mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-05 13:39:11 +01:00
245 lines
7.3 KiB
C++
245 lines
7.3 KiB
C++
#include "ggml.h"
|
|
#include "whisper.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
// command-line parameters
|
|
struct whisper_params {
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
int32_t what = 0; // what to benchmark: 0 - whisper ecoder, 1 - memcpy, 2 - ggml_mul_mat
|
|
|
|
std::string model = "models/ggml-base.en.bin";
|
|
};
|
|
|
|
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
|
|
|
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
|
for (int i = 1; i < argc; i++) {
|
|
std::string arg = argv[i];
|
|
|
|
if (arg == "-h" || arg == "--help") {
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
|
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
|
|
else if (arg == "-w" || arg == "--what") { params.what = atoi(argv[++i]); }
|
|
else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
whisper_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
|
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
|
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
|
|
fprintf(stderr, " -w N, --what N [%-7d] what to benchmark:\n", params.what);
|
|
fprintf(stderr, " %-7s 0 - whisper encoder\n", "");
|
|
fprintf(stderr, " %-7s 1 - memcpy\n", "");
|
|
fprintf(stderr, " %-7s 2 - ggml_mul_mat\n", "");
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
int bench_whisper_encoder(const whisper_params & params) {
|
|
// whisper init
|
|
|
|
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
|
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n", params.n_threads, std::thread::hardware_concurrency(), whisper_print_system_info());
|
|
}
|
|
|
|
if (ctx == nullptr) {
|
|
fprintf(stderr, "error: failed to initialize whisper context\n");
|
|
return 2;
|
|
}
|
|
|
|
if (int ret = whisper_set_mel(ctx, nullptr, 0, WHISPER_N_MEL)) {
|
|
fprintf(stderr, "error: failed to set mel: %d\n", ret);
|
|
return 3;
|
|
}
|
|
|
|
if (int ret = whisper_encode(ctx, 0, params.n_threads) != 0) {
|
|
fprintf(stderr, "error: failed to encode model: %d\n", ret);
|
|
return 4;
|
|
}
|
|
|
|
whisper_print_timings(ctx);
|
|
whisper_free(ctx);
|
|
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "If you wish, you can submit these results here:\n");
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, " https://github.com/ggerganov/whisper.cpp/issues/89\n");
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "Please include the following information:\n");
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, " - CPU model\n");
|
|
fprintf(stderr, " - Operating system\n");
|
|
fprintf(stderr, " - Compiler\n");
|
|
fprintf(stderr, "\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bench_memcpy(const whisper_params & params) {
|
|
size_t n = 50;
|
|
size_t arr = params.what > 0 ? 1024 : params.what; // trick to avoid compiler optimizations
|
|
|
|
// 1 GB array
|
|
const size_t size = arr*1024llu*1024llu;
|
|
|
|
char * src = (char *) malloc(size);
|
|
char * dst = (char *) malloc(size);
|
|
|
|
for (size_t i = 0; i < size; i++) src[i] = i;
|
|
|
|
memcpy(dst, src, size); // heat-up
|
|
|
|
double tsum = 0.0;
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
const int64_t t0 = ggml_time_us();
|
|
|
|
memcpy(dst, src, size);
|
|
|
|
const int64_t t1 = ggml_time_us();
|
|
|
|
tsum += (t1 - t0)*1e-6;
|
|
|
|
src[0] = rand();
|
|
}
|
|
|
|
fprintf(stderr, "memcpy: %.2f GB/s\n", (double) (n*size)/(tsum*1024llu*1024llu*1024llu));
|
|
|
|
// needed to prevent the compile from optimizing the memcpy away
|
|
{
|
|
double sum = 0.0;
|
|
|
|
for (size_t i = 0; i < size; i++) sum += dst[i];
|
|
|
|
fprintf(stderr, "sum: %s\n", sum == -536870910.00 ? "ok" : "error");
|
|
}
|
|
|
|
free(src);
|
|
free(dst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bench_ggml_mul_mat(const whisper_params & params) {
|
|
const int n_max = 128;
|
|
|
|
const std::vector<size_t> sizes = {
|
|
64, 128, 256, 512, 1024, 2048, 4096,
|
|
};
|
|
|
|
const size_t N_max = sizes.back();
|
|
|
|
// a: N*N*sizeof(float)
|
|
// b: N*N*sizeof(float)
|
|
// c: N*N*sizeof(float)
|
|
// when F16 is used, there is an extra work buffer of size N*N*sizeof(float)
|
|
std::vector<char> buf(4llu*N_max*N_max*sizeof(float) + 4*256);
|
|
|
|
for (size_t i = 0; i < buf.size(); i++) buf[i] = i;
|
|
|
|
for (int j = 0; j < (int) sizes.size(); j++) {
|
|
int n_fp16 = 0;
|
|
int n_fp32 = 0;
|
|
|
|
// GFLOPS/s
|
|
double s_fp16 = 0.0;
|
|
double s_fp32 = 0.0;
|
|
|
|
const size_t N = sizes[j];
|
|
|
|
for (int k = 0; k < 2; ++k) {
|
|
const ggml_type wtype = k == 0 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
|
|
|
double & s = k == 0 ? s_fp16 : s_fp32;
|
|
int & n = k == 0 ? n_fp16 : n_fp32;
|
|
|
|
struct ggml_init_params gparams = {
|
|
/*.mem_size =*/ buf.size(),
|
|
/*.mem_buffer =*/ buf.data(),
|
|
};
|
|
|
|
struct ggml_context * ctx0 = ggml_init(gparams);
|
|
|
|
struct ggml_tensor * a = ggml_new_tensor_2d(ctx0, wtype, N, N);
|
|
struct ggml_tensor * b = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, N, N);
|
|
|
|
struct ggml_tensor * c = ggml_mul_mat(ctx0, a, b);
|
|
|
|
struct ggml_cgraph gf = ggml_build_forward(c);
|
|
|
|
gf.n_threads = params.n_threads;
|
|
|
|
double tsum = 0.0;
|
|
|
|
// heat-up
|
|
ggml_graph_compute(ctx0, &gf);
|
|
|
|
for (int i = 0; i < n_max; ++i) {
|
|
const int64_t t0 = ggml_time_us();
|
|
|
|
ggml_graph_compute(ctx0, &gf);
|
|
|
|
const int64_t t1 = ggml_time_us();
|
|
|
|
tsum += (t1 - t0)*1e-6;
|
|
n++;
|
|
|
|
if (tsum > 1.0 && n >= 3) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
ggml_free(ctx0);
|
|
|
|
s = ((2.0*N*N*N*n)/tsum)*1e-9;
|
|
}
|
|
|
|
fprintf(stderr, "ggml_mul_mat: %5zu x %5zu: F16 %8.1f GFLOPS (%3d runs) / F32 %8.1f GFLOPS (%3d runs)\n",
|
|
N, N, s_fp16, n_fp16, s_fp32, n_fp32);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
whisper_params params;
|
|
|
|
if (whisper_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
ggml_time_init();
|
|
|
|
int ret = -1;
|
|
|
|
switch (params.what) {
|
|
case 0: ret = bench_whisper_encoder(params); break;
|
|
case 1: ret = bench_memcpy(params); break;
|
|
case 2: ret = bench_ggml_mul_mat(params); break;
|
|
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;
|
|
}
|
|
|
|
return ret;
|
|
}
|