<int32_t> output_pos;
|
||
|
||
const size_t n_batch = ctx->cparams.n_batch;
|
||
const auto & output_ids = ctx->output_ids;
|
||
|
||
GGML_ASSERT(n_outputs <= ctx->output_size);
|
||
|
||
output_pos.resize(n_outputs);
|
||
|
||
// build a more compact representation of the output ids
|
||
for (size_t i = 0; i < n_batch; ++i) {
|
||
// map an output id to a position in the batch
|
||
int32_t pos = output_ids[i];
|
||
if (pos >= 0) {
|
||
GGML_ASSERT((uint32_t) pos < n_outputs);
|
||
output_pos[pos] = i;
|
||
}
|
||
}
|
||
|
||
write(&n_outputs, sizeof(n_outputs));
|
||
|
||
if (n_outputs) {
|
||
write(output_pos.data(), n_outputs * sizeof(int32_t));
|
||
}
|
||
}
|
||
|
||
void write_logits(const struct llama_context * ctx) {
|
||
const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_vocab);
|
||
|
||
write(&logits_size, sizeof(logits_size));
|
||
|
||
if (logits_size) {
|
||
write(ctx->logits, logits_size * sizeof(float));
|
||
}
|
||
}
|
||
|
||
void write_embeddings(const struct llama_context * ctx) {
|
||
const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_embd);
|
||
|
||
write(&embeddings_size, sizeof(embeddings_size));
|
||
|
||
if (embeddings_size) {
|
||
write(ctx->embd, embeddings_size * sizeof(float));
|
||
}
|
||
}
|
||
|
||
void write_kv_cache_meta(const llama_kv_cache & kv_self, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) {
|
||
|
||
for (const auto & range : cell_ranges) {
|
||
for (uint32_t i = range.first; i < range.second; ++i) {
|
||
const auto & cell = kv_self.cells[i];
|
||
const llama_pos pos = cell.pos;
|
||
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
|
||
|
||
write(&pos, sizeof(pos));
|
||
write(&n_seq_id, sizeof(n_seq_id));
|
||
|
||
if (n_seq_id) {
|
||
for (auto seq_id : cell.seq_id) {
|
||
write(&seq_id, sizeof(seq_id));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void write_kv_cache_data(const struct llama_context * ctx, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) {
|
||
const struct llama_kv_cache & kv_self = ctx->kv_self;
|
||
const struct llama_hparams & hparams = ctx->model.hparams;
|
||
|
||
const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
|
||
const uint32_t n_layer = hparams.n_layer;
|
||
|
||
write(&v_trans, sizeof(v_trans));
|
||
write(&n_layer, sizeof(n_layer));
|
||
|
||
std::vector<uint8_t> tmp_buf;
|
||
|
||
// Iterate and write all the keys first, each row is a cell
|
||
// Get whole range at a time
|
||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
|
||
|
||
// Write key type
|
||
const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
|
||
write(&k_type_i, sizeof(k_type_i));
|
||
|
||
// Write row size of key
|
||
const uint64_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
|
||
write(&k_size_row, sizeof(k_size_row));
|
||
|
||
// Read each range of cells of k_size length each into tmp_buf and write out
|
||
for (const auto & range : cell_ranges) {
|
||
const size_t range_size = range.second - range.first;
|
||
const size_t buf_size = range_size * k_size_row;
|
||
write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
|
||
}
|
||
}
|
||
|
||
if (!kv_self.v_trans) {
|
||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
||
|
||
// Write value type
|
||
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
|
||
write(&v_type_i, sizeof(v_type_i));
|
||
|
||
// Write row size of value
|
||
const uint64_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
|
||
write(&v_size_row, sizeof(v_size_row));
|
||
|
||
// Read each range of cells of v_size length each into tmp_buf and write out
|
||
for (const auto & range : cell_ranges) {
|
||
const size_t range_size = range.second - range.first;
|
||
const size_t buf_size = range_size * v_size_row;
|
||
write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
|
||
}
|
||
}
|
||
} else {
|
||
// When v is transposed, we also need the element size and get the element ranges from each row
|
||
const uint32_t kv_size = kv_self.size;
|
||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
||
|
||
// Write value type
|
||
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
|
||
write(&v_type_i, sizeof(v_type_i));
|
||
|
||
// Write element size
|
||
const uint32_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
|
||
write(&v_size_el, sizeof(v_size_el));
|
||
|
||
// Write GQA embedding size
|
||
write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
|
||
|
||
// For each row, we get the element values of each cell
|
||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
||
// Read each range of cells of v_size_el length each into tmp_buf and write out
|
||
for (const auto & range : cell_ranges) {
|
||
const size_t range_size = range.second - range.first;
|
||
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
|
||
const size_t buf_size = range_size * v_size_el;
|
||
write_tensor_data(kv_self.v_l[il], src_offset, buf_size);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void write_kv_cache(const struct llama_context * ctx, llama_seq_id seq_id = -1) {
|
||
const struct llama_kv_cache & kv_self = ctx->kv_self;
|
||
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
|
||
uint32_t cell_count = 0;
|
||
|
||
// Count the number of cells with the specified seq_id
|
||
// Find all the ranges of cells with this seq id (or all, when -1)
|
||
uint32_t cell_range_begin = kv_self.size;
|
||
for (uint32_t i = 0; i < kv_self.size; ++i) {
|
||
const auto & cell = kv_self.cells[i];
|
||
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
|
||
++cell_count;
|
||
if (cell_range_begin == kv_self.size) {
|
||
cell_range_begin = i;
|
||
}
|
||
} else {
|
||
if (cell_range_begin != kv_self.size) {
|
||
cell_ranges.emplace_back(cell_range_begin, i);
|
||
cell_range_begin = kv_self.size;
|
||
}
|
||
}
|
||
}
|
||
if (cell_range_begin != kv_self.size) {
|
||
cell_ranges.emplace_back(cell_range_begin, kv_self.size);
|
||
}
|
||
|
||
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
|
||
uint32_t cell_count_check = 0;
|
||
for (const auto & range : cell_ranges) {
|
||
cell_count_check += range.second - range.first;
|
||
}
|
||
GGML_ASSERT(cell_count == cell_count_check);
|
||
|
||
write(&cell_count, sizeof(cell_count));
|
||
|
||
write_kv_cache_meta(kv_self, cell_ranges, seq_id);
|
||
write_kv_cache_data(ctx, cell_ranges);
|
||
}
|
||
};
|
||
|
||
struct llama_data_read {
|
||
virtual const uint8_t * read(size_t size) = 0;
|
||
virtual void read_to(void * dst, size_t size) = 0;
|
||
virtual size_t get_size_read() = 0;
|
||
virtual ~llama_data_read() = default;
|
||
|
||
void read_string(std::string & str) {
|
||
uint32_t str_size;
|
||
read_to(&str_size, sizeof(str_size));
|
||
|
||
str.assign((const char *) read(str_size), str_size);
|
||
}
|
||
|
||
// validate model information
|
||
void read_model_info(const struct llama_context * ctx) {
|
||
std::string cur_arch_str = LLM_ARCH_NAMES.at(ctx->model.arch);
|
||
std::string arch_str;
|
||
read_string(arch_str);
|
||
if (cur_arch_str != arch_str) {
|
||
throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str()));
|
||
}
|
||
// TODO: add more info which needs to be identical but which is not verified otherwise
|
||
}
|
||
|
||
//void read_rng(std::mt19937 & rng) {
|
||
// std::string rng_str;
|
||
// read_string(rng_str);
|
||
|
||
// std::istringstream rng_ss(rng_str);
|
||
// rng_ss >> rng;
|
||
|
||
// if (rng_ss.fail()) {
|
||
// throw std::runtime_error("failed to load RNG state");
|
||
// }
|
||
//}
|
||
|
||
void read_output_ids(struct llama_context * ctx) {
|
||
std::vector<int32_t> output_pos;
|
||
|
||
uint32_t n_outputs;
|
||
read_to(&n_outputs, sizeof(n_outputs));
|
||
|
||
if (n_outputs > llama_output_reserve(*ctx, n_outputs)) {
|
||
throw std::runtime_error("could not reserve outputs");
|
||
}
|
||
|
||
if (n_outputs) {
|
||
output_pos.resize(n_outputs);
|
||
read_to(output_pos.data(), n_outputs * sizeof(int32_t));
|
||
|
||
for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
|
||
int32_t id = output_pos[i];
|
||
if ((uint32_t) id >= ctx->cparams.n_batch) {
|
||
throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, ctx->cparams.n_batch));
|
||
}
|
||
ctx->output_ids[id] = i;
|
||
}
|
||
|
||
ctx->n_outputs = n_outputs;
|
||
}
|
||
}
|
||
|
||
void read_logits(struct llama_context * ctx) {
|
||
uint64_t logits_size;
|
||
read_to(&logits_size, sizeof(logits_size));
|
||
|
||
if (ctx->logits_size < logits_size) {
|
||
throw std::runtime_error("logits buffer too small");
|
||
}
|
||
|
||
if (logits_size) {
|
||
read_to(ctx->logits, logits_size * sizeof(float));
|
||
}
|
||
}
|
||
|
||
void read_embeddings(struct llama_context * ctx) {
|
||
uint64_t embeddings_size;
|
||
read_to(&embeddings_size, sizeof(embeddings_size));
|
||
|
||
if (ctx->embd_size < embeddings_size) {
|
||
throw std::runtime_error("embeddings buffer too small");
|
||
}
|
||
|
||
if (embeddings_size) {
|
||
read_to(ctx->embd, embeddings_size * sizeof(float));
|
||
}
|
||
}
|
||
|
||
bool read_kv_cache_meta(struct llama_context * ctx, uint32_t cell_count, llama_seq_id dest_seq_id = -1) {
|
||
struct llama_kv_cache & kv_self = ctx->kv_self;
|
||
|
||
if (dest_seq_id != -1) {
|
||
// single sequence
|
||
|
||
llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
|
||
|
||
llama_ubatch batch = ctx->sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
|
||
batch.n_tokens = cell_count;
|
||
batch.n_seq_tokens = cell_count;
|
||
batch.n_seqs = 1;
|
||
|
||
for (uint32_t i = 0; i < cell_count; ++i) {
|
||
llama_pos pos;
|
||
uint32_t n_seq_id;
|
||
|
||
read_to(&pos, sizeof(pos));
|
||
read_to(&n_seq_id, sizeof(n_seq_id));
|
||
|
||
if (n_seq_id != 0) {
|
||
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
|
||
return false;
|
||
}
|
||
|
||
batch.pos[i] = pos;
|
||
}
|
||
batch.n_seq_id[0] = 1;
|
||
batch.seq_id[0] = &dest_seq_id;
|
||
if (!llama_kv_cache_find_slot(kv_self, batch)) {
|
||
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
|
||
return false;
|
||
}
|
||
|
||
// DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
|
||
// Assume that this is one contiguous block of cells
|
||
GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
|
||
GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
|
||
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
|
||
GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
|
||
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
|
||
} else {
|
||
// whole KV cache restore
|
||
|
||
if (cell_count > kv_self.size) {
|
||
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
|
||
return false;
|
||
}
|
||
|
||
llama_kv_cache_clear(kv_self);
|
||
|
||
for (uint32_t i = 0; i < cell_count; ++i) {
|
||
llama_kv_cell & cell = kv_self.cells[i];
|
||
|
||
llama_pos pos;
|
||
uint32_t n_seq_id;
|
||
|
||
read_to(&pos, sizeof(pos));
|
||
read_to(&n_seq_id, sizeof(n_seq_id));
|
||
|
||
cell.pos = pos;
|
||
|
||
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
||
llama_seq_id seq_id;
|
||
read_to(&seq_id, sizeof(seq_id));
|
||
|
||
if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
|
||
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
|
||
return false;
|
||
}
|
||
|
||
cell.seq_id.insert(seq_id);
|
||
|
||
if (kv_self.recurrent) {
|
||
int32_t & tail = kv_self.cells[seq_id].tail;
|
||
if (tail != -1) {
|
||
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
|
||
return false;
|
||
}
|
||
tail = i;
|
||
}
|
||
}
|
||
}
|
||
|
||
kv_self.head = 0;
|
||
kv_self.used = cell_count;
|
||
}
|
||
|
||
if (kv_self.recurrent) {
|
||
for (uint32_t i = 0; i < cell_count; ++i) {
|
||
uint32_t cell_id = kv_self.head + i;
|
||
// make sure the recurrent states will keep their restored state
|
||
kv_self.cells[cell_id].src = cell_id;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
bool read_kv_cache_data(struct llama_context * ctx, uint32_t cell_count) {
|
||
const struct llama_hparams & hparams = ctx->model.hparams;
|
||
struct llama_kv_cache & kv_self = ctx->kv_self;
|
||
uint32_t v_trans;
|
||
uint32_t n_layer;
|
||
read_to(&v_trans, sizeof(v_trans));
|
||
read_to(&n_layer, sizeof(n_layer));
|
||
|
||
if (n_layer != hparams.n_layer) {
|
||
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
|
||
return false;
|
||
}
|
||
if (cell_count > kv_self.size) {
|
||
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, kv_self.size);
|
||
return false;
|
||
}
|
||
if (kv_self.v_trans != (bool) v_trans) {
|
||
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
|
||
return false;
|
||
}
|
||
|
||
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
|
||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
|
||
|
||
// Read type of key
|
||
int32_t k_type_i_ref;
|
||
read_to(&k_type_i_ref, sizeof(k_type_i_ref));
|
||
const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
|
||
if (k_type_i != k_type_i_ref) {
|
||
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
|
||
return false;
|
||
}
|
||
|
||
// Read row size of key
|
||
uint64_t k_size_row_ref;
|
||
read_to(&k_size_row_ref, sizeof(k_size_row_ref));
|
||
const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
|
||
if (k_size_row != k_size_row_ref) {
|
||
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
|
||
return false;
|
||
}
|
||
|
||
if (cell_count) {
|
||
// Read and set the keys for the whole cell range
|
||
ggml_backend_tensor_set(kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head * k_size_row, cell_count * k_size_row);
|
||
}
|
||
}
|
||
|
||
if (!kv_self.v_trans) {
|
||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
||
|
||
// Read type of value
|
||
int32_t v_type_i_ref;
|
||
read_to(&v_type_i_ref, sizeof(v_type_i_ref));
|
||
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
|
||
if (v_type_i != v_type_i_ref) {
|
||
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
|
||
return false;
|
||
}
|
||
|
||
// Read row size of value
|
||
uint64_t v_size_row_ref;
|
||
read_to(&v_size_row_ref, sizeof(v_size_row_ref));
|
||
const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
|
||
if (v_size_row != v_size_row_ref) {
|
||
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
|
||
return false;
|
||
}
|
||
|
||
if (cell_count) {
|
||
// Read and set the values for the whole cell range
|
||
ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head * v_size_row, cell_count * v_size_row);
|
||
}
|
||
}
|
||
} else {
|
||
// For each layer, read the values for each cell (transposed)
|
||
for (uint32_t il = 0; il < n_layer; ++il) {
|
||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
||
|
||
// Read type of value
|
||
int32_t v_type_i_ref;
|
||
read_to(&v_type_i_ref, sizeof(v_type_i_ref));
|
||
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
|
||
if (v_type_i != v_type_i_ref) {
|
||
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
|
||
return false;
|
||
}
|
||
|
||
// Read element size of value
|
||
uint32_t v_size_el_ref;
|
||
read_to(&v_size_el_ref, sizeof(v_size_el_ref));
|
||
const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
|
||
if (v_size_el != v_size_el_ref) {
|
||
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
|
||
return false;
|
||
}
|
||
|
||
// Read GQA embedding size
|
||
uint32_t n_embd_v_gqa_ref;
|
||
read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
|
||
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
|
||
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
|
||
return false;
|
||
}
|
||
|
||
if (cell_count) {
|
||
// For each row in the transposed matrix, read the values for the whole cell range
|
||
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
||
const size_t dst_offset = (kv_self.head + j * kv_self.size) * v_size_el;
|
||
ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
void read_kv_cache(struct llama_context * ctx, llama_seq_id seq_id = -1) {
|
||
uint32_t cell_count;
|
||
read_to(&cell_count, sizeof(cell_count));
|
||
|
||
bool res = read_kv_cache_meta(ctx, cell_count, seq_id) && read_kv_cache_data(ctx, cell_count);
|
||
|
||
if (!res) {
|
||
if (seq_id == -1) {
|
||
llama_kv_cache_clear(ctx);
|
||
} else {
|
||
llama_kv_cache_seq_rm(ctx, seq_id, -1, -1);
|
||
}
|
||
throw std::runtime_error("failed to restore kv cache");
|
||
}
|
||
}
|
||
};
|
||
|
||
struct llama_data_write_dummy : llama_data_write {
|
||
size_t size_written = 0;
|
||
|
||
llama_data_write_dummy() {}
|
||
|
||
void write(const void * /* src */, size_t size) override {
|
||
size_written += size;
|
||
}
|
||
|
||
void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override {
|
||
size_written += size;
|
||
}
|
||
|
||
size_t get_size_written() override {
|
||
return size_written;
|
||
}
|
||
};
|
||
|
||
struct llama_data_write_buffer : llama_data_write {
|
||
uint8_t * ptr;
|
||
size_t buf_size = 0;
|
||
size_t size_written = 0;
|
||
|
||
llama_data_write_buffer(uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
|
||
|
||
void write(const void * src, size_t size) override {
|
||
if (size > buf_size) {
|
||
throw std::runtime_error("unexpectedly reached end of buffer");
|
||
}
|
||
memcpy(ptr, src, size);
|
||
ptr += size;
|
||
size_written += size;
|
||
buf_size -= size;
|
||
}
|
||
|
||
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
|
||
if (size > buf_size) {
|
||
throw std::runtime_error("unexpectedly reached end of buffer");
|
||
}
|
||
ggml_backend_tensor_get(tensor, ptr, offset, size);
|
||
ptr += size;
|
||
size_written += size;
|
||
buf_size -= size;
|
||
}
|
||
|
||
size_t get_size_written() override {
|
||
return size_written;
|
||
}
|
||
};
|
||
|
||
struct llama_data_read_buffer : llama_data_read {
|
||
const uint8_t * ptr;
|
||
size_t buf_size = 0;
|
||
size_t size_read = 0;
|
||
|
||
llama_data_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {}
|
||
|
||
const uint8_t * read(size_t size) override {
|
||
const uint8_t * base_ptr = ptr;
|
||
if (size > buf_size) {
|
||
throw std::runtime_error("unexpectedly reached end of buffer");
|
||
}
|
||
ptr += size;
|
||
size_read += size;
|
||
buf_size -= size;
|
||
return base_ptr;
|
||
}
|
||
|
||
void read_to(void * dst, size_t size) override {
|
||
memcpy(dst, read(size), size);
|
||
}
|
||
|
||
size_t get_size_read() override {
|
||
return size_read;
|
||
}
|
||
};
|
||
|
||
struct llama_data_write_file : llama_data_write {
|
||
llama_file * file;
|
||
size_t size_written = 0;
|
||
std::vector<uint8_t> temp_buffer;
|
||
|
||
llama_data_write_file(llama_file * f) : file(f) {}
|
||
|
||
void write(const void * src, size_t size) override {
|
||
file->write_raw(src, size);
|
||
size_written += size;
|
||
}
|
||
|
||
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override {
|
||
temp_buffer.resize(size);
|
||
ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size);
|
||
write(temp_buffer.data(), temp_buffer.size());
|
||
}
|
||
|
||
size_t get_size_written() override {
|
||
return size_written;
|
||
}
|
||
};
|
||
|
||
struct llama_data_read_file : llama_data_read {
|
||
llama_file * file;
|
||
size_t size_read = 0;
|
||
std::vector<uint8_t> temp_buffer;
|
||
|
||
llama_data_read_file(llama_file * f) : file(f) {}
|
||
|
||
void read_to(void * dst, size_t size) override {
|
||
file->read_raw(dst, size);
|
||
size_read += size;
|
||
}
|
||
|
||
const uint8_t * read(size_t size) override {
|
||
temp_buffer.resize(size);
|
||
read_to(temp_buffer.data(), size);
|
||
return temp_buffer.data();
|
||
}
|
||
|
||
size_t get_size_read() override {
|
||
return size_read;
|
||
}
|
||
};
|
||
|
||
/** copy state data into either a buffer or file depending on the passed in context
|
||
*
|
||
* file context:
|
||
* llama_file file("/path", "wb");
|
||
* llama_data_write_file data_ctx(&file);
|
||
* llama_state_get_data_internal(ctx, data_ctx);
|
||
*
|
||
* buffer context:
|
||
* std::vector<uint8_t> buf(max_size, 0);
|
||
* llama_data_write_buffer data_ctx(buf.data(), max_size);
|
||
* llama_state_get_data_internal(ctx, data_ctx);
|
||
*
|
||
*/
|
||
static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx) {
|
||
llama_synchronize(ctx);
|
||
|
||
data_ctx.write_model_info(ctx);
|
||
|
||
// copy outputs
|
||
data_ctx.write_output_ids(ctx);
|
||
data_ctx.write_logits(ctx);
|
||
data_ctx.write_embeddings(ctx);
|
||
|
||
data_ctx.write_kv_cache(ctx);
|
||
|
||
return data_ctx.get_size_written();
|
||
}
|
||
|
||
size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst, size_t size) {
|
||
llama_data_write_buffer data_ctx(dst, size);
|
||
try {
|
||
return llama_state_get_data_internal(ctx, data_ctx);
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what());
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
// Returns the *actual* size of the state.
|
||
// Intended to be used when saving to state to a buffer.
|
||
size_t llama_state_get_size(struct llama_context * ctx) {
|
||
llama_data_write_dummy data_ctx;
|
||
try {
|
||
return llama_state_get_data_internal(ctx, data_ctx);
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what());
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static size_t llama_state_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx) {
|
||
llama_synchronize(ctx);
|
||
|
||
data_ctx.read_model_info(ctx);
|
||
|
||
// set outputs
|
||
data_ctx.read_output_ids(ctx);
|
||
data_ctx.read_logits(ctx);
|
||
data_ctx.read_embeddings(ctx);
|
||
|
||
data_ctx.read_kv_cache(ctx);
|
||
|
||
return data_ctx.get_size_read();
|
||
}
|
||
|
||
// Sets the state reading from the specified source address
|
||
size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src, size_t size) {
|
||
llama_data_read_buffer data_ctx(src, size);
|
||
try {
|
||
return llama_state_set_data_internal(ctx, data_ctx);
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what());
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
|
||
llama_file file(path_session, "rb");
|
||
|
||
// sanity checks
|
||
{
|
||
const uint32_t magic = file.read_u32();
|
||
const uint32_t version = file.read_u32();
|
||
|
||
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
|
||
LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// load the prompt
|
||
{
|
||
const uint32_t n_token_count = file.read_u32();
|
||
|
||
if (n_token_count > n_token_capacity) {
|
||
LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
|
||
return false;
|
||
}
|
||
|
||
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
|
||
*n_token_count_out = n_token_count;
|
||
}
|
||
|
||
// restore the context state
|
||
{
|
||
const size_t n_state_size_cur = file.size - file.tell();
|
||
|
||
llama_data_read_file data_ctx(&file);
|
||
const size_t n_read = llama_state_set_data_internal(ctx, data_ctx);
|
||
|
||
if (n_read != n_state_size_cur) {
|
||
LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read);
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
|
||
try {
|
||
return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what());
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
|
||
llama_file file(path_session, "wb");
|
||
|
||
file.write_u32(LLAMA_SESSION_MAGIC);
|
||
file.write_u32(LLAMA_SESSION_VERSION);
|
||
|
||
// save the prompt
|
||
file.write_u32((uint32_t) n_token_count);
|
||
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
|
||
|
||
// save the context state using stream saving
|
||
llama_data_write_file data_ctx(&file);
|
||
llama_state_get_data_internal(ctx, data_ctx);
|
||
|
||
return true;
|
||
}
|
||
|
||
bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
|
||
try {
|
||
return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what());
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx, llama_seq_id seq_id) {
|
||
llama_synchronize(ctx);
|
||
|
||
data_ctx.write_kv_cache(ctx, seq_id);
|
||
|
||
return data_ctx.get_size_written();
|
||
}
|
||
|
||
size_t llama_state_seq_get_size(struct llama_context * ctx, llama_seq_id seq_id) {
|
||
llama_data_write_dummy data_ctx;
|
||
return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
|
||
}
|
||
|
||
size_t llama_state_seq_get_data(struct llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) {
|
||
llama_data_write_buffer data_ctx(dst, size);
|
||
try {
|
||
return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error saving sequence state: %s\n", __func__, err.what());
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static size_t llama_state_seq_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx, llama_seq_id dest_seq_id) {
|
||
llama_synchronize(ctx);
|
||
|
||
data_ctx.read_kv_cache(ctx, dest_seq_id);
|
||
|
||
return data_ctx.get_size_read();
|
||
}
|
||
|
||
size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id dest_seq_id) {
|
||
llama_data_read_buffer data_ctx(src, size);
|
||
try {
|
||
return llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error loading sequence state: %s\n", __func__, err.what());
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
|
||
llama_file file(filepath, "wb");
|
||
|
||
file.write_u32(LLAMA_STATE_SEQ_MAGIC);
|
||
file.write_u32(LLAMA_STATE_SEQ_VERSION);
|
||
|
||
// save the prompt
|
||
file.write_u32((uint32_t) n_token_count);
|
||
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
|
||
|
||
// save the context state using stream saving
|
||
llama_data_write_file data_ctx(&file);
|
||
llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
|
||
|
||
const size_t res = file.tell();
|
||
GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
|
||
return res;
|
||
}
|
||
|
||
static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
|
||
llama_file file(filepath, "rb");
|
||
|
||
// version checks
|
||
{
|
||
const uint32_t magic = file.read_u32();
|
||
const uint32_t version = file.read_u32();
|
||
|
||
if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
|
||
LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
// load the prompt
|
||
{
|
||
const uint32_t n_token_count = file.read_u32();
|
||
|
||
if (n_token_count > n_token_capacity) {
|
||
LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
|
||
return 0;
|
||
}
|
||
|
||
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
|
||
*n_token_count_out = n_token_count;
|
||
}
|
||
|
||
// restore the context state
|
||
{
|
||
const size_t state_size = file.size - file.tell();
|
||
llama_data_read_file data_ctx(&file);
|
||
const size_t nread = llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id);
|
||
if (!nread) {
|
||
LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
|
||
return 0;
|
||
}
|
||
GGML_ASSERT(nread <= state_size);
|
||
GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
|
||
}
|
||
|
||
return file.tell();
|
||
}
|
||
|
||
size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
|
||
try {
|
||
return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what());
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
|
||
try {
|
||
return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what());
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) {
|
||
ctx->cparams.n_threads = n_threads;
|
||
ctx->cparams.n_threads_batch = n_threads_batch;
|
||
}
|
||
|
||
int32_t llama_n_threads(struct llama_context * ctx) {
|
||
return ctx->cparams.n_threads;
|
||
}
|
||
|
||
int32_t llama_n_threads_batch(struct llama_context * ctx) {
|
||
return ctx->cparams.n_threads_batch;
|
||
}
|
||
|
||
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
|
||
ctx->abort_callback = abort_callback;
|
||
ctx->abort_callback_data = abort_callback_data;
|
||
}
|
||
|
||
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
|
||
ctx->cparams.embeddings = embeddings;
|
||
}
|
||
|
||
void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
||
ctx->cparams.causal_attn = causal_attn;
|
||
}
|
||
|
||
struct llama_batch llama_batch_get_one(
|
||
llama_token * tokens,
|
||
int32_t n_tokens,
|
||
llama_pos pos_0,
|
||
llama_seq_id seq_id) {
|
||
return {
|
||
/*n_tokens =*/ n_tokens,
|
||
/*tokens =*/ tokens,
|
||
/*embd =*/ nullptr,
|
||
/*pos =*/ nullptr,
|
||
/*n_seq_id =*/ nullptr,
|
||
/*seq_id =*/ nullptr,
|
||
/*logits =*/ nullptr,
|
||
/*all_pos_0 =*/ pos_0,
|
||
/*all_pos_1 =*/ 1,
|
||
/*all_seq_id =*/ seq_id,
|
||
};
|
||
}
|
||
|
||
struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
|
||
llama_batch batch = {
|
||
/*n_tokens =*/ 0,
|
||
/*tokens =*/ nullptr,
|
||
/*embd =*/ nullptr,
|
||
/*pos =*/ nullptr,
|
||
/*n_seq_id =*/ nullptr,
|
||
/*seq_id =*/ nullptr,
|
||
/*logits =*/ nullptr,
|
||
/*all_pos_0 =*/ 0,
|
||
/*all_pos_1 =*/ 0,
|
||
/*all_seq_id =*/ 0,
|
||
};
|
||
|
||
if (embd) {
|
||
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
||
} else {
|
||
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
||
}
|
||
|
||
batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
|
||
batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
|
||
batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
|
||
for (int i = 0; i < n_tokens_alloc; ++i) {
|
||
batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
|
||
}
|
||
batch.seq_id[n_tokens_alloc] = nullptr;
|
||
|
||
batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
|
||
|
||
return batch;
|
||
}
|
||
|
||
void llama_batch_free(struct llama_batch batch) {
|
||
if (batch.token) free(batch.token);
|
||
if (batch.embd) free(batch.embd);
|
||
if (batch.pos) free(batch.pos);
|
||
if (batch.n_seq_id) free(batch.n_seq_id);
|
||
if (batch.seq_id) {
|
||
for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
|
||
free(batch.seq_id[i]);
|
||
}
|
||
free(batch.seq_id);
|
||
}
|
||
if (batch.logits) free(batch.logits);
|
||
}
|
||
|
||
int32_t llama_encode(
|
||
struct llama_context * ctx,
|
||
struct llama_batch batch) {
|
||
const int ret = llama_encode_internal(*ctx, batch);
|
||
if (ret < 0) {
|
||
LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
int32_t llama_decode(
|
||
struct llama_context * ctx,
|
||
struct llama_batch batch) {
|
||
const int ret = llama_decode_internal(*ctx, batch);
|
||
if (ret < 0) {
|
||
LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
void llama_synchronize(struct llama_context * ctx) {
|
||
ggml_backend_sched_synchronize(ctx->sched);
|
||
|
||
// FIXME: if multiple single tokens are evaluated without a synchronization,
|
||
// the stats will be added to the prompt evaluation stats
|
||
// this should only happen when using batch size 1 to evaluate a batch
|
||
|
||
// add the evaluation to the stats
|
||
if (ctx->n_queued_tokens == 1) {
|
||
if (!ctx->cparams.no_perf) {
|
||
ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
|
||
}
|
||
ctx->n_eval++;
|
||
} else if (ctx->n_queued_tokens > 1) {
|
||
if (!ctx->cparams.no_perf) {
|
||
ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
|
||
}
|
||
ctx->n_p_eval += ctx->n_queued_tokens;
|
||
}
|
||
|
||
// get a more accurate load time, upon first eval
|
||
if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
|
||
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
|
||
ctx->has_evaluated_once = true;
|
||
}
|
||
|
||
ctx->n_queued_tokens = 0;
|
||
ctx->t_compute_start_us = 0;
|
||
}
|
||
|
||
float * llama_get_logits(struct llama_context * ctx) {
|
||
llama_synchronize(ctx);
|
||
|
||
// reorder logits for backward compatibility
|
||
// TODO: maybe deprecate this
|
||
llama_output_reorder(ctx);
|
||
|
||
return ctx->logits;
|
||
}
|
||
|
||
float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
||
int32_t j = -1;
|
||
llama_synchronize(ctx);
|
||
|
||
try {
|
||
if (ctx->logits == nullptr) {
|
||
throw std::runtime_error("no logits");
|
||
}
|
||
|
||
if (i < 0) {
|
||
j = ctx->n_outputs + i;
|
||
if (j < 0) {
|
||
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
|
||
}
|
||
} else if ((size_t) i >= ctx->output_ids.size()) {
|
||
throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
|
||
} else {
|
||
j = ctx->output_ids[i];
|
||
}
|
||
|
||
if (j < 0) {
|
||
throw std::runtime_error(format("batch.logits[%d] != true", i));
|
||
}
|
||
if (j >= ctx->n_outputs) {
|
||
// This should not happen
|
||
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
|
||
}
|
||
|
||
return ctx->logits + j*ctx->model.hparams.n_vocab;
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
|
||
#ifndef NDEBUG
|
||
GGML_ABORT("fatal error");
|
||
#else
|
||
return nullptr;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
float * llama_get_embeddings(struct llama_context * ctx) {
|
||
llama_synchronize(ctx);
|
||
|
||
// reorder embeddings for backward compatibility
|
||
// TODO: maybe deprecate this
|
||
llama_output_reorder(ctx);
|
||
|
||
return ctx->embd;
|
||
}
|
||
|
||
float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
|
||
int32_t j = -1;
|
||
|
||
llama_synchronize(ctx);
|
||
|
||
try {
|
||
if (ctx->embd == nullptr) {
|
||
throw std::runtime_error("no embeddings");
|
||
}
|
||
|
||
if (i < 0) {
|
||
j = ctx->n_outputs + i;
|
||
if (j < 0) {
|
||
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
|
||
}
|
||
} else if ((size_t) i >= ctx->output_ids.size()) {
|
||
throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
|
||
} else {
|
||
j = ctx->output_ids[i];
|
||
}
|
||
|
||
if (j < 0) {
|
||
throw std::runtime_error(format("batch.logits[%d] != true", i));
|
||
}
|
||
if (j >= ctx->n_outputs) {
|
||
// This should not happen
|
||
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
|
||
}
|
||
|
||
return ctx->embd + j*ctx->model.hparams.n_embd;
|
||
} catch (const std::exception & err) {
|
||
LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
|
||
#ifndef NDEBUG
|
||
GGML_ABORT("fatal error");
|
||
#else
|
||
return nullptr;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
|
||
llama_synchronize(ctx);
|
||
|
||
auto it = ctx->embd_seq.find(seq_id);
|
||
if (it == ctx->embd_seq.end()) {
|
||
return nullptr;
|
||
}
|
||
|
||
return it->second.data();
|
||
}
|
||
|
||
//
|
||
// vocab
|
||
//
|
||
|
||
const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
|
||
return llama_token_get_text_impl(model->vocab, token);
|
||
}
|
||
|
||
float llama_token_get_score(const struct llama_model * model, llama_token token) {
|
||
return llama_token_get_score_impl(model->vocab, token);
|
||
}
|
||
|
||
enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
|
||
return llama_token_get_attr_impl(model->vocab, token);
|
||
}
|
||
|
||
bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
|
||
return llama_token_is_eog_impl(model->vocab, token);
|
||
}
|
||
|
||
bool llama_token_is_control(const struct llama_model * model, llama_token token) {
|
||
return llama_token_is_control_impl(model->vocab, token);
|
||
}
|
||
|
||
llama_token llama_token_bos(const struct llama_model * model) {
|
||
return llama_token_bos_impl(model->vocab);
|
||
}
|
||
|
||
llama_token llama_token_eos(const struct llama_model * model) {
|
||
return llama_token_eos_impl(model->vocab);
|
||
}
|
||
|
||
llama_token llama_token_cls(const struct llama_model * model) {
|
||
return llama_token_cls_impl(model->vocab);
|
||
}
|
||
|
||
llama_token llama_token_sep(const struct llama_model * model) {
|
||
return llama_token_sep_impl(model->vocab);
|
||
}
|
||
|
||
llama_token llama_token_nl (const struct llama_model * model) {
|
||
return llama_token_nl_impl(model->vocab);
|
||
}
|
||
|
||
llama_token llama_token_pad(const struct llama_model * model) {
|
||
return llama_token_pad_impl(model->vocab);
|
||
}
|
||
|
||
bool llama_add_bos_token(const struct llama_model * model) {
|
||
return llama_add_bos_token_impl(model->vocab);
|
||
}
|
||
|
||
bool llama_add_eos_token(const struct llama_model * model) {
|
||
return llama_add_eos_token_impl(model->vocab);
|
||
}
|
||
|
||
llama_token llama_token_prefix(const struct llama_model * model) {
|
||
return llama_token_prefix_impl(model->vocab);
|
||
}
|
||
|
||
llama_token llama_token_middle(const struct llama_model * model) {
|
||
return llama_token_middle_impl(model->vocab);
|
||
}
|
||
|
||
llama_token llama_token_suffix(const struct llama_model * model) {
|
||
return llama_token_suffix_impl(model->vocab);
|
||
}
|
||
|
||
llama_token llama_token_eot(const struct llama_model * model) {
|
||
return llama_token_eot_impl(model->vocab);
|
||
}
|
||
|
||
//
|
||
// tokenization
|
||
//
|
||
|
||
int32_t llama_tokenize(
|
||
const struct llama_model * model,
|
||
const char * text,
|
||
int32_t text_len,
|
||
llama_token * tokens,
|
||
int32_t n_tokens_max,
|
||
bool add_special,
|
||
bool parse_special) {
|
||
return llama_tokenize_impl(model->vocab, text, text_len, tokens, n_tokens_max, add_special, parse_special);
|
||
}
|
||
|
||
int32_t llama_token_to_piece(
|
||
const struct llama_model * model,
|
||
llama_token token,
|
||
char * buf,
|
||
int32_t length,
|
||
int32_t lstrip,
|
||
bool special) {
|
||
return llama_token_to_piece_impl(model->vocab, token, buf, length, lstrip, special);
|
||
}
|
||
|
||
int32_t llama_detokenize(
|
||
const struct llama_model * model,
|
||
const llama_token * tokens,
|
||
int32_t n_tokens,
|
||
char * text,
|
||
int32_t text_len_max,
|
||
bool remove_special,
|
||
bool unparse_special) {
|
||
return llama_detokenize_impl(model->vocab, tokens, n_tokens, text, text_len_max, remove_special, unparse_special);
|
||
}
|
||
|
||
//
|
||
// chat templates
|
||
//
|
||
|
||
// Simple version of "llama_apply_chat_template" that only works with strings
|
||
// This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
|
||
static int32_t llama_chat_apply_template_internal(
|
||
const std::string & tmpl,
|
||
const std::vector<const llama_chat_message *> & chat,
|
||
std::string & dest, bool add_ass) {
|
||
// Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
|
||
std::stringstream ss;
|
||
auto tmpl_contains = [&tmpl](std::string haystack) -> bool {
|
||
return tmpl.find(haystack) != std::string::npos;
|
||
};
|
||
if (tmpl == "chatml" || tmpl_contains("<|im_start|>")) {
|
||
// chatml template
|
||
for (auto message : chat) {
|
||
ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
|
||
}
|
||
if (add_ass) {
|
||
ss << "<|im_start|>assistant\n";
|
||
}
|
||
} else if (tmpl == "llama2" || tmpl == "mistral" || tmpl_contains("[INST]")) {
|
||
// llama2 template and its variants
|
||
// [variant] support system message
|
||
bool support_system_message = tmpl_contains("<<SYS>>") || tmpl == "mistral";
|
||
// [variant] space before + after response
|
||
bool space_around_response = tmpl_contains("' ' + eos_token");
|
||
// [variant] add BOS inside history
|
||
bool add_bos_inside_history = tmpl_contains("bos_token + '[INST]");
|
||
// [variant] trim spaces from the input message
|
||
bool strip_message = tmpl_contains("content.strip()");
|
||
// construct the prompt
|
||
bool is_inside_turn = true; // skip BOS at the beginning
|
||
ss << "[INST] ";
|
||
for (auto message : chat) {
|
||
std::string content = strip_message ? trim(message->content) : message->content;
|
||
std::string role(message->role);
|
||
if (!is_inside_turn) {
|
||
is_inside_turn = true;
|
||
ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
|
||
}
|
||
if (role == "system") {
|
||
if (support_system_message) {
|
||
ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
|
||
} else {
|
||
// if the model does not support system message, we still include it in the first message, but without <<SYS>>
|
||
ss << content << "\n";
|
||
}
|
||
} else if (role == "user") {
|
||
ss << content << " [/INST]";
|
||
} else {
|
||
ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
|
||
is_inside_turn = false;
|
||
}
|
||
}
|
||
// llama2 templates seem to not care about "add_generation_prompt"
|
||
} else if (tmpl == "phi3" || (tmpl_contains("<|assistant|>") && tmpl_contains("<|end|>"))) {
|
||
// Phi 3
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
|
||
}
|
||
if (add_ass) {
|
||
ss << "<|assistant|>\n";
|
||
}
|
||
} else if (tmpl == "zephyr" || tmpl_contains("<|user|>")) {
|
||
// zephyr template
|
||
for (auto message : chat) {
|
||
ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
|
||
}
|
||
if (add_ass) {
|
||
ss << "<|assistant|>\n";
|
||
}
|
||
} else if (tmpl == "monarch" || tmpl_contains("bos_token + message['role']")) {
|
||
// mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
|
||
for (auto message : chat) {
|
||
std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
|
||
ss << bos << message->role << "\n" << message->content << "</s>\n";
|
||
}
|
||
if (add_ass) {
|
||
ss << "<s>assistant\n";
|
||
}
|
||
} else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl_contains("<start_of_turn>")) {
|
||
// google/gemma-7b-it
|
||
std::string system_prompt = "";
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
if (role == "system") {
|
||
// there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
|
||
system_prompt = trim(message->content);
|
||
continue;
|
||
}
|
||
// in gemma, "assistant" is "model"
|
||
role = role == "assistant" ? "model" : message->role;
|
||
ss << "<start_of_turn>" << role << "\n";
|
||
if (!system_prompt.empty() && role != "model") {
|
||
ss << system_prompt << "\n\n";
|
||
system_prompt = "";
|
||
}
|
||
ss << trim(message->content) << "<end_of_turn>\n";
|
||
}
|
||
if (add_ass) {
|
||
ss << "<start_of_turn>model\n";
|
||
}
|
||
} else if (tmpl == "orion" || tmpl_contains("'\\n\\nAssistant: ' + eos_token")) {
|
||
// OrionStarAI/Orion-14B-Chat
|
||
std::string system_prompt = "";
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
if (role == "system") {
|
||
// there is no system message support, we will merge it with user prompt
|
||
system_prompt = message->content;
|
||
continue;
|
||
} else if (role == "user") {
|
||
ss << "Human: ";
|
||
if (!system_prompt.empty()) {
|
||
ss << system_prompt << "\n\n";
|
||
system_prompt = "";
|
||
}
|
||
ss << message->content << "\n\nAssistant: </s>";
|
||
} else {
|
||
ss << message->content << "</s>";
|
||
}
|
||
}
|
||
} else if (tmpl == "openchat" || tmpl_contains("GPT4 Correct ")) {
|
||
// openchat/openchat-3.5-0106,
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
if (role == "system") {
|
||
ss << message->content << "<|end_of_turn|>";
|
||
} else {
|
||
role[0] = toupper(role[0]);
|
||
ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
|
||
}
|
||
}
|
||
if (add_ass) {
|
||
ss << "GPT4 Correct Assistant:";
|
||
}
|
||
} else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl_contains("USER: ") && tmpl_contains("ASSISTANT: "))) {
|
||
// eachadea/vicuna-13b-1.1 (and Orca variant)
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
if (role == "system") {
|
||
// Orca-Vicuna variant uses a system prefix
|
||
if (tmpl == "vicuna-orca" || tmpl_contains("SYSTEM: ")) {
|
||
ss << "SYSTEM: " << message->content << "\n";
|
||
} else {
|
||
ss << message->content << "\n\n";
|
||
}
|
||
} else if (role == "user") {
|
||
ss << "USER: " << message->content << "\n";
|
||
} else if (role == "assistant") {
|
||
ss << "ASSISTANT: " << message->content << "</s>\n";
|
||
}
|
||
}
|
||
if (add_ass) {
|
||
ss << "ASSISTANT:";
|
||
}
|
||
} else if (tmpl == "deepseek" || (tmpl_contains("### Instruction:") && tmpl_contains("<|EOT|>"))) {
|
||
// deepseek-ai/deepseek-coder-33b-instruct
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
if (role == "system") {
|
||
ss << message->content;
|
||
} else if (role == "user") {
|
||
ss << "### Instruction:\n" << message->content << "\n";
|
||
} else if (role == "assistant") {
|
||
ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
|
||
}
|
||
}
|
||
if (add_ass) {
|
||
ss << "### Response:\n";
|
||
}
|
||
} else if (tmpl == "command-r" || (tmpl_contains("<|START_OF_TURN_TOKEN|>") && tmpl_contains("<|USER_TOKEN|>"))) {
|
||
// CohereForAI/c4ai-command-r-plus
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
if (role == "system") {
|
||
ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
|
||
} else if (role == "user") {
|
||
ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
|
||
} else if (role == "assistant") {
|
||
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
|
||
}
|
||
}
|
||
if (add_ass) {
|
||
ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
|
||
}
|
||
} else if (tmpl == "llama3" || (tmpl_contains("<|start_header_id|>") && tmpl_contains("<|end_header_id|>"))) {
|
||
// Llama 3
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
|
||
}
|
||
if (add_ass) {
|
||
ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
|
||
}
|
||
} else if (tmpl == "chatglm3" || tmpl_contains("[gMASK]sop")) {
|
||
// chatglm3-6b
|
||
ss << "[gMASK]" << "sop";
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
ss << "<|" << role << "|>" << "\n " << message->content;
|
||
}
|
||
if (add_ass) {
|
||
ss << "<|assistant|>";
|
||
}
|
||
} else if (tmpl == "chatglm4" || tmpl_contains("[gMASK]<sop>")) {
|
||
ss << "[gMASK]" << "<sop>";
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
ss << "<|" << role << "|>" << "\n" << message->content;
|
||
}
|
||
if (add_ass) {
|
||
ss << "<|assistant|>";
|
||
}
|
||
} else if (tmpl == "minicpm" || tmpl_contains(LU8("<用户>"))) {
|
||
// MiniCPM-3B-OpenHermes-2.5-v2-GGUF
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
if (role == "user") {
|
||
ss << LU8("<用户>");
|
||
ss << trim(message->content);
|
||
ss << "<AI>";
|
||
} else {
|
||
ss << trim(message->content);
|
||
}
|
||
}
|
||
} else if (tmpl == "deepseek2" || tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
|
||
// DeepSeek-V2
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
if (role == "system") {
|
||
ss << message->content << "\n\n";
|
||
} else if (role == "user") {
|
||
ss << "User: " << message->content << "\n\n";
|
||
} else if (role == "assistant") {
|
||
ss << "Assistant: " << message->content << LU8("<|end▁of▁sentence|>");
|
||
}
|
||
}
|
||
if (add_ass) {
|
||
ss << "Assistant:";
|
||
}
|
||
} else if (tmpl == "exaone3" || (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]"))) {
|
||
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb
|
||
// EXAONE-3.0-7.8B-Instruct
|
||
for (auto message : chat) {
|
||
std::string role(message->role);
|
||
if (role == "system") {
|
||
ss << "[|system|]" << trim(message->content) << "[|endofturn|]\n";
|
||
} else if (role == "user") {
|
||
ss << "[|user|]" << trim(message->content) << "\n";
|
||
} else if (role == "assistant") {
|
||
ss << "[|assistant|]" << trim(message->content) << "[|endofturn|]\n";
|
||
}
|
||
}
|
||
if (add_ass) {
|
||
ss << "[|assistant|]";
|
||
}
|
||
} else {
|
||
// template not supported
|
||
return -1;
|
||
}
|
||
dest = ss.str();
|
||
return dest.size();
|
||
}
|
||
|
||
int32_t llama_chat_apply_template(
|
||
const struct llama_model * model,
|
||
const char * tmpl,
|
||
const struct llama_chat_message * chat,
|
||
size_t n_msg,
|
||
bool add_ass,
|
||
char * buf,
|
||
int32_t length) {
|
||
std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
|
||
if (tmpl == nullptr) {
|
||
GGML_ASSERT(model != nullptr);
|
||
// load template from model
|
||
std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
|
||
std::string template_key = "tokenizer.chat_template";
|
||
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
|
||
if (res < 0) {
|
||
// worst case: there is no information about template, we will use chatml by default
|
||
curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
|
||
} else {
|
||
curr_tmpl = std::string(model_template.data(), model_template.size());
|
||
}
|
||
}
|
||
|
||
// format the chat to string
|
||
std::vector<const llama_chat_message *> chat_vec;
|
||
chat_vec.resize(n_msg);
|
||
for (size_t i = 0; i < n_msg; i++) {
|
||
chat_vec[i] = &chat[i];
|
||
}
|
||
|
||
std::string formatted_chat;
|
||
int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
|
||
if (res < 0) {
|
||
return res;
|
||
}
|
||
if (buf && length > 0) {
|
||
strncpy(buf, formatted_chat.c_str(), length);
|
||
}
|
||
return res;
|
||
}
|
||
|
||
//
|
||
// sampling
|
||
//
|
||
|
||
// TODO: remove indirection when vocab becomes accesible in llama-sampling.cpp
|
||
struct llama_sampler * llama_sampler_init_grammar(const struct llama_model * model, const char * grammar_str, const char * grammar_root) {
|
||
return llama_sampler_init_grammar_impl(model->vocab, grammar_str, grammar_root);
|
||
}
|
||
|
||
//
|
||
// model split
|
||
//
|
||
|
||
int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
|
||
static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
|
||
if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
|
||
return strlen(split_path);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
|
||
std::string str_split_path(split_path);
|
||
char postfix[32];
|
||
snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
|
||
std::string str_postfix(postfix);
|
||
|
||
// check if dest ends with postfix
|
||
int size_prefix = str_split_path.size() - str_postfix.size();
|
||
if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
|
||
snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
|
||
return size_prefix;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
const char * llama_print_system_info(void) {
|
||
static std::string s;
|
||
|
||
s = "";
|
||
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
|
||
s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
|
||
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
|
||
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
|
||
s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
|
||
s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
|
||
s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
|
||
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
|
||
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
|
||
s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
|
||
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
||
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
||
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
||
s += "RISCV_VECT = " + std::to_string(ggml_cpu_has_riscv_v()) + " | ";
|
||
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
||
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
||
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
||
s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
|
||
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
||
s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
|
||
s += "LLAMAFILE = " + std::to_string(ggml_cpu_has_llamafile()) + " | ";
|
||
|
||
return s.c_str();
|
||
}
|
||
|
||
struct llama_perf_context_data llama_perf_context(const struct llama_context * ctx) {
|
||
struct llama_perf_context_data data = {};
|
||
|
||
if (ctx == nullptr) {
|
||
return data;
|
||
}
|
||
|
||
data.t_start_ms = 1e-3 * ctx->t_start_us;
|
||
data.t_load_ms = 1e-3 * ctx->t_load_us;
|
||
data.t_p_eval_ms = 1e-3 * ctx->t_p_eval_us;
|
||
data.t_eval_ms = 1e-3 * ctx->t_eval_us;
|
||
data.n_p_eval = std::max(1, ctx->n_p_eval);
|
||
data.n_eval = std::max(1, ctx->n_eval);
|
||
|
||
return data;
|
||
}
|
||
|
||
void llama_perf_context_print(const struct llama_context * ctx) {
|
||
const auto data = llama_perf_context(ctx);
|
||
|
||
const double t_end_ms = 1e-3 * ggml_time_us();
|
||
|
||
LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, data.t_load_ms);
|
||
LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
||
__func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
|
||
LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||
__func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
|
||
LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
|
||
}
|
||
|
||
void llama_perf_context_reset(struct llama_context * ctx) {
|
||
ctx->t_start_us = ggml_time_us();
|
||
ctx->t_eval_us = ctx->n_eval = 0;
|
||
ctx->t_p_eval_us = ctx->n_p_eval = 0;
|
||
}
|
||
|
||
void llama_perf_dump_yaml(FILE * stream, const llama_context * ctx) {
|
||
fprintf(stream, "\n");
|
||
fprintf(stream, "###########\n");
|
||
fprintf(stream, "# Timings #\n");
|
||
fprintf(stream, "###########\n");
|
||
fprintf(stream, "\n");
|
||
|
||
fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
|
||
1.0e-3 * ctx->t_eval_us / ctx->n_eval);
|
||
fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
|
||
1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
|
||
fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
|
||
fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
|
||
fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
|
||
fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
|
||
fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
|
||
fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
|
||
1.0e6 * ctx->n_eval / ctx->t_eval_us);
|
||
fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
|
||
1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
|
||
}
|
||
|
||
// For internal test use
|
||
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
|
||
struct llama_context * ctx
|
||
) {
|
||
return ctx->model.tensors_by_name;
|
||
}
|
||
|
||
void llama_log_set(ggml_log_callback log_callback, void * user_data) {
|
||
ggml_log_set(log_callback, user_data);
|
||
g_logger_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
|
||
g_logger_state.log_callback_user_data = user_data;
|
||
}
|
||
|
||
static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
|
||
va_list args_copy;
|
||
va_copy(args_copy, args);
|
||
char buffer[128];
|
||
int len = vsnprintf(buffer, 128, format, args);
|
||
if (len < 128) {
|
||
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
|
||
} else {
|
||
char * buffer2 = new char[len + 1];
|
||
vsnprintf(buffer2, len + 1, format, args_copy);
|
||
buffer2[len] = 0;
|
||
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
|
||
delete[] buffer2;
|
||
}
|
||
va_end(args_copy);
|
||
}
|
||
|
||
void llama_log_internal(ggml_log_level level, const char * format, ...) {
|
||
va_list args;
|
||
va_start(args, format);
|
||
llama_log_internal_v(level, format, args);
|
||
va_end(args);
|
||
}
|
||
|
||
void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
|
||
(void) level;
|
||
(void) user_data;
|
||
fputs(text, stderr);
|
||
fflush(stderr);
|
||
}
|